Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  fs/ext4/extents_status.c
   4 *
   5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
   6 * Modified by
   7 *	Allison Henderson <achender@linux.vnet.ibm.com>
   8 *	Hugh Dickins <hughd@google.com>
   9 *	Zheng Liu <wenqing.lz@taobao.com>
  10 *
  11 * Ext4 extents status tree core functions.
  12 */
  13#include <linux/list_sort.h>
  14#include <linux/proc_fs.h>
  15#include <linux/seq_file.h>
  16#include "ext4.h"
  17
  18#include <trace/events/ext4.h>
  19
  20/*
  21 * According to previous discussion in Ext4 Developer Workshop, we
  22 * will introduce a new structure called io tree to track all extent
  23 * status in order to solve some problems that we have met
  24 * (e.g. Reservation space warning), and provide extent-level locking.
  25 * Delay extent tree is the first step to achieve this goal.  It is
  26 * original built by Yongqiang Yang.  At that time it is called delay
  27 * extent tree, whose goal is only track delayed extents in memory to
  28 * simplify the implementation of fiemap and bigalloc, and introduce
  29 * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
  30 * delay extent tree at the first commit.  But for better understand
  31 * what it does, it has been rename to extent status tree.
  32 *
  33 * Step1:
  34 * Currently the first step has been done.  All delayed extents are
  35 * tracked in the tree.  It maintains the delayed extent when a delayed
  36 * allocation is issued, and the delayed extent is written out or
  37 * invalidated.  Therefore the implementation of fiemap and bigalloc
  38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  39 *
  40 * The following comment describes the implemenmtation of extent
  41 * status tree and future works.
  42 *
  43 * Step2:
  44 * In this step all extent status are tracked by extent status tree.
  45 * Thus, we can first try to lookup a block mapping in this tree before
  46 * finding it in extent tree.  Hence, single extent cache can be removed
  47 * because extent status tree can do a better job.  Extents in status
  48 * tree are loaded on-demand.  Therefore, the extent status tree may not
  49 * contain all of the extents in a file.  Meanwhile we define a shrinker
  50 * to reclaim memory from extent status tree because fragmented extent
  51 * tree will make status tree cost too much memory.  written/unwritten/-
  52 * hole extents in the tree will be reclaimed by this shrinker when we
  53 * are under high memory pressure.  Delayed extents will not be
  54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  55 */
  56
  57/*
  58 * Extent status tree implementation for ext4.
  59 *
  60 *
  61 * ==========================================================================
  62 * Extent status tree tracks all extent status.
  63 *
  64 * 1. Why we need to implement extent status tree?
  65 *
  66 * Without extent status tree, ext4 identifies a delayed extent by looking
  67 * up page cache, this has several deficiencies - complicated, buggy,
  68 * and inefficient code.
  69 *
  70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  71 * block or a range of blocks are belonged to a delayed extent.
  72 *
  73 * Let us have a look at how they do without extent status tree.
  74 *   --	FIEMAP
  75 *	FIEMAP looks up page cache to identify delayed allocations from holes.
  76 *
  77 *   --	SEEK_HOLE/DATA
  78 *	SEEK_HOLE/DATA has the same problem as FIEMAP.
  79 *
  80 *   --	bigalloc
  81 *	bigalloc looks up page cache to figure out if a block is
  82 *	already under delayed allocation or not to determine whether
  83 *	quota reserving is needed for the cluster.
  84 *
  85 *   --	writeout
  86 *	Writeout looks up whole page cache to see if a buffer is
  87 *	mapped, If there are not very many delayed buffers, then it is
  88 *	time consuming.
  89 *
  90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  91 * bigalloc and writeout can figure out if a block or a range of
  92 * blocks is under delayed allocation(belonged to a delayed extent) or
  93 * not by searching the extent tree.
  94 *
  95 *
  96 * ==========================================================================
  97 * 2. Ext4 extent status tree impelmentation
  98 *
  99 *   --	extent
 100 *	A extent is a range of blocks which are contiguous logically and
 101 *	physically.  Unlike extent in extent tree, this extent in ext4 is
 102 *	a in-memory struct, there is no corresponding on-disk data.  There
 103 *	is no limit on length of extent, so an extent can contain as many
 104 *	blocks as they are contiguous logically and physically.
 105 *
 106 *   --	extent status tree
 107 *	Every inode has an extent status tree and all allocation blocks
 108 *	are added to the tree with different status.  The extent in the
 109 *	tree are ordered by logical block no.
 110 *
 111 *   --	operations on a extent status tree
 112 *	There are three important operations on a delayed extent tree: find
 113 *	next extent, adding a extent(a range of blocks) and removing a extent.
 114 *
 115 *   --	race on a extent status tree
 116 *	Extent status tree is protected by inode->i_es_lock.
 117 *
 118 *   --	memory consumption
 119 *      Fragmented extent tree will make extent status tree cost too much
 120 *      memory.  Hence, we will reclaim written/unwritten/hole extents from
 121 *      the tree under a heavy memory pressure.
 122 *
 123 *
 124 * ==========================================================================
 125 * 3. Performance analysis
 126 *
 127 *   --	overhead
 128 *	1. There is a cache extent for write access, so if writes are
 129 *	not very random, adding space operaions are in O(1) time.
 130 *
 131 *   --	gain
 132 *	2. Code is much simpler, more readable, more maintainable and
 133 *	more efficient.
 134 *
 135 *
 136 * ==========================================================================
 137 * 4. TODO list
 138 *
 139 *   -- Refactor delayed space reservation
 140 *
 141 *   -- Extent-level locking
 142 */
 143
 144static struct kmem_cache *ext4_es_cachep;
 145static struct kmem_cache *ext4_pending_cachep;
 146
 147static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
 148static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 149			      ext4_lblk_t end, int *reserved);
 150static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
 151static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
 152		       struct ext4_inode_info *locked_ei);
 153static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
 154			     ext4_lblk_t len);
 155
 156int __init ext4_init_es(void)
 157{
 158	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
 159					   sizeof(struct extent_status),
 160					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
 161	if (ext4_es_cachep == NULL)
 162		return -ENOMEM;
 163	return 0;
 164}
 165
 166void ext4_exit_es(void)
 167{
 168	kmem_cache_destroy(ext4_es_cachep);
 169}
 170
 171void ext4_es_init_tree(struct ext4_es_tree *tree)
 172{
 173	tree->root = RB_ROOT;
 174	tree->cache_es = NULL;
 175}
 176
 177#ifdef ES_DEBUG__
 178static void ext4_es_print_tree(struct inode *inode)
 179{
 180	struct ext4_es_tree *tree;
 181	struct rb_node *node;
 182
 183	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
 184	tree = &EXT4_I(inode)->i_es_tree;
 185	node = rb_first(&tree->root);
 186	while (node) {
 187		struct extent_status *es;
 188		es = rb_entry(node, struct extent_status, rb_node);
 189		printk(KERN_DEBUG " [%u/%u) %llu %x",
 190		       es->es_lblk, es->es_len,
 191		       ext4_es_pblock(es), ext4_es_status(es));
 192		node = rb_next(node);
 193	}
 194	printk(KERN_DEBUG "\n");
 195}
 196#else
 197#define ext4_es_print_tree(inode)
 198#endif
 199
 200static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
 201{
 202	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
 203	return es->es_lblk + es->es_len - 1;
 204}
 205
 206/*
 207 * search through the tree for an delayed extent with a given offset.  If
 208 * it can't be found, try to find next extent.
 209 */
 210static struct extent_status *__es_tree_search(struct rb_root *root,
 211					      ext4_lblk_t lblk)
 212{
 213	struct rb_node *node = root->rb_node;
 214	struct extent_status *es = NULL;
 215
 216	while (node) {
 217		es = rb_entry(node, struct extent_status, rb_node);
 218		if (lblk < es->es_lblk)
 219			node = node->rb_left;
 220		else if (lblk > ext4_es_end(es))
 221			node = node->rb_right;
 222		else
 223			return es;
 224	}
 225
 226	if (es && lblk < es->es_lblk)
 227		return es;
 228
 229	if (es && lblk > ext4_es_end(es)) {
 230		node = rb_next(&es->rb_node);
 231		return node ? rb_entry(node, struct extent_status, rb_node) :
 232			      NULL;
 233	}
 234
 235	return NULL;
 236}
 237
 238/*
 239 * ext4_es_find_extent_range - find extent with specified status within block
 240 *                             range or next extent following block range in
 241 *                             extents status tree
 242 *
 243 * @inode - file containing the range
 244 * @matching_fn - pointer to function that matches extents with desired status
 245 * @lblk - logical block defining start of range
 246 * @end - logical block defining end of range
 247 * @es - extent found, if any
 248 *
 249 * Find the first extent within the block range specified by @lblk and @end
 250 * in the extents status tree that satisfies @matching_fn.  If a match
 251 * is found, it's returned in @es.  If not, and a matching extent is found
 252 * beyond the block range, it's returned in @es.  If no match is found, an
 253 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
 254 * are 0.
