Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/fs/ext4/ialloc.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  BSD ufs-inspired inode and directory allocation by
  10 *  Stephen Tweedie (sct@redhat.com), 1993
  11 *  Big-endian to little-endian byte-swapping/bitmaps by
  12 *        David S. Miller (davem@caip.rutgers.edu), 1995
  13 */
  14
  15#include <linux/time.h>
  16#include <linux/fs.h>
  17#include <linux/jbd2.h>
  18#include <linux/stat.h>
  19#include <linux/string.h>
  20#include <linux/quotaops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/random.h>
  23#include <linux/bitops.h>
  24#include <linux/blkdev.h>
 
 
  25#include <asm/byteorder.h>
  26
  27#include "ext4.h"
  28#include "ext4_jbd2.h"
  29#include "xattr.h"
  30#include "acl.h"
  31
  32#include <trace/events/ext4.h>
  33
  34/*
  35 * ialloc.c contains the inodes allocation and deallocation routines
  36 */
  37
  38/*
  39 * The free inodes are managed by bitmaps.  A file system contains several
  40 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  41 * block for inodes, N blocks for the inode table and data blocks.
  42 *
  43 * The file system contains group descriptors which are located after the
  44 * super block.  Each descriptor contains the number of the bitmap block and
  45 * the free blocks count in the block.
  46 */
  47
  48/*
  49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
  50 * need to use it within a single byte (to ensure we get endianness right).
  51 * We can use memset for the rest of the bitmap as there are no other users.
  52 */
  53void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
  54{
  55	int i;
  56
  57	if (start_bit >= end_bit)
  58		return;
  59
  60	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
  61	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
  62		ext4_set_bit(i, bitmap);
  63	if (i < end_bit)
  64		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
  65}
  66
  67/* Initializes an uninitialized inode bitmap */
  68static unsigned ext4_init_inode_bitmap(struct super_block *sb,
  69				       struct buffer_head *bh,
  70				       ext4_group_t block_group,
  71				       struct ext4_group_desc *gdp)
  72{
  73	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 
 
 
  74
  75	J_ASSERT_BH(bh, buffer_locked(bh));
 
 
 
 
 
 
  76
  77	/* If checksum is bad mark all blocks and inodes use to prevent
  78	 * allocation, essentially implementing a per-group read-only flag. */
  79	if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
  80		ext4_error(sb, "Checksum bad for group %u", block_group);
  81		ext4_free_blks_set(sb, gdp, 0);
  82		ext4_free_inodes_set(sb, gdp, 0);
  83		ext4_itable_unused_set(sb, gdp, 0);
  84		memset(bh->b_data, 0xff, sb->s_blocksize);
  85		return 0;
  86	}
  87
  88	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
  89	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
  90			bh->b_data);
  91
  92	return EXT4_INODES_PER_GROUP(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93}
  94
  95/*
  96 * Read the inode allocation bitmap for a given block_group, reading
  97 * into the specified slot in the superblock's bitmap cache.
  98 *
  99 * Return buffer_head of bitmap on success or NULL.
 100 */
 101static struct buffer_head *
 102ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
 103{
 104	struct ext4_group_desc *desc;
 
 105	struct buffer_head *bh = NULL;
 106	ext4_fsblk_t bitmap_blk;
 
 107
 108	desc = ext4_get_group_desc(sb, block_group, NULL);
 109	if (!desc)
 110		return NULL;
 111
 112	bitmap_blk = ext4_inode_bitmap(sb, desc);
 
 
 
 
 
 
 
 
 113	bh = sb_getblk(sb, bitmap_blk);
 114	if (unlikely(!bh)) {
 115		ext4_error(sb, "Cannot read inode bitmap - "
 116			    "block_group = %u, inode_bitmap = %llu",
 117			    block_group, bitmap_blk);
 118		return NULL;
 119	}
 120	if (bitmap_uptodate(bh))
 121		return bh;
 122
 123	lock_buffer(bh);
 124	if (bitmap_uptodate(bh)) {
 125		unlock_buffer(bh);
 126		return bh;
 127	}
 128
 129	ext4_lock_group(sb, block_group);
 130	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 131		ext4_init_inode_bitmap(sb, bh, block_group, desc);
 
 
 
 
 
 
 
 
 
 
 
 132		set_bitmap_uptodate(bh);
 133		set_buffer_uptodate(bh);
 
 134		ext4_unlock_group(sb, block_group);
 135		unlock_buffer(bh);
 136		return bh;
 137	}
 138	ext4_unlock_group(sb, block_group);
 139
 140	if (buffer_uptodate(bh)) {
 141		/*
 142		 * if not uninit if bh is uptodate,
 143		 * bitmap is also uptodate
 144		 */
 145		set_bitmap_uptodate(bh);
 146		unlock_buffer(bh);
 147		return bh;
 148	}
 149	/*
 150	 * submit the buffer_head for read. We can
 151	 * safely mark the bitmap as uptodate now.
 152	 * We do it here so the bitmap uptodate bit
 153	 * get set with buffer lock held.
 154	 */
 155	trace_ext4_load_inode_bitmap(sb, block_group);
 156	set_bitmap_uptodate(bh);
 157	if (bh_submit_read(bh) < 0) {
 
 
 
 
 158		put_bh(bh);
 159		ext4_error(sb, "Cannot read inode bitmap - "
 160			    "block_group = %u, inode_bitmap = %llu",
 161			    block_group, bitmap_blk);
 162		return NULL;
 
 
 163	}
 
 
 
 
 
 164	return bh;
 
 
 
 165}
 166
 167/*
 168 * NOTE! When we get the inode, we're the only people
 169 * that have access to it, and as such there are no
 170 * race conditions we have to worry about. The inode
 171 * is not on the hash-lists, and it cannot be reached
 172 * through the filesystem because the directory entry
 173 * has been deleted earlier.
 174 *
 175 * HOWEVER: we must make sure that we get no aliases,
 176 * which means that we have to call "clear_inode()"
 177 * _before_ we mark the inode not in use in the inode
 178 * bitmaps. Otherwise a newly created file might use
 179 * the same inode number (not actually the same pointer
 180 * though), and then we'd have two inodes sharing the
 181 * same inode number and space on the harddisk.
 182 */
 183void ext4_free_inode(handle_t *handle, struct inode *inode)
 184{
 185	struct super_block *sb = inode->i_sb;
 186	int is_directory;
 187	unsigned long ino;
 188	struct buffer_head *bitmap_bh = NULL;
 189	struct buffer_head *bh2;
 190	ext4_group_t block_group;
 191	unsigned long bit;
 192	struct ext4_group_desc *gdp;
 193	struct ext4_super_block *es;
 194	struct ext4_sb_info *sbi;
 195	int fatal = 0, err, count, cleared;
 
 196
 197	if (atomic_read(&inode->i_count) > 1) {
 198		printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
 199		       atomic_read(&inode->i_count));
 200		return;
 201	}
 202	if (inode->i_nlink) {
 203		printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
 204		       inode->i_nlink);
 
 205		return;
 206	}
 207	if (!sb) {
 208		printk(KERN_ERR "ext4_free_inode: inode on "
 209		       "nonexistent device\n");
 210		return;
 211	}
 212	sbi = EXT4_SB(sb);
 213
 214	ino = inode->i_ino;
 215	ext4_debug("freeing inode %lu\n", ino);
 216	trace_ext4_free_inode(inode);
 217
 218	/*
 219	 * Note: we must free any quota before locking the superblock,
 220	 * as writing the quota to disk may need the lock as well.
 221	 */
 222	dquot_initialize(inode);
 223	ext4_xattr_delete_inode(handle, inode);
 224	dquot_free_inode(inode);
 225	dquot_drop(inode);
 226
 227	is_directory = S_ISDIR(inode->i_mode);
 228
 229	/* Do this BEFORE marking the inode not in use or returning an error */
 230	ext4_clear_inode(inode);
 231
 232	es = EXT4_SB(sb)->s_es;
 233	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
 234		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
 235		goto error_return;
 236	}
 237	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 238	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 239	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 240	if (!bitmap_bh)
 
 
 
 
 
 
 
 
 241		goto error_return;
 
 242
 243	BUFFER_TRACE(bitmap_bh, "get_write_access");
 244	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
 245	if (fatal)
 246		goto error_return;
 247
 248	fatal = -ESRCH;
 249	gdp = ext4_get_group_desc(sb, block_group, &bh2);
 250	if (gdp) {
 251		BUFFER_TRACE(bh2, "get_write_access");
 252		fatal = ext4_journal_get_write_access(handle, bh2);
 253	}
 254	ext4_lock_group(sb, block_group);
 255	cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
 256	if (fatal || !cleared) {
 257		ext4_unlock_group(sb, block_group);
 258		goto out;
 259	}
 260
 261	count = ext4_free_inodes_count(sb, gdp) + 1;
 262	ext4_free_inodes_set(sb, gdp, count);
 263	if (is_directory) {
 264		count = ext4_used_dirs_count(sb, gdp) - 1;
 265		ext4_used_dirs_set(sb, gdp, count);
 266		percpu_counter_dec(&sbi->s_dirs_counter);
 267	}
 268	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
 
 
 269	ext4_unlock_group(sb, block_group);
 270
 271	percpu_counter_inc(&sbi->s_freeinodes_counter);
 272	if (sbi->s_log_groups_per_flex) {
 273		ext4_group_t f = ext4_flex_group(sbi, block_group);
 274
 275		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
 
 
 276		if (is_directory)
 277			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
 278	}
 279	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
 280	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
 281out:
 282	if (cleared) {
 283		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
 284		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 285		if (!fatal)
 286			fatal = err;
 287		ext4_mark_super_dirty(sb);
 288	} else
 289		ext4_error(sb, "bit already cleared for inode %lu", ino);
 
 
 
