Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 *  fs/ext4/extents_status.c
   3 *
   4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
   5 * Modified by
   6 *	Allison Henderson <achender@linux.vnet.ibm.com>
   7 *	Hugh Dickins <hughd@google.com>
   8 *	Zheng Liu <wenqing.lz@taobao.com>
   9 *
  10 * Ext4 extents status tree core functions.
  11 */
  12#include <linux/list_sort.h>
  13#include <linux/proc_fs.h>
  14#include <linux/seq_file.h>
  15#include "ext4.h"
  16
  17#include <trace/events/ext4.h>
  18
  19/*
  20 * According to previous discussion in Ext4 Developer Workshop, we
  21 * will introduce a new structure called io tree to track all extent
  22 * status in order to solve some problems that we have met
  23 * (e.g. Reservation space warning), and provide extent-level locking.
  24 * Delay extent tree is the first step to achieve this goal.  It is
  25 * original built by Yongqiang Yang.  At that time it is called delay
  26 * extent tree, whose goal is only track delayed extents in memory to
  27 * simplify the implementation of fiemap and bigalloc, and introduce
  28 * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
  29 * delay extent tree at the first commit.  But for better understand
  30 * what it does, it has been rename to extent status tree.
  31 *
  32 * Step1:
  33 * Currently the first step has been done.  All delayed extents are
  34 * tracked in the tree.  It maintains the delayed extent when a delayed
  35 * allocation is issued, and the delayed extent is written out or
  36 * invalidated.  Therefore the implementation of fiemap and bigalloc
  37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  38 *
  39 * The following comment describes the implemenmtation of extent
  40 * status tree and future works.
  41 *
  42 * Step2:
  43 * In this step all extent status are tracked by extent status tree.
  44 * Thus, we can first try to lookup a block mapping in this tree before
  45 * finding it in extent tree.  Hence, single extent cache can be removed
  46 * because extent status tree can do a better job.  Extents in status
  47 * tree are loaded on-demand.  Therefore, the extent status tree may not
  48 * contain all of the extents in a file.  Meanwhile we define a shrinker
  49 * to reclaim memory from extent status tree because fragmented extent
  50 * tree will make status tree cost too much memory.  written/unwritten/-
  51 * hole extents in the tree will be reclaimed by this shrinker when we
  52 * are under high memory pressure.  Delayed extents will not be
  53 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
  54 */
  55
  56/*
  57 * Extent status tree implementation for ext4.
  58 *
  59 *
  60 * ==========================================================================
  61 * Extent status tree tracks all extent status.
  62 *
  63 * 1. Why we need to implement extent status tree?
  64 *
  65 * Without extent status tree, ext4 identifies a delayed extent by looking
  66 * up page cache, this has several deficiencies - complicated, buggy,
  67 * and inefficient code.
  68 *
  69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
  70 * block or a range of blocks are belonged to a delayed extent.
  71 *
  72 * Let us have a look at how they do without extent status tree.
  73 *   --	FIEMAP
  74 *	FIEMAP looks up page cache to identify delayed allocations from holes.
  75 *
  76 *   --	SEEK_HOLE/DATA
  77 *	SEEK_HOLE/DATA has the same problem as FIEMAP.
  78 *
  79 *   --	bigalloc
  80 *	bigalloc looks up page cache to figure out if a block is
  81 *	already under delayed allocation or not to determine whether
  82 *	quota reserving is needed for the cluster.
  83 *
  84 *   --	writeout
  85 *	Writeout looks up whole page cache to see if a buffer is
  86 *	mapped, If there are not very many delayed buffers, then it is
  87 *	time comsuming.
  88 *
  89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
  90 * bigalloc and writeout can figure out if a block or a range of
  91 * blocks is under delayed allocation(belonged to a delayed extent) or
  92 * not by searching the extent tree.