 255 */
 256static void __es_find_extent_range(struct inode *inode,
 257				   int (*matching_fn)(struct extent_status *es),
 258				   ext4_lblk_t lblk, ext4_lblk_t end,
 259				   struct extent_status *es)
 260{
 261	struct ext4_es_tree *tree = NULL;
 262	struct extent_status *es1 = NULL;
 263	struct rb_node *node;
 264
 265	WARN_ON(es == NULL);
 266	WARN_ON(end < lblk);
 267
 268	tree = &EXT4_I(inode)->i_es_tree;
 269
 270	/* see if the extent has been cached */
 271	es->es_lblk = es->es_len = es->es_pblk = 0;
 272	if (tree->cache_es) {
 273		es1 = tree->cache_es;
 274		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 275			es_debug("%u cached by [%u/%u) %llu %x\n",
 276				 lblk, es1->es_lblk, es1->es_len,
 277				 ext4_es_pblock(es1), ext4_es_status(es1));
 278			goto out;
 279		}
 280	}
 281
 282	es1 = __es_tree_search(&tree->root, lblk);
 283
 284out:
 285	if (es1 && !matching_fn(es1)) {
 286		while ((node = rb_next(&es1->rb_node)) != NULL) {
 287			es1 = rb_entry(node, struct extent_status, rb_node);
 288			if (es1->es_lblk > end) {
 289				es1 = NULL;
 290				break;
 291			}
 292			if (matching_fn(es1))
 293				break;
 294		}
 295	}
 296
 297	if (es1 && matching_fn(es1)) {
 298		tree->cache_es = es1;
 299		es->es_lblk = es1->es_lblk;
 300		es->es_len = es1->es_len;
 301		es->es_pblk = es1->es_pblk;
 302	}
 303
 304}
 305
 306/*
 307 * Locking for __es_find_extent_range() for external use
 308 */
 309void ext4_es_find_extent_range(struct inode *inode,
 310			       int (*matching_fn)(struct extent_status *es),
 311			       ext4_lblk_t lblk, ext4_lblk_t end,
 312			       struct extent_status *es)
 313{
 314	trace_ext4_es_find_extent_range_enter(inode, lblk);
 315
 316	read_lock(&EXT4_I(inode)->i_es_lock);
 317	__es_find_extent_range(inode, matching_fn, lblk, end, es);
 318	read_unlock(&EXT4_I(inode)->i_es_lock);
 319
 320	trace_ext4_es_find_extent_range_exit(inode, es);
 321}
 322
 323/*
 324 * __es_scan_range - search block range for block with specified status
 325 *                   in extents status tree
 326 *
 327 * @inode - file containing the range
 328 * @matching_fn - pointer to function that matches extents with desired status
 329 * @lblk - logical block defining start of range
 330 * @end - logical block defining end of range
 331 *
 332 * Returns true if at least one block in the specified block range satisfies
 333 * the criterion specified by @matching_fn, and false if not.  If at least
 334 * one extent has the specified status, then there is at least one block
 335 * in the cluster with that status.  Should only be called by code that has
 336 * taken i_es_lock.
 337 */
 338static bool __es_scan_range(struct inode *inode,
 339			    int (*matching_fn)(struct extent_status *es),
 340			    ext4_lblk_t start, ext4_lblk_t end)
 341{
 342	struct extent_status es;
 343
 344	__es_find_extent_range(inode, matching_fn, start, end, &es);
 345	if (es.es_len == 0)
 346		return false;   /* no matching extent in the tree */
 347	else if (es.es_lblk <= start &&
 348		 start < es.es_lblk + es.es_len)
 349		return true;
 350	else if (start <= es.es_lblk && es.es_lblk <= end)
 351		return true;
 352	else
 353		return false;
 354}
 355/*
 356 * Locking for __es_scan_range() for external use
 357 */
 358bool ext4_es_scan_range(struct inode *inode,
 359			int (*matching_fn)(struct extent_status *es),
 360			ext4_lblk_t lblk, ext4_lblk_t end)
 361{
 362	bool ret;
 363
 364	read_lock(&EXT4_I(inode)->i_es_lock);
 365	ret = __es_scan_range(inode, matching_fn, lblk, end);
 366	read_unlock(&EXT4_I(inode)->i_es_lock);
 367
 368	return ret;
 369}
 370
 371/*
 372 * __es_scan_clu - search cluster for block with specified status in
 373 *                 extents status tree
 374 *
 375 * @inode - file containing the cluster
 376 * @matching_fn - pointer to function that matches extents with desired status
 377 * @lblk - logical block in cluster to be searched
 378 *
 379 * Returns true if at least one extent in the cluster containing @lblk
 380 * satisfies the criterion specified by @matching_fn, and false if not.  If at
 381 * least one extent has the specified status, then there is at least one block
 382 * in the cluster with that status.  Should only be called by code that has
 383 * taken i_es_lock.
 384 */
 385static bool __es_scan_clu(struct inode *inode,
 386			  int (*matching_fn)(struct extent_status *es),
 387			  ext4_lblk_t lblk)
 388{
 389	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 390	ext4_lblk_t lblk_start, lblk_end;
 391
 392	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
 393	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
 394
 395	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
 396}
 397
 398/*
 399 * Locking for __es_scan_clu() for external use
 400 */
 401bool ext4_es_scan_clu(struct inode *inode,
 402		      int (*matching_fn)(struct extent_status *es),
 403		      ext4_lblk_t lblk)
 404{
 405	bool ret;
 406
 407	read_lock(&EXT4_I(inode)->i_es_lock);
 408	ret = __es_scan_clu(inode, matching_fn, lblk);
 409	read_unlock(&EXT4_I(inode)->i_es_lock);
 410
 411	return ret;
 412}
 413
 414static void ext4_es_list_add(struct inode *inode)
 415{
 416	struct ext4_inode_info *ei = EXT4_I(inode);
 417	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 418
 419	if (!list_empty(&ei->i_es_list))
 420		return;
 421
 422	spin_lock(&sbi->s_es_lock);
 423	if (list_empty(&ei->i_es_list)) {
 424		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
 425		sbi->s_es_nr_inode++;
 426	}
 427	spin_unlock(&sbi->s_es_lock);
 428}
 429
 430static void ext4_es_list_del(struct inode *inode)
 431{
 432	struct ext4_inode_info *ei = EXT4_I(inode);
 433	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 434
 435	spin_lock(&sbi->s_es_lock);
 436	if (!list_empty(&ei->i_es_list)) {
 437		list_del_init(&ei->i_es_list);
 438		sbi->s_es_nr_inode--;
 439		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
 440	}
 441	spin_unlock(&sbi->s_es_lock);
 442}
 443
 444static struct extent_status *
 445ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
 446		     ext4_fsblk_t pblk)
 447{
 448	struct extent_status *es;
 449	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
 450	if (es == NULL)
 451		return NULL;
 452	es->es_lblk = lblk;
 453	es->es_len = len;
 454	es->es_pblk = pblk;
 455
 456	/*
 457	 * We don't count delayed extent because we never try to reclaim them
 458	 */
 459	if (!ext4_es_is_delayed(es)) {
 460		if (!EXT4_I(inode)->i_es_shk_nr++)
 461			ext4_es_list_add(inode);
 462		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
 463					s_es_stats.es_stats_shk_cnt);
 464	}
 465
 466	EXT4_I(inode)->i_es_all_nr++;
 467	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
 468
 469	return es;
 470}
 471
 472static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
 473{
 474	EXT4_I(inode)->i_es_all_nr--;
 475	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
 476
 477	/* Decrease the shrink counter when this es is not delayed */
 478	if (!ext4_es_is_delayed(es)) {
 479		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
 480		if (!--EXT4_I(inode)->i_es_shk_nr)
 481			ext4_es_list_del(inode);
 482		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
 483					s_es_stats.es_stats_shk_cnt);
 484	}
 485
 486	kmem_cache_free(ext4_es_cachep, es);
 487}
 488
 489/*
 490 * Check whether or not two extents can be merged
 491 * Condition:
 492 *  - logical block number is contiguous
 493 *  - physical block number is contiguous
 494 *  - status is equal
 495 */
 496static int ext4_es_can_be_merged(struct extent_status *es1,
 497				 struct extent_status *es2)
 498{
 499	if (ext4_es_type(es1) != ext4_es_type(es2))
 500		return 0;
 501
 502	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
 503		pr_warn("ES assertion failed when merging extents. "
 504			"The sum of lengths of es1 (%d) and es2 (%d) "
 505			"is bigger than allowed file size (%d)\n",
 506			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