 290
 291error_return:
 292	brelse(bitmap_bh);
 293	ext4_std_error(sb, fatal);
 294}
 295
 296/*
 297 * There are two policies for allocating an inode.  If the new inode is
 298 * a directory, then a forward search is made for a block group with both
 299 * free space and a low directory-to-inode ratio; if that fails, then of
 300 * the groups with above-average free space, that group with the fewest
 301 * directories already is chosen.
 302 *
 303 * For other inodes, search forward from the parent directory\'s block
 304 * group to find a free inode.
 305 */
 306static int find_group_dir(struct super_block *sb, struct inode *parent,
 307				ext4_group_t *best_group)
 308{
 309	ext4_group_t ngroups = ext4_get_groups_count(sb);
 310	unsigned int freei, avefreei;
 311	struct ext4_group_desc *desc, *best_desc = NULL;
 312	ext4_group_t group;
 313	int ret = -1;
 314
 315	freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
 316	avefreei = freei / ngroups;
 317
 318	for (group = 0; group < ngroups; group++) {
 319		desc = ext4_get_group_desc(sb, group, NULL);
 320		if (!desc || !ext4_free_inodes_count(sb, desc))
 321			continue;
 322		if (ext4_free_inodes_count(sb, desc) < avefreei)
 323			continue;
 324		if (!best_desc ||
 325		    (ext4_free_blks_count(sb, desc) >
 326		     ext4_free_blks_count(sb, best_desc))) {
 327			*best_group = group;
 328			best_desc = desc;
 329			ret = 0;
 330		}
 331	}
 332	return ret;
 333}
 334
 335#define free_block_ratio 10
 336
 337static int find_group_flex(struct super_block *sb, struct inode *parent,
 338			   ext4_group_t *best_group)
 339{
 340	struct ext4_sb_info *sbi = EXT4_SB(sb);
 341	struct ext4_group_desc *desc;
 342	struct flex_groups *flex_group = sbi->s_flex_groups;
 343	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 344	ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
 345	ext4_group_t ngroups = ext4_get_groups_count(sb);
 346	int flex_size = ext4_flex_bg_size(sbi);
 347	ext4_group_t best_flex = parent_fbg_group;
 348	int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
 349	int flexbg_free_blocks;
 350	int flex_freeb_ratio;
 351	ext4_group_t n_fbg_groups;
 352	ext4_group_t i;
 353
 354	n_fbg_groups = (ngroups + flex_size - 1) >>
 355		sbi->s_log_groups_per_flex;
 356
 357find_close_to_parent:
 358	flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
 359	flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
 360	if (atomic_read(&flex_group[best_flex].free_inodes) &&
 361	    flex_freeb_ratio > free_block_ratio)
 362		goto found_flexbg;
 363
 364	if (best_flex && best_flex == parent_fbg_group) {
 365		best_flex--;
 366		goto find_close_to_parent;
 367	}
 368
 369	for (i = 0; i < n_fbg_groups; i++) {
 370		if (i == parent_fbg_group || i == parent_fbg_group - 1)
 371			continue;
 372
 373		flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
 374		flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
 375
 376		if (flex_freeb_ratio > free_block_ratio &&
 377		    (atomic_read(&flex_group[i].free_inodes))) {
 378			best_flex = i;
 379			goto found_flexbg;
 380		}
 381
 382		if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
 383		    ((atomic_read(&flex_group[i].free_blocks) >
 384		      atomic_read(&flex_group[best_flex].free_blocks)) &&
 385		     atomic_read(&flex_group[i].free_inodes)))
 386			best_flex = i;
 387	}
 388
 389	if (!atomic_read(&flex_group[best_flex].free_inodes) ||
 390	    !atomic_read(&flex_group[best_flex].free_blocks))
 391		return -1;
 392
 393found_flexbg:
 394	for (i = best_flex * flex_size; i < ngroups &&
 395		     i < (best_flex + 1) * flex_size; i++) {
 396		desc = ext4_get_group_desc(sb, i, NULL);
 397		if (ext4_free_inodes_count(sb, desc)) {
 398			*best_group = i;
 399			goto out;
 400		}
 401	}
 402
 403	return -1;
 404out:
 405	return 0;
 406}
 407
 408struct orlov_stats {
 
 409	__u32 free_inodes;
 410	__u32 free_blocks;
 411	__u32 used_dirs;
 412};
 413
 414/*
 415 * Helper function for Orlov's allocator; returns critical information
 416 * for a particular block group or flex_bg.  If flex_size is 1, then g
 417 * is a block group number; otherwise it is flex_bg number.
 418 */
 419static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
 420			    int flex_size, struct orlov_stats *stats)
 421{
 422	struct ext4_group_desc *desc;
 423	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
 424
 425	if (flex_size > 1) {
 426		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
 427		stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
 428		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
 
 
 429		return;
 430	}
 431
 432	desc = ext4_get_group_desc(sb, g, NULL);
 433	if (desc) {
 434		stats->free_inodes = ext4_free_inodes_count(sb, desc);
 435		stats->free_blocks = ext4_free_blks_count(sb, desc);
 436		stats->used_dirs = ext4_used_dirs_count(sb, desc);
 437	} else {
 438		stats->free_inodes = 0;
 439		stats->free_blocks = 0;
 440		stats->used_dirs = 0;
 441	}
 442}
 443
 444/*
 445 * Orlov's allocator for directories.
 446 *
 447 * We always try to spread first-level directories.
 448 *
 449 * If there are blockgroups with both free inodes and free blocks counts
 450 * not worse than average we return one with smallest directory count.
 451 * Otherwise we simply return a random group.
 452 *
 453 * For the rest rules look so:
 454 *
 455 * It's OK to put directory into a group unless
 456 * it has too many directories already (max_dirs) or
 457 * it has too few free inodes left (min_inodes) or
 458 * it has too few free blocks left (min_blocks) or
 459 * Parent's group is preferred, if it doesn't satisfy these
 460 * conditions we search cyclically through the rest. If none
 461 * of the groups look good we just look for a group with more
 462 * free inodes than average (starting at parent's group).
 463 */
 464
 465static int find_group_orlov(struct super_block *sb, struct inode *parent,
 466			    ext4_group_t *group, int mode,
 467			    const struct qstr *qstr)
 468{
 469	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 470	struct ext4_sb_info *sbi = EXT4_SB(sb);
 471	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
 472	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
 473	unsigned int freei, avefreei;
 474	ext4_fsblk_t freeb, avefreeb;
 475	unsigned int ndirs;
 476	int max_dirs, min_inodes;
 477	ext4_grpblk_t min_blocks;
 478	ext4_group_t i, grp, g, ngroups;
 479	struct ext4_group_desc *desc;
 480	struct orlov_stats stats;
 481	int flex_size = ext4_flex_bg_size(sbi);
 482	struct dx_hash_info hinfo;
 483
 484	ngroups = real_ngroups;
 485	if (flex_size > 1) {
 486		ngroups = (real_ngroups + flex_size - 1) >>
 487			sbi->s_log_groups_per_flex;
 488		parent_group >>= sbi->s_log_groups_per_flex;
 489	}
 490
 491	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
 492	avefreei = freei / ngroups;
 493	freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
 494	avefreeb = freeb;
 495	do_div(avefreeb, ngroups);
 
 496	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
 497
 498	if (S_ISDIR(mode) &&
 499	    ((parent == sb->s_root->d_inode) ||
 500	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
 501		int best_ndir = inodes_per_group;
 502		int ret = -1;
 503
 504		if (qstr) {
 505			hinfo.hash_version = DX_HASH_HALF_MD4;
 506			hinfo.seed = sbi->s_hash_seed;
 507			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
 508			grp = hinfo.hash;
 509		} else
 510			get_random_bytes(&grp, sizeof(grp));
 511		parent_group = (unsigned)grp % ngroups;
 512		for (i = 0; i < ngroups; i++) {
 513			g = (parent_group + i) % ngroups;
 514			get_orlov_stats(sb, g, flex_size, &stats);
 515			if (!stats.free_inodes)
 516				continue;
 517			if (stats.used_dirs >= best_ndir)
 518				continue;
 519			if (stats.free_inodes < avefreei)
 520				continue;
 521			if (stats.free_blocks < avefreeb)
 522				continue;
 523			grp = g;
 524			ret = 0;
 525			best_ndir = stats.used_dirs;
 526		}
 527		if (ret)
 528			goto fallback;
 529	found_flex_bg:
 530		if (flex_size == 1) {
 531			*group = grp;
 532			return 0;
 533		}
 534
 535		/*
 536		 * We pack inodes at the beginning of the flexgroup's
 537		 * inode tables.  Block allocation decisions will do
 538		 * something similar, although regular files will
 539		 * start at 2nd block group of the flexgroup.  See
 540		 * ext4_ext_find_goal() and ext4_find_near().
 541		 */
 542		grp *= flex_size;
 543		for (i = 0; i < flex_size; i++) {
 544			if (grp+i >= real_ngroups)
 545				break;
 546			desc = ext4_get_group_desc(sb, grp+i, NULL);
 547			if (desc && ext4_free_inodes_count(sb, desc)) {
 548				*group = grp+i;
 549				return 0;
 550			}
 551		}
 552		goto fallback;
 553	}
 554
 555	max_dirs = ndirs / ngroups + inodes_per_group / 16;
 556	min_inodes = avefreei - inodes_per_group*flex_size / 4;
 557	if (min_inodes < 1)
 558		min_inodes = 1;
 559	min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
 560
 561	/*
 562	 * Start looking in the flex group where we last allocated an
 563	 * inode for this parent directory
 564	 */
 565	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
 566		parent_group = EXT4_I(parent)->i_last_alloc_group;
 567		if (flex_size > 1)
 568			parent_group >>= sbi->s_log_groups_per_flex;
 569	}
 570
 571	for (i = 0; i < ngroups; i++) {
 572		grp = (parent_group + i) % ngroups;
 573		get_orlov_stats(sb, grp, flex_size, &stats);
 574		if (stats.used_dirs >= max_dirs)
 575			continue;
 576		if (stats.free_inodes < min_inodes)
 577			continue;
 578		if (stats.free_blocks < min_blocks)
 579			continue;
 580		goto found_flex_bg;
 581	}
 582
 583fallback:
 584	ngroups = real_ngroups;
 585	avefreei = freei / ngroups;
 586fallback_retry:
 587	parent_group = EXT4_I(parent)->i_block_group;
 588	for (i = 0; i < ngroups; i++) {
 589		grp = (parent_group + i) % ngroups;
 590		desc = ext4_get_group_desc(sb, grp, NULL);
 591		if (desc && ext4_free_inodes_count(sb, desc) &&
 592		    ext4_free_inodes_count(sb, desc) >= avefreei) {
 593			*group = grp;
 594			return 0;
 
