Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v3.1
   1/*
   2 *  linux/fs/ext4/ialloc.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  BSD ufs-inspired inode and directory allocation by
  10 *  Stephen Tweedie (sct@redhat.com), 1993
  11 *  Big-endian to little-endian byte-swapping/bitmaps by
  12 *        David S. Miller (davem@caip.rutgers.edu), 1995
  13 */
  14
  15#include <linux/time.h>
  16#include <linux/fs.h>
  17#include <linux/jbd2.h>
  18#include <linux/stat.h>
  19#include <linux/string.h>
  20#include <linux/quotaops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/random.h>
  23#include <linux/bitops.h>
  24#include <linux/blkdev.h>
  25#include <asm/byteorder.h>
  26
  27#include "ext4.h"
  28#include "ext4_jbd2.h"
  29#include "xattr.h"
  30#include "acl.h"
  31
  32#include <trace/events/ext4.h>
  33
  34/*
  35 * ialloc.c contains the inodes allocation and deallocation routines
  36 */
  37
  38/*
  39 * The free inodes are managed by bitmaps.  A file system contains several
  40 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  41 * block for inodes, N blocks for the inode table and data blocks.
  42 *
  43 * The file system contains group descriptors which are located after the
  44 * super block.  Each descriptor contains the number of the bitmap block and
  45 * the free blocks count in the block.
  46 */
  47
  48/*
  49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
  50 * need to use it within a single byte (to ensure we get endianness right).
  51 * We can use memset for the rest of the bitmap as there are no other users.
  52 */
  53void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
  54{
  55	int i;
  56
  57	if (start_bit >= end_bit)
  58		return;
  59
  60	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
  61	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
  62		ext4_set_bit(i, bitmap);
  63	if (i < end_bit)
  64		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
  65}
  66
  67/* Initializes an uninitialized inode bitmap */
  68static unsigned ext4_init_inode_bitmap(struct super_block *sb,
  69				       struct buffer_head *bh,
  70				       ext4_group_t block_group,
  71				       struct ext4_group_desc *gdp)
  72{
  73	struct ext4_sb_info *sbi = EXT4_SB(sb);
  74
  75	J_ASSERT_BH(bh, buffer_locked(bh));
  76
  77	/* If checksum is bad mark all blocks and inodes use to prevent
  78	 * allocation, essentially implementing a per-group read-only flag. */
  79	if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
  80		ext4_error(sb, "Checksum bad for group %u", block_group);
  81		ext4_free_blks_set(sb, gdp, 0);
  82		ext4_free_inodes_set(sb, gdp, 0);
  83		ext4_itable_unused_set(sb, gdp, 0);
  84		memset(bh->b_data, 0xff, sb->s_blocksize);
 
 
  85		return 0;
  86	}
  87
  88	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
  89	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
  90			bh->b_data);
 
 
 
  91
  92	return EXT4_INODES_PER_GROUP(sb);
  93}
  94
 
 
 
 
 
 
 
 
 
 
  95/*
  96 * Read the inode allocation bitmap for a given block_group, reading
  97 * into the specified slot in the superblock's bitmap cache.
  98 *
  99 * Return buffer_head of bitmap on success or NULL.
 100 */
 101static struct buffer_head *
 102ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
 103{
 104	struct ext4_group_desc *desc;
 105	struct buffer_head *bh = NULL;
 106	ext4_fsblk_t bitmap_blk;
 107
 108	desc = ext4_get_group_desc(sb, block_group, NULL);
 109	if (!desc)
 110		return NULL;
 111
 112	bitmap_blk = ext4_inode_bitmap(sb, desc);
 113	bh = sb_getblk(sb, bitmap_blk);
 114	if (unlikely(!bh)) {
 115		ext4_error(sb, "Cannot read inode bitmap - "
 116			    "block_group = %u, inode_bitmap = %llu",
 117			    block_group, bitmap_blk);
 118		return NULL;
 119	}
 120	if (bitmap_uptodate(bh))
 121		return bh;
 122
 123	lock_buffer(bh);
 124	if (bitmap_uptodate(bh)) {
 125		unlock_buffer(bh);
 126		return bh;
 127	}
 128
 129	ext4_lock_group(sb, block_group);
 130	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 131		ext4_init_inode_bitmap(sb, bh, block_group, desc);
 132		set_bitmap_uptodate(bh);
 133		set_buffer_uptodate(bh);
 
 134		ext4_unlock_group(sb, block_group);
 135		unlock_buffer(bh);
 136		return bh;
 137	}
 138	ext4_unlock_group(sb, block_group);
 139
 140	if (buffer_uptodate(bh)) {
 141		/*
 142		 * if not uninit if bh is uptodate,
 143		 * bitmap is also uptodate
 144		 */
 145		set_bitmap_uptodate(bh);
 146		unlock_buffer(bh);
 147		return bh;
 148	}
 149	/*
 150	 * submit the buffer_head for read. We can
 151	 * safely mark the bitmap as uptodate now.
 152	 * We do it here so the bitmap uptodate bit
 153	 * get set with buffer lock held.
 154	 */
 155	trace_ext4_load_inode_bitmap(sb, block_group);
 156	set_bitmap_uptodate(bh);
 157	if (bh_submit_read(bh) < 0) {
 
 
 
 158		put_bh(bh);
 159		ext4_error(sb, "Cannot read inode bitmap - "
 160			    "block_group = %u, inode_bitmap = %llu",
 161			    block_group, bitmap_blk);
 
 
 
 
 
 
 
 
 
 
 
 
 162		return NULL;
 163	}
 
 
 164	return bh;
 165}
 166
 167/*
 168 * NOTE! When we get the inode, we're the only people
 169 * that have access to it, and as such there are no
 170 * race conditions we have to worry about. The inode
 171 * is not on the hash-lists, and it cannot be reached
 172 * through the filesystem because the directory entry
 173 * has been deleted earlier.
 174 *
 175 * HOWEVER: we must make sure that we get no aliases,
 176 * which means that we have to call "clear_inode()"
 177 * _before_ we mark the inode not in use in the inode
 178 * bitmaps. Otherwise a newly created file might use
 179 * the same inode number (not actually the same pointer
 180 * though), and then we'd have two inodes sharing the
 181 * same inode number and space on the harddisk.
 182 */
 183void ext4_free_inode(handle_t *handle, struct inode *inode)
 184{
 185	struct super_block *sb = inode->i_sb;
 186	int is_directory;
 187	unsigned long ino;
 188	struct buffer_head *bitmap_bh = NULL;
 189	struct buffer_head *bh2;
 190	ext4_group_t block_group;
 191	unsigned long bit;
 192	struct ext4_group_desc *gdp;
 193	struct ext4_super_block *es;
 194	struct ext4_sb_info *sbi;
 195	int fatal = 0, err, count, cleared;
 196
 197	if (atomic_read(&inode->i_count) > 1) {
 198		printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
 199		       atomic_read(&inode->i_count));
 200		return;
 201	}
 202	if (inode->i_nlink) {
 203		printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
 204		       inode->i_nlink);
 
 205		return;
 206	}
 207	if (!sb) {
 208		printk(KERN_ERR "ext4_free_inode: inode on "
 209		       "nonexistent device\n");
 210		return;
 211	}
 212	sbi = EXT4_SB(sb);
 213
 214	ino = inode->i_ino;
 215	ext4_debug("freeing inode %lu\n", ino);
 216	trace_ext4_free_inode(inode);
 217
 218	/*
 219	 * Note: we must free any quota before locking the superblock,
 220	 * as writing the quota to disk may need the lock as well.
 221	 */
 222	dquot_initialize(inode);
 223	ext4_xattr_delete_inode(handle, inode);
 224	dquot_free_inode(inode);
 225	dquot_drop(inode);
 226
 227	is_directory = S_ISDIR(inode->i_mode);
 228
 229	/* Do this BEFORE marking the inode not in use or returning an error */
 230	ext4_clear_inode(inode);
 231
 232	es = EXT4_SB(sb)->s_es;
 233	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
 234		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
 235		goto error_return;
 236	}
 237	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 238	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 239	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 240	if (!bitmap_bh)
 241		goto error_return;
 242
 243	BUFFER_TRACE(bitmap_bh, "get_write_access");
 244	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
 245	if (fatal)
 246		goto error_return;
 247
 248	fatal = -ESRCH;
 249	gdp = ext4_get_group_desc(sb, block_group, &bh2);
 250	if (gdp) {
 251		BUFFER_TRACE(bh2, "get_write_access");
 252		fatal = ext4_journal_get_write_access(handle, bh2);
 253	}
 254	ext4_lock_group(sb, block_group);
 255	cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
 256	if (fatal || !cleared) {
 257		ext4_unlock_group(sb, block_group);
 258		goto out;
 259	}
 260
 261	count = ext4_free_inodes_count(sb, gdp) + 1;
 262	ext4_free_inodes_set(sb, gdp, count);
 263	if (is_directory) {
 264		count = ext4_used_dirs_count(sb, gdp) - 1;
 265		ext4_used_dirs_set(sb, gdp, count);
 266		percpu_counter_dec(&sbi->s_dirs_counter);
 267	}
 268	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
 