 507		WARN_ON(1);
 508		return 0;
 509	}
 510
 511	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
 512		return 0;
 513
 514	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
 515	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
 516		return 1;
 517
 518	if (ext4_es_is_hole(es1))
 519		return 1;
 520
 521	/* we need to check delayed extent is without unwritten status */
 522	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
 523		return 1;
 524
 525	return 0;
 526}
 527
 528static struct extent_status *
 529ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
 530{
 531	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 532	struct extent_status *es1;
 533	struct rb_node *node;
 534
 535	node = rb_prev(&es->rb_node);
 536	if (!node)
 537		return es;
 538
 539	es1 = rb_entry(node, struct extent_status, rb_node);
 540	if (ext4_es_can_be_merged(es1, es)) {
 541		es1->es_len += es->es_len;
 542		if (ext4_es_is_referenced(es))
 543			ext4_es_set_referenced(es1);
 544		rb_erase(&es->rb_node, &tree->root);
 545		ext4_es_free_extent(inode, es);
 546		es = es1;
 547	}
 548
 549	return es;
 550}
 551
 552static struct extent_status *
 553ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
 554{
 555	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 556	struct extent_status *es1;
 557	struct rb_node *node;
 558
 559	node = rb_next(&es->rb_node);
 560	if (!node)
 561		return es;
 562
 563	es1 = rb_entry(node, struct extent_status, rb_node);
 564	if (ext4_es_can_be_merged(es, es1)) {
 565		es->es_len += es1->es_len;
 566		if (ext4_es_is_referenced(es1))
 567			ext4_es_set_referenced(es);
 568		rb_erase(node, &tree->root);
 569		ext4_es_free_extent(inode, es1);
 570	}
 571
 572	return es;
 573}
 574
 575#ifdef ES_AGGRESSIVE_TEST
 576#include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
 577
 578static void ext4_es_insert_extent_ext_check(struct inode *inode,
 579					    struct extent_status *es)
 580{
 581	struct ext4_ext_path *path = NULL;
 582	struct ext4_extent *ex;
 583	ext4_lblk_t ee_block;
 584	ext4_fsblk_t ee_start;
 585	unsigned short ee_len;
 586	int depth, ee_status, es_status;
 587
 588	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
 589	if (IS_ERR(path))
 590		return;
 591
 592	depth = ext_depth(inode);
 593	ex = path[depth].p_ext;
 594
 595	if (ex) {
 596
 597		ee_block = le32_to_cpu(ex->ee_block);
 598		ee_start = ext4_ext_pblock(ex);
 599		ee_len = ext4_ext_get_actual_len(ex);
 600
 601		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
 602		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
 603
 604		/*
 605		 * Make sure ex and es are not overlap when we try to insert
 606		 * a delayed/hole extent.
 607		 */
 608		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
 609			if (in_range(es->es_lblk, ee_block, ee_len)) {
 610				pr_warn("ES insert assertion failed for "
 611					"inode: %lu we can find an extent "
 612					"at block [%d/%d/%llu/%c], but we "
 613					"want to add a delayed/hole extent "
 614					"[%d/%d/%llu/%x]\n",
 615					inode->i_ino, ee_block, ee_len,
 616					ee_start, ee_status ? 'u' : 'w',
 617					es->es_lblk, es->es_len,
 618					ext4_es_pblock(es), ext4_es_status(es));
 619			}
 620			goto out;
 621		}
 622
 623		/*
 624		 * We don't check ee_block == es->es_lblk, etc. because es
 625		 * might be a part of whole extent, vice versa.
 626		 */
 627		if (es->es_lblk < ee_block ||
 628		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
 629			pr_warn("ES insert assertion failed for inode: %lu "
 630				"ex_status [%d/%d/%llu/%c] != "
 631				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
 632				ee_block, ee_len, ee_start,
 633				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
 634				ext4_es_pblock(es), es_status ? 'u' : 'w');
 635			goto out;
 636		}
 637
 638		if (ee_status ^ es_status) {
 639			pr_warn("ES insert assertion failed for inode: %lu "
 640				"ex_status [%d/%d/%llu/%c] != "
 641				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
 642				ee_block, ee_len, ee_start,
 643				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
 644				ext4_es_pblock(es), es_status ? 'u' : 'w');
 645		}
 646	} else {
 647		/*
 648		 * We can't find an extent on disk.  So we need to make sure
 649		 * that we don't want to add an written/unwritten extent.
 650		 */
 651		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
 652			pr_warn("ES insert assertion failed for inode: %lu "
 653				"can't find an extent at block %d but we want "
 654				"to add a written/unwritten extent "
 655				"[%d/%d/%llu/%x]\n", inode->i_ino,
 656				es->es_lblk, es->es_lblk, es->es_len,
 657				ext4_es_pblock(es), ext4_es_status(es));
 658		}
 659	}
 660out:
 661	ext4_ext_drop_refs(path);
 662	kfree(path);
 663}
 664
 665static void ext4_es_insert_extent_ind_check(struct inode *inode,
 666					    struct extent_status *es)
 667{
 668	struct ext4_map_blocks map;
 669	int retval;
 670
 671	/*
 672	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
 673	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
 674	 * access direct/indirect tree from outside.  It is too dirty to define
 675	 * this function in indirect.c file.
 676	 */
 677
 678	map.m_lblk = es->es_lblk;
 679	map.m_len = es->es_len;
 680
 681	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
 682	if (retval > 0) {
 683		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
 684			/*
 685			 * We want to add a delayed/hole extent but this
 686			 * block has been allocated.
 687			 */
 688			pr_warn("ES insert assertion failed for inode: %lu "
 689				"We can find blocks but we want to add a "
 690				"delayed/hole extent [%d/%d/%llu/%x]\n",
 691				inode->i_ino, es->es_lblk, es->es_len,
 692				ext4_es_pblock(es), ext4_es_status(es));
 693			return;
 694		} else if (ext4_es_is_written(es)) {
 695			if (retval != es->es_len) {
 696				pr_warn("ES insert assertion failed for "
 697					"inode: %lu retval %d != es_len %d\n",
 698					inode->i_ino, retval, es->es_len);
 699				return;
 700			}
 701			if (map.m_pblk != ext4_es_pblock(es)) {
 702				pr_warn("ES insert assertion failed for "
 703					"inode: %lu m_pblk %llu != "
 704					"es_pblk %llu\n",
 705					inode->i_ino, map.m_pblk,
 706					ext4_es_pblock(es));
 707				return;
 708			}
 709		} else {
 710			/*
 711			 * We don't need to check unwritten extent because
 712			 * indirect-based file doesn't have it.
 713			 */
 714			BUG();
 715		}
 716	} else if (retval == 0) {
 717		if (ext4_es_is_written(es)) {
 718			pr_warn("ES insert assertion failed for inode: %lu "
 719				"We can't find the block but we want to add "
 720				"a written extent [%d/%d/%llu/%x]\n",
 721				inode->i_ino, es->es_lblk, es->es_len,
 722				ext4_es_pblock(es), ext4_es_status(es));
 723			return;
 724		}
 725	}
 726}
 727
 728static inline void ext4_es_insert_extent_check(struct inode *inode,
 729					       struct extent_status *es)
 730{
 731	/*
 732	 * We don't need to worry about the race condition because
 733	 * caller takes i_data_sem locking.
 734	 */
 735	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
 736	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 737		ext4_es_insert_extent_ext_check(inode, es);
 738	else
 739		ext4_es_insert_extent_ind_check(inode, es);
 740}
 741#else
 742static inline void ext4_es_insert_extent_check(struct inode *inode,
 743					       struct extent_status *es)
 744{
 745}
 746#endif
 747
 748static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
 749{
 750	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 751	struct rb_node **p = &tree->root.rb_node;
 752	struct rb_node *parent = NULL;
 753	struct extent_status *es;
 754
 755	while (*p) {
 756		parent = *p;
 757		es = rb_entry(parent, struct extent_status, rb_node);
 758
 759		if (newes->es_lblk < es->es_lblk) {
 760			if (ext4_es_can_be_merged(newes, es)) {
 761				/*
 762				 * Here we can modify es_lblk directly
 763				 * because it isn't overlapped.