 
 595		}
 596	}
 597
 598	if (avefreei) {
 599		/*
 600		 * The free-inodes counter is approximate, and for really small
 601		 * filesystems the above test can fail to find any blockgroups
 602		 */
 603		avefreei = 0;
 604		goto fallback_retry;
 605	}
 606
 607	return -1;
 608}
 609
 610static int find_group_other(struct super_block *sb, struct inode *parent,
 611			    ext4_group_t *group, int mode)
 612{
 613	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 614	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
 615	struct ext4_group_desc *desc;
 616	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
 617
 618	/*
 619	 * Try to place the inode is the same flex group as its
 620	 * parent.  If we can't find space, use the Orlov algorithm to
 621	 * find another flex group, and store that information in the
 622	 * parent directory's inode information so that use that flex
 623	 * group for future allocations.
 624	 */
 625	if (flex_size > 1) {
 626		int retry = 0;
 627
 628	try_again:
 629		parent_group &= ~(flex_size-1);
 630		last = parent_group + flex_size;
 631		if (last > ngroups)
 632			last = ngroups;
 633		for  (i = parent_group; i < last; i++) {
 634			desc = ext4_get_group_desc(sb, i, NULL);
 635			if (desc && ext4_free_inodes_count(sb, desc)) {
 636				*group = i;
 637				return 0;
 638			}
 639		}
 640		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
 641			retry = 1;
 642			parent_group = EXT4_I(parent)->i_last_alloc_group;
 643			goto try_again;
 644		}
 645		/*
 646		 * If this didn't work, use the Orlov search algorithm
 647		 * to find a new flex group; we pass in the mode to
 648		 * avoid the topdir algorithms.
 649		 */
 650		*group = parent_group + flex_size;
 651		if (*group > ngroups)
 652			*group = 0;
 653		return find_group_orlov(sb, parent, group, mode, NULL);
 654	}
 655
 656	/*
 657	 * Try to place the inode in its parent directory
 658	 */
 659	*group = parent_group;
 660	desc = ext4_get_group_desc(sb, *group, NULL);
 661	if (desc && ext4_free_inodes_count(sb, desc) &&
 662			ext4_free_blks_count(sb, desc))
 663		return 0;
 664
 665	/*
 666	 * We're going to place this inode in a different blockgroup from its
 667	 * parent.  We want to cause files in a common directory to all land in
 668	 * the same blockgroup.  But we want files which are in a different
 669	 * directory which shares a blockgroup with our parent to land in a
 670	 * different blockgroup.
 671	 *
 672	 * So add our directory's i_ino into the starting point for the hash.
 673	 */
 674	*group = (*group + parent->i_ino) % ngroups;
 675
 676	/*
 677	 * Use a quadratic hash to find a group with a free inode and some free
 678	 * blocks.
 679	 */
 680	for (i = 1; i < ngroups; i <<= 1) {
 681		*group += i;
 682		if (*group >= ngroups)
 683			*group -= ngroups;
 684		desc = ext4_get_group_desc(sb, *group, NULL);
 685		if (desc && ext4_free_inodes_count(sb, desc) &&
 686				ext4_free_blks_count(sb, desc))
 687			return 0;
 688	}
 689
 690	/*
 691	 * That failed: try linear search for a free inode, even if that group
 692	 * has no free blocks.
 693	 */
 694	*group = parent_group;
 695	for (i = 0; i < ngroups; i++) {
 696		if (++*group >= ngroups)
 697			*group = 0;
 698		desc = ext4_get_group_desc(sb, *group, NULL);
 699		if (desc && ext4_free_inodes_count(sb, desc))
 700			return 0;
 701	}
 702
 703	return -1;
 704}
 705
 706/*
 707 * claim the inode from the inode bitmap. If the group
 708 * is uninit we need to take the groups's ext4_group_lock
 709 * and clear the uninit flag. The inode bitmap update
 710 * and group desc uninit flag clear should be done
 711 * after holding ext4_group_lock so that ext4_read_inode_bitmap
 712 * doesn't race with the ext4_claim_inode
 713 */
 714static int ext4_claim_inode(struct super_block *sb,
 715			struct buffer_head *inode_bitmap_bh,
 716			unsigned long ino, ext4_group_t group, int mode)
 717{
 718	int free = 0, retval = 0, count;
 719	struct ext4_sb_info *sbi = EXT4_SB(sb);
 720	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 721	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
 722
 723	/*
 724	 * We have to be sure that new inode allocation does not race with
 725	 * inode table initialization, because otherwise we may end up
 726	 * allocating and writing new inode right before sb_issue_zeroout
 727	 * takes place and overwriting our new inode with zeroes. So we
 728	 * take alloc_sem to prevent it.
 729	 */
 730	down_read(&grp->alloc_sem);
 731	ext4_lock_group(sb, group);
 732	if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
 733		/* not a free inode */
 734		retval = 1;
 735		goto err_ret;
 736	}
 737	ino++;
 738	if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
 739			ino > EXT4_INODES_PER_GROUP(sb)) {
 740		ext4_unlock_group(sb, group);
 741		up_read(&grp->alloc_sem);
 742		ext4_error(sb, "reserved inode or inode > inodes count - "
 743			   "block_group = %u, inode=%lu", group,
 744			   ino + group * EXT4_INODES_PER_GROUP(sb));
 745		return 1;
 746	}
 747	/* If we didn't allocate from within the initialized part of the inode
 748	 * table then we need to initialize up to this inode. */
 749	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
 750
 751		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 752			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
 753			/* When marking the block group with
 754			 * ~EXT4_BG_INODE_UNINIT we don't want to depend
 755			 * on the value of bg_itable_unused even though
 756			 * mke2fs could have initialized the same for us.
 757			 * Instead we calculated the value below
 758			 */
 
 759
 760			free = 0;
 761		} else {
 762			free = EXT4_INODES_PER_GROUP(sb) -
 763				ext4_itable_unused_count(sb, gdp);
 764		}
 765
 
 
 
 766		/*
 767		 * Check the relative inode number against the last used
 768		 * relative inode number in this group. if it is greater
 769		 * we need to  update the bg_itable_unused count
 770		 *
 771		 */
 772		if (ino > free)
 773			ext4_itable_unused_set(sb, gdp,
 774					(EXT4_INODES_PER_GROUP(sb) - ino));
 775	}
 776	count = ext4_free_inodes_count(sb, gdp) - 1;
 777	ext4_free_inodes_set(sb, gdp, count);
 778	if (S_ISDIR(mode)) {
 779		count = ext4_used_dirs_count(sb, gdp) + 1;
 780		ext4_used_dirs_set(sb, gdp, count);
 781		if (sbi->s_log_groups_per_flex) {
 782			ext4_group_t f = ext4_flex_group(sbi, group);
 783
 784			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
 785		}
 786	}
 787	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
 788err_ret:
 789	ext4_unlock_group(sb, group);
 790	up_read(&grp->alloc_sem);
 791	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792}
 793
 794/*
 795 * There are two policies for allocating an inode.  If the new inode is
 796 * a directory, then a forward search is made for a block group with both
 797 * free space and a low directory-to-inode ratio; if that fails, then of
 798 * the groups with above-average free space, that group with the fewest
 799 * directories already is chosen.
 800 *
 801 * For other inodes, search forward from the parent directory's block
 802 * group to find a free inode.
 803 */
 804struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
 805			     const struct qstr *qstr, __u32 goal)
 
 
 
 806{
 807	struct super_block *sb;
 808	struct buffer_head *inode_bitmap_bh = NULL;
 809	struct buffer_head *group_desc_bh;
 810	ext4_group_t ngroups, group = 0;
 811	unsigned long ino = 0;
 812	struct inode *inode;
 813	struct ext4_group_desc *gdp = NULL;
 814	struct ext4_inode_info *ei;
 815	struct ext4_sb_info *sbi;
 816	int ret2, err = 0;
 817	struct inode *ret;
 818	ext4_group_t i;
 819	int free = 0;
 820	static int once = 1;
 821	ext4_group_t flex_group;
 
 
 822
 823	/* Cannot create files in a deleted directory */
 824	if (!dir || !dir->i_nlink)
 825		return ERR_PTR(-EPERM);
 826
 827	sb = dir->i_sb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828	ngroups = ext4_get_groups_count(sb);
 829	trace_ext4_request_inode(dir, mode);
 830	inode = new_inode(sb);
 831	if (!inode)
 832		return ERR_PTR(-ENOMEM);
 833	ei = EXT4_I(inode);
 834	sbi = EXT4_SB(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836	if (!goal)
 837		goal = sbi->s_inode_goal;
 838
 839	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
 840		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
 841		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
 842		ret2 = 0;
 843		goto got_group;
 844	}
 845
 846	if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
 847		ret2 = find_group_flex(sb, dir, &group);
 848		if (ret2 == -1) {
 849			ret2 = find_group_other(sb, dir, &group, mode);
 850			if (ret2 == 0 && once) {
 851				once = 0;
 852				printk(KERN_NOTICE "ext4: find_group_flex "
 853				       "failed, fallback succeeded dir %lu\n",
 854				       dir->i_ino);
 855			}
 856		}
 857		goto got_group;
 858	}
 859
 860	if (S_ISDIR(mode)) {
 861		if (test_opt(sb, OLDALLOC))
 862			ret2 = find_group_dir(sb, dir, &group);
 863		else
 864			ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
 865	} else
 866		ret2 = find_group_other(sb, dir, &group, mode);
 867
 868got_group:
 869	EXT4_I(dir)->i_last_alloc_group = group;
 870	err = -ENOSPC;
 871	if (ret2 == -1)
 872		goto out;
 873
 
 
 
 
 
 874	for (i = 0; i < ngroups; i++, ino = 0) {
 875		err = -EIO;
 876
 877		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
 878		if (!gdp)
 879			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 880
 881		brelse(inode_bitmap_bh);
 882		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
 883		if (!inode_bitmap_bh)
 884			goto fail;
 
 
 
 
 885
 886repeat_in_this_group:
 887		ino = ext4_find_next_zero_bit((unsigned long *)
 888					      inode_bitmap_bh->b_data,
 889					      EXT4_INODES_PER_GROUP(sb), ino);
 890
 891		if (ino < EXT4_INODES_PER_GROUP(sb)) {
 892
 893			BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
 894			err = ext4_journal_get_write_access(handle,
 895							    inode_bitmap_bh);
 896			if (err)
 897				goto fail;
 898
 899			BUFFER_TRACE(group_desc_bh, "get_write_access");
 900			err = ext4_journal_get_write_access(handle,
 901								group_desc_bh);
 902			if (err)
 903				goto fail;
 904			if (!ext4_claim_inode(sb, inode_bitmap_bh,
 905						ino, group, mode)) {
 906				/* we won it */
 907				BUFFER_TRACE(inode_bitmap_bh,
 908					"call ext4_handle_dirty_metadata");
 909				err = ext4_handle_dirty_metadata(handle,
 910								 NULL,
 911							inode_bitmap_bh);
 912				if (err)
 913					goto fail;
 914				/* zero bit is inode number 1*/
 915				ino++;
 916				goto got;
 917			}
 918			/* we lost it */
 919			ext4_handle_release_buffer(handle, inode_bitmap_bh);
 920			ext4_handle_release_buffer(handle, group_desc_bh);
 921
 922			if (++ino < EXT4_INODES_PER_GROUP(sb))
 923				goto repeat_in_this_group;
 924		}
 925
 926		/*
 927		 * This case is possible in concurrent environment.  It is very
 928		 * rare.  We cannot repeat the find_group_xxx() call because
 929		 * that will simply return the same blockgroup, because the
 930		 * group descriptor metadata has not yet been updated.
 931		 * So we just go onto the next blockgroup.
 932		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933		if (++group == ngroups)
 934			group = 0;
 935	}
 936	err = -ENOSPC;
 937	goto out;
 938
 939got:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940	/* We may have to initialize the block bitmap if it isn't already */
 941	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
 942	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 943		struct buffer_head *block_bitmap_bh;
 944
 945		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
 
 
 
 
 946		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
 947		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
 948		if (err) {
 949			brelse(block_bitmap_bh);
 950			goto fail;
 
 951		}
 952
 953		free = 0;
 954		ext4_lock_group(sb, group);
 
 955		/* recheck and clear flag under lock if we still need to */
 956		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 957			free = ext4_free_blocks_after_init(sb, group, gdp);
 
 958			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
 959			ext4_free_blks_set(sb, gdp, free);
 960			gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
 961								gdp);
 
 
 962		}
 963		ext4_unlock_group(sb, group);
 
 964
 965		/* Don't need to dirty bitmap block if we didn't change it */
 966		if (free) {
 967			BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
 968			err = ext4_handle_dirty_metadata(handle,
 969							NULL, block_bitmap_bh);
 970		}
 
 971
 972		brelse(block_bitmap_bh);
 973		if (err)
 974			goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	}
 
 
 
 
 
 
 
 976	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
 977	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
 978	if (err)
 979		goto fail;
 
 
 980
 981	percpu_counter_dec(&sbi->s_freeinodes_counter);
 982	if (S_ISDIR(mode))
 983		percpu_counter_inc(&sbi->s_dirs_counter);
 984	ext4_mark_super_dirty(sb);
 985
 986	if (sbi->s_log_groups_per_flex) {
 987		flex_group = ext4_flex_group(sbi, group);
 988		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
 
 989	}
 990
 991	if (test_opt(sb, GRPID)) {
 992		inode->i_mode = mode;
 993		inode->i_uid = current_fsuid();
 994		inode->i_gid = dir->i_gid;
 995	} else
 996		inode_init_owner(inode, dir, mode);
 997
 998	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
 999	/* This is the optimal IO size (for stat), not the fs block size */
1000	inode->i_blocks = 0;
1001	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1002						       ext4_current_time(inode);
1003
1004	memset(ei->i_data, 0, sizeof(ei->i_data));
1005	ei->i_dir_start_lookup = 0;
1006	ei->i_disksize = 0;
1007
1008	/*
1009	 * Don't inherit extent flag from directory, amongst others. We set
1010	 * extent flag on newly created directory and file only if -o extent
1011	 * mount option is specified
1012	 */
1013	ei->i_flags =
1014		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
 