 
 269	ext4_unlock_group(sb, block_group);
 270
 271	percpu_counter_inc(&sbi->s_freeinodes_counter);
 272	if (sbi->s_log_groups_per_flex) {
 273		ext4_group_t f = ext4_flex_group(sbi, block_group);
 274
 275		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
 276		if (is_directory)
 277			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
 278	}
 279	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
 280	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
 281out:
 282	if (cleared) {
 283		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
 284		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 285		if (!fatal)
 286			fatal = err;
 287		ext4_mark_super_dirty(sb);
 288	} else
 289		ext4_error(sb, "bit already cleared for inode %lu", ino);
 290
 291error_return:
 292	brelse(bitmap_bh);
 293	ext4_std_error(sb, fatal);
 294}
 295
 296/*
 297 * There are two policies for allocating an inode.  If the new inode is
 298 * a directory, then a forward search is made for a block group with both
 299 * free space and a low directory-to-inode ratio; if that fails, then of
 300 * the groups with above-average free space, that group with the fewest
 301 * directories already is chosen.
 302 *
 303 * For other inodes, search forward from the parent directory\'s block
 304 * group to find a free inode.
 305 */
 306static int find_group_dir(struct super_block *sb, struct inode *parent,
 307				ext4_group_t *best_group)
 308{
 309	ext4_group_t ngroups = ext4_get_groups_count(sb);
 310	unsigned int freei, avefreei;
 311	struct ext4_group_desc *desc, *best_desc = NULL;
 312	ext4_group_t group;
 313	int ret = -1;
 314
 315	freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter);
 316	avefreei = freei / ngroups;
 317
 318	for (group = 0; group < ngroups; group++) {
 319		desc = ext4_get_group_desc(sb, group, NULL);
 320		if (!desc || !ext4_free_inodes_count(sb, desc))
 321			continue;
 322		if (ext4_free_inodes_count(sb, desc) < avefreei)
 323			continue;
 324		if (!best_desc ||
 325		    (ext4_free_blks_count(sb, desc) >
 326		     ext4_free_blks_count(sb, best_desc))) {
 327			*best_group = group;
 328			best_desc = desc;
 329			ret = 0;
 330		}
 331	}
 332	return ret;
 333}
 334
 335#define free_block_ratio 10
 336
 337static int find_group_flex(struct super_block *sb, struct inode *parent,
 338			   ext4_group_t *best_group)
 339{
 340	struct ext4_sb_info *sbi = EXT4_SB(sb);
 341	struct ext4_group_desc *desc;
 342	struct flex_groups *flex_group = sbi->s_flex_groups;
 343	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 344	ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group);
 345	ext4_group_t ngroups = ext4_get_groups_count(sb);
 346	int flex_size = ext4_flex_bg_size(sbi);
 347	ext4_group_t best_flex = parent_fbg_group;
 348	int blocks_per_flex = sbi->s_blocks_per_group * flex_size;
 349	int flexbg_free_blocks;
 350	int flex_freeb_ratio;
 351	ext4_group_t n_fbg_groups;
 352	ext4_group_t i;
 353
 354	n_fbg_groups = (ngroups + flex_size - 1) >>
 355		sbi->s_log_groups_per_flex;
 356
 357find_close_to_parent:
 358	flexbg_free_blocks = atomic_read(&flex_group[best_flex].free_blocks);
 359	flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
 360	if (atomic_read(&flex_group[best_flex].free_inodes) &&
 361	    flex_freeb_ratio > free_block_ratio)
 362		goto found_flexbg;
 363
 364	if (best_flex && best_flex == parent_fbg_group) {
 365		best_flex--;
 366		goto find_close_to_parent;
 367	}
 368
 369	for (i = 0; i < n_fbg_groups; i++) {
 370		if (i == parent_fbg_group || i == parent_fbg_group - 1)
 371			continue;
 372
 373		flexbg_free_blocks = atomic_read(&flex_group[i].free_blocks);
 374		flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex;
 375
 376		if (flex_freeb_ratio > free_block_ratio &&
 377		    (atomic_read(&flex_group[i].free_inodes))) {
 378			best_flex = i;
 379			goto found_flexbg;
 380		}
 381
 382		if ((atomic_read(&flex_group[best_flex].free_inodes) == 0) ||
 383		    ((atomic_read(&flex_group[i].free_blocks) >
 384		      atomic_read(&flex_group[best_flex].free_blocks)) &&
 385		     atomic_read(&flex_group[i].free_inodes)))
 386			best_flex = i;
 387	}
 388
 389	if (!atomic_read(&flex_group[best_flex].free_inodes) ||
 390	    !atomic_read(&flex_group[best_flex].free_blocks))
 391		return -1;
 392
 393found_flexbg:
 394	for (i = best_flex * flex_size; i < ngroups &&
 395		     i < (best_flex + 1) * flex_size; i++) {
 396		desc = ext4_get_group_desc(sb, i, NULL);
 397		if (ext4_free_inodes_count(sb, desc)) {
 398			*best_group = i;
 399			goto out;
 400		}
 401	}
 402
 403	return -1;
 404out:
 405	return 0;
 406}
 407
 408struct orlov_stats {
 409	__u32 free_inodes;
 410	__u32 free_blocks;
 411	__u32 used_dirs;
 412};
 413
 414/*
 415 * Helper function for Orlov's allocator; returns critical information
 416 * for a particular block group or flex_bg.  If flex_size is 1, then g
 417 * is a block group number; otherwise it is flex_bg number.
 418 */
 419static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
 420			    int flex_size, struct orlov_stats *stats)
 421{
 422	struct ext4_group_desc *desc;
 423	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
 424
 425	if (flex_size > 1) {
 426		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
 427		stats->free_blocks = atomic_read(&flex_group[g].free_blocks);
 428		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
 429		return;
 430	}
 431
 432	desc = ext4_get_group_desc(sb, g, NULL);
 433	if (desc) {
 434		stats->free_inodes = ext4_free_inodes_count(sb, desc);
 435		stats->free_blocks = ext4_free_blks_count(sb, desc);
 436		stats->used_dirs = ext4_used_dirs_count(sb, desc);
 437	} else {
 438		stats->free_inodes = 0;
 439		stats->free_blocks = 0;
 440		stats->used_dirs = 0;
 441	}
 442}
 443
 444/*
 445 * Orlov's allocator for directories.
 446 *
 447 * We always try to spread first-level directories.
 448 *
 449 * If there are blockgroups with both free inodes and free blocks counts
 450 * not worse than average we return one with smallest directory count.
 451 * Otherwise we simply return a random group.
 452 *
 453 * For the rest rules look so:
 454 *
 455 * It's OK to put directory into a group unless
 456 * it has too many directories already (max_dirs) or
 457 * it has too few free inodes left (min_inodes) or
 458 * it has too few free blocks left (min_blocks) or
 459 * Parent's group is preferred, if it doesn't satisfy these
 460 * conditions we search cyclically through the rest. If none
 461 * of the groups look good we just look for a group with more
 462 * free inodes than average (starting at parent's group).
 463 */
 464
 465static int find_group_orlov(struct super_block *sb, struct inode *parent,
 466			    ext4_group_t *group, int mode,
 467			    const struct qstr *qstr)
 468{
 469	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 470	struct ext4_sb_info *sbi = EXT4_SB(sb);
 471	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
 472	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
 473	unsigned int freei, avefreei;
 474	ext4_fsblk_t freeb, avefreeb;
 475	unsigned int ndirs;
 476	int max_dirs, min_inodes;
 477	ext4_grpblk_t min_blocks;
 478	ext4_group_t i, grp, g, ngroups;
 479	struct ext4_group_desc *desc;
 480	struct orlov_stats stats;
 481	int flex_size = ext4_flex_bg_size(sbi);
 482	struct dx_hash_info hinfo;
 483
 484	ngroups = real_ngroups;
 485	if (flex_size > 1) {
 486		ngroups = (real_ngroups + flex_size - 1) >>
 487			sbi->s_log_groups_per_flex;
 488		parent_group >>= sbi->s_log_groups_per_flex;
 489	}
 490
 491	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
 492	avefreei = freei / ngroups;
 493	freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
 494	avefreeb = freeb;
 495	do_div(avefreeb, ngroups);
 
 496	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
 497
 498	if (S_ISDIR(mode) &&
 499	    ((parent == sb->s_root->d_inode) ||
 500	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
 501		int best_ndir = inodes_per_group;
 502		int ret = -1;
 503
 504		if (qstr) {
 505			hinfo.hash_version = DX_HASH_HALF_MD4;
 506			hinfo.seed = sbi->s_hash_seed;
 507			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
 508			grp = hinfo.hash;
 509		} else
 510			get_random_bytes(&grp, sizeof(grp));
 511		parent_group = (unsigned)grp % ngroups;
 512		for (i = 0; i < ngroups; i++) {
 513			g = (parent_group + i) % ngroups;
 514			get_orlov_stats(sb, g, flex_size, &stats);
 515			if (!stats.free_inodes)
 516				continue;
 517			if (stats.used_dirs >= best_ndir)
 518				continue;
 519			if (stats.free_inodes < avefreei)
 520				continue;
 521			if (stats.free_blocks < avefreeb)
 522				continue;
 523			grp = g;
 524			ret = 0;
 525			best_ndir = stats.used_dirs;
 526		}
 527		if (ret)
 528			goto fallback;
 529	found_flex_bg:
 530		if (flex_size == 1) {
 531			*group = grp;
 532			return 0;
 533		}
 534
 535		/*
 536		 * We pack inodes at the beginning of the flexgroup's
 537		 * inode tables.  Block allocation decisions will do
 538		 * something similar, although regular files will
 539		 * start at 2nd block group of the flexgroup.  See
 540		 * ext4_ext_find_goal() and ext4_find_near().
 541		 */
 542		grp *= flex_size;
 543		for (i = 0; i < flex_size; i++) {
 544			if (grp+i >= real_ngroups)
 545				break;
 546			desc = ext4_get_group_desc(sb, grp+i, NULL);
 547			if (desc && ext4_free_inodes_count(sb, desc)) {
 548				*group = grp+i;
 549				return 0;
 550			}
 551		}
 552		goto fallback;
 553	}
 554
 555	max_dirs = ndirs / ngroups + inodes_per_group / 16;
 556	min_inodes = avefreei - inodes_per_group*flex_size / 4;
 557	if (min_inodes < 1)
 558		min_inodes = 1;
 559	min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb)*flex_size / 4;
 560
 561	/*
 562	 * Start looking in the flex group where we last allocated an
 563	 * inode for this parent directory
 564	 */
 565	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
 566		parent_group = EXT4_I(parent)->i_last_alloc_group;
 567		if (flex_size > 1)
 568			parent_group >>= sbi->s_log_groups_per_flex;
 569	}
 570
 571	for (i = 0; i < ngroups; i++) {
 572		grp = (parent_group + i) % ngroups;
 573		get_orlov_stats(sb, grp, flex_size, &stats);
 574		if (stats.used_dirs >= max_dirs)
 575			continue;
 576		if (stats.free_inodes < min_inodes)
 577			continue;
 578		if (stats.free_blocks < min_blocks)
 579			continue;
 580		goto found_flex_bg;
 581	}
 582
 583fallback:
 584	ngroups = real_ngroups;
 585	avefreei = freei / ngroups;
 586fallback_retry:
 587	parent_group = EXT4_I(parent)->i_block_group;
 588	for (i = 0; i < ngroups; i++) {
 589		grp = (parent_group + i) % ngroups;
 590		desc = ext4_get_group_desc(sb, grp, NULL);
 591		if (desc && ext4_free_inodes_count(sb, desc) &&
 592		    ext4_free_inodes_count(sb, desc) >= avefreei) {
 593			*group = grp;
 594			return 0;
 