 764				 */
 765				es->es_lblk = newes->es_lblk;
 766				es->es_len += newes->es_len;
 767				if (ext4_es_is_written(es) ||
 768				    ext4_es_is_unwritten(es))
 769					ext4_es_store_pblock(es,
 770							     newes->es_pblk);
 771				es = ext4_es_try_to_merge_left(inode, es);
 772				goto out;
 773			}
 774			p = &(*p)->rb_left;
 775		} else if (newes->es_lblk > ext4_es_end(es)) {
 776			if (ext4_es_can_be_merged(es, newes)) {
 777				es->es_len += newes->es_len;
 778				es = ext4_es_try_to_merge_right(inode, es);
 779				goto out;
 780			}
 781			p = &(*p)->rb_right;
 782		} else {
 783			BUG();
 784			return -EINVAL;
 785		}
 786	}
 787
 788	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
 789				  newes->es_pblk);
 790	if (!es)
 791		return -ENOMEM;
 792	rb_link_node(&es->rb_node, parent, p);
 793	rb_insert_color(&es->rb_node, &tree->root);
 794
 795out:
 796	tree->cache_es = es;
 797	return 0;
 798}
 799
 800/*
 801 * ext4_es_insert_extent() adds information to an inode's extent
 802 * status tree.
 803 *
 804 * Return 0 on success, error code on failure.
 805 */
 806int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
 807			  ext4_lblk_t len, ext4_fsblk_t pblk,
 808			  unsigned int status)
 809{
 810	struct extent_status newes;
 811	ext4_lblk_t end = lblk + len - 1;
 812	int err = 0;
 813	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 814
 815	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
 816		 lblk, len, pblk, status, inode->i_ino);
 817
 818	if (!len)
 819		return 0;
 820
 821	BUG_ON(end < lblk);
 822
 823	if ((status & EXTENT_STATUS_DELAYED) &&
 824	    (status & EXTENT_STATUS_WRITTEN)) {
 825		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
 826				" delayed and written which can potentially "
 827				" cause data loss.", lblk, len);
 828		WARN_ON(1);
 829	}
 830
 831	newes.es_lblk = lblk;
 832	newes.es_len = len;
 833	ext4_es_store_pblock_status(&newes, pblk, status);
 834	trace_ext4_es_insert_extent(inode, &newes);
 835
 836	ext4_es_insert_extent_check(inode, &newes);
 837
 838	write_lock(&EXT4_I(inode)->i_es_lock);
 839	err = __es_remove_extent(inode, lblk, end, NULL);
 840	if (err != 0)
 841		goto error;
 842retry:
 843	err = __es_insert_extent(inode, &newes);
 844	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
 845					  128, EXT4_I(inode)))
 846		goto retry;
 847	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
 848		err = 0;
 849
 850	if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
 851	    (status & EXTENT_STATUS_WRITTEN ||
 852	     status & EXTENT_STATUS_UNWRITTEN))
 853		__revise_pending(inode, lblk, len);
 854
 855error:
 856	write_unlock(&EXT4_I(inode)->i_es_lock);
 857
 858	ext4_es_print_tree(inode);
 859
 860	return err;
 861}
 862
 863/*
 864 * ext4_es_cache_extent() inserts information into the extent status
 865 * tree if and only if there isn't information about the range in
 866 * question already.
 867 */
 868void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
 869			  ext4_lblk_t len, ext4_fsblk_t pblk,
 870			  unsigned int status)
 871{
 872	struct extent_status *es;
 873	struct extent_status newes;
 874	ext4_lblk_t end = lblk + len - 1;
 875
 876	newes.es_lblk = lblk;
 877	newes.es_len = len;
 878	ext4_es_store_pblock_status(&newes, pblk, status);
 879	trace_ext4_es_cache_extent(inode, &newes);
 880
 881	if (!len)
 882		return;
 883
 884	BUG_ON(end < lblk);
 885
 886	write_lock(&EXT4_I(inode)->i_es_lock);
 887
 888	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
 889	if (!es || es->es_lblk > end)
 890		__es_insert_extent(inode, &newes);
 891	write_unlock(&EXT4_I(inode)->i_es_lock);
 892}
 893
 894/*
 895 * ext4_es_lookup_extent() looks up an extent in extent status tree.
 896 *
 897 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
 898 *
 899 * Return: 1 on found, 0 on not
 900 */
 901int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
 902			  ext4_lblk_t *next_lblk,
 903			  struct extent_status *es)
 904{
 905	struct ext4_es_tree *tree;
 906	struct ext4_es_stats *stats;
 907	struct extent_status *es1 = NULL;
 908	struct rb_node *node;
 909	int found = 0;
 910
 911	trace_ext4_es_lookup_extent_enter(inode, lblk);
 912	es_debug("lookup extent in block %u\n", lblk);
 913
 914	tree = &EXT4_I(inode)->i_es_tree;
 915	read_lock(&EXT4_I(inode)->i_es_lock);
 916
 917	/* find extent in cache firstly */
 918	es->es_lblk = es->es_len = es->es_pblk = 0;
 919	if (tree->cache_es) {
 920		es1 = tree->cache_es;
 921		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 922			es_debug("%u cached by [%u/%u)\n",
 923				 lblk, es1->es_lblk, es1->es_len);
 924			found = 1;
 925			goto out;
 926		}
 927	}
 928
 929	node = tree->root.rb_node;
 930	while (node) {
 931		es1 = rb_entry(node, struct extent_status, rb_node);
 932		if (lblk < es1->es_lblk)
 933			node = node->rb_left;
 934		else if (lblk > ext4_es_end(es1))
 935			node = node->rb_right;
 936		else {
 937			found = 1;
 938			break;
 939		}
 940	}
 941
 942out:
 943	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
 944	if (found) {
 945		BUG_ON(!es1);
 946		es->es_lblk = es1->es_lblk;
 947		es->es_len = es1->es_len;
 948		es->es_pblk = es1->es_pblk;
 949		if (!ext4_es_is_referenced(es1))
 950			ext4_es_set_referenced(es1);
 951		percpu_counter_inc(&stats->es_stats_cache_hits);
 952		if (next_lblk) {
 953			node = rb_next(&es1->rb_node);
 954			if (node) {
 955				es1 = rb_entry(node, struct extent_status,
 956					       rb_node);
 957				*next_lblk = es1->es_lblk;
 958			} else
 959				*next_lblk = 0;
 960		}
 961	} else {
 962		percpu_counter_inc(&stats->es_stats_cache_misses);
 963	}
 964
 965	read_unlock(&EXT4_I(inode)->i_es_lock);
 966
 967	trace_ext4_es_lookup_extent_exit(inode, es, found);
 968	return found;
 969}
 970
 971struct rsvd_count {
 972	int ndelonly;
 973	bool first_do_lblk_found;
 974	ext4_lblk_t first_do_lblk;
 975	ext4_lblk_t last_do_lblk;
 976	struct extent_status *left_es;
 977	bool partial;
 978	ext4_lblk_t lclu;
 979};
 980
 981/*
 982 * init_rsvd - initialize reserved count data before removing block range
 983 *	       in file from extent status tree
 984 *
 985 * @inode - file containing range
 986 * @lblk - first block in range
 987 * @es - pointer to first extent in range
 988 * @rc - pointer to reserved count data
 989 *
 990 * Assumes es is not NULL
 991 */
 992static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
 993		      struct extent_status *es, struct rsvd_count *rc)
 994{
 995	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 996	struct rb_node *node;
 997
 998	rc->ndelonly = 0;
 999
1000	/*
1001	 * for bigalloc, note the first delonly block in the range has not
1002	 * been found, record the extent containing the block to the left of
1003	 * the region to be removed, if any, and note that there's no partial
1004	 * cluster to track
1005	 */
1006	if (sbi->s_cluster_ratio > 1) {
1007		rc->first_do_lblk_found = false;
1008		if (lblk > es->es_lblk) {
1009			rc->left_es = es;
1010		} else {
1011			node = rb_prev(&es->rb_node);
1012			rc->left_es = node ? rb_entry(node,
1013						      struct extent_status,
1014						      rb_node) : NULL;
1015		}
1016		rc->partial = false;
1017	}
1018}
1019
1020/*
1021 * count_rsvd - count the clusters containing delayed and not unwritten
1022 *		(delonly) blocks in a range within an extent and add to
1023 *	        the running tally in rsvd_count
1024 *
1025 * @inode - file containing extent
1026 * @lblk - first block in range
1027 * @len - length of range in blocks
1028 * @es - pointer to extent containing clusters to be counted
1029 * @rc - pointer to reserved count data
1030 *
1031 * Tracks partial clusters found at the beginning and end of extents so
1032 * they aren't overcounted when they span adjacent extents
1033 */
1034static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1035		       struct extent_status *es, struct rsvd_count *rc)
1036{
1037	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1038	ext4_lblk_t i, end, nclu;
1039
1040	if (!ext4_es_is_delonly(es))
1041		return;
1042
1043	WARN_ON(len <= 0);
1044
1045	if (sbi->s_cluster_ratio == 1) {
1046		rc->ndelonly += (int) len;
1047		return;
1048	}
1049
1050	/* bigalloc */
1051
1052	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1053	end = lblk + (ext4_lblk_t) len - 1;
1054	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1055
1056	/* record the first block of the first delonly extent seen */
1057	if (!rc->first_do_lblk_found) {
1058		rc->first_do_lblk = i;
1059		rc->first_do_lblk_found = true;
1060	}
1061
1062	/* update the last lblk in the region seen so far */
1063	rc->last_do_lblk = end;
1064
1065	/*
1066	 * if we're tracking a partial cluster and the current extent
1067	 * doesn't start with it, count it and stop tracking
1068	 */
1069	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1070		rc->ndelonly++;
1071		rc->partial = false;
1072	}
1073
1074	/*
1075	 * if the first cluster doesn't start on a cluster boundary but
1076	 * ends on one, count it
1077	 */
1078	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1079		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1080			rc->ndelonly++;
1081			rc->partial = false;
1082			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1083		}
1084	}
1085
1086	/*
1087	 * if the current cluster starts on a cluster boundary, count the
1088	 * number of whole delonly clusters in the extent
1089	 */
1090	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1091		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1092		rc->ndelonly += nclu;
1093		i += nclu << sbi->s_cluster_bits;
1094	}
1095
1096	/*
1097	 * start tracking a partial cluster if there's a partial at the end
1098	 * of the current extent and we're not already tracking one
1099	 */
1100	if (!rc->partial && i <= end) {
1101		rc->partial = true;
1102		rc->lclu = EXT4_B2C(sbi, i);
1103	}
1104}
1105
1106/*
1107 * __pr_tree_search - search for a pending cluster reservation
1108 *
1109 * @root - root of pending reservation tree
1110 * @lclu - logical cluster to search for
1111 *
1112 * Returns the pending reservation for the cluster identified by @lclu
1113 * if found.  If not, returns a reservation for the next cluster if any,
1114 * and if not, returns NULL.