1015	ei->i_file_acl = 0;
1016	ei->i_dtime = 0;
1017	ei->i_block_group = group;
1018	ei->i_last_alloc_group = ~0;
1019
1020	ext4_set_inode_flags(inode);
1021	if (IS_DIRSYNC(inode))
1022		ext4_handle_sync(handle);
1023	if (insert_inode_locked(inode) < 0) {
1024		err = -EINVAL;
1025		goto fail_drop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026	}
1027	spin_lock(&sbi->s_next_gen_lock);
1028	inode->i_generation = sbi->s_next_generation++;
1029	spin_unlock(&sbi->s_next_gen_lock);
1030
1031	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1032	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1033
1034	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1035
 
 
1036	ret = inode;
1037	dquot_initialize(inode);
1038	err = dquot_alloc_inode(inode);
1039	if (err)
1040		goto fail_drop;
1041
1042	err = ext4_init_acl(handle, inode, dir);
1043	if (err)
1044		goto fail_free_drop;
 
 
 
 
 
 
 
1045
1046	err = ext4_init_security(handle, inode, dir, qstr);
1047	if (err)
1048		goto fail_free_drop;
 
1049
1050	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
 
 
 
 
 
1051		/* set extent flag only for directory, file and normal symlink*/
1052		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1053			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1054			ext4_ext_tree_init(handle, inode);
1055		}
1056	}
1057
1058	if (ext4_handle_valid(handle)) {
1059		ei->i_sync_tid = handle->h_transaction->t_tid;
1060		ei->i_datasync_tid = handle->h_transaction->t_tid;
1061	}
1062
1063	err = ext4_mark_inode_dirty(handle, inode);
1064	if (err) {
1065		ext4_std_error(sb, err);
1066		goto fail_free_drop;
1067	}
1068
1069	ext4_debug("allocating inode %lu\n", inode->i_ino);
1070	trace_ext4_allocate_inode(inode, dir, mode);
1071	goto really_out;
1072fail:
1073	ext4_std_error(sb, err);
1074out:
1075	iput(inode);
1076	ret = ERR_PTR(err);
1077really_out:
1078	brelse(inode_bitmap_bh);
1079	return ret;
1080
1081fail_free_drop:
1082	dquot_free_inode(inode);
1083
1084fail_drop:
 
 
 
1085	dquot_drop(inode);
1086	inode->i_flags |= S_NOQUOTA;
1087	inode->i_nlink = 0;
1088	unlock_new_inode(inode);
1089	iput(inode);
1090	brelse(inode_bitmap_bh);
1091	return ERR_PTR(err);
1092}
1093
1094/* Verify that we are loading a valid orphan from disk */
1095struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1096{
1097	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1098	ext4_group_t block_group;
1099	int bit;
1100	struct buffer_head *bitmap_bh;
1101	struct inode *inode = NULL;
1102	long err = -EIO;
1103
1104	/* Error cases - e2fsck has already cleaned up for us */
1105	if (ino > max_ino) {
1106		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1107		goto error;
1108	}
1109
1110	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1111	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1112	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1113	if (!bitmap_bh) {
1114		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1115		goto error;
1116	}
1117
1118	/* Having the inode bit set should be a 100% indicator that this
1119	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1120	 * inodes that were being truncated, so we can't check i_nlink==0.
1121	 */
1122	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1123		goto bad_orphan;
1124
1125	inode = ext4_iget(sb, ino);
1126	if (IS_ERR(inode))
1127		goto iget_failed;
 
 
 
 
 
 
1128
1129	/*
1130	 * If the orphans has i_nlinks > 0 then it should be able to be
1131	 * truncated, otherwise it won't be removed from the orphan list
1132	 * during processing and an infinite loop will result.
 
1133	 */
1134	if (inode->i_nlink && !ext4_can_truncate(inode))
 
1135		goto bad_orphan;
1136
1137	if (NEXT_ORPHAN(inode) > max_ino)
1138		goto bad_orphan;
1139	brelse(bitmap_bh);
1140	return inode;
1141
1142iget_failed:
1143	err = PTR_ERR(inode);
1144	inode = NULL;
1145bad_orphan:
1146	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1147	printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1148	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1149	       ext4_test_bit(bit, bitmap_bh->b_data));
1150	printk(KERN_NOTICE "inode=%p\n", inode);
1151	if (inode) {
1152		printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1153		       is_bad_inode(inode));
1154		printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1155		       NEXT_ORPHAN(inode));
1156		printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1157		printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1158		/* Avoid freeing blocks if we got a bad deleted inode */
1159		if (inode->i_nlink == 0)
1160			inode->i_blocks = 0;
1161		iput(inode);
1162	}
1163	brelse(bitmap_bh);
1164error:
1165	return ERR_PTR(err);
1166}
1167
1168unsigned long ext4_count_free_inodes(struct super_block *sb)
1169{
1170	unsigned long desc_count;
1171	struct ext4_group_desc *gdp;
1172	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1173#ifdef EXT4FS_DEBUG
1174	struct ext4_super_block *es;
1175	unsigned long bitmap_count, x;
1176	struct buffer_head *bitmap_bh = NULL;
1177
1178	es = EXT4_SB(sb)->s_es;
1179	desc_count = 0;
1180	bitmap_count = 0;
1181	gdp = NULL;
1182	for (i = 0; i < ngroups; i++) {
1183		gdp = ext4_get_group_desc(sb, i, NULL);
1184		if (!gdp)
1185			continue;
1186		desc_count += ext4_free_inodes_count(sb, gdp);
1187		brelse(bitmap_bh);
1188		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1189		if (!bitmap_bh)
 
1190			continue;
 
1191
1192		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
 
1193		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1194			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1195		bitmap_count += x;
1196	}
1197	brelse(bitmap_bh);
1198	printk(KERN_DEBUG "ext4_count_free_inodes: "
1199	       "stored = %u, computed = %lu, %lu\n",
1200	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1201	return desc_count;
1202#else
1203	desc_count = 0;
1204	for (i = 0; i < ngroups; i++) {
1205		gdp = ext4_get_group_desc(sb, i, NULL);
1206		if (!gdp)
1207			continue;
1208		desc_count += ext4_free_inodes_count(sb, gdp);
1209		cond_resched();
1210	}
1211	return desc_count;
1212#endif
1213}
1214
1215/* Called at mount-time, super-block is locked */
1216unsigned long ext4_count_dirs(struct super_block * sb)
1217{
1218	unsigned long count = 0;
1219	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1220
1221	for (i = 0; i < ngroups; i++) {
1222		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1223		if (!gdp)
1224			continue;
1225		count += ext4_used_dirs_count(sb, gdp);
1226	}
1227	return count;
1228}
1229
1230/*
1231 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1232 * inode table. Must be called without any spinlock held. The only place
1233 * where it is called from on active part of filesystem is ext4lazyinit
1234 * thread, so we do not need any special locks, however we have to prevent
1235 * inode allocation from the current group, so we take alloc_sem lock, to
1236 * block ext4_claim_inode until we are finished.
1237 */
1238extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1239				 int barrier)
1240{
1241	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1242	struct ext4_sb_info *sbi = EXT4_SB(sb);
1243	struct ext4_group_desc *gdp = NULL;
1244	struct buffer_head *group_desc_bh;
1245	handle_t *handle;
1246	ext4_fsblk_t blk;
1247	int num, ret = 0, used_blks = 0;
1248
1249	/* This should not happen, but just to be sure check this */
1250	if (sb->s_flags & MS_RDONLY) {
1251		ret = 1;
1252		goto out;
1253	}
1254
1255	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1256	if (!gdp)
1257		goto out;
1258
1259	/*
1260	 * We do not need to lock this, because we are the only one
1261	 * handling this flag.
1262	 */
1263	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1264		goto out;
1265
1266	handle = ext4_journal_start_sb(sb, 1);
1267	if (IS_ERR(handle)) {
1268		ret = PTR_ERR(handle);
1269		goto out;
1270	}
1271
1272	down_write(&grp->alloc_sem);
1273	/*
1274	 * If inode bitmap was already initialized there may be some
1275	 * used inodes so we need to skip blocks with used inodes in
1276	 * inode table.
1277	 */
1278	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1279		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1280			    ext4_itable_unused_count(sb, gdp)),
1281			    sbi->s_inodes_per_block);
1282
1283	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1284		ext4_error(sb, "Something is wrong with group %u\n"
1285			   "Used itable blocks: %d"
1286			   "itable unused count: %u\n",
 
 
 
1287			   group, used_blks,
1288			   ext4_itable_unused_count(sb, gdp));
1289		ret = 1;
1290		goto err_out;
1291	}
1292
1293	blk = ext4_inode_table(sb, gdp) + used_blks;
1294	num = sbi->s_itb_per_group - used_blks;
1295
1296	BUFFER_TRACE(group_desc_bh, "get_write_access");
1297	ret = ext4_journal_get_write_access(handle,
1298					    group_desc_bh);
1299	if (ret)
1300		goto err_out;
1301
1302	/*
1303	 * Skip zeroout if the inode table is full. But we set the ZEROED
1304	 * flag anyway, because obviously, when it is full it does not need
1305	 * further zeroing.
1306	 */
1307	if (unlikely(num == 0))
1308		goto skip_zeroout;
1309
1310	ext4_debug("going to zero out inode table in group %d\n",
1311		   group);
1312	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1313	if (ret < 0)
1314		goto err_out;
1315	if (barrier)
1316		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1317
1318skip_zeroout:
1319	ext4_lock_group(sb, group);
1320	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1321	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
1322	ext4_unlock_group(sb, group);
1323
1324	BUFFER_TRACE(group_desc_bh,
1325		     "call ext4_handle_dirty_metadata");
1326	ret = ext4_handle_dirty_metadata(handle, NULL,
1327					 group_desc_bh);
1328
1329err_out:
1330	up_write(&grp->alloc_sem);
1331	ext4_journal_stop(handle);
1332out:
1333	return ret;
1334}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/ialloc.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  BSD ufs-inspired inode and directory allocation by
  11 *  Stephen Tweedie (sct@redhat.com), 1993
  12 *  Big-endian to little-endian byte-swapping/bitmaps by
  13 *        David S. Miller (davem@caip.rutgers.edu), 1995
  14 */
  15
  16#include <linux/time.h>
  17#include <linux/fs.h>
 
  18#include <linux/stat.h>
  19#include <linux/string.h>
  20#include <linux/quotaops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/random.h>
  23#include <linux/bitops.h>
  24#include <linux/blkdev.h>
  25#include <linux/cred.h>
  26
  27#include <asm/byteorder.h>
  28
  29#include "ext4.h"
  30#include "ext4_jbd2.h"
  31#include "xattr.h"
  32#include "acl.h"
  33
  34#include <trace/events/ext4.h>
  35
  36/*
  37 * ialloc.c contains the inodes allocation and deallocation routines
  38 */
  39
  40/*
  41 * The free inodes are managed by bitmaps.  A file system contains several
  42 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  43 * block for inodes, N blocks for the inode table and data blocks.
  44 *
  45 * The file system contains group descriptors which are located after the
  46 * super block.  Each descriptor contains the number of the bitmap block and
  47 * the free blocks count in the block.
  48 */
  49
  50/*
  51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
  52 * need to use it within a single byte (to ensure we get endianness right).
  53 * We can use memset for the rest of the bitmap as there are no other users.
  54 */
  55void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
  56{
  57	int i;
  58
  59	if (start_bit >= end_bit)
  60		return;
  61
  62	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
  63	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
  64		ext4_set_bit(i, bitmap);
  65	if (i < end_bit)
  66		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
  67}
  68
  69void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
 