 
 595		}
 596	}
 597
 598	if (avefreei) {
 599		/*
 600		 * The free-inodes counter is approximate, and for really small
 601		 * filesystems the above test can fail to find any blockgroups
 602		 */
 603		avefreei = 0;
 604		goto fallback_retry;
 605	}
 606
 607	return -1;
 608}
 609
 610static int find_group_other(struct super_block *sb, struct inode *parent,
 611			    ext4_group_t *group, int mode)
 612{
 613	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 614	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
 615	struct ext4_group_desc *desc;
 616	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
 617
 618	/*
 619	 * Try to place the inode is the same flex group as its
 620	 * parent.  If we can't find space, use the Orlov algorithm to
 621	 * find another flex group, and store that information in the
 622	 * parent directory's inode information so that use that flex
 623	 * group for future allocations.
 624	 */
 625	if (flex_size > 1) {
 626		int retry = 0;
 627
 628	try_again:
 629		parent_group &= ~(flex_size-1);
 630		last = parent_group + flex_size;
 631		if (last > ngroups)
 632			last = ngroups;
 633		for  (i = parent_group; i < last; i++) {
 634			desc = ext4_get_group_desc(sb, i, NULL);
 635			if (desc && ext4_free_inodes_count(sb, desc)) {
 636				*group = i;
 637				return 0;
 638			}
 639		}
 640		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
 641			retry = 1;
 642			parent_group = EXT4_I(parent)->i_last_alloc_group;
 643			goto try_again;
 644		}
 645		/*
 646		 * If this didn't work, use the Orlov search algorithm
 647		 * to find a new flex group; we pass in the mode to
 648		 * avoid the topdir algorithms.
 649		 */
 650		*group = parent_group + flex_size;
 651		if (*group > ngroups)
 652			*group = 0;
 653		return find_group_orlov(sb, parent, group, mode, NULL);
 654	}
 655
 656	/*
 657	 * Try to place the inode in its parent directory
 658	 */
 659	*group = parent_group;
 660	desc = ext4_get_group_desc(sb, *group, NULL);
 661	if (desc && ext4_free_inodes_count(sb, desc) &&
 662			ext4_free_blks_count(sb, desc))
 663		return 0;
 664
 665	/*
 666	 * We're going to place this inode in a different blockgroup from its
 667	 * parent.  We want to cause files in a common directory to all land in
 668	 * the same blockgroup.  But we want files which are in a different
 669	 * directory which shares a blockgroup with our parent to land in a
 670	 * different blockgroup.
 671	 *
 672	 * So add our directory's i_ino into the starting point for the hash.
 673	 */
 674	*group = (*group + parent->i_ino) % ngroups;
 675
 676	/*
 677	 * Use a quadratic hash to find a group with a free inode and some free
 678	 * blocks.
 679	 */
 680	for (i = 1; i < ngroups; i <<= 1) {
 681		*group += i;
 682		if (*group >= ngroups)
 683			*group -= ngroups;
 684		desc = ext4_get_group_desc(sb, *group, NULL);
 685		if (desc && ext4_free_inodes_count(sb, desc) &&
 686				ext4_free_blks_count(sb, desc))
 687			return 0;
 688	}
 689
 690	/*
 691	 * That failed: try linear search for a free inode, even if that group
 692	 * has no free blocks.
 693	 */
 694	*group = parent_group;
 695	for (i = 0; i < ngroups; i++) {
 696		if (++*group >= ngroups)
 697			*group = 0;
 698		desc = ext4_get_group_desc(sb, *group, NULL);
 699		if (desc && ext4_free_inodes_count(sb, desc))
 700			return 0;
 701	}
 702
 703	return -1;
 704}
 705
 706/*
 707 * claim the inode from the inode bitmap. If the group
 708 * is uninit we need to take the groups's ext4_group_lock
 709 * and clear the uninit flag. The inode bitmap update
 710 * and group desc uninit flag clear should be done
 711 * after holding ext4_group_lock so that ext4_read_inode_bitmap
 712 * doesn't race with the ext4_claim_inode
 713 */
 714static int ext4_claim_inode(struct super_block *sb,
 715			struct buffer_head *inode_bitmap_bh,
 716			unsigned long ino, ext4_group_t group, int mode)
 717{
 718	int free = 0, retval = 0, count;
 719	struct ext4_sb_info *sbi = EXT4_SB(sb);
 720	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 721	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
 722
 723	/*
 724	 * We have to be sure that new inode allocation does not race with
 725	 * inode table initialization, because otherwise we may end up
 726	 * allocating and writing new inode right before sb_issue_zeroout
 727	 * takes place and overwriting our new inode with zeroes. So we
 728	 * take alloc_sem to prevent it.
 729	 */
 730	down_read(&grp->alloc_sem);
 731	ext4_lock_group(sb, group);
 732	if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
 733		/* not a free inode */
 734		retval = 1;
 735		goto err_ret;
 736	}
 737	ino++;
 738	if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
 739			ino > EXT4_INODES_PER_GROUP(sb)) {
 740		ext4_unlock_group(sb, group);
 741		up_read(&grp->alloc_sem);
 742		ext4_error(sb, "reserved inode or inode > inodes count - "
 743			   "block_group = %u, inode=%lu", group,
 744			   ino + group * EXT4_INODES_PER_GROUP(sb));
 745		return 1;
 746	}
 747	/* If we didn't allocate from within the initialized part of the inode
 748	 * table then we need to initialize up to this inode. */
 749	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
 750
 751		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 752			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
 753			/* When marking the block group with
 754			 * ~EXT4_BG_INODE_UNINIT we don't want to depend
 755			 * on the value of bg_itable_unused even though
 756			 * mke2fs could have initialized the same for us.
 757			 * Instead we calculated the value below
 758			 */
 759
 760			free = 0;
 761		} else {
 762			free = EXT4_INODES_PER_GROUP(sb) -
 763				ext4_itable_unused_count(sb, gdp);
 764		}
 765
 766		/*
 767		 * Check the relative inode number against the last used
 768		 * relative inode number in this group. if it is greater
 769		 * we need to  update the bg_itable_unused count
 770		 *
 771		 */
 772		if (ino > free)
 773			ext4_itable_unused_set(sb, gdp,
 774					(EXT4_INODES_PER_GROUP(sb) - ino));
 775	}
 776	count = ext4_free_inodes_count(sb, gdp) - 1;
 777	ext4_free_inodes_set(sb, gdp, count);
 778	if (S_ISDIR(mode)) {
 779		count = ext4_used_dirs_count(sb, gdp) + 1;
 780		ext4_used_dirs_set(sb, gdp, count);
 781		if (sbi->s_log_groups_per_flex) {
 782			ext4_group_t f = ext4_flex_group(sbi, group);
 783
 784			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
 785		}
 786	}
 787	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
 788err_ret:
 789	ext4_unlock_group(sb, group);
 790	up_read(&grp->alloc_sem);
 791	return retval;
 792}
 793
 794/*
 795 * There are two policies for allocating an inode.  If the new inode is
 796 * a directory, then a forward search is made for a block group with both
 797 * free space and a low directory-to-inode ratio; if that fails, then of
 798 * the groups with above-average free space, that group with the fewest
 799 * directories already is chosen.
 800 *
 801 * For other inodes, search forward from the parent directory's block
 802 * group to find a free inode.
 803 */
 804struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
 805			     const struct qstr *qstr, __u32 goal)
 806{
 807	struct super_block *sb;
 808	struct buffer_head *inode_bitmap_bh = NULL;
 809	struct buffer_head *group_desc_bh;
 810	ext4_group_t ngroups, group = 0;
 811	unsigned long ino = 0;
 812	struct inode *inode;
 813	struct ext4_group_desc *gdp = NULL;
 814	struct ext4_inode_info *ei;
 815	struct ext4_sb_info *sbi;
 816	int ret2, err = 0;
 817	struct inode *ret;
 818	ext4_group_t i;
 819	int free = 0;
 820	static int once = 1;
 821	ext4_group_t flex_group;
 822
 823	/* Cannot create files in a deleted directory */
 824	if (!dir || !dir->i_nlink)
 825		return ERR_PTR(-EPERM);
 826
 827	sb = dir->i_sb;
 828	ngroups = ext4_get_groups_count(sb);
 829	trace_ext4_request_inode(dir, mode);
 830	inode = new_inode(sb);
 831	if (!inode)
 832		return ERR_PTR(-ENOMEM);
 833	ei = EXT4_I(inode);
 834	sbi = EXT4_SB(sb);
 835
 836	if (!goal)
 837		goal = sbi->s_inode_goal;
 838
 839	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
 840		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
 841		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
 842		ret2 = 0;
 843		goto got_group;
 844	}
 845
 846	if (sbi->s_log_groups_per_flex && test_opt(sb, OLDALLOC)) {
 847		ret2 = find_group_flex(sb, dir, &group);
 848		if (ret2 == -1) {
 849			ret2 = find_group_other(sb, dir, &group, mode);
 850			if (ret2 == 0 && once) {
 851				once = 0;
 852				printk(KERN_NOTICE "ext4: find_group_flex "
 853				       "failed, fallback succeeded dir %lu\n",
 854				       dir->i_ino);
 855			}
 856		}
 857		goto got_group;
 858	}
 859
 860	if (S_ISDIR(mode)) {
 861		if (test_opt(sb, OLDALLOC))
 862			ret2 = find_group_dir(sb, dir, &group);
 863		else
 864			ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
 865	} else
 866		ret2 = find_group_other(sb, dir, &group, mode);
 867
 868got_group:
 869	EXT4_I(dir)->i_last_alloc_group = group;
 870	err = -ENOSPC;
 871	if (ret2 == -1)
 872		goto out;
 873
 
 
 
 
 