1115 */
1116static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1117						    ext4_lblk_t lclu)
1118{
1119	struct rb_node *node = root->rb_node;
1120	struct pending_reservation *pr = NULL;
1121
1122	while (node) {
1123		pr = rb_entry(node, struct pending_reservation, rb_node);
1124		if (lclu < pr->lclu)
1125			node = node->rb_left;
1126		else if (lclu > pr->lclu)
1127			node = node->rb_right;
1128		else
1129			return pr;
1130	}
1131	if (pr && lclu < pr->lclu)
1132		return pr;
1133	if (pr && lclu > pr->lclu) {
1134		node = rb_next(&pr->rb_node);
1135		return node ? rb_entry(node, struct pending_reservation,
1136				       rb_node) : NULL;
1137	}
1138	return NULL;
1139}
1140
1141/*
1142 * get_rsvd - calculates and returns the number of cluster reservations to be
1143 *	      released when removing a block range from the extent status tree
1144 *	      and releases any pending reservations within the range
1145 *
1146 * @inode - file containing block range
1147 * @end - last block in range
1148 * @right_es - pointer to extent containing next block beyond end or NULL
1149 * @rc - pointer to reserved count data
1150 *
1151 * The number of reservations to be released is equal to the number of
1152 * clusters containing delayed and not unwritten (delonly) blocks within
1153 * the range, minus the number of clusters still containing delonly blocks
1154 * at the ends of the range, and minus the number of pending reservations
1155 * within the range.
1156 */
1157static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1158			     struct extent_status *right_es,
1159			     struct rsvd_count *rc)
1160{
1161	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1162	struct pending_reservation *pr;
1163	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1164	struct rb_node *node;
1165	ext4_lblk_t first_lclu, last_lclu;
1166	bool left_delonly, right_delonly, count_pending;
1167	struct extent_status *es;
1168
1169	if (sbi->s_cluster_ratio > 1) {
1170		/* count any remaining partial cluster */
1171		if (rc->partial)
1172			rc->ndelonly++;
1173
1174		if (rc->ndelonly == 0)
1175			return 0;
1176
1177		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1178		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1179
1180		/*
1181		 * decrease the delonly count by the number of clusters at the
1182		 * ends of the range that still contain delonly blocks -
1183		 * these clusters still need to be reserved
1184		 */
1185		left_delonly = right_delonly = false;
1186
1187		es = rc->left_es;
1188		while (es && ext4_es_end(es) >=
1189		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1190			if (ext4_es_is_delonly(es)) {
1191				rc->ndelonly--;
1192				left_delonly = true;
1193				break;
1194			}
1195			node = rb_prev(&es->rb_node);
1196			if (!node)
1197				break;
1198			es = rb_entry(node, struct extent_status, rb_node);
1199		}
1200		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1201			if (end < ext4_es_end(right_es)) {
1202				es = right_es;
1203			} else {
1204				node = rb_next(&right_es->rb_node);
1205				es = node ? rb_entry(node, struct extent_status,
1206						     rb_node) : NULL;
1207			}
1208			while (es && es->es_lblk <=
1209			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1210				if (ext4_es_is_delonly(es)) {
1211					rc->ndelonly--;
1212					right_delonly = true;
1213					break;
1214				}
1215				node = rb_next(&es->rb_node);
1216				if (!node)
1217					break;
1218				es = rb_entry(node, struct extent_status,
1219					      rb_node);
1220			}
1221		}
1222
1223		/*
1224		 * Determine the block range that should be searched for
1225		 * pending reservations, if any.  Clusters on the ends of the
1226		 * original removed range containing delonly blocks are
1227		 * excluded.  They've already been accounted for and it's not
1228		 * possible to determine if an associated pending reservation
1229		 * should be released with the information available in the
1230		 * extents status tree.
1231		 */
1232		if (first_lclu == last_lclu) {
1233			if (left_delonly | right_delonly)
1234				count_pending = false;
1235			else
1236				count_pending = true;
1237		} else {
1238			if (left_delonly)
1239				first_lclu++;
1240			if (right_delonly)
1241				last_lclu--;
1242			if (first_lclu <= last_lclu)
1243				count_pending = true;
1244			else
1245				count_pending = false;
1246		}
1247
1248		/*
1249		 * a pending reservation found between first_lclu and last_lclu
1250		 * represents an allocated cluster that contained at least one
1251		 * delonly block, so the delonly total must be reduced by one
1252		 * for each pending reservation found and released
1253		 */
1254		if (count_pending) {
1255			pr = __pr_tree_search(&tree->root, first_lclu);
1256			while (pr && pr->lclu <= last_lclu) {
1257				rc->ndelonly--;
1258				node = rb_next(&pr->rb_node);
1259				rb_erase(&pr->rb_node, &tree->root);
1260				kmem_cache_free(ext4_pending_cachep, pr);
1261				if (!node)
1262					break;
1263				pr = rb_entry(node, struct pending_reservation,
1264					      rb_node);
1265			}
1266		}
1267	}
1268	return rc->ndelonly;
1269}
1270
1271
1272/*
1273 * __es_remove_extent - removes block range from extent status tree
1274 *
1275 * @inode - file containing range
1276 * @lblk - first block in range
1277 * @end - last block in range
1278 * @reserved - number of cluster reservations released
1279 *
1280 * If @reserved is not NULL and delayed allocation is enabled, counts
1281 * block/cluster reservations freed by removing range and if bigalloc
1282 * enabled cancels pending reservations as needed. Returns 0 on success,
1283 * error code on failure.