  93 *
  94 *
  95 * ==========================================================================
  96 * 2. Ext4 extent status tree impelmentation
  97 *
  98 *   --	extent
  99 *	A extent is a range of blocks which are contiguous logically and
 100 *	physically.  Unlike extent in extent tree, this extent in ext4 is
 101 *	a in-memory struct, there is no corresponding on-disk data.  There
 102 *	is no limit on length of extent, so an extent can contain as many
 103 *	blocks as they are contiguous logically and physically.
 104 *
 105 *   --	extent status tree
 106 *	Every inode has an extent status tree and all allocation blocks
 107 *	are added to the tree with different status.  The extent in the
 108 *	tree are ordered by logical block no.
 109 *
 110 *   --	operations on a extent status tree
 111 *	There are three important operations on a delayed extent tree: find
 112 *	next extent, adding a extent(a range of blocks) and removing a extent.
 113 *
 114 *   --	race on a extent status tree
 115 *	Extent status tree is protected by inode->i_es_lock.
 116 *
 117 *   --	memory consumption
 118 *      Fragmented extent tree will make extent status tree cost too much
 119 *      memory.  Hence, we will reclaim written/unwritten/hole extents from
 120 *      the tree under a heavy memory pressure.
 121 *
 122 *
 123 * ==========================================================================
 124 * 3. Performance analysis
 125 *
 126 *   --	overhead
 127 *	1. There is a cache extent for write access, so if writes are
 128 *	not very random, adding space operaions are in O(1) time.
 129 *
 130 *   --	gain
 131 *	2. Code is much simpler, more readable, more maintainable and
 132 *	more efficient.
 133 *
 134 *
 135 * ==========================================================================
 136 * 4. TODO list
 137 *
 138 *   -- Refactor delayed space reservation
 139 *
 140 *   -- Extent-level locking
 141 */
 142
 143static struct kmem_cache *ext4_es_cachep;
 144
 145static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
 146static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 147			      ext4_lblk_t end);
 148static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
 149static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
 150		       struct ext4_inode_info *locked_ei);
 151
 152int __init ext4_init_es(void)
 153{
 154	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
 155					   sizeof(struct extent_status),
 156					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
 157	if (ext4_es_cachep == NULL)
 158		return -ENOMEM;
 159	return 0;
 160}
 161
 162void ext4_exit_es(void)
 163{
 164	if (ext4_es_cachep)
 165		kmem_cache_destroy(ext4_es_cachep);
 166}
 167
 168void ext4_es_init_tree(struct ext4_es_tree *tree)
 169{
 170	tree->root = RB_ROOT;
 171	tree->cache_es = NULL;
 172}
 173
 174#ifdef ES_DEBUG__
 175static void ext4_es_print_tree(struct inode *inode)
 176{
 177	struct ext4_es_tree *tree;
 178	struct rb_node *node;
 179
 180	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
 181	tree = &EXT4_I(inode)->i_es_tree;
 182	node = rb_first(&tree->root);
 183	while (node) {
 184		struct extent_status *es;
 185		es = rb_entry(node, struct extent_status, rb_node);
 186		printk(KERN_DEBUG " [%u/%u) %llu %x",
 187		       es->es_lblk, es->es_len,
 188		       ext4_es_pblock(es), ext4_es_status(es));
 189		node = rb_next(node);
 190	}
 191	printk(KERN_DEBUG "\n");
 192}
 193#else
 194#define ext4_es_print_tree(inode)
 195#endif
 196
 197static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
 198{
 199	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
 200	return es->es_lblk + es->es_len - 1;
 201}
 202
 203/*
 204 * search through the tree for an delayed extent with a given offset.  If
 205 * it can't be found, try to find next extent.