 874	for (i = 0; i < ngroups; i++, ino = 0) {
 875		err = -EIO;
 876
 877		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
 878		if (!gdp)
 879			goto fail;
 880
 881		brelse(inode_bitmap_bh);
 882		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
 883		if (!inode_bitmap_bh)
 884			goto fail;
 885
 886repeat_in_this_group:
 887		ino = ext4_find_next_zero_bit((unsigned long *)
 888					      inode_bitmap_bh->b_data,
 889					      EXT4_INODES_PER_GROUP(sb), ino);
 890
 891		if (ino < EXT4_INODES_PER_GROUP(sb)) {
 892
 893			BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
 894			err = ext4_journal_get_write_access(handle,
 895							    inode_bitmap_bh);
 896			if (err)
 897				goto fail;
 898
 899			BUFFER_TRACE(group_desc_bh, "get_write_access");
 900			err = ext4_journal_get_write_access(handle,
 901								group_desc_bh);
 902			if (err)
 903				goto fail;
 904			if (!ext4_claim_inode(sb, inode_bitmap_bh,
 905						ino, group, mode)) {
 906				/* we won it */
 907				BUFFER_TRACE(inode_bitmap_bh,
 908					"call ext4_handle_dirty_metadata");
 909				err = ext4_handle_dirty_metadata(handle,
 910								 NULL,
 911							inode_bitmap_bh);
 912				if (err)
 913					goto fail;
 914				/* zero bit is inode number 1*/
 915				ino++;
 916				goto got;
 917			}
 918			/* we lost it */
 919			ext4_handle_release_buffer(handle, inode_bitmap_bh);
 920			ext4_handle_release_buffer(handle, group_desc_bh);
 921
 922			if (++ino < EXT4_INODES_PER_GROUP(sb))
 923				goto repeat_in_this_group;
 924		}
 925
 926		/*
 927		 * This case is possible in concurrent environment.  It is very
 928		 * rare.  We cannot repeat the find_group_xxx() call because
 929		 * that will simply return the same blockgroup, because the
 930		 * group descriptor metadata has not yet been updated.
 931		 * So we just go onto the next blockgroup.
 932		 */
 933		if (++group == ngroups)
 934			group = 0;
 
 
 
 935	}
 936	err = -ENOSPC;
 937	goto out;
 938
 939got:
 940	/* We may have to initialize the block bitmap if it isn't already */
 941	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
 942	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 943		struct buffer_head *block_bitmap_bh;
 944
 945		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
 946		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
 947		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
 948		if (err) {
 949			brelse(block_bitmap_bh);
 950			goto fail;
 951		}
 952
 953		free = 0;
 954		ext4_lock_group(sb, group);
 
 
 955		/* recheck and clear flag under lock if we still need to */
 
 956		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 957			free = ext4_free_blocks_after_init(sb, group, gdp);
 958			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
 959			ext4_free_blks_set(sb, gdp, free);
 960			gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
 961								gdp);
 
 
 
 
 962		}
 963		ext4_unlock_group(sb, group);
 964
 965		/* Don't need to dirty bitmap block if we didn't change it */
 966		if (free) {
 967			BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
 968			err = ext4_handle_dirty_metadata(handle,
 969							NULL, block_bitmap_bh);
 970		}
 971
 972		brelse(block_bitmap_bh);
 973		if (err)
 974			goto fail;
 975	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
 977	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
 978	if (err)
 979		goto fail;
 980
 981	percpu_counter_dec(&sbi->s_freeinodes_counter);
 982	if (S_ISDIR(mode))
 983		percpu_counter_inc(&sbi->s_dirs_counter);
 984	ext4_mark_super_dirty(sb);
 985
 986	if (sbi->s_log_groups_per_flex) {
 987		flex_group = ext4_flex_group(sbi, group);
 988		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
 989	}
 990
 991	if (test_opt(sb, GRPID)) {
 
 
 
 992		inode->i_mode = mode;
 993		inode->i_uid = current_fsuid();
 994		inode->i_gid = dir->i_gid;
 995	} else
 996		inode_init_owner(inode, dir, mode);
 997
 998	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
 999	/* This is the optimal IO size (for stat), not the fs block size */
1000	inode->i_blocks = 0;
1001	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1002						       ext4_current_time(inode);
1003
1004	memset(ei->i_data, 0, sizeof(ei->i_data));
1005	ei->i_dir_start_lookup = 0;
1006	ei->i_disksize = 0;
1007
1008	/*
1009	 * Don't inherit extent flag from directory, amongst others. We set
1010	 * extent flag on newly created directory and file only if -o extent
1011	 * mount option is specified
1012	 */
1013	ei->i_flags =
1014		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1015	ei->i_file_acl = 0;
1016	ei->i_dtime = 0;
1017	ei->i_block_group = group;
1018	ei->i_last_alloc_group = ~0;
1019
1020	ext4_set_inode_flags(inode);
1021	if (IS_DIRSYNC(inode))
1022		ext4_handle_sync(handle);
1023	if (insert_inode_locked(inode) < 0) {
1024		err = -EINVAL;
1025		goto fail_drop;
 
 
 
 
1026	}
1027	spin_lock(&sbi->s_next_gen_lock);
1028	inode->i_generation = sbi->s_next_generation++;
1029	spin_unlock(&sbi->s_next_gen_lock);
1030
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1032	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1033
1034	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1035
1036	ret = inode;
1037	dquot_initialize(inode);
1038	err = dquot_alloc_inode(inode);
1039	if (err)
1040		goto fail_drop;
1041
1042	err = ext4_init_acl(handle, inode, dir);
1043	if (err)
1044		goto fail_free_drop;
1045
1046	err = ext4_init_security(handle, inode, dir, qstr);
1047	if (err)
1048		goto fail_free_drop;
1049
1050	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1051		/* set extent flag only for directory, file and normal symlink*/
1052		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1053			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1054			ext4_ext_tree_init(handle, inode);
1055		}
1056	}
1057
1058	if (ext4_handle_valid(handle)) {
1059		ei->i_sync_tid = handle->h_transaction->t_tid;
1060		ei->i_datasync_tid = handle->h_transaction->t_tid;
1061	}
1062
1063	err = ext4_mark_inode_dirty(handle, inode);
1064	if (err) {
1065		ext4_std_error(sb, err);
1066		goto fail_free_drop;
1067	}
1068
1069	ext4_debug("allocating inode %lu\n", inode->i_ino);
1070	trace_ext4_allocate_inode(inode, dir, mode);
1071	goto really_out;
1072fail:
1073	ext4_std_error(sb, err);
1074out:
1075	iput(inode);
1076	ret = ERR_PTR(err);
1077really_out:
1078	brelse(inode_bitmap_bh);
1079	return ret;
1080
1081fail_free_drop:
1082	dquot_free_inode(inode);
1083
1084fail_drop:
1085	dquot_drop(inode);
1086	inode->i_flags |= S_NOQUOTA;
1087	inode->i_nlink = 0;
1088	unlock_new_inode(inode);
1089	iput(inode);
1090	brelse(inode_bitmap_bh);
1091	return ERR_PTR(err);
1092}
1093
1094/* Verify that we are loading a valid orphan from disk */
1095struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1096{
1097	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1098	ext4_group_t block_group;
1099	int bit;
1100	struct buffer_head *bitmap_bh;
1101	struct inode *inode = NULL;
1102	long err = -EIO;
1103
1104	/* Error cases - e2fsck has already cleaned up for us */
1105	if (ino > max_ino) {
1106		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
1107		goto error;
1108	}
1109
1110	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1111	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1112	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1113	if (!bitmap_bh) {
1114		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1115		goto error;
1116	}
1117
1118	/* Having the inode bit set should be a 100% indicator that this
1119	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1120	 * inodes that were being truncated, so we can't check i_nlink==0.
1121	 */
1122	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1123		goto bad_orphan;
1124
1125	inode = ext4_iget(sb, ino);
1126	if (IS_ERR(inode))
1127		goto iget_failed;
1128
1129	/*
1130	 * If the orphans has i_nlinks > 0 then it should be able to be
1131	 * truncated, otherwise it won't be removed from the orphan list
1132	 * during processing and an infinite loop will result.
1133	 */
1134	if (inode->i_nlink && !ext4_can_truncate(inode))
1135		goto bad_orphan;
1136
1137	if (NEXT_ORPHAN(inode) > max_ino)
1138		goto bad_orphan;
1139	brelse(bitmap_bh);
1140	return inode;
1141
1142iget_failed:
1143	err = PTR_ERR(inode);
1144	inode = NULL;
1145bad_orphan:
1146	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1147	printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1148	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1149	       ext4_test_bit(bit, bitmap_bh->b_data));
1150	printk(KERN_NOTICE "inode=%p\n", inode);
1151	if (inode) {
1152		printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1153		       is_bad_inode(inode));
1154		printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1155		       NEXT_ORPHAN(inode));
1156		printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1157		printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1158		/* Avoid freeing blocks if we got a bad deleted inode */
1159		if (inode->i_nlink == 0)
1160			inode->i_blocks = 0;
1161		iput(inode);
1162	}
1163	brelse(bitmap_bh);
1164error:
1165	return ERR_PTR(err);
1166}
1167
1168unsigned long ext4_count_free_inodes(struct super_block *sb)
1169{
1170	unsigned long desc_count;
1171	struct ext4_group_desc *gdp;
1172	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1173#ifdef EXT4FS_DEBUG
1174	struct ext4_super_block *es;
1175	unsigned long bitmap_count, x;
1176	struct buffer_head *bitmap_bh = NULL;
1177
1178	es = EXT4_SB(sb)->s_es;
1179	desc_count = 0;
1180	bitmap_count = 0;
1181	gdp = NULL;
1182	for (i = 0; i < ngroups; i++) {
1183		gdp = ext4_get_group_desc(sb, i, NULL);
1184		if (!gdp)
1185			continue;
1186		desc_count += ext4_free_inodes_count(sb, gdp);
1187		brelse(bitmap_bh);
1188		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1189		if (!bitmap_bh)
1190			continue;
1191
1192		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
 