1284 */
1285static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1286			      ext4_lblk_t end, int *reserved)
1287{
1288	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1289	struct rb_node *node;
1290	struct extent_status *es;
1291	struct extent_status orig_es;
1292	ext4_lblk_t len1, len2;
1293	ext4_fsblk_t block;
1294	int err;
1295	bool count_reserved = true;
1296	struct rsvd_count rc;
1297
1298	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1299		count_reserved = false;
1300retry:
1301	err = 0;
1302
1303	es = __es_tree_search(&tree->root, lblk);
1304	if (!es)
1305		goto out;
1306	if (es->es_lblk > end)
1307		goto out;
1308
1309	/* Simply invalidate cache_es. */
1310	tree->cache_es = NULL;
1311	if (count_reserved)
1312		init_rsvd(inode, lblk, es, &rc);
1313
1314	orig_es.es_lblk = es->es_lblk;
1315	orig_es.es_len = es->es_len;
1316	orig_es.es_pblk = es->es_pblk;
1317
1318	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1319	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1320	if (len1 > 0)
1321		es->es_len = len1;
1322	if (len2 > 0) {
1323		if (len1 > 0) {
1324			struct extent_status newes;
1325
1326			newes.es_lblk = end + 1;
1327			newes.es_len = len2;
1328			block = 0x7FDEADBEEFULL;
1329			if (ext4_es_is_written(&orig_es) ||
1330			    ext4_es_is_unwritten(&orig_es))
1331				block = ext4_es_pblock(&orig_es) +
1332					orig_es.es_len - len2;
1333			ext4_es_store_pblock_status(&newes, block,
1334						    ext4_es_status(&orig_es));
1335			err = __es_insert_extent(inode, &newes);
1336			if (err) {
1337				es->es_lblk = orig_es.es_lblk;
1338				es->es_len = orig_es.es_len;
1339				if ((err == -ENOMEM) &&
1340				    __es_shrink(EXT4_SB(inode->i_sb),
1341							128, EXT4_I(inode)))
1342					goto retry;
1343				goto out;
1344			}
1345		} else {
1346			es->es_lblk = end + 1;
1347			es->es_len = len2;
1348			if (ext4_es_is_written(es) ||
1349			    ext4_es_is_unwritten(es)) {
1350				block = orig_es.es_pblk + orig_es.es_len - len2;
1351				ext4_es_store_pblock(es, block);
1352			}
1353		}
1354		if (count_reserved)
1355			count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
1356				   &orig_es, &rc);
1357		goto out;
1358	}
1359
1360	if (len1 > 0) {
1361		if (count_reserved)
1362			count_rsvd(inode, lblk, orig_es.es_len - len1,
1363				   &orig_es, &rc);
1364		node = rb_next(&es->rb_node);
1365		if (node)
1366			es = rb_entry(node, struct extent_status, rb_node);
1367		else
1368			es = NULL;
1369	}
1370
1371	while (es && ext4_es_end(es) <= end) {
1372		if (count_reserved)
1373			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1374		node = rb_next(&es->rb_node);
1375		rb_erase(&es->rb_node, &tree->root);
1376		ext4_es_free_extent(inode, es);
1377		if (!node) {
1378			es = NULL;
1379			break;
1380		}
1381		es = rb_entry(node, struct extent_status, rb_node);
1382	}
1383
1384	if (es && es->es_lblk < end + 1) {
1385		ext4_lblk_t orig_len = es->es_len;
1386
1387		len1 = ext4_es_end(es) - end;
1388		if (count_reserved)
1389			count_rsvd(inode, es->es_lblk, orig_len - len1,
1390				   es, &rc);
1391		es->es_lblk = end + 1;
1392		es->es_len = len1;
1393		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1394			block = es->es_pblk + orig_len - len1;
1395			ext4_es_store_pblock(es, block);
1396		}
1397	}
1398
1399	if (count_reserved)
1400		*reserved = get_rsvd(inode, end, es, &rc);
1401out:
1402	return err;
1403}
1404
1405/*
1406 * ext4_es_remove_extent - removes block range from extent status tree
1407 *
1408 * @inode - file containing range
1409 * @lblk - first block in range
1410 * @len - number of blocks to remove
1411 *
1412 * Reduces block/cluster reservation count and for bigalloc cancels pending
1413 * reservations as needed. Returns 0 on success, error code on failure.
1414 */
1415int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1416			  ext4_lblk_t len)
1417{
1418	ext4_lblk_t end;
1419	int err = 0;
1420	int reserved = 0;
1421
1422	trace_ext4_es_remove_extent(inode, lblk, len);
1423	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1424		 lblk, len, inode->i_ino);
1425
1426	if (!len)
1427		return err;
1428
1429	end = lblk + len - 1;
1430	BUG_ON(end < lblk);
1431
1432	/*
1433	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1434	 * so that we are sure __es_shrink() is done with the inode before it
1435	 * is reclaimed.
1436	 */
1437	write_lock(&EXT4_I(inode)->i_es_lock);
1438	err = __es_remove_extent(inode, lblk, end, &reserved);
1439	write_unlock(&EXT4_I(inode)->i_es_lock);
1440	ext4_es_print_tree(inode);
1441	ext4_da_release_space(inode, reserved);
1442	return err;
1443}
1444
1445static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1446		       struct ext4_inode_info *locked_ei)
1447{
1448	struct ext4_inode_info *ei;
1449	struct ext4_es_stats *es_stats;
1450	ktime_t start_time;
1451	u64 scan_time;
1452	int nr_to_walk;
1453	int nr_shrunk = 0;
1454	int retried = 0, nr_skipped = 0;
1455
1456	es_stats = &sbi->s_es_stats;
1457	start_time = ktime_get();
1458
1459retry:
1460	spin_lock(&sbi->s_es_lock);
1461	nr_to_walk = sbi->s_es_nr_inode;
1462	while (nr_to_walk-- > 0) {
1463		if (list_empty(&sbi->s_es_list)) {
1464			spin_unlock(&sbi->s_es_lock);
1465			goto out;
1466		}
1467		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1468				      i_es_list);
1469		/* Move the inode to the tail */
1470		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1471
1472		/*
1473		 * Normally we try hard to avoid shrinking precached inodes,
1474		 * but we will as a last resort.
1475		 */
1476		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1477						EXT4_STATE_EXT_PRECACHED)) {
1478			nr_skipped++;
1479			continue;
1480		}
1481
1482		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1483			nr_skipped++;
1484			continue;
1485		}
1486		/*
1487		 * Now we hold i_es_lock which protects us from inode reclaim
1488		 * freeing inode under us
1489		 */
1490		spin_unlock(&sbi->s_es_lock);
1491
1492		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1493		write_unlock(&ei->i_es_lock);
1494
1495		if (nr_to_scan <= 0)
1496			goto out;
1497		spin_lock(&sbi->s_es_lock);
1498	}
1499	spin_unlock(&sbi->s_es_lock);
1500
1501	/*
1502	 * If we skipped any inodes, and we weren't able to make any
1503	 * forward progress, try again to scan precached inodes.
1504	 */
1505	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1506		retried++;
1507		goto retry;
1508	}
1509
1510	if (locked_ei && nr_shrunk == 0)
1511		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1512
1513out:
1514	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1515	if (likely(es_stats->es_stats_scan_time))
1516		es_stats->es_stats_scan_time = (scan_time +
1517				es_stats->es_stats_scan_time*3) / 4;
1518	else
1519		es_stats->es_stats_scan_time = scan_time;
1520	if (scan_time > es_stats->es_stats_max_scan_time)
1521		es_stats->es_stats_max_scan_time = scan_time;
1522	if (likely(es_stats->es_stats_shrunk))
1523		es_stats->es_stats_shrunk = (nr_shrunk +
1524				es_stats->es_stats_shrunk*3) / 4;
1525	else
1526		es_stats->es_stats_shrunk = nr_shrunk;
1527
1528	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1529			     nr_skipped, retried);
1530	return nr_shrunk;
1531}
1532
1533static unsigned long ext4_es_count(struct shrinker *shrink,
1534				   struct shrink_control *sc)
1535{
1536	unsigned long nr;
1537	struct ext4_sb_info *sbi;
1538
1539	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1540	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1541	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1542	return nr;
1543}
1544
1545static unsigned long ext4_es_scan(struct shrinker *shrink,
1546				  struct shrink_control *sc)
1547{
1548	struct ext4_sb_info *sbi = container_of(shrink,
1549					struct ext4_sb_info, s_es_shrinker);
1550	int nr_to_scan = sc->nr_to_scan;
1551	int ret, nr_shrunk;
1552
1553	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1554	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1555
1556	if (!nr_to_scan)
1557		return ret;
1558
1559	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1560
1561	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1562	return nr_shrunk;
1563}
1564
1565int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1566{
1567	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1568	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1569	struct ext4_inode_info *ei, *max = NULL;
1570	unsigned int inode_cnt = 0;
1571
1572	if (v != SEQ_START_TOKEN)
1573		return 0;
1574
1575	/* here we just find an inode that has the max nr. of objects */
1576	spin_lock(&sbi->s_es_lock);
1577	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1578		inode_cnt++;
1579		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1580			max = ei;
1581		else if (!max)
1582			max = ei;
1583	}
1584	spin_unlock(&sbi->s_es_lock);
1585
1586	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1587		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1588		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1589	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1590		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1591		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1592	if (inode_cnt)
1593		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1594
1595	seq_printf(seq, "average:\n  %llu us scan time\n",
1596	    div_u64(es_stats->es_stats_scan_time, 1000));
1597	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1598	if (inode_cnt)
1599		seq_printf(seq,
1600		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1601		    "  %llu us max scan time\n",
1602		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1603		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1604
1605	return 0;
1606}
1607
1608int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1609{
1610	int err;
1611
1612	/* Make sure we have enough bits for physical block number */
1613	BUILD_BUG_ON(ES_SHIFT < 48);
1614	INIT_LIST_HEAD(&sbi->s_es_list);
1615	sbi->s_es_nr_inode = 0;
1616	spin_lock_init(&sbi->s_es_lock);
1617	sbi->s_es_stats.es_stats_shrunk = 0;
1618	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1619				  GFP_KERNEL);
1620	if (err)
1621		return err;
1622	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1623				  GFP_KERNEL);
1624	if (err)
1625		goto err1;
1626	sbi->s_es_stats.es_stats_scan_time = 0;
1627	sbi->s_es_stats.es_stats_max_scan_time = 0;
1628	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1629	if (err)
1630		goto err2;
1631	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1632	if (err)
1633		goto err3;
1634
1635	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1636	sbi->s_es_shrinker.count_objects = ext4_es_count;
1637	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1638	err = register_shrinker(&sbi->s_es_shrinker);
1639	if (err)
1640		goto err4;
1641
1642	return 0;
1643err4:
1644	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1645err3:
1646	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1647err2:
1648	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1649err1:
1650	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1651	return err;
1652}
1653
1654void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1655{
1656	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1657	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1658	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1659	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1660	unregister_shrinker(&sbi->s_es_shrinker);
1661}
1662
1663/*
1664 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1665 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1666 *
1667 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1668 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1669 * ei->i_es_shrink_lblk to where we should continue scanning.