 206 */
 207static struct extent_status *__es_tree_search(struct rb_root *root,
 208					      ext4_lblk_t lblk)
 209{
 210	struct rb_node *node = root->rb_node;
 211	struct extent_status *es = NULL;
 212
 213	while (node) {
 214		es = rb_entry(node, struct extent_status, rb_node);
 215		if (lblk < es->es_lblk)
 216			node = node->rb_left;
 217		else if (lblk > ext4_es_end(es))
 218			node = node->rb_right;
 219		else
 220			return es;
 221	}
 222
 223	if (es && lblk < es->es_lblk)
 224		return es;
 225
 226	if (es && lblk > ext4_es_end(es)) {
 227		node = rb_next(&es->rb_node);
 228		return node ? rb_entry(node, struct extent_status, rb_node) :
 229			      NULL;
 230	}
 231
 232	return NULL;
 233}
 234
 235/*
 236 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
 237 * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
 238 *
 239 * @inode: the inode which owns delayed extents
 240 * @lblk: the offset where we start to search
 241 * @end: the offset where we stop to search
 242 * @es: delayed extent that we found
 243 */
 244void ext4_es_find_delayed_extent_range(struct inode *inode,
 245				 ext4_lblk_t lblk, ext4_lblk_t end,
 246				 struct extent_status *es)
 247{
 248	struct ext4_es_tree *tree = NULL;
 249	struct extent_status *es1 = NULL;
 250	struct rb_node *node;
 251
 252	BUG_ON(es == NULL);
 253	BUG_ON(end < lblk);
 254	trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
 255
 256	read_lock(&EXT4_I(inode)->i_es_lock);
 257	tree = &EXT4_I(inode)->i_es_tree;
 258
 259	/* find extent in cache firstly */
 260	es->es_lblk = es->es_len = es->es_pblk = 0;
 261	if (tree->cache_es) {
 262		es1 = tree->cache_es;
 263		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 264			es_debug("%u cached by [%u/%u) %llu %x\n",
 265				 lblk, es1->es_lblk, es1->es_len,
 266				 ext4_es_pblock(es1), ext4_es_status(es1));
 267			goto out;
 268		}
 269	}
 270
 271	es1 = __es_tree_search(&tree->root, lblk);
 272
 273out:
 274	if (es1 && !ext4_es_is_delayed(es1)) {
 275		while ((node = rb_next(&es1->rb_node)) != NULL) {
 276			es1 = rb_entry(node, struct extent_status, rb_node);
 277			if (es1->es_lblk > end) {
 278				es1 = NULL;
 279				break;
 280			}
 281			if (ext4_es_is_delayed(es1))
 282				break;
 283		}
 284	}
 285
 286	if (es1 && ext4_es_is_delayed(es1)) {
 287		tree->cache_es = es1;
 288		es->es_lblk = es1->es_lblk;
 289		es->es_len = es1->es_len;
 290		es->es_pblk = es1->es_pblk;
 291	}
 292
 293	read_unlock(&EXT4_I(inode)->i_es_lock);
 294
 295	trace_ext4_es_find_delayed_extent_range_exit(inode, es);
 296}
 297
 298static void ext4_es_list_add(struct inode *inode)
 299{
 300	struct ext4_inode_info *ei = EXT4_I(inode);
 301	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 302
 303	if (!list_empty(&ei->i_es_list))
 304		return;
 305
 306	spin_lock(&sbi->s_es_lock);
 307	if (list_empty(&ei->i_es_list)) {
 308		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
 309		sbi->s_es_nr_inode++;
 310	}
 311	spin_unlock(&sbi->s_es_lock);
 312}
 313
 314static void ext4_es_list_del(struct inode *inode)
 315{
 316	struct ext4_inode_info *ei = EXT4_I(inode);
 317	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 318
 319	spin_lock(&sbi->s_es_lock);
 320	if (!list_empty(&ei->i_es_list)) {
 321		list_del_init(&ei->i_es_list);
 322		sbi->s_es_nr_inode--;
 323		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
 324	}
 325	spin_unlock(&sbi->s_es_lock);
 326}
 327
 328static struct extent_status *
 329ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
 330		     ext4_fsblk_t pblk)
 331{
 332	struct extent_status *es;
 333	es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
 334	if (es == NULL)
 335		return NULL;
 336	es->es_lblk = lblk;
 337	es->es_len = len;