1193		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1194			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1195		bitmap_count += x;
1196	}
1197	brelse(bitmap_bh);
1198	printk(KERN_DEBUG "ext4_count_free_inodes: "
1199	       "stored = %u, computed = %lu, %lu\n",
1200	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1201	return desc_count;
1202#else
1203	desc_count = 0;
1204	for (i = 0; i < ngroups; i++) {
1205		gdp = ext4_get_group_desc(sb, i, NULL);
1206		if (!gdp)
1207			continue;
1208		desc_count += ext4_free_inodes_count(sb, gdp);
1209		cond_resched();
1210	}
1211	return desc_count;
1212#endif
1213}
1214
1215/* Called at mount-time, super-block is locked */
1216unsigned long ext4_count_dirs(struct super_block * sb)
1217{
1218	unsigned long count = 0;
1219	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1220
1221	for (i = 0; i < ngroups; i++) {
1222		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1223		if (!gdp)
1224			continue;
1225		count += ext4_used_dirs_count(sb, gdp);
1226	}
1227	return count;
1228}
1229
1230/*
1231 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1232 * inode table. Must be called without any spinlock held. The only place
1233 * where it is called from on active part of filesystem is ext4lazyinit
1234 * thread, so we do not need any special locks, however we have to prevent
1235 * inode allocation from the current group, so we take alloc_sem lock, to
1236 * block ext4_claim_inode until we are finished.
1237 */
1238extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1239				 int barrier)
1240{
1241	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1242	struct ext4_sb_info *sbi = EXT4_SB(sb);
1243	struct ext4_group_desc *gdp = NULL;
1244	struct buffer_head *group_desc_bh;
1245	handle_t *handle;
1246	ext4_fsblk_t blk;
1247	int num, ret = 0, used_blks = 0;
1248
1249	/* This should not happen, but just to be sure check this */
1250	if (sb->s_flags & MS_RDONLY) {
1251		ret = 1;
1252		goto out;
1253	}
1254
1255	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1256	if (!gdp)
1257		goto out;
1258
1259	/*
1260	 * We do not need to lock this, because we are the only one
1261	 * handling this flag.
1262	 */
1263	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1264		goto out;
1265
1266	handle = ext4_journal_start_sb(sb, 1);
1267	if (IS_ERR(handle)) {
1268		ret = PTR_ERR(handle);
1269		goto out;
1270	}
1271
1272	down_write(&grp->alloc_sem);
1273	/*
1274	 * If inode bitmap was already initialized there may be some
1275	 * used inodes so we need to skip blocks with used inodes in
1276	 * inode table.
1277	 */
1278	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1279		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1280			    ext4_itable_unused_count(sb, gdp)),
1281			    sbi->s_inodes_per_block);
1282
1283	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1284		ext4_error(sb, "Something is wrong with group %u\n"
1285			   "Used itable blocks: %d"
1286			   "itable unused count: %u\n",
1287			   group, used_blks,
1288			   ext4_itable_unused_count(sb, gdp));
1289		ret = 1;
1290		goto err_out;
1291	}
1292
1293	blk = ext4_inode_table(sb, gdp) + used_blks;
1294	num = sbi->s_itb_per_group - used_blks;
1295
1296	BUFFER_TRACE(group_desc_bh, "get_write_access");
1297	ret = ext4_journal_get_write_access(handle,
1298					    group_desc_bh);
1299	if (ret)
1300		goto err_out;
1301
1302	/*
1303	 * Skip zeroout if the inode table is full. But we set the ZEROED
1304	 * flag anyway, because obviously, when it is full it does not need
1305	 * further zeroing.
1306	 */
1307	if (unlikely(num == 0))
1308		goto skip_zeroout;
1309
1310	ext4_debug("going to zero out inode table in group %d\n",
1311		   group);
1312	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1313	if (ret < 0)
1314		goto err_out;
1315	if (barrier)
1316		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1317
1318skip_zeroout:
1319	ext4_lock_group(sb, group);
1320	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1321	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
1322	ext4_unlock_group(sb, group);
1323
1324	BUFFER_TRACE(group_desc_bh,
1325		     "call ext4_handle_dirty_metadata");
1326	ret = ext4_handle_dirty_metadata(handle, NULL,
1327					 group_desc_bh);
1328
1329err_out:
1330	up_write(&grp->alloc_sem);
1331	ext4_journal_stop(handle);
1332out:
1333	return ret;
1334}
v3.5.6
   1/*
   2 *  linux/fs/ext4/ialloc.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  BSD ufs-inspired inode and directory allocation by
  10 *  Stephen Tweedie (sct@redhat.com), 1993
  11 *  Big-endian to little-endian byte-swapping/bitmaps by
  12 *        David S. Miller (davem@caip.rutgers.edu), 1995
  13 */
  14
  15#include <linux/time.h>
  16#include <linux/fs.h>
  17#include <linux/jbd2.h>
  18#include <linux/stat.h>
  19#include <linux/string.h>
  20#include <linux/quotaops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/random.h>
  23#include <linux/bitops.h>
  24#include <linux/blkdev.h>
  25#include <asm/byteorder.h>
  26
  27#include "ext4.h"
  28#include "ext4_jbd2.h"
  29#include "xattr.h"
  30#include "acl.h"
  31
  32#include <trace/events/ext4.h>
  33
  34/*
  35 * ialloc.c contains the inodes allocation and deallocation routines
  36 */
  37
  38/*
  39 * The free inodes are managed by bitmaps.  A file system contains several
  40 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  41 * block for inodes, N blocks for the inode table and data blocks.
  42 *
  43 * The file system contains group descriptors which are located after the
  44 * super block.  Each descriptor contains the number of the bitmap block and
  45 * the free blocks count in the block.
  46 */
  47
  48/*
  49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
  50 * need to use it within a single byte (to ensure we get endianness right).
  51 * We can use memset for the rest of the bitmap as there are no other users.
  52 */
  53void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
  54{
  55	int i;
  56
  57	if (start_bit >= end_bit)
  58		return;
  59
  60	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
  61	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
  62		ext4_set_bit(i, bitmap);
  63	if (i < end_bit)
  64		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
  65}
  66
  67/* Initializes an uninitialized inode bitmap */
  68static unsigned ext4_init_inode_bitmap(struct super_block *sb,
  69				       struct buffer_head *bh,
  70				       ext4_group_t block_group,
  71				       struct ext4_group_desc *gdp)
  72{
 
 
  73	J_ASSERT_BH(bh, buffer_locked(bh));
  74
  75	/* If checksum is bad mark all blocks and inodes use to prevent
  76	 * allocation, essentially implementing a per-group read-only flag. */
  77	if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
  78		ext4_error(sb, "Checksum bad for group %u", block_group);
  79		ext4_free_group_clusters_set(sb, gdp, 0);
  80		ext4_free_inodes_set(sb, gdp, 0);
  81		ext4_itable_unused_set(sb, gdp, 0);
  82		memset(bh->b_data, 0xff, sb->s_blocksize);
  83		ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
  84					   EXT4_INODES_PER_GROUP(sb) / 8);
  85		return 0;
  86	}
  87
  88	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
  89	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
  90			bh->b_data);
  91	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
  92				   EXT4_INODES_PER_GROUP(sb) / 8);
  93	ext4_group_desc_csum_set(sb, block_group, gdp);
  94
  95	return EXT4_INODES_PER_GROUP(sb);
  96}
  97
  98void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
  99{
 100	if (uptodate) {
 101		set_buffer_uptodate(bh);
 102		set_bitmap_uptodate(bh);
 103	}
 104	unlock_buffer(bh);
 105	put_bh(bh);
 106}
 107
 108/*
 109 * Read the inode allocation bitmap for a given block_group, reading
 110 * into the specified slot in the superblock's bitmap cache.
 111 *
 112 * Return buffer_head of bitmap on success or NULL.
 113 */
 114static struct buffer_head *
 115ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
 116{
 117	struct ext4_group_desc *desc;
 118	struct buffer_head *bh = NULL;
 119	ext4_fsblk_t bitmap_blk;
 120
 121	desc = ext4_get_group_desc(sb, block_group, NULL);
 122	if (!desc)
 123		return NULL;
 124
 125	bitmap_blk = ext4_inode_bitmap(sb, desc);
 126	bh = sb_getblk(sb, bitmap_blk);
 127	if (unlikely(!bh)) {
 128		ext4_error(sb, "Cannot read inode bitmap - "
 129			    "block_group = %u, inode_bitmap = %llu",
 130			    block_group, bitmap_blk);
 131		return NULL;
 132	}
 133	if (bitmap_uptodate(bh))
 134		goto verify;
 135
 136	lock_buffer(bh);
 137	if (bitmap_uptodate(bh)) {
 138		unlock_buffer(bh);
 139		goto verify;
 140	}
 141
 142	ext4_lock_group(sb, block_group);
 143	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 144		ext4_init_inode_bitmap(sb, bh, block_group, desc);
 145		set_bitmap_uptodate(bh);
 146		set_buffer_uptodate(bh);
 147		set_buffer_verified(bh);
 148		ext4_unlock_group(sb, block_group);
 149		unlock_buffer(bh);
 150		return bh;
 151	}
 152	ext4_unlock_group(sb, block_group);
 153
 154	if (buffer_uptodate(bh)) {
 155		/*
 156		 * if not uninit if bh is uptodate,
 157		 * bitmap is also uptodate
 158		 */
 159		set_bitmap_uptodate(bh);
 160		unlock_buffer(bh);
 161		goto verify;
 162	}
 163	/*
 164	 * submit the buffer_head for reading
 
 
 