1670 */
1671static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1672				 int *nr_to_scan, int *nr_shrunk)
1673{
1674	struct inode *inode = &ei->vfs_inode;
1675	struct ext4_es_tree *tree = &ei->i_es_tree;
1676	struct extent_status *es;
1677	struct rb_node *node;
1678
1679	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1680	if (!es)
1681		goto out_wrap;
1682
1683	while (*nr_to_scan > 0) {
1684		if (es->es_lblk > end) {
1685			ei->i_es_shrink_lblk = end + 1;
1686			return 0;
1687		}
1688
1689		(*nr_to_scan)--;
1690		node = rb_next(&es->rb_node);
1691		/*
1692		 * We can't reclaim delayed extent from status tree because
1693		 * fiemap, bigallic, and seek_data/hole need to use it.
1694		 */
1695		if (ext4_es_is_delayed(es))
1696			goto next;
1697		if (ext4_es_is_referenced(es)) {
1698			ext4_es_clear_referenced(es);
1699			goto next;
1700		}
1701
1702		rb_erase(&es->rb_node, &tree->root);
1703		ext4_es_free_extent(inode, es);
1704		(*nr_shrunk)++;
1705next:
1706		if (!node)
1707			goto out_wrap;
1708		es = rb_entry(node, struct extent_status, rb_node);
1709	}
1710	ei->i_es_shrink_lblk = es->es_lblk;
1711	return 1;
1712out_wrap:
1713	ei->i_es_shrink_lblk = 0;
1714	return 0;
1715}
1716
1717static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1718{
1719	struct inode *inode = &ei->vfs_inode;
1720	int nr_shrunk = 0;
1721	ext4_lblk_t start = ei->i_es_shrink_lblk;
1722	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1723				      DEFAULT_RATELIMIT_BURST);
1724
1725	if (ei->i_es_shk_nr == 0)
1726		return 0;
1727
1728	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1729	    __ratelimit(&_rs))
1730		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1731
1732	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1733	    start != 0)
1734		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1735
1736	ei->i_es_tree.cache_es = NULL;
1737	return nr_shrunk;
1738}
1739
1740/*
1741 * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1742 * discretionary entries from the extent status cache.  (Some entries
1743 * must be present for proper operations.)
1744 */
1745void ext4_clear_inode_es(struct inode *inode)
1746{
1747	struct ext4_inode_info *ei = EXT4_I(inode);
1748	struct extent_status *es;
1749	struct ext4_es_tree *tree;
1750	struct rb_node *node;
1751
1752	write_lock(&ei->i_es_lock);
1753	tree = &EXT4_I(inode)->i_es_tree;
1754	tree->cache_es = NULL;
1755	node = rb_first(&tree->root);
1756	while (node) {
1757		es = rb_entry(node, struct extent_status, rb_node);
1758		node = rb_next(node);
1759		if (!ext4_es_is_delayed(es)) {
1760			rb_erase(&es->rb_node, &tree->root);
1761			ext4_es_free_extent(inode, es);
1762		}
1763	}
1764	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1765	write_unlock(&ei->i_es_lock);
1766}
1767
1768#ifdef ES_DEBUG__
1769static void ext4_print_pending_tree(struct inode *inode)
1770{
1771	struct ext4_pending_tree *tree;
1772	struct rb_node *node;
1773	struct pending_reservation *pr;
1774
1775	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1776	tree = &EXT4_I(inode)->i_pending_tree;
1777	node = rb_first(&tree->root);
1778	while (node) {
1779		pr = rb_entry(node, struct pending_reservation, rb_node);
1780		printk(KERN_DEBUG " %u", pr->lclu);
1781		node = rb_next(node);
1782	}
1783	printk(KERN_DEBUG "\n");
1784}
1785#else
1786#define ext4_print_pending_tree(inode)
1787#endif
1788
1789int __init ext4_init_pending(void)
1790{
1791	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1792					   sizeof(struct pending_reservation),
1793					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
1794	if (ext4_pending_cachep == NULL)
1795		return -ENOMEM;
1796	return 0;
1797}
1798
1799void ext4_exit_pending(void)
1800{
1801	kmem_cache_destroy(ext4_pending_cachep);
1802}
1803
1804void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1805{
1806	tree->root = RB_ROOT;
1807}
1808
1809/*
1810 * __get_pending - retrieve a pointer to a pending reservation
1811 *
1812 * @inode - file containing the pending cluster reservation
1813 * @lclu - logical cluster of interest
1814 *
1815 * Returns a pointer to a pending reservation if it's a member of
1816 * the set, and NULL if not.  Must be called holding i_es_lock.
1817 */
1818static struct pending_reservation *__get_pending(struct inode *inode,
1819						 ext4_lblk_t lclu)
1820{
1821	struct ext4_pending_tree *tree;
1822	struct rb_node *node;
1823	struct pending_reservation *pr = NULL;
1824
1825	tree = &EXT4_I(inode)->i_pending_tree;
1826	node = (&tree->root)->rb_node;
1827
1828	while (node) {
1829		pr = rb_entry(node, struct pending_reservation, rb_node);
1830		if (lclu < pr->lclu)
1831			node = node->rb_left;
1832		else if (lclu > pr->lclu)
1833			node = node->rb_right;
1834		else if (lclu == pr->lclu)
1835			return pr;
1836	}
1837	return NULL;
1838}
1839
1840/*
1841 * __insert_pending - adds a pending cluster reservation to the set of
1842 *                    pending reservations
1843 *
1844 * @inode - file containing the cluster
1845 * @lblk - logical block in the cluster to be added
1846 *
1847 * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1848 * pending reservation is already in the set, returns successfully.
1849 */
1850static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
1851{
1852	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1853	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1854	struct rb_node **p = &tree->root.rb_node;
1855	struct rb_node *parent = NULL;
1856	struct pending_reservation *pr;
1857	ext4_lblk_t lclu;
1858	int ret = 0;
1859
1860	lclu = EXT4_B2C(sbi, lblk);
1861	/* search to find parent for insertion */
1862	while (*p) {
1863		parent = *p;
1864		pr = rb_entry(parent, struct pending_reservation, rb_node);
1865
1866		if (lclu < pr->lclu) {
1867			p = &(*p)->rb_left;
1868		} else if (lclu > pr->lclu) {
1869			p = &(*p)->rb_right;
1870		} else {
1871			/* pending reservation already inserted */
1872			goto out;
1873		}
1874	}
1875
1876	pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
1877	if (pr == NULL) {
1878		ret = -ENOMEM;
1879		goto out;
1880	}
1881	pr->lclu = lclu;
1882
1883	rb_link_node(&pr->rb_node, parent, p);
1884	rb_insert_color(&pr->rb_node, &tree->root);
1885
1886out:
1887	return ret;
1888}
1889
1890/*
1891 * __remove_pending - removes a pending cluster reservation from the set
1892 *                    of pending reservations
1893 *
1894 * @inode - file containing the cluster
1895 * @lblk - logical block in the pending cluster reservation to be removed
1896 *
1897 * Returns successfully if pending reservation is not a member of the set.