 
 
 
  70{
  71	if (uptodate) {
  72		set_buffer_uptodate(bh);
  73		set_bitmap_uptodate(bh);
  74	}
  75	unlock_buffer(bh);
  76	put_bh(bh);
  77}
  78
  79static int ext4_validate_inode_bitmap(struct super_block *sb,
  80				      struct ext4_group_desc *desc,
  81				      ext4_group_t block_group,
  82				      struct buffer_head *bh)
  83{
  84	ext4_fsblk_t	blk;
  85	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
  86
  87	if (buffer_verified(bh))
 
 
 
 
 
 
 
  88		return 0;
  89	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
  90		return -EFSCORRUPTED;
 
 
 
  91
  92	ext4_lock_group(sb, block_group);
  93	if (buffer_verified(bh))
  94		goto verified;
  95	blk = ext4_inode_bitmap(sb, desc);
  96	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
  97					   EXT4_INODES_PER_GROUP(sb) / 8) ||
  98	    ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
  99		ext4_unlock_group(sb, block_group);
 100		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
 101			   "inode_bitmap = %llu", block_group, blk);
 102		ext4_mark_group_bitmap_corrupted(sb, block_group,
 103					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 104		return -EFSBADCRC;
 105	}
 106	set_buffer_verified(bh);
 107verified:
 108	ext4_unlock_group(sb, block_group);
 109	return 0;
 110}
 111
 112/*
 113 * Read the inode allocation bitmap for a given block_group, reading
 114 * into the specified slot in the superblock's bitmap cache.
 115 *
 116 * Return buffer_head of bitmap on success, or an ERR_PTR on error.
 117 */
 118static struct buffer_head *
 119ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
 120{
 121	struct ext4_group_desc *desc;
 122	struct ext4_sb_info *sbi = EXT4_SB(sb);
 123	struct buffer_head *bh = NULL;
 124	ext4_fsblk_t bitmap_blk;
 125	int err;
 126
 127	desc = ext4_get_group_desc(sb, block_group, NULL);
 128	if (!desc)
 129		return ERR_PTR(-EFSCORRUPTED);
 130
 131	bitmap_blk = ext4_inode_bitmap(sb, desc);
 132	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
 133	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
 134		ext4_error(sb, "Invalid inode bitmap blk %llu in "
 135			   "block_group %u", bitmap_blk, block_group);
 136		ext4_mark_group_bitmap_corrupted(sb, block_group,
 137					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 138		return ERR_PTR(-EFSCORRUPTED);
 139	}
 140	bh = sb_getblk(sb, bitmap_blk);
 141	if (unlikely(!bh)) {
 142		ext4_warning(sb, "Cannot read inode bitmap - "
 143			     "block_group = %u, inode_bitmap = %llu",
 144			     block_group, bitmap_blk);
 145		return ERR_PTR(-ENOMEM);
 146	}
 147	if (bitmap_uptodate(bh))
 148		goto verify;
 149
 150	lock_buffer(bh);
 151	if (bitmap_uptodate(bh)) {
 152		unlock_buffer(bh);
 153		goto verify;
 154	}
 155
 156	ext4_lock_group(sb, block_group);
 157	if (ext4_has_group_desc_csum(sb) &&
 158	    (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
 159		if (block_group == 0) {
 160			ext4_unlock_group(sb, block_group);
 161			unlock_buffer(bh);
 162			ext4_error(sb, "Inode bitmap for bg 0 marked "
 163				   "uninitialized");
 164			err = -EFSCORRUPTED;
 165			goto out;
 166		}
 167		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
 168		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
 169				     sb->s_blocksize * 8, bh->b_data);
 170		set_bitmap_uptodate(bh);
 171		set_buffer_uptodate(bh);
 172		set_buffer_verified(bh);
 173		ext4_unlock_group(sb, block_group);
 174		unlock_buffer(bh);
 175		return bh;
 176	}
 177	ext4_unlock_group(sb, block_group);
 178
 179	if (buffer_uptodate(bh)) {
 180		/*
 181		 * if not uninit if bh is uptodate,
 182		 * bitmap is also uptodate
 183		 */
 184		set_bitmap_uptodate(bh);
 185		unlock_buffer(bh);
 186		goto verify;
 187	}
 188	/*
 189	 * submit the buffer_head for reading
 
 
 
 190	 */
 191	trace_ext4_load_inode_bitmap(sb, block_group);
 192	bh->b_end_io = ext4_end_bitmap_read;
 193	get_bh(bh);
 194	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
 195	wait_on_buffer(bh);
 196	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
 197	if (!buffer_uptodate(bh)) {
 198		put_bh(bh);
 199		ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
 200			       "block_group = %u, inode_bitmap = %llu",
 201			       block_group, bitmap_blk);
 202		ext4_mark_group_bitmap_corrupted(sb, block_group,
 203				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 204		return ERR_PTR(-EIO);
 205	}
 206
 207verify:
 208	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
 209	if (err)
 210		goto out;
 211	return bh;
 212out:
 213	put_bh(bh);
 214	return ERR_PTR(err);
 215}
 216
 217/*
 218 * NOTE! When we get the inode, we're the only people
 219 * that have access to it, and as such there are no
 220 * race conditions we have to worry about. The inode
 221 * is not on the hash-lists, and it cannot be reached
 222 * through the filesystem because the directory entry
 223 * has been deleted earlier.
 224 *
 225 * HOWEVER: we must make sure that we get no aliases,
 226 * which means that we have to call "clear_inode()"
 227 * _before_ we mark the inode not in use in the inode
 228 * bitmaps. Otherwise a newly created file might use
 229 * the same inode number (not actually the same pointer
 230 * though), and then we'd have two inodes sharing the
 231 * same inode number and space on the harddisk.
 232 */
 233void ext4_free_inode(handle_t *handle, struct inode *inode)
 234{
 235	struct super_block *sb = inode->i_sb;
 236	int is_directory;
 237	unsigned long ino;
 238	struct buffer_head *bitmap_bh = NULL;
 239	struct buffer_head *bh2;
 240	ext4_group_t block_group;
 241	unsigned long bit;
 242	struct ext4_group_desc *gdp;
 243	struct ext4_super_block *es;
 244	struct ext4_sb_info *sbi;
 245	int fatal = 0, err, count, cleared;
 246	struct ext4_group_info *grp;
 247
 248	if (!sb) {
 249		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
 250		       "nonexistent device\n", __func__, __LINE__);
 251		return;
 252	}
 253	if (atomic_read(&inode->i_count) > 1) {
 254		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
 255			 __func__, __LINE__, inode->i_ino,
 256			 atomic_read(&inode->i_count));
 257		return;
 258	}
 259	if (inode->i_nlink) {
 260		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
 261			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
 262		return;
 263	}
 264	sbi = EXT4_SB(sb);
 265
 266	ino = inode->i_ino;
 267	ext4_debug("freeing inode %lu\n", ino);
 268	trace_ext4_free_inode(inode);
 269
 
 
 
 
 270	dquot_initialize(inode);
 
 271	dquot_free_inode(inode);
 
 272
 273	is_directory = S_ISDIR(inode->i_mode);
 274
 275	/* Do this BEFORE marking the inode not in use or returning an error */
 276	ext4_clear_inode(inode);
 277
 278	es = sbi->s_es;
 279	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
 280		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
 281		goto error_return;
 282	}
 283	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 284	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 285	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 286	/* Don't bother if the inode bitmap is corrupt. */
 287	grp = ext4_get_group_info(sb, block_group);
 288	if (IS_ERR(bitmap_bh)) {
 289		fatal = PTR_ERR(bitmap_bh);
 290		bitmap_bh = NULL;
 291		goto error_return;
 292	}
 293	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
 294		fatal = -EFSCORRUPTED;
 295		goto error_return;
 296	}
 297
 298	BUFFER_TRACE(bitmap_bh, "get_write_access");
 299	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
 300	if (fatal)
 301		goto error_return;
 302
 303	fatal = -ESRCH;
 304	gdp = ext4_get_group_desc(sb, block_group, &bh2);
 305	if (gdp) {
 306		BUFFER_TRACE(bh2, "get_write_access");
 307		fatal = ext4_journal_get_write_access(handle, bh2);
 308	}
 309	ext4_lock_group(sb, block_group);
 310	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
 311	if (fatal || !cleared) {
 312		ext4_unlock_group(sb, block_group);
 313		goto out;
 314	}
 315
 316	count = ext4_free_inodes_count(sb, gdp) + 1;
 317	ext4_free_inodes_set(sb, gdp, count);
 318	if (is_directory) {
 319		count = ext4_used_dirs_count(sb, gdp) - 1;
 320		ext4_used_dirs_set(sb, gdp, count);
 321		percpu_counter_dec(&sbi->s_dirs_counter);
 322	}
 323	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
 324				   EXT4_INODES_PER_GROUP(sb) / 8);
 325	ext4_group_desc_csum_set(sb, block_group, gdp);
 326	ext4_unlock_group(sb, block_group);
 327
 328	percpu_counter_inc(&sbi->s_freeinodes_counter);
 329	if (sbi->s_log_groups_per_flex) {
 330		struct flex_groups *fg;
 331
 332		fg = sbi_array_rcu_deref(sbi, s_flex_groups,
 333					 ext4_flex_group(sbi, block_group));
 334		atomic_inc(&fg->free_inodes);
 335		if (is_directory)
 336			atomic_dec(&fg->used_dirs);
 337	}
 338	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
 339	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
 340out:
 341	if (cleared) {
 342		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
 343		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 344		if (!fatal)
 345			fatal = err;
 346	} else {
 
 347		ext4_error(sb, "bit already cleared for inode %lu", ino);
 348		ext4_mark_group_bitmap_corrupted(sb, block_group,
 349					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 350	}
 351
 352error_return:
 353	brelse(bitmap_bh);
 354	ext4_std_error(sb, fatal);
 355}
 356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357struct orlov_stats {
 358	__u64 free_clusters;
 359	__u32 free_inodes;
 
 360	__u32 used_dirs;
 361};
 362
 363/*
 364 * Helper function for Orlov's allocator; returns critical information
 365 * for a particular block group or flex_bg.  If flex_size is 1, then g
 366 * is a block group number; otherwise it is flex_bg number.
 367 */
 368static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
 369			    int flex_size, struct orlov_stats *stats)
 370{
 371	struct ext4_group_desc *desc;
 