 165	 */
 166	trace_ext4_load_inode_bitmap(sb, block_group);
 167	bh->b_end_io = ext4_end_bitmap_read;
 168	get_bh(bh);
 169	submit_bh(READ, bh);
 170	wait_on_buffer(bh);
 171	if (!buffer_uptodate(bh)) {
 172		put_bh(bh);
 173		ext4_error(sb, "Cannot read inode bitmap - "
 174			   "block_group = %u, inode_bitmap = %llu",
 175			   block_group, bitmap_blk);
 176		return NULL;
 177	}
 178
 179verify:
 180	ext4_lock_group(sb, block_group);
 181	if (!buffer_verified(bh) &&
 182	    !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
 183					   EXT4_INODES_PER_GROUP(sb) / 8)) {
 184		ext4_unlock_group(sb, block_group);
 185		put_bh(bh);
 186		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
 187			   "inode_bitmap = %llu", block_group, bitmap_blk);
 188		return NULL;
 189	}
 190	ext4_unlock_group(sb, block_group);
 191	set_buffer_verified(bh);
 192	return bh;
 193}
 194
 195/*
 196 * NOTE! When we get the inode, we're the only people
 197 * that have access to it, and as such there are no
 198 * race conditions we have to worry about. The inode
 199 * is not on the hash-lists, and it cannot be reached
 200 * through the filesystem because the directory entry
 201 * has been deleted earlier.
 202 *
 203 * HOWEVER: we must make sure that we get no aliases,
 204 * which means that we have to call "clear_inode()"
 205 * _before_ we mark the inode not in use in the inode
 206 * bitmaps. Otherwise a newly created file might use
 207 * the same inode number (not actually the same pointer
 208 * though), and then we'd have two inodes sharing the
 209 * same inode number and space on the harddisk.
 210 */
 211void ext4_free_inode(handle_t *handle, struct inode *inode)
 212{
 213	struct super_block *sb = inode->i_sb;
 214	int is_directory;
 215	unsigned long ino;
 216	struct buffer_head *bitmap_bh = NULL;
 217	struct buffer_head *bh2;
 218	ext4_group_t block_group;
 219	unsigned long bit;
 220	struct ext4_group_desc *gdp;
 221	struct ext4_super_block *es;
 222	struct ext4_sb_info *sbi;
 223	int fatal = 0, err, count, cleared;
 224
 225	if (!sb) {
 226		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
 227		       "nonexistent device\n", __func__, __LINE__);
 228		return;
 229	}
 230	if (atomic_read(&inode->i_count) > 1) {
 231		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
 232			 __func__, __LINE__, inode->i_ino,
 233			 atomic_read(&inode->i_count));
 234		return;
 235	}
 236	if (inode->i_nlink) {
 237		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
 238			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
 239		return;
 240	}
 241	sbi = EXT4_SB(sb);
 242
 243	ino = inode->i_ino;
 244	ext4_debug("freeing inode %lu\n", ino);
 245	trace_ext4_free_inode(inode);
 246
 247	/*
 248	 * Note: we must free any quota before locking the superblock,
 249	 * as writing the quota to disk may need the lock as well.
 250	 */
 251	dquot_initialize(inode);
 252	ext4_xattr_delete_inode(handle, inode);
 253	dquot_free_inode(inode);
 254	dquot_drop(inode);
 255
 256	is_directory = S_ISDIR(inode->i_mode);
 257
 258	/* Do this BEFORE marking the inode not in use or returning an error */
 259	ext4_clear_inode(inode);
 260
 261	es = EXT4_SB(sb)->s_es;
 262	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
 263		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
 264		goto error_return;
 265	}
 266	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 267	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 268	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 269	if (!bitmap_bh)
 270		goto error_return;
 271
 272	BUFFER_TRACE(bitmap_bh, "get_write_access");
 273	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
 274	if (fatal)
 275		goto error_return;
 276
 277	fatal = -ESRCH;
 278	gdp = ext4_get_group_desc(sb, block_group, &bh2);
 279	if (gdp) {
 280		BUFFER_TRACE(bh2, "get_write_access");
 281		fatal = ext4_journal_get_write_access(handle, bh2);
 282	}
 283	ext4_lock_group(sb, block_group);
 284	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
 285	if (fatal || !cleared) {
 286		ext4_unlock_group(sb, block_group);
 287		goto out;
 288	}
 289
 290	count = ext4_free_inodes_count(sb, gdp) + 1;
 291	ext4_free_inodes_set(sb, gdp, count);
 292	if (is_directory) {
 293		count = ext4_used_dirs_count(sb, gdp) - 1;
 294		ext4_used_dirs_set(sb, gdp, count);
 295		percpu_counter_dec(&sbi->s_dirs_counter);
 296	}
 297	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
 298				   EXT4_INODES_PER_GROUP(sb) / 8);
 299	ext4_group_desc_csum_set(sb, block_group, gdp);
 300	ext4_unlock_group(sb, block_group);
 301
 302	percpu_counter_inc(&sbi->s_freeinodes_counter);
 303	if (sbi->s_log_groups_per_flex) {
 304		ext4_group_t f = ext4_flex_group(sbi, block_group);
 305
 306		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
 307		if (is_directory)
 308			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
 309	}
 310	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
 311	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
 312out:
 313	if (cleared) {
 314		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
 315		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 316		if (!fatal)
 317			fatal = err;
 318		ext4_mark_super_dirty(sb);
 319	} else
 320		ext4_error(sb, "bit already cleared for inode %lu", ino);
 321
 322error_return:
 323	brelse(bitmap_bh);
 324	ext4_std_error(sb, fatal);
 325}
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327struct orlov_stats {
 328	__u32 free_inodes;
 329	__u32 free_clusters;
 330	__u32 used_dirs;
 331};
 332
 333/*
 334 * Helper function for Orlov's allocator; returns critical information
 335 * for a particular block group or flex_bg.  If flex_size is 1, then g
 336 * is a block group number; otherwise it is flex_bg number.
 337 */
 338static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
 339			    int flex_size, struct orlov_stats *stats)
 340{
 341	struct ext4_group_desc *desc;
 342	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
 343
 344	if (flex_size > 1) {
 345		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
 346		stats->free_clusters = atomic_read(&flex_group[g].free_clusters);
 347		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
 348		return;
 349	}
 350
 351	desc = ext4_get_group_desc(sb, g, NULL);
 352	if (desc) {
 353		stats->free_inodes = ext4_free_inodes_count(sb, desc);
 354		stats->free_clusters = ext4_free_group_clusters(sb, desc);
 355		stats->used_dirs = ext4_used_dirs_count(sb, desc);
 356	} else {
 357		stats->free_inodes = 0;
 358		stats->free_clusters = 0;
 359		stats->used_dirs = 0;
 360	}
 361}
 362
 363/*
 364 * Orlov's allocator for directories.
 365 *
 366 * We always try to spread first-level directories.
 367 *
 368 * If there are blockgroups with both free inodes and free blocks counts
 369 * not worse than average we return one with smallest directory count.
 370 * Otherwise we simply return a random group.
 371 *
 372 * For the rest rules look so:
 373 *
 374 * It's OK to put directory into a group unless
 375 * it has too many directories already (max_dirs) or
 376 * it has too few free inodes left (min_inodes) or
 377 * it has too few free blocks left (min_blocks) or
 378 * Parent's group is preferred, if it doesn't satisfy these
 379 * conditions we search cyclically through the rest. If none
 380 * of the groups look good we just look for a group with more
 381 * free inodes than average (starting at parent's group).
 382 */
 383
 384static int find_group_orlov(struct super_block *sb, struct inode *parent,
 385			    ext4_group_t *group, umode_t mode,
 386			    const struct qstr *qstr)
 387{
 388	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 389	struct ext4_sb_info *sbi = EXT4_SB(sb);
 390	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
 391	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
 392	unsigned int freei, avefreei, grp_free;
 393	ext4_fsblk_t freeb, avefreec;
 394	unsigned int ndirs;
 395	int max_dirs, min_inodes;
 396	ext4_grpblk_t min_clusters;
 397	ext4_group_t i, grp, g, ngroups;
 398	struct ext4_group_desc *desc;
 399	struct orlov_stats stats;
 400	int flex_size = ext4_flex_bg_size(sbi);
 401	struct dx_hash_info hinfo;
 402
 403	ngroups = real_ngroups;
 404	if (flex_size > 1) {
 405		ngroups = (real_ngroups + flex_size - 1) >>
 406			sbi->s_log_groups_per_flex;
 407		parent_group >>= sbi->s_log_groups_per_flex;
 408	}
 409
 410	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
 411	avefreei = freei / ngroups;
 412	freeb = EXT4_C2B(sbi,
 413		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
 414	avefreec = freeb;
 415	do_div(avefreec, ngroups);
 416	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
 417
 418	if (S_ISDIR(mode) &&
 419	    ((parent == sb->s_root->d_inode) ||
 420	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
 421		int best_ndir = inodes_per_group;
 422		int ret = -1;
 423
 424		if (qstr) {
 425			hinfo.hash_version = DX_HASH_HALF_MD4;
 426			hinfo.seed = sbi->s_hash_seed;
 427			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
 428			grp = hinfo.hash;
 429		} else
 430			get_random_bytes(&grp, sizeof(grp));
 431		parent_group = (unsigned)grp % ngroups;
 432		for (i = 0; i < ngroups; i++) {
 433			g = (parent_group + i) % ngroups;
 434			get_orlov_stats(sb, g, flex_size, &stats);
 435			if (!stats.free_inodes)
 436				continue;
 437			if (stats.used_dirs >= best_ndir)
 438				continue;
 439			if (stats.free_inodes < avefreei)
 440				continue;
 441			if (stats.free_clusters < avefreec)
 442				continue;
 443			grp = g;
 444			ret = 0;
 445			best_ndir = stats.used_dirs;
 446		}
 447		if (ret)
 448			goto fallback;
 449	found_flex_bg:
 450		if (flex_size == 1) {
 451			*group = grp;
 452			return 0;
 453		}
 454
 455		/*
 456		 * We pack inodes at the beginning of the flexgroup's
 457		 * inode tables.  Block allocation decisions will do
 458		 * something similar, although regular files will
 459		 * start at 2nd block group of the flexgroup.  See
 460		 * ext4_ext_find_goal() and ext4_find_near().
 461		 */
 462		grp *= flex_size;
 463		for (i = 0; i < flex_size; i++) {
 464			if (grp+i >= real_ngroups)
 465				break;
 466			desc = ext4_get_group_desc(sb, grp+i, NULL);
 467			if (desc && ext4_free_inodes_count(sb, desc)) {
 468				*group = grp+i;
 469				return 0;
 470			}
 471		}
 472		goto fallback;
 473	}
 474
 475	max_dirs = ndirs / ngroups + inodes_per_group / 16;
 476	min_inodes = avefreei - inodes_per_group*flex_size / 4;
 477	if (min_inodes < 1)
 478		min_inodes = 1;
 479	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
 480
 481	/*
 482	 * Start looking in the flex group where we last allocated an
 483	 * inode for this parent directory
 484	 */
 485	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
 486		parent_group = EXT4_I(parent)->i_last_alloc_group;
 487		if (flex_size > 1)
 488			parent_group >>= sbi->s_log_groups_per_flex;
 489	}
 490
 491	for (i = 0; i < ngroups; i++) {
 492		grp = (parent_group + i) % ngroups;
 493		get_orlov_stats(sb, grp, flex_size, &stats);
 494		if (stats.used_dirs >= max_dirs)
 495			continue;
 496		if (stats.free_inodes < min_inodes)
 497			continue;
 498		if (stats.free_clusters < min_clusters)
 499			continue;
 500		goto found_flex_bg;
 501	}
 502
 503fallback:
 504	ngroups = real_ngroups;
 505	avefreei = freei / ngroups;
 506fallback_retry:
 507	parent_group = EXT4_I(parent)->i_block_group;
 508	for (i = 0; i < ngroups; i++) {
 509		grp = (parent_group + i) % ngroups;
 510		desc = ext4_get_group_desc(sb, grp, NULL);
 511		if (desc) {
 512			grp_free = ext4_free_inodes_count(sb, desc);
 513			if (grp_free && grp_free >= avefreei) {
 514				*group = grp;
 515				return 0;
 516			}
 517		}
 518	}
 519
 520	if (avefreei) {
 521		/*
 522		 * The free-inodes counter is approximate, and for really small
 523		 * filesystems the above test can fail to find any blockgroups
 524		 */
 525		avefreei = 0;
 526		goto fallback_retry;
 527	}
 528
 529	return -1;
 530}
 531
 532static int find_group_other(struct super_block *sb, struct inode *parent,
 533			    ext4_group_t *group, umode_t mode)
 534{
 535	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 536	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
 537	struct ext4_group_desc *desc;
 538	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
 539
 540	/*
 541	 * Try to place the inode is the same flex group as its
 542	 * parent.  If we can't find space, use the Orlov algorithm to
 543	 * find another flex group, and store that information in the
 544	 * parent directory's inode information so that use that flex
 545	 * group for future allocations.
 546	 */
 547	if (flex_size > 1) {
 548		int retry = 0;
 549
 550	try_again:
 551		parent_group &= ~(flex_size-1);
 552		last = parent_group + flex_size;
 553		if (last > ngroups)
 554			last = ngroups;
 555		for  (i = parent_group; i < last; i++) {
 556			desc = ext4_get_group_desc(sb, i, NULL);
 557			if (desc && ext4_free_inodes_count(sb, desc)) {
 558				*group = i;
 559				return 0;
 560			}
 561		}
 562		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
 563			retry = 1;
 564			parent_group = EXT4_I(parent)->i_last_alloc_group;
 565			goto try_again;
 566		}
 567		/*
 568		 * If this didn't work, use the Orlov search algorithm
 569		 * to find a new flex group; we pass in the mode to
 570		 * avoid the topdir algorithms.
 571		 */
 572		*group = parent_group + flex_size;
 573		if (*group > ngroups)
 574			*group = 0;
 575		return find_group_orlov(sb, parent, group, mode, NULL);
 576	}
 577
 578	/*
 579	 * Try to place the inode in its parent directory
 580	 */
 581	*group = parent_group;
 582	desc = ext4_get_group_desc(sb, *group, NULL);
 583	if (desc && ext4_free_inodes_count(sb, desc) &&
 584	    ext4_free_group_clusters(sb, desc))
 585		return 0;
 586
 587	/*
 588	 * We're going to place this inode in a different blockgroup from its
 589	 * parent.  We want to cause files in a common directory to all land in
 590	 * the same blockgroup.  But we want files which are in a different
 591	 * directory which shares a blockgroup with our parent to land in a
 592	 * different blockgroup.
 593	 *
 594	 * So add our directory's i_ino into the starting point for the hash.
 595	 */
 596	*group = (*group + parent->i_ino) % ngroups;
 597
 598	/*
 599	 * Use a quadratic hash to find a group with a free inode and some free
 600	 * blocks.
 601	 */
 602	for (i = 1; i < ngroups; i <<= 1) {
 603		*group += i;
 604		if (*group >= ngroups)
 605			*group -= ngroups;
 606		desc = ext4_get_group_desc(sb, *group, NULL);
 607		if (desc && ext4_free_inodes_count(sb, desc) &&
 608		    ext4_free_group_clusters(sb, desc))
 609			return 0;
 610	}
 611
 612	/*
 613	 * That failed: try linear search for a free inode, even if that group
 614	 * has no free blocks.
 615	 */
 616	*group = parent_group;
 617	for (i = 0; i < ngroups; i++) {
 618		if (++*group >= ngroups)
 619			*group = 0;
 620		desc = ext4_get_group_desc(sb, *group, NULL);
 621		if (desc && ext4_free_inodes_count(sb, desc))
 622			return 0;
 623	}
 624
 625	return -1;
 626}
 627
 628/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629 * There are two policies for allocating an inode.  If the new inode is
 630 * a directory, then a forward search is made for a block group with both
 631 * free space and a low directory-to-inode ratio; if that fails, then of
 632 * the groups with above-average free space, that group with the fewest
 633 * directories already is chosen.
 634 *
 635 * For other inodes, search forward from the parent directory's block
 636 * group to find a free inode.
 637 */
 638struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode,
 639			     const struct qstr *qstr, __u32 goal, uid_t *owner)
 640{
 641	struct super_block *sb;
 642	struct buffer_head *inode_bitmap_bh = NULL;
 643	struct buffer_head *group_desc_bh;
 644	ext4_group_t ngroups, group = 0;
 645	unsigned long ino = 0;
 646	struct inode *inode;
 647	struct ext4_group_desc *gdp = NULL;
 648	struct ext4_inode_info *ei;
 649	struct ext4_sb_info *sbi;
 650	int ret2, err = 0;
 651	struct inode *ret;
 652	ext4_group_t i;
 