1898 */
1899static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1900{
1901	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1902	struct pending_reservation *pr;
1903	struct ext4_pending_tree *tree;
1904
1905	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1906	if (pr != NULL) {
1907		tree = &EXT4_I(inode)->i_pending_tree;
1908		rb_erase(&pr->rb_node, &tree->root);
1909		kmem_cache_free(ext4_pending_cachep, pr);
1910	}
1911}
1912
1913/*
1914 * ext4_remove_pending - removes a pending cluster reservation from the set
1915 *                       of pending reservations
1916 *
1917 * @inode - file containing the cluster
1918 * @lblk - logical block in the pending cluster reservation to be removed
1919 *
1920 * Locking for external use of __remove_pending.
1921 */
1922void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
1923{
1924	struct ext4_inode_info *ei = EXT4_I(inode);
1925
1926	write_lock(&ei->i_es_lock);
1927	__remove_pending(inode, lblk);
1928	write_unlock(&ei->i_es_lock);
1929}
1930
1931/*
1932 * ext4_is_pending - determine whether a cluster has a pending reservation
1933 *                   on it
1934 *
1935 * @inode - file containing the cluster
1936 * @lblk - logical block in the cluster
1937 *
1938 * Returns true if there's a pending reservation for the cluster in the
1939 * set of pending reservations, and false if not.
1940 */
1941bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
1942{
1943	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1944	struct ext4_inode_info *ei = EXT4_I(inode);
1945	bool ret;
1946
1947	read_lock(&ei->i_es_lock);
1948	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
1949	read_unlock(&ei->i_es_lock);
1950
1951	return ret;
1952}
1953
1954/*
1955 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
1956 *                                tree, adding a pending reservation where
1957 *                                needed
1958 *
1959 * @inode - file containing the newly added block
1960 * @lblk - logical block to be added
1961 * @allocated - indicates whether a physical cluster has been allocated for
1962 *              the logical cluster that contains the block
1963 *
1964 * Returns 0 on success, negative error code on failure.
1965 */
1966int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
1967				 bool allocated)
1968{
1969	struct extent_status newes;
1970	int err = 0;
1971
1972	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
1973		 lblk, inode->i_ino);
1974
1975	newes.es_lblk = lblk;
1976	newes.es_len = 1;
1977	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
1978	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
1979
1980	ext4_es_insert_extent_check(inode, &newes);
1981
1982	write_lock(&EXT4_I(inode)->i_es_lock);
1983
1984	err = __es_remove_extent(inode, lblk, lblk, NULL);
1985	if (err != 0)
1986		goto error;
1987retry:
1988	err = __es_insert_extent(inode, &newes);
1989	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
1990					  128, EXT4_I(inode)))
1991		goto retry;
1992	if (err != 0)
1993		goto error;
1994
1995	if (allocated)
1996		__insert_pending(inode, lblk);
1997
1998error:
1999	write_unlock(&EXT4_I(inode)->i_es_lock);
2000
2001	ext4_es_print_tree(inode);
2002	ext4_print_pending_tree(inode);
2003
2004	return err;
2005}
2006
2007/*
2008 * __es_delayed_clu - count number of clusters containing blocks that
2009 *                    are delayed only
2010 *
2011 * @inode - file containing block range
2012 * @start - logical block defining start of range
2013 * @end - logical block defining end of range
2014 *
2015 * Returns the number of clusters containing only delayed (not delayed
2016 * and unwritten) blocks in the range specified by @start and @end.  Any
2017 * cluster or part of a cluster within the range and containing a delayed
2018 * and not unwritten block within the range is counted as a whole cluster.
2019 */
2020static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2021				     ext4_lblk_t end)
2022{
2023	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2024	struct extent_status *es;
2025	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2026	struct rb_node *node;
2027	ext4_lblk_t first_lclu, last_lclu;
2028	unsigned long long last_counted_lclu;
2029	unsigned int n = 0;
2030
2031	/* guaranteed to be unequal to any ext4_lblk_t value */
2032	last_counted_lclu = ~0ULL;
2033
2034	es = __es_tree_search(&tree->root, start);
2035
2036	while (es && (es->es_lblk <= end)) {
2037		if (ext4_es_is_delonly(es)) {
2038			if (es->es_lblk <= start)
2039				first_lclu = EXT4_B2C(sbi, start);
2040			else
2041				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2042
2043			if (ext4_es_end(es) >= end)
2044				last_lclu = EXT4_B2C(sbi, end);
2045			else
2046				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2047
2048			if (first_lclu == last_counted_lclu)
2049				n += last_lclu - first_lclu;
2050			else
2051				n += last_lclu - first_lclu + 1;
2052			last_counted_lclu = last_lclu;
2053		}
2054		node = rb_next(&es->rb_node);
2055		if (!node)
2056			break;
2057		es = rb_entry(node, struct extent_status, rb_node);
2058	}
2059
2060	return n;
2061}
2062
2063/*
2064 * ext4_es_delayed_clu - count number of clusters containing blocks that
2065 *                       are both delayed and unwritten
2066 *
2067 * @inode - file containing block range
2068 * @lblk - logical block defining start of range
2069 * @len - number of blocks in range
2070 *
2071 * Locking for external use of __es_delayed_clu().
2072 */
2073unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2074				 ext4_lblk_t len)
2075{
2076	struct ext4_inode_info *ei = EXT4_I(inode);
2077	ext4_lblk_t end;
2078	unsigned int n;
2079
2080	if (len == 0)
2081		return 0;
2082
2083	end = lblk + len - 1;
2084	WARN_ON(end < lblk);
2085
2086	read_lock(&ei->i_es_lock);
2087
2088	n = __es_delayed_clu(inode, lblk, end);
2089
2090	read_unlock(&ei->i_es_lock);
2091
2092	return n;
2093}
2094
2095/*
2096 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2097 *                    reservations for a specified block range depending
2098 *                    upon the presence or absence of delayed blocks
2099 *                    outside the range within clusters at the ends of the
2100 *                    range
2101 *
2102 * @inode - file containing the range
2103 * @lblk - logical block defining the start of range
2104 * @len  - length of range in blocks
2105 *
2106 * Used after a newly allocated extent is added to the extents status tree.
2107 * Requires that the extents in the range have either written or unwritten
2108 * status.  Must be called while holding i_es_lock.
2109 */
2110static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2111			     ext4_lblk_t len)
2112{
2113	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2114	ext4_lblk_t end = lblk + len - 1;
2115	ext4_lblk_t first, last;
2116	bool f_del = false, l_del = false;
2117
2118	if (len == 0)
2119		return;
2120
2121	/*
2122	 * Two cases - block range within single cluster and block range
2123	 * spanning two or more clusters.  Note that a cluster belonging
2124	 * to a range starting and/or ending on a cluster boundary is treated
2125	 * as if it does not contain a delayed extent.  The new range may
2126	 * have allocated space for previously delayed blocks out to the
2127	 * cluster boundary, requiring that any pre-existing pending
2128	 * reservation be canceled.  Because this code only looks at blocks
2129	 * outside the range, it should revise pending reservations
2130	 * correctly even if the extent represented by the range can't be
2131	 * inserted in the extents status tree due to ENOSPC.
2132	 */
2133
2134	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2135		first = EXT4_LBLK_CMASK(sbi, lblk);
2136		if (first != lblk)
2137			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2138						first, lblk - 1);
2139		if (f_del) {
2140			__insert_pending(inode, first);
2141		} else {
2142			last = EXT4_LBLK_CMASK(sbi, end) +
2143			       sbi->s_cluster_ratio - 1;
2144			if (last != end)
2145				l_del = __es_scan_range(inode,
2146							&ext4_es_is_delonly,
2147							end + 1, last);
2148			if (l_del)
2149				__insert_pending(inode, last);
2150			else
2151				__remove_pending(inode, last);
2152		}
2153	} else {
2154		first = EXT4_LBLK_CMASK(sbi, lblk);
2155		if (first != lblk)
2156			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2157						first, lblk - 1);
2158		if (f_del)
2159			__insert_pending(inode, first);
2160		else
2161			__remove_pending(inode, first);
2162
2163		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2164		if (last != end)
2165			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2166						end + 1, last);
2167		if (l_del)
2168			__insert_pending(inode, last);
2169		else
2170			__remove_pending(inode, last);
2171	}
2172}