 372
 373	if (flex_size > 1) {
 374		struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
 375							     s_flex_groups, g);
 376		stats->free_inodes = atomic_read(&fg->free_inodes);
 377		stats->free_clusters = atomic64_read(&fg->free_clusters);
 378		stats->used_dirs = atomic_read(&fg->used_dirs);
 379		return;
 380	}
 381
 382	desc = ext4_get_group_desc(sb, g, NULL);
 383	if (desc) {
 384		stats->free_inodes = ext4_free_inodes_count(sb, desc);
 385		stats->free_clusters = ext4_free_group_clusters(sb, desc);
 386		stats->used_dirs = ext4_used_dirs_count(sb, desc);
 387	} else {
 388		stats->free_inodes = 0;
 389		stats->free_clusters = 0;
 390		stats->used_dirs = 0;
 391	}
 392}
 393
 394/*
 395 * Orlov's allocator for directories.
 396 *
 397 * We always try to spread first-level directories.
 398 *
 399 * If there are blockgroups with both free inodes and free blocks counts
 400 * not worse than average we return one with smallest directory count.
 401 * Otherwise we simply return a random group.
 402 *
 403 * For the rest rules look so:
 404 *
 405 * It's OK to put directory into a group unless
 406 * it has too many directories already (max_dirs) or
 407 * it has too few free inodes left (min_inodes) or
 408 * it has too few free blocks left (min_blocks) or
 409 * Parent's group is preferred, if it doesn't satisfy these
 410 * conditions we search cyclically through the rest. If none
 411 * of the groups look good we just look for a group with more
 412 * free inodes than average (starting at parent's group).
 413 */
 414
 415static int find_group_orlov(struct super_block *sb, struct inode *parent,
 416			    ext4_group_t *group, umode_t mode,
 417			    const struct qstr *qstr)
 418{
 419	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 420	struct ext4_sb_info *sbi = EXT4_SB(sb);
 421	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
 422	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
 423	unsigned int freei, avefreei, grp_free;
 424	ext4_fsblk_t freeb, avefreec;
 425	unsigned int ndirs;
 426	int max_dirs, min_inodes;
 427	ext4_grpblk_t min_clusters;
 428	ext4_group_t i, grp, g, ngroups;
 429	struct ext4_group_desc *desc;
 430	struct orlov_stats stats;
 431	int flex_size = ext4_flex_bg_size(sbi);
 432	struct dx_hash_info hinfo;
 433
 434	ngroups = real_ngroups;
 435	if (flex_size > 1) {
 436		ngroups = (real_ngroups + flex_size - 1) >>
 437			sbi->s_log_groups_per_flex;
 438		parent_group >>= sbi->s_log_groups_per_flex;
 439	}
 440
 441	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
 442	avefreei = freei / ngroups;
 443	freeb = EXT4_C2B(sbi,
 444		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
 445	avefreec = freeb;
 446	do_div(avefreec, ngroups);
 447	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
 448
 449	if (S_ISDIR(mode) &&
 450	    ((parent == d_inode(sb->s_root)) ||
 451	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
 452		int best_ndir = inodes_per_group;
 453		int ret = -1;
 454
 455		if (qstr) {
 456			hinfo.hash_version = DX_HASH_HALF_MD4;
 457			hinfo.seed = sbi->s_hash_seed;
 458			ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
 459			grp = hinfo.hash;
 460		} else
 461			grp = prandom_u32();
 462		parent_group = (unsigned)grp % ngroups;
 463		for (i = 0; i < ngroups; i++) {
 464			g = (parent_group + i) % ngroups;
 465			get_orlov_stats(sb, g, flex_size, &stats);
 466			if (!stats.free_inodes)
 467				continue;
 468			if (stats.used_dirs >= best_ndir)
 469				continue;
 470			if (stats.free_inodes < avefreei)
 471				continue;
 472			if (stats.free_clusters < avefreec)
 473				continue;
 474			grp = g;
 475			ret = 0;
 476			best_ndir = stats.used_dirs;
 477		}
 478		if (ret)
 479			goto fallback;
 480	found_flex_bg:
 481		if (flex_size == 1) {
 482			*group = grp;
 483			return 0;
 484		}
 485
 486		/*
 487		 * We pack inodes at the beginning of the flexgroup's
 488		 * inode tables.  Block allocation decisions will do
 489		 * something similar, although regular files will
 490		 * start at 2nd block group of the flexgroup.  See
 491		 * ext4_ext_find_goal() and ext4_find_near().
 492		 */
 493		grp *= flex_size;
 494		for (i = 0; i < flex_size; i++) {
 495			if (grp+i >= real_ngroups)
 496				break;
 497			desc = ext4_get_group_desc(sb, grp+i, NULL);
 498			if (desc && ext4_free_inodes_count(sb, desc)) {
 499				*group = grp+i;
 500				return 0;
 501			}
 502		}
 503		goto fallback;
 504	}
 505
 506	max_dirs = ndirs / ngroups + inodes_per_group / 16;
 507	min_inodes = avefreei - inodes_per_group*flex_size / 4;
 508	if (min_inodes < 1)
 509		min_inodes = 1;
 510	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
 511
 512	/*
 513	 * Start looking in the flex group where we last allocated an
 514	 * inode for this parent directory
 515	 */
 516	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
 517		parent_group = EXT4_I(parent)->i_last_alloc_group;
 518		if (flex_size > 1)
 519			parent_group >>= sbi->s_log_groups_per_flex;
 520	}
 521
 522	for (i = 0; i < ngroups; i++) {
 523		grp = (parent_group + i) % ngroups;
 524		get_orlov_stats(sb, grp, flex_size, &stats);
 525		if (stats.used_dirs >= max_dirs)
 526			continue;
 527		if (stats.free_inodes < min_inodes)
 528			continue;
 529		if (stats.free_clusters < min_clusters)
 530			continue;
 531		goto found_flex_bg;
 532	}
 533
 534fallback:
 535	ngroups = real_ngroups;
 536	avefreei = freei / ngroups;
 537fallback_retry:
 538	parent_group = EXT4_I(parent)->i_block_group;
 539	for (i = 0; i < ngroups; i++) {
 540		grp = (parent_group + i) % ngroups;
 541		desc = ext4_get_group_desc(sb, grp, NULL);
 542		if (desc) {
 543			grp_free = ext4_free_inodes_count(sb, desc);
 544			if (grp_free && grp_free >= avefreei) {
 545				*group = grp;
 546				return 0;
 547			}
 548		}
 549	}
 550
 551	if (avefreei) {
 552		/*
 553		 * The free-inodes counter is approximate, and for really small
 554		 * filesystems the above test can fail to find any blockgroups
 555		 */
 556		avefreei = 0;
 557		goto fallback_retry;
 558	}
 559
 560	return -1;
 561}
 562
 563static int find_group_other(struct super_block *sb, struct inode *parent,
 564			    ext4_group_t *group, umode_t mode)
 565{
 566	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 567	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
 568	struct ext4_group_desc *desc;
 569	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
 570
 571	/*
 572	 * Try to place the inode is the same flex group as its
 573	 * parent.  If we can't find space, use the Orlov algorithm to
 574	 * find another flex group, and store that information in the
 575	 * parent directory's inode information so that use that flex
 576	 * group for future allocations.
 577	 */
 578	if (flex_size > 1) {
 579		int retry = 0;
 580
 581	try_again:
 582		parent_group &= ~(flex_size-1);
 583		last = parent_group + flex_size;
 584		if (last > ngroups)
 585			last = ngroups;
 586		for  (i = parent_group; i < last; i++) {
 587			desc = ext4_get_group_desc(sb, i, NULL);
 588			if (desc && ext4_free_inodes_count(sb, desc)) {
 589				*group = i;
 590				return 0;
 591			}
 592		}
 593		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
 594			retry = 1;
 595			parent_group = EXT4_I(parent)->i_last_alloc_group;
 596			goto try_again;
 597		}
 598		/*
 599		 * If this didn't work, use the Orlov search algorithm
 600		 * to find a new flex group; we pass in the mode to
 601		 * avoid the topdir algorithms.
 602		 */
 603		*group = parent_group + flex_size;
 604		if (*group > ngroups)
 605			*group = 0;
 606		return find_group_orlov(sb, parent, group, mode, NULL);
 607	}
 608
 609	/*
 610	 * Try to place the inode in its parent directory
 611	 */
 612	*group = parent_group;
 613	desc = ext4_get_group_desc(sb, *group, NULL);
 614	if (desc && ext4_free_inodes_count(sb, desc) &&
 615	    ext4_free_group_clusters(sb, desc))
 616		return 0;
 617
 618	/*
 619	 * We're going to place this inode in a different blockgroup from its
 620	 * parent.  We want to cause files in a common directory to all land in
 621	 * the same blockgroup.  But we want files which are in a different
 622	 * directory which shares a blockgroup with our parent to land in a
 623	 * different blockgroup.
 624	 *
 625	 * So add our directory's i_ino into the starting point for the hash.
 626	 */
 627	*group = (*group + parent->i_ino) % ngroups;
 628
 629	/*
 630	 * Use a quadratic hash to find a group with a free inode and some free
 631	 * blocks.
 632	 */
 633	for (i = 1; i < ngroups; i <<= 1) {
 634		*group += i;
 635		if (*group >= ngroups)
 636			*group -= ngroups;
 637		desc = ext4_get_group_desc(sb, *group, NULL);
 638		if (desc && ext4_free_inodes_count(sb, desc) &&
 639		    ext4_free_group_clusters(sb, desc))
 640			return 0;
 641	}
 642
 643	/*
 644	 * That failed: try linear search for a free inode, even if that group
 645	 * has no free blocks.
 646	 */
 647	*group = parent_group;
 648	for (i = 0; i < ngroups; i++) {
 649		if (++*group >= ngroups)
 650			*group = 0;
 651		desc = ext4_get_group_desc(sb, *group, NULL);
 652		if (desc && ext4_free_inodes_count(sb, desc))
 653			return 0;
 654	}
 655
 656	return -1;
 657}
 658
 659/*
 660 * In no journal mode, if an inode has recently been deleted, we want
 661 * to avoid reusing it until we're reasonably sure the inode table
 662 * block has been written back to disk.  (Yes, these values are
 663 * somewhat arbitrary...)
 
 
 664 */
 665#define RECENTCY_MIN	60
 666#define RECENTCY_DIRTY	300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 668static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
 669{
 670	struct ext4_group_desc	*gdp;
 671	struct ext4_inode	*raw_inode;
 672	struct buffer_head	*bh;
 673	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
 674	int offset, ret = 0;
 675	int recentcy = RECENTCY_MIN;
 676	u32 dtime, now;
 677
 678	gdp = ext4_get_group_desc(sb, group, NULL);
 679	if (unlikely(!gdp))
 680		return 0;
 
 
 681
 682	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
 683		       (ino / inodes_per_block));
 684	if (!bh || !buffer_uptodate(bh))
 685		/*
 686		 * If the block is not in the buffer cache, then it
 687		 * must have been written out.
 
 
 688		 */
 689		goto out;
 
 
 
 
 
 
 
 
 
 
 690
 691	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
 692	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
 693
 694	/* i_dtime is only 32 bits on disk, but we only care about relative
 695	 * times in the range of a few minutes (i.e. long enough to sync a
 696	 * recently-deleted inode to disk), so using the low 32 bits of the
 697	 * clock (a 68 year range) is enough, see time_before32() */
 698	dtime = le32_to_cpu(raw_inode->i_dtime);
 699	now = ktime_get_real_seconds();
 700	if (buffer_dirty(bh))
 701		recentcy += RECENTCY_DIRTY;
 702
 703	if (dtime && time_before32(dtime, now) &&
 704	    time_before32(now, dtime + recentcy))
 705		ret = 1;
 706out:
 707	brelse(bh);
 708	return ret;
 709}
 710
 711static int find_inode_bit(struct super_block *sb, ext4_group_t group,
 712			  struct buffer_head *bitmap, unsigned long *ino)
 713{
 714	bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
 715	unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
 716
 717next:
 718	*ino = ext4_find_next_zero_bit((unsigned long *)
 719				       bitmap->b_data,
 720				       EXT4_INODES_PER_GROUP(sb), *ino);
 721	if (*ino >= EXT4_INODES_PER_GROUP(sb))
 722		goto not_found;
 723
 724	if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
 725		recently_deleted_ino = *ino;
 726		*ino = *ino + 1;
 727		if (*ino < EXT4_INODES_PER_GROUP(sb))
 728			goto next;
 729		goto not_found;
 730	}
 731	return 1;
 732not_found:
 733	if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
 734		return 0;
 735	/*
 736	 * Not reusing recently deleted inodes is mostly a preference. We don't
 737	 * want to report ENOSPC or skew allocation patterns because of that.
 738	 * So return even recently deleted inode if we could find better in the
 739	 * given range.
 740	 */
 741	*ino = recently_deleted_ino;
 742	return 1;
 743}
 744
 745/*
 746 * There are two policies for allocating an inode.  If the new inode is
 747 * a directory, then a forward search is made for a block group with both
 748 * free space and a low directory-to-inode ratio; if that fails, then of
 749 * the groups with above-average free space, that group with the fewest
 750 * directories already is chosen.
 751 *
 752 * For other inodes, search forward from the parent directory's block
 753 * group to find a free inode.
 754 */
 755struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
 756			       umode_t mode, const struct qstr *qstr,
 757			       __u32 goal, uid_t *owner, __u32 i_flags,
 758			       int handle_type, unsigned int line_no,
 759			       int nblocks)
 760{
 761	struct super_block *sb;
 762	struct buffer_head *inode_bitmap_bh = NULL;
 763	struct buffer_head *group_desc_bh;
 764	ext4_group_t ngroups, group = 0;
 765	unsigned long ino = 0;
 766	struct inode *inode;
 767	struct ext4_group_desc *gdp = NULL;
 768	struct ext4_inode_info *ei;
 769	struct ext4_sb_info *sbi;
 770	int ret2, err;
 771	struct inode *ret;
 772	ext4_group_t i;
 