 
 653	ext4_group_t flex_group;
 654
 655	/* Cannot create files in a deleted directory */
 656	if (!dir || !dir->i_nlink)
 657		return ERR_PTR(-EPERM);
 658
 659	sb = dir->i_sb;
 660	ngroups = ext4_get_groups_count(sb);
 661	trace_ext4_request_inode(dir, mode);
 662	inode = new_inode(sb);
 663	if (!inode)
 664		return ERR_PTR(-ENOMEM);
 665	ei = EXT4_I(inode);
 666	sbi = EXT4_SB(sb);
 667
 668	if (!goal)
 669		goal = sbi->s_inode_goal;
 670
 671	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
 672		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
 673		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
 674		ret2 = 0;
 675		goto got_group;
 676	}
 677
 678	if (S_ISDIR(mode))
 679		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
 680	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681		ret2 = find_group_other(sb, dir, &group, mode);
 682
 683got_group:
 684	EXT4_I(dir)->i_last_alloc_group = group;
 685	err = -ENOSPC;
 686	if (ret2 == -1)
 687		goto out;
 688
 689	/*
 690	 * Normally we will only go through one pass of this loop,
 691	 * unless we get unlucky and it turns out the group we selected
 692	 * had its last inode grabbed by someone else.
 693	 */
 694	for (i = 0; i < ngroups; i++, ino = 0) {
 695		err = -EIO;
 696
 697		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
 698		if (!gdp)
 699			goto fail;
 700
 701		brelse(inode_bitmap_bh);
 702		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
 703		if (!inode_bitmap_bh)
 704			goto fail;
 705
 706repeat_in_this_group:
 707		ino = ext4_find_next_zero_bit((unsigned long *)
 708					      inode_bitmap_bh->b_data,
 709					      EXT4_INODES_PER_GROUP(sb), ino);
 710		if (ino >= EXT4_INODES_PER_GROUP(sb)) {
 711			if (++group == ngroups)
 712				group = 0;
 713			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714		}
 715		if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
 716			ext4_error(sb, "reserved inode found cleared - "
 717				   "inode=%lu", ino + 1);
 718			continue;
 719		}
 720		ext4_lock_group(sb, group);
 721		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
 722		ext4_unlock_group(sb, group);
 723		ino++;		/* the inode bitmap is zero-based */
 724		if (!ret2)
 725			goto got; /* we grabbed the inode! */
 726		if (ino < EXT4_INODES_PER_GROUP(sb))
 727			goto repeat_in_this_group;
 728	}
 729	err = -ENOSPC;
 730	goto out;
 731
 732got:
 733	/* We may have to initialize the block bitmap if it isn't already */
 734	if (ext4_has_group_desc_csum(sb) &&
 735	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 736		struct buffer_head *block_bitmap_bh;
 737
 738		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
 739		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
 740		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
 741		if (err) {
 742			brelse(block_bitmap_bh);
 743			goto fail;
 744		}
 745
 746		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
 747		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
 748		brelse(block_bitmap_bh);
 749
 750		/* recheck and clear flag under lock if we still need to */
 751		ext4_lock_group(sb, group);
 752		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 
 753			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
 754			ext4_free_group_clusters_set(sb, gdp,
 755				ext4_free_clusters_after_init(sb, group, gdp));
 756			ext4_block_bitmap_csum_set(sb, group, gdp,
 757						   block_bitmap_bh,
 758						   EXT4_BLOCKS_PER_GROUP(sb) /
 759						   8);
 760			ext4_group_desc_csum_set(sb, group, gdp);
 761		}
 762		ext4_unlock_group(sb, group);
 763
 
 
 
 
 
 
 
 
 764		if (err)
 765			goto fail;
 766	}
 767
 768	BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
 769	err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
 770	if (err)
 771		goto fail;
 772
 773	BUFFER_TRACE(group_desc_bh, "get_write_access");
 774	err = ext4_journal_get_write_access(handle, group_desc_bh);
 775	if (err)
 776		goto fail;
 777
 778	/* Update the relevant bg descriptor fields */
 779	if (ext4_has_group_desc_csum(sb)) {
 780		int free;
 781		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
 782
 783		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
 784		ext4_lock_group(sb, group); /* while we modify the bg desc */
 785		free = EXT4_INODES_PER_GROUP(sb) -
 786			ext4_itable_unused_count(sb, gdp);
 787		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 788			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
 789			free = 0;
 790		}
 791		/*
 792		 * Check the relative inode number against the last used
 793		 * relative inode number in this group. if it is greater
 794		 * we need to update the bg_itable_unused count
 795		 */
 796		if (ino > free)
 797			ext4_itable_unused_set(sb, gdp,
 798					(EXT4_INODES_PER_GROUP(sb) - ino));
 799		up_read(&grp->alloc_sem);
 800	} else {
 801		ext4_lock_group(sb, group);
 802	}
 803
 804	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
 805	if (S_ISDIR(mode)) {
 806		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
 807		if (sbi->s_log_groups_per_flex) {
 808			ext4_group_t f = ext4_flex_group(sbi, group);
 809
 810			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
 811		}
 812	}
 813	if (ext4_has_group_desc_csum(sb)) {
 814		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
 815					   EXT4_INODES_PER_GROUP(sb) / 8);
 816		ext4_group_desc_csum_set(sb, group, gdp);
 817	}
 818	ext4_unlock_group(sb, group);
 819
 820	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
 821	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
 822	if (err)
 823		goto fail;
 824
 825	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
 826	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
 827	if (err)
 828		goto fail;
 829
 830	percpu_counter_dec(&sbi->s_freeinodes_counter);
 831	if (S_ISDIR(mode))
 832		percpu_counter_inc(&sbi->s_dirs_counter);
 833	ext4_mark_super_dirty(sb);
 834
 835	if (sbi->s_log_groups_per_flex) {
 836		flex_group = ext4_flex_group(sbi, group);
 837		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
 838	}
 839	if (owner) {
 840		inode->i_mode = mode;
 841		i_uid_write(inode, owner[0]);
 842		i_gid_write(inode, owner[1]);
 843	} else if (test_opt(sb, GRPID)) {
 844		inode->i_mode = mode;
 845		inode->i_uid = current_fsuid();
 846		inode->i_gid = dir->i_gid;
 847	} else
 848		inode_init_owner(inode, dir, mode);
 849
 850	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
 851	/* This is the optimal IO size (for stat), not the fs block size */
 852	inode->i_blocks = 0;
 853	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
 854						       ext4_current_time(inode);
 855
 856	memset(ei->i_data, 0, sizeof(ei->i_data));
 857	ei->i_dir_start_lookup = 0;
 858	ei->i_disksize = 0;
 859
 860	/* Don't inherit extent flag from directory, amongst others. */
 
 
 