 
 773	ext4_group_t flex_group;
 774	struct ext4_group_info *grp;
 775	int encrypt = 0;
 776
 777	/* Cannot create files in a deleted directory */
 778	if (!dir || !dir->i_nlink)
 779		return ERR_PTR(-EPERM);
 780
 781	sb = dir->i_sb;
 782	sbi = EXT4_SB(sb);
 783
 784	if (unlikely(ext4_forced_shutdown(sbi)))
 785		return ERR_PTR(-EIO);
 786
 787	if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
 788	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
 789	    !(i_flags & EXT4_EA_INODE_FL)) {
 790		err = fscrypt_get_encryption_info(dir);
 791		if (err)
 792			return ERR_PTR(err);
 793		if (!fscrypt_has_encryption_key(dir))
 794			return ERR_PTR(-ENOKEY);
 795		encrypt = 1;
 796	}
 797
 798	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
 799#ifdef CONFIG_EXT4_FS_POSIX_ACL
 800		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
 801
 802		if (IS_ERR(p))
 803			return ERR_CAST(p);
 804		if (p) {
 805			int acl_size = p->a_count * sizeof(ext4_acl_entry);
 806
 807			nblocks += (S_ISDIR(mode) ? 2 : 1) *
 808				__ext4_xattr_set_credits(sb, NULL /* inode */,
 809					NULL /* block_bh */, acl_size,
 810					true /* is_create */);
 811			posix_acl_release(p);
 812		}
 813#endif
 814
 815#ifdef CONFIG_SECURITY
 816		{
 817			int num_security_xattrs = 1;
 818
 819#ifdef CONFIG_INTEGRITY
 820			num_security_xattrs++;
 821#endif
 822			/*
 823			 * We assume that security xattrs are never
 824			 * more than 1k.  In practice they are under
 825			 * 128 bytes.
 826			 */
 827			nblocks += num_security_xattrs *
 828				__ext4_xattr_set_credits(sb, NULL /* inode */,
 829					NULL /* block_bh */, 1024,
 830					true /* is_create */);
 831		}
 832#endif
 833		if (encrypt)
 834			nblocks += __ext4_xattr_set_credits(sb,
 835					NULL /* inode */, NULL /* block_bh */,
 836					FSCRYPT_SET_CONTEXT_MAX_SIZE,
 837					true /* is_create */);
 838	}
 839
 840	ngroups = ext4_get_groups_count(sb);
 841	trace_ext4_request_inode(dir, mode);
 842	inode = new_inode(sb);
 843	if (!inode)
 844		return ERR_PTR(-ENOMEM);
 845	ei = EXT4_I(inode);
 846
 847	/*
 848	 * Initialize owners and quota early so that we don't have to account
 849	 * for quota initialization worst case in standard inode creating
 850	 * transaction
 851	 */
 852	if (owner) {
 853		inode->i_mode = mode;
 854		i_uid_write(inode, owner[0]);
 855		i_gid_write(inode, owner[1]);
 856	} else if (test_opt(sb, GRPID)) {
 857		inode->i_mode = mode;
 858		inode->i_uid = current_fsuid();
 859		inode->i_gid = dir->i_gid;
 860	} else
 861		inode_init_owner(inode, dir, mode);
 862
 863	if (ext4_has_feature_project(sb) &&
 864	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
 865		ei->i_projid = EXT4_I(dir)->i_projid;
 866	else
 867		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
 868
 869	err = dquot_initialize(inode);
 870	if (err)
 871		goto out;
 872
 873	if (!goal)
 874		goal = sbi->s_inode_goal;
 875
 876	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
 877		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
 878		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
 879		ret2 = 0;
 880		goto got_group;
 881	}
 882
 883	if (S_ISDIR(mode))
 884		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
 885	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886		ret2 = find_group_other(sb, dir, &group, mode);
 887
 888got_group:
 889	EXT4_I(dir)->i_last_alloc_group = group;
 890	err = -ENOSPC;
 891	if (ret2 == -1)
 892		goto out;
 893
 894	/*
 895	 * Normally we will only go through one pass of this loop,
 896	 * unless we get unlucky and it turns out the group we selected
 897	 * had its last inode grabbed by someone else.
 898	 */
 899	for (i = 0; i < ngroups; i++, ino = 0) {
 900		err = -EIO;
 901
 902		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
 903		if (!gdp)
 904			goto out;
 905
 906		/*
 907		 * Check free inodes count before loading bitmap.
 908		 */
 909		if (ext4_free_inodes_count(sb, gdp) == 0)
 910			goto next_group;
 911
 912		grp = ext4_get_group_info(sb, group);
 913		/* Skip groups with already-known suspicious inode tables */
 914		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
 915			goto next_group;
 916
 917		brelse(inode_bitmap_bh);
 918		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
 919		/* Skip groups with suspicious inode tables */
 920		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
 921		    IS_ERR(inode_bitmap_bh)) {
 922			inode_bitmap_bh = NULL;
 923			goto next_group;
 924		}
 925
 926repeat_in_this_group:
 927		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
 928		if (!ret2)
 929			goto next_group;
 930
 931		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
 932			ext4_error(sb, "reserved inode found cleared - "
 933				   "inode=%lu", ino + 1);
 934			ext4_mark_group_bitmap_corrupted(sb, group,
 935					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 936			goto next_group;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937		}
 938
 939		if (!handle) {
 940			BUG_ON(nblocks <= 0);
 941			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
 942				 handle_type, nblocks, 0,
 943				 ext4_trans_default_revoke_credits(sb));
 944			if (IS_ERR(handle)) {
 945				err = PTR_ERR(handle);
 946				ext4_std_error(sb, err);
 947				goto out;
 948			}
 949		}
 950		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
 951		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
 952		if (err) {
 953			ext4_std_error(sb, err);
 954			goto out;
 955		}
 956		ext4_lock_group(sb, group);
 957		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
 958		if (ret2) {
 959			/* Someone already took the bit. Repeat the search
 960			 * with lock held.
 961			 */
 962			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
 963			if (ret2) {
 964				ext4_set_bit(ino, inode_bitmap_bh->b_data);
 965				ret2 = 0;
 966			} else {
 967				ret2 = 1; /* we didn't grab the inode */
 968			}
 969		}
 970		ext4_unlock_group(sb, group);
 971		ino++;		/* the inode bitmap is zero-based */
 972		if (!ret2)
 973			goto got; /* we grabbed the inode! */
 974
 975		if (ino < EXT4_INODES_PER_GROUP(sb))
 976			goto repeat_in_this_group;
 977next_group:
 978		if (++group == ngroups)
 979			group = 0;
 980	}
 981	err = -ENOSPC;
 982	goto out;
 983
 984got:
 985	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
 986	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
 987	if (err) {
 988		ext4_std_error(sb, err);
 989		goto out;
 990	}
 991
 992	BUFFER_TRACE(group_desc_bh, "get_write_access");
 993	err = ext4_journal_get_write_access(handle, group_desc_bh);
 994	if (err) {
 995		ext4_std_error(sb, err);
 996		goto out;
 997	}
 998
 999	/* We may have to initialize the block bitmap if it isn't already */
1000	if (ext4_has_group_desc_csum(sb) &&
1001	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1002		struct buffer_head *block_bitmap_bh;
1003
1004		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1005		if (IS_ERR(block_bitmap_bh)) {
1006			err = PTR_ERR(block_bitmap_bh);
1007			goto out;
1008		}
1009		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1010		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1011		if (err) {
1012			brelse(block_bitmap_bh);
1013			ext4_std_error(sb, err);
1014			goto out;
1015		}
1016
1017		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1018		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1019
1020		/* recheck and clear flag under lock if we still need to */
1021		ext4_lock_group(sb, group);
1022		if (ext4_has_group_desc_csum(sb) &&
1023		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1024			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1025			ext4_free_group_clusters_set(sb, gdp,
1026				ext4_free_clusters_after_init(sb, group, gdp));
1027			ext4_block_bitmap_csum_set(sb, group, gdp,
1028						   block_bitmap_bh);
1029			ext4_group_desc_csum_set(sb, group, gdp);
1030		}
1031		ext4_unlock_group(sb, group);
1032		brelse(block_bitmap_bh);
1033
1034		if (err) {
1035			ext4_std_error(sb, err);
1036			goto out;
 
 
1037		}
1038	}
1039
1040	/* Update the relevant bg descriptor fields */
1041	if (ext4_has_group_desc_csum(sb)) {
1042		int free;
1043		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1044
1045		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1046		ext4_lock_group(sb, group); /* while we modify the bg desc */
1047		free = EXT4_INODES_PER_GROUP(sb) -
1048			ext4_itable_unused_count(sb, gdp);
1049		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1050			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1051			free = 0;
1052		}
1053		/*
1054		 * Check the relative inode number against the last used
1055		 * relative inode number in this group. if it is greater
1056		 * we need to update the bg_itable_unused count
1057		 */
1058		if (ino > free)
1059			ext4_itable_unused_set(sb, gdp,
1060					(EXT4_INODES_PER_GROUP(sb) - ino));
1061		up_read(&grp->alloc_sem);
1062	} else {
1063		ext4_lock_group(sb, group);
1064	}
1065
1066	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1067	if (S_ISDIR(mode)) {
1068		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1069		if (sbi->s_log_groups_per_flex) {
1070			ext4_group_t f = ext4_flex_group(sbi, group);
1071
1072			atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1073							f)->used_dirs);
1074		}
1075	}
1076	if (ext4_has_group_desc_csum(sb)) {
1077		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1078					   EXT4_INODES_PER_GROUP(sb) / 8);
1079		ext4_group_desc_csum_set(sb, group, gdp);
1080	}
1081	ext4_unlock_group(sb, group);
1082
1083	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1084	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1085	if (err) {
1086		ext4_std_error(sb, err);
1087		goto out;
1088	}
1089
1090	percpu_counter_dec(&sbi->s_freeinodes_counter);
1091	if (S_ISDIR(mode))
1092		percpu_counter_inc(&sbi->s_dirs_counter);
 
1093
1094	if (sbi->s_log_groups_per_flex) {
1095		flex_group = ext4_flex_group(sbi, group);
1096		atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1097						flex_group)->free_inodes);
1098	}
1099
 
 
 
 
 
 
 
1100	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1101	/* This is the optimal IO size (for stat), not the fs block size */
1102	inode->i_blocks = 0;
1103	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1104	ei->i_crtime = inode->i_mtime;
1105
1106	memset(ei->i_data, 0, sizeof(ei->i_data));
1107	ei->i_dir_start_lookup = 0;
1108	ei->i_disksize = 0;
1109
1110	/* Don't inherit extent flag from directory, amongst others. */
 
 
 
 
1111	ei->i_flags =
1112		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1113	ei->i_flags |= i_flags;
1114	ei->i_file_acl = 0;
1115	ei->i_dtime = 0;
1116	ei->i_block_group = group;
1117	ei->i_last_alloc_group = ~0;
1118
1119	ext4_set_inode_flags(inode, true);
1120	if (IS_DIRSYNC(inode))
1121		ext4_handle_sync(handle);
1122	if (insert_inode_locked(inode) < 0) {
1123		/*
1124		 * Likely a bitmap corruption causing inode to be allocated
1125		 * twice.
1126		 */
1127		err = -EIO;
1128		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1129			   inode->i_ino);
1130		ext4_mark_group_bitmap_corrupted(sb, group,
1131					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1132		goto out;
1133	}
1134	inode->i_generation = prandom_u32();
1135
1136	/* Precompute checksum seed for inode metadata */
1137	if (ext4_has_metadata_csum(sb)) {
1138		__u32 csum;
1139		__le32 inum = cpu_to_le32(inode->i_ino);
1140		__le32 gen = cpu_to_le32(inode->i_generation);
1141		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1142				   sizeof(inum));
1143		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1144					      sizeof(gen));
1145	}
 
 
 
1146
1147	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1148	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1149
1150	ei->i_extra_isize = sbi->s_want_extra_isize;
1151	ei->i_inline_off = 0;
1152	if (ext4_has_feature_inline_data(sb))
1153		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1154	ret = inode;
 
1155	err = dquot_alloc_inode(inode);
1156	if (err)
1157		goto fail_drop;
1158
1159	/*
1160	 * Since the encryption xattr will always be unique, create it first so
1161	 * that it's less likely to end up in an external xattr block and
1162	 * prevent its deduplication.
1163	 */
1164	if (encrypt) {
1165		err = fscrypt_inherit_context(dir, inode, handle, true);
1166		if (err)
1167			goto fail_free_drop;
1168	}
1169
1170	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1171		err = ext4_init_acl(handle, inode, dir);
1172		if (err)
1173			goto fail_free_drop;
1174
1175		err = ext4_init_security(handle, inode, dir, qstr);
1176		if (err)
1177			goto fail_free_drop;
1178	}
1179
1180	if (ext4_has_feature_extents(sb)) {
1181		/* set extent flag only for directory, file and normal symlink*/
1182		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1183			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1184			ext4_ext_tree_init(handle, inode);
1185		}
1186	}
1187
1188	if (ext4_handle_valid(handle)) {
1189		ei->i_sync_tid = handle->h_transaction->t_tid;
1190		ei->i_datasync_tid = handle->h_transaction->t_tid;
1191	}
1192
1193	err = ext4_mark_inode_dirty(handle, inode);
1194	if (err) {
1195		ext4_std_error(sb, err);
1196		goto fail_free_drop;
1197	}
1198
1199	ext4_debug("allocating inode %lu\n", inode->i_ino);
1200	trace_ext4_allocate_inode(inode, dir, mode);
 
 
 
 
 
 
 
1201	brelse(inode_bitmap_bh);
1202	return ret;
1203
1204fail_free_drop:
1205	dquot_free_inode(inode);
 
1206fail_drop:
1207	clear_nlink(inode);
1208	unlock_new_inode(inode);
1209out:
1210	dquot_drop(inode);
1211	inode->i_flags |= S_NOQUOTA;
 
 
1212	iput(inode);
1213	brelse(inode_bitmap_bh);
1214	return ERR_PTR(err);
1215}
1216
1217/* Verify that we are loading a valid orphan from disk */
1218struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1219{
1220	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1221	ext4_group_t block_group;
1222	int bit;
1223	struct buffer_head *bitmap_bh = NULL;
1224	struct inode *inode = NULL;
1225	int err = -EFSCORRUPTED;
1226
1227	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1228		goto bad_orphan;
 
 
 
1229
1230	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1231	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1232	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1233	if (IS_ERR(bitmap_bh))
1234		return ERR_CAST(bitmap_bh);
 
 
1235
1236	/* Having the inode bit set should be a 100% indicator that this
1237	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1238	 * inodes that were being truncated, so we can't check i_nlink==0.
1239	 */
1240	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1241		goto bad_orphan;
1242
1243	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1244	if (IS_ERR(inode)) {
1245		err = PTR_ERR(inode);
1246		ext4_error_err(sb, -err,
1247			       "couldn't read orphan inode %lu (err %d)",
1248			       ino, err);
1249		brelse(bitmap_bh);
1250		return inode;
1251	}
1252
1253	/*
1254	 * If the orphans has i_nlinks > 0 then it should be able to
1255	 * be truncated, otherwise it won't be removed from the orphan
1256	 * list during processing and an infinite loop will result.
1257	 * Similarly, it must not be a bad inode.
1258	 */
1259	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1260	    is_bad_inode(inode))
1261		goto bad_orphan;
1262
1263	if (NEXT_ORPHAN(inode) > max_ino)
1264		goto bad_orphan;
1265	brelse(bitmap_bh);
1266	return inode;
1267
 
 
 
1268bad_orphan:
1269	ext4_error(sb, "bad orphan inode %lu", ino);
1270	if (bitmap_bh)
1271		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1272		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1273		       ext4_test_bit(bit, bitmap_bh->b_data));
1274	if (inode) {
1275		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1276		       is_bad_inode(inode));
1277		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1278		       NEXT_ORPHAN(inode));
1279		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1280		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1281		/* Avoid freeing blocks if we got a bad deleted inode */
1282		if (inode->i_nlink == 0)
1283			inode->i_blocks = 0;
1284		iput(inode);
1285	}
1286	brelse(bitmap_bh);
 
1287	return ERR_PTR(err);
1288}
1289
1290unsigned long ext4_count_free_inodes(struct super_block *sb)
1291{
1292	unsigned long desc_count;
1293	struct ext4_group_desc *gdp;
1294	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1295#ifdef EXT4FS_DEBUG
1296	struct ext4_super_block *es;
1297	unsigned long bitmap_count, x;
1298	struct buffer_head *bitmap_bh = NULL;
1299
1300	es = EXT4_SB(sb)->s_es;
1301	desc_count = 0;
1302	bitmap_count = 0;
1303	gdp = NULL;
1304	for (i = 0; i < ngroups; i++) {
1305		gdp = ext4_get_group_desc(sb, i, NULL);
1306		if (!gdp)
1307			continue;
1308		desc_count += ext4_free_inodes_count(sb, gdp);
1309		brelse(bitmap_bh);
1310		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1311		if (IS_ERR(bitmap_bh)) {
1312			bitmap_bh = NULL;
1313			continue;
1314		}
1315
1316		x = ext4_count_free(bitmap_bh->b_data,
1317				    EXT4_INODES_PER_GROUP(sb) / 8);
1318		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1319			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1320		bitmap_count += x;
1321	}
1322	brelse(bitmap_bh);
1323	printk(KERN_DEBUG "ext4_count_free_inodes: "
1324	       "stored = %u, computed = %lu, %lu\n",
1325	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1326	return desc_count;
1327#else
1328	desc_count = 0;
1329	for (i = 0; i < ngroups; i++) {
1330		gdp = ext4_get_group_desc(sb, i, NULL);
1331		if (!gdp)
1332			continue;
1333		desc_count += ext4_free_inodes_count(sb, gdp);
1334		cond_resched();
1335	}
1336	return desc_count;
1337#endif
1338}
1339
1340/* Called at mount-time, super-block is locked */
1341unsigned long ext4_count_dirs(struct super_block * sb)
1342{
1343	unsigned long count = 0;
1344	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1345
1346	for (i = 0; i < ngroups; i++) {
1347		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1348		if (!gdp)
1349			continue;
1350		count += ext4_used_dirs_count(sb, gdp);
1351	}
1352	return count;
1353}
1354
1355/*
1356 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1357 * inode table. Must be called without any spinlock held. The only place
1358 * where it is called from on active part of filesystem is ext4lazyinit
1359 * thread, so we do not need any special locks, however we have to prevent
1360 * inode allocation from the current group, so we take alloc_sem lock, to
1361 * block ext4_new_inode() until we are finished.
1362 */
1363int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1364				 int barrier)
1365{
1366	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1367	struct ext4_sb_info *sbi = EXT4_SB(sb);
1368	struct ext4_group_desc *gdp = NULL;
1369	struct buffer_head *group_desc_bh;
1370	handle_t *handle;
1371	ext4_fsblk_t blk;
1372	int num, ret = 0, used_blks = 0;
1373
1374	/* This should not happen, but just to be sure check this */
1375	if (sb_rdonly(sb)) {
1376		ret = 1;
1377		goto out;
1378	}
1379
1380	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1381	if (!gdp)
1382		goto out;
1383
1384	/*
1385	 * We do not need to lock this, because we are the only one
1386	 * handling this flag.
1387	 */
1388	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1389		goto out;
1390
1391	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1392	if (IS_ERR(handle)) {
1393		ret = PTR_ERR(handle);
1394		goto out;
1395	}
1396
1397	down_write(&grp->alloc_sem);
1398	/*
1399	 * If inode bitmap was already initialized there may be some
1400	 * used inodes so we need to skip blocks with used inodes in
1401	 * inode table.
1402	 */
1403	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1404		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1405			    ext4_itable_unused_count(sb, gdp)),
1406			    sbi->s_inodes_per_block);
1407
1408	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1409	    ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1410			       ext4_itable_unused_count(sb, gdp)) <
1411			      EXT4_FIRST_INO(sb)))) {
1412		ext4_error(sb, "Something is wrong with group %u: "
1413			   "used itable blocks: %d; "
1414			   "itable unused count: %u",
1415			   group, used_blks,
1416			   ext4_itable_unused_count(sb, gdp));
1417		ret = 1;
1418		goto err_out;
1419	}
1420
1421	blk = ext4_inode_table(sb, gdp) + used_blks;
1422	num = sbi->s_itb_per_group - used_blks;
1423
1424	BUFFER_TRACE(group_desc_bh, "get_write_access");
1425	ret = ext4_journal_get_write_access(handle,
1426					    group_desc_bh);
1427	if (ret)
1428		goto err_out;
1429
1430	/*
1431	 * Skip zeroout if the inode table is full. But we set the ZEROED
1432	 * flag anyway, because obviously, when it is full it does not need
1433	 * further zeroing.
1434	 */
1435	if (unlikely(num == 0))
1436		goto skip_zeroout;
1437
1438	ext4_debug("going to zero out inode table in group %d\n",
1439		   group);
1440	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1441	if (ret < 0)
1442		goto err_out;
1443	if (barrier)
1444		blkdev_issue_flush(sb->s_bdev, GFP_NOFS);
1445
1446skip_zeroout:
1447	ext4_lock_group(sb, group);
1448	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1449	ext4_group_desc_csum_set(sb, group, gdp);
1450	ext4_unlock_group(sb, group);
1451
1452	BUFFER_TRACE(group_desc_bh,
1453		     "call ext4_handle_dirty_metadata");
1454	ret = ext4_handle_dirty_metadata(handle, NULL,
1455					 group_desc_bh);
1456
1457err_out:
1458	up_write(&grp->alloc_sem);
1459	ext4_journal_stop(handle);
1460out:
1461	return ret;
1462}