 
 861	ei->i_flags =
 862		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
 863	ei->i_file_acl = 0;
 864	ei->i_dtime = 0;
 865	ei->i_block_group = group;
 866	ei->i_last_alloc_group = ~0;
 867
 868	ext4_set_inode_flags(inode);
 869	if (IS_DIRSYNC(inode))
 870		ext4_handle_sync(handle);
 871	if (insert_inode_locked(inode) < 0) {
 872		/*
 873		 * Likely a bitmap corruption causing inode to be allocated
 874		 * twice.
 875		 */
 876		err = -EIO;
 877		goto fail;
 878	}
 879	spin_lock(&sbi->s_next_gen_lock);
 880	inode->i_generation = sbi->s_next_generation++;
 881	spin_unlock(&sbi->s_next_gen_lock);
 882
 883	/* Precompute checksum seed for inode metadata */
 884	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
 885			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
 886		__u32 csum;
 887		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 888		__le32 inum = cpu_to_le32(inode->i_ino);
 889		__le32 gen = cpu_to_le32(inode->i_generation);
 890		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
 891				   sizeof(inum));
 892		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
 893					      sizeof(gen));
 894	}
 895
 896	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
 897	ext4_set_inode_state(inode, EXT4_STATE_NEW);
 898
 899	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
 900
 901	ret = inode;
 902	dquot_initialize(inode);
 903	err = dquot_alloc_inode(inode);
 904	if (err)
 905		goto fail_drop;
 906
 907	err = ext4_init_acl(handle, inode, dir);
 908	if (err)
 909		goto fail_free_drop;
 910
 911	err = ext4_init_security(handle, inode, dir, qstr);
 912	if (err)
 913		goto fail_free_drop;
 914
 915	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
 916		/* set extent flag only for directory, file and normal symlink*/
 917		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
 918			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
 919			ext4_ext_tree_init(handle, inode);
 920		}
 921	}
 922
 923	if (ext4_handle_valid(handle)) {
 924		ei->i_sync_tid = handle->h_transaction->t_tid;
 925		ei->i_datasync_tid = handle->h_transaction->t_tid;
 926	}
 927
 928	err = ext4_mark_inode_dirty(handle, inode);
 929	if (err) {
 930		ext4_std_error(sb, err);
 931		goto fail_free_drop;
 932	}
 933
 934	ext4_debug("allocating inode %lu\n", inode->i_ino);
 935	trace_ext4_allocate_inode(inode, dir, mode);
 936	goto really_out;
 937fail:
 938	ext4_std_error(sb, err);
 939out:
 940	iput(inode);
 941	ret = ERR_PTR(err);
 942really_out:
 943	brelse(inode_bitmap_bh);
 944	return ret;
 945
 946fail_free_drop:
 947	dquot_free_inode(inode);
 948
 949fail_drop:
 950	dquot_drop(inode);
 951	inode->i_flags |= S_NOQUOTA;
 952	clear_nlink(inode);
 953	unlock_new_inode(inode);
 954	iput(inode);
 955	brelse(inode_bitmap_bh);
 956	return ERR_PTR(err);
 957}
 958
 959/* Verify that we are loading a valid orphan from disk */
 960struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
 961{
 962	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
 963	ext4_group_t block_group;
 964	int bit;
 965	struct buffer_head *bitmap_bh;
 966	struct inode *inode = NULL;
 967	long err = -EIO;
 968
 969	/* Error cases - e2fsck has already cleaned up for us */
 970	if (ino > max_ino) {
 971		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
 972		goto error;
 973	}
 974
 975	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 976	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 977	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 978	if (!bitmap_bh) {
 979		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
 980		goto error;
 981	}
 982
 983	/* Having the inode bit set should be a 100% indicator that this
 984	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
 985	 * inodes that were being truncated, so we can't check i_nlink==0.
 986	 */
 987	if (!ext4_test_bit(bit, bitmap_bh->b_data))
 988		goto bad_orphan;
 989
 990	inode = ext4_iget(sb, ino);
 991	if (IS_ERR(inode))
 992		goto iget_failed;
 993
 994	/*
 995	 * If the orphans has i_nlinks > 0 then it should be able to be
 996	 * truncated, otherwise it won't be removed from the orphan list
 997	 * during processing and an infinite loop will result.
 998	 */
 999	if (inode->i_nlink && !ext4_can_truncate(inode))
1000		goto bad_orphan;
1001
1002	if (NEXT_ORPHAN(inode) > max_ino)
1003		goto bad_orphan;
1004	brelse(bitmap_bh);
1005	return inode;
1006
1007iget_failed:
1008	err = PTR_ERR(inode);
1009	inode = NULL;
1010bad_orphan:
1011	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1012	printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1013	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1014	       ext4_test_bit(bit, bitmap_bh->b_data));
1015	printk(KERN_NOTICE "inode=%p\n", inode);
1016	if (inode) {
1017		printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1018		       is_bad_inode(inode));
1019		printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1020		       NEXT_ORPHAN(inode));
1021		printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1022		printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1023		/* Avoid freeing blocks if we got a bad deleted inode */
1024		if (inode->i_nlink == 0)
1025			inode->i_blocks = 0;
1026		iput(inode);
1027	}
1028	brelse(bitmap_bh);
1029error:
1030	return ERR_PTR(err);
1031}
1032
1033unsigned long ext4_count_free_inodes(struct super_block *sb)
1034{
1035	unsigned long desc_count;
1036	struct ext4_group_desc *gdp;
1037	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1038#ifdef EXT4FS_DEBUG
1039	struct ext4_super_block *es;
1040	unsigned long bitmap_count, x;
1041	struct buffer_head *bitmap_bh = NULL;
1042
1043	es = EXT4_SB(sb)->s_es;
1044	desc_count = 0;
1045	bitmap_count = 0;
1046	gdp = NULL;
1047	for (i = 0; i < ngroups; i++) {
1048		gdp = ext4_get_group_desc(sb, i, NULL);
1049		if (!gdp)
1050			continue;
1051		desc_count += ext4_free_inodes_count(sb, gdp);
1052		brelse(bitmap_bh);
1053		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1054		if (!bitmap_bh)
1055			continue;
1056
1057		x = ext4_count_free(bitmap_bh->b_data,
1058				    EXT4_INODES_PER_GROUP(sb) / 8);
1059		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1060			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1061		bitmap_count += x;
1062	}
1063	brelse(bitmap_bh);
1064	printk(KERN_DEBUG "ext4_count_free_inodes: "
1065	       "stored = %u, computed = %lu, %lu\n",
1066	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1067	return desc_count;
1068#else
1069	desc_count = 0;
1070	for (i = 0; i < ngroups; i++) {
1071		gdp = ext4_get_group_desc(sb, i, NULL);
1072		if (!gdp)
1073			continue;
1074		desc_count += ext4_free_inodes_count(sb, gdp);
1075		cond_resched();
1076	}
1077	return desc_count;
1078#endif
1079}
1080
1081/* Called at mount-time, super-block is locked */
1082unsigned long ext4_count_dirs(struct super_block * sb)
1083{
1084	unsigned long count = 0;
1085	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1086
1087	for (i = 0; i < ngroups; i++) {
1088		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1089		if (!gdp)
1090			continue;
1091		count += ext4_used_dirs_count(sb, gdp);
1092	}
1093	return count;
1094}
1095
1096/*
1097 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1098 * inode table. Must be called without any spinlock held. The only place
1099 * where it is called from on active part of filesystem is ext4lazyinit
1100 * thread, so we do not need any special locks, however we have to prevent
1101 * inode allocation from the current group, so we take alloc_sem lock, to
1102 * block ext4_new_inode() until we are finished.
1103 */
1104int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1105				 int barrier)
1106{
1107	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1108	struct ext4_sb_info *sbi = EXT4_SB(sb);
1109	struct ext4_group_desc *gdp = NULL;
1110	struct buffer_head *group_desc_bh;
1111	handle_t *handle;
1112	ext4_fsblk_t blk;
1113	int num, ret = 0, used_blks = 0;
1114
1115	/* This should not happen, but just to be sure check this */
1116	if (sb->s_flags & MS_RDONLY) {
1117		ret = 1;
1118		goto out;
1119	}
1120
1121	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1122	if (!gdp)
1123		goto out;
1124
1125	/*
1126	 * We do not need to lock this, because we are the only one
1127	 * handling this flag.
1128	 */
1129	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1130		goto out;
1131
1132	handle = ext4_journal_start_sb(sb, 1);
1133	if (IS_ERR(handle)) {
1134		ret = PTR_ERR(handle);
1135		goto out;
1136	}
1137
1138	down_write(&grp->alloc_sem);
1139	/*
1140	 * If inode bitmap was already initialized there may be some
1141	 * used inodes so we need to skip blocks with used inodes in
1142	 * inode table.
1143	 */
1144	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1145		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1146			    ext4_itable_unused_count(sb, gdp)),
1147			    sbi->s_inodes_per_block);
1148
1149	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1150		ext4_error(sb, "Something is wrong with group %u: "
1151			   "used itable blocks: %d; "
1152			   "itable unused count: %u",
1153			   group, used_blks,
1154			   ext4_itable_unused_count(sb, gdp));
1155		ret = 1;
1156		goto err_out;
1157	}
1158
1159	blk = ext4_inode_table(sb, gdp) + used_blks;
1160	num = sbi->s_itb_per_group - used_blks;
1161
1162	BUFFER_TRACE(group_desc_bh, "get_write_access");
1163	ret = ext4_journal_get_write_access(handle,
1164					    group_desc_bh);
1165	if (ret)
1166		goto err_out;
1167
1168	/*
1169	 * Skip zeroout if the inode table is full. But we set the ZEROED
1170	 * flag anyway, because obviously, when it is full it does not need
1171	 * further zeroing.
1172	 */
1173	if (unlikely(num == 0))
1174		goto skip_zeroout;
1175
1176	ext4_debug("going to zero out inode table in group %d\n",
1177		   group);
1178	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1179	if (ret < 0)
1180		goto err_out;
1181	if (barrier)
1182		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1183
1184skip_zeroout:
1185	ext4_lock_group(sb, group);
1186	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1187	ext4_group_desc_csum_set(sb, group, gdp);
1188	ext4_unlock_group(sb, group);
1189
1190	BUFFER_TRACE(group_desc_bh,
1191		     "call ext4_handle_dirty_metadata");
1192	ret = ext4_handle_dirty_metadata(handle, NULL,
1193					 group_desc_bh);
1194
1195err_out:
1196	up_write(&grp->alloc_sem);
1197	ext4_journal_stop(handle);
1198out:
1199	return ret;
1200}