 338	es->es_pblk = pblk;
 339
 340	/*
 341	 * We don't count delayed extent because we never try to reclaim them
 342	 */
 343	if (!ext4_es_is_delayed(es)) {
 344		if (!EXT4_I(inode)->i_es_shk_nr++)
 345			ext4_es_list_add(inode);
 346		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
 347					s_es_stats.es_stats_shk_cnt);
 348	}
 349
 350	EXT4_I(inode)->i_es_all_nr++;
 351	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
 352
 353	return es;
 354}
 355
 356static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
 357{
 358	EXT4_I(inode)->i_es_all_nr--;
 359	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
 360
 361	/* Decrease the shrink counter when this es is not delayed */
 362	if (!ext4_es_is_delayed(es)) {
 363		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
 364		if (!--EXT4_I(inode)->i_es_shk_nr)
 365			ext4_es_list_del(inode);
 366		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
 367					s_es_stats.es_stats_shk_cnt);
 368	}
 369
 370	kmem_cache_free(ext4_es_cachep, es);
 371}
 372
 373/*
 374 * Check whether or not two extents can be merged
 375 * Condition:
 376 *  - logical block number is contiguous
 377 *  - physical block number is contiguous
 378 *  - status is equal
 379 */
 380static int ext4_es_can_be_merged(struct extent_status *es1,
 381				 struct extent_status *es2)
 382{
 383	if (ext4_es_type(es1) != ext4_es_type(es2))
 384		return 0;
 385
 386	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
 387		pr_warn("ES assertion failed when merging extents. "
 388			"The sum of lengths of es1 (%d) and es2 (%d) "
 389			"is bigger than allowed file size (%d)\n",
 390			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
 391		WARN_ON(1);
 392		return 0;
 393	}
 394
 395	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
 396		return 0;
 397
 398	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
 399	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
 400		return 1;
 401
 402	if (ext4_es_is_hole(es1))
 403		return 1;
 404
 405	/* we need to check delayed extent is without unwritten status */
 406	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
 407		return 1;
 408
 409	return 0;
 410}
 411
 412static struct extent_status *
 413ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
 414{
 415	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 416	struct extent_status *es1;
 417	struct rb_node *node;
 418
 419	node = rb_prev(&es->rb_node);
 420	if (!node)
 421		return es;
 422
 423	es1 = rb_entry(node, struct extent_status, rb_node);
 424	if (ext4_es_can_be_merged(es1, es)) {
 425		es1->es_len += es->es_len;
 426		if (ext4_es_is_referenced(es))
 427			ext4_es_set_referenced(es1);
 428		rb_erase(&es->rb_node, &tree->root);
 429		ext4_es_free_extent(inode, es);
 430		es = es1;
 431	}
 432
 433	return es;
 434}
 435
 436static struct extent_status *
 437ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
 438{
 439	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 440	struct extent_status *es1;
 441	struct rb_node *node;
 442
 443	node = rb_next(&es->rb_node);
 444	if (!node)
 445		return es;
 446
 447	es1 = rb_entry(node, struct extent_status, rb_node);
 448	if (ext4_es_can_be_merged(es, es1)) {
 449		es->es_len += es1->es_len;
 450		if (ext4_es_is_referenced(es1))
 451			ext4_es_set_referenced(es);
 452		rb_erase(node, &tree->root);
 453		ext4_es_free_extent(inode, es1);
 454	}
 455
 456	return es;
 457}
 458
 459#ifdef ES_AGGRESSIVE_TEST
 460#include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
 461
 462static void ext4_es_insert_extent_ext_check(struct inode *inode,
 463					    struct extent_status *es)
 464{
 465	struct ext4_ext_path *path = NULL;
 466	struct ext4_extent *ex;
 467	ext4_lblk_t ee_block;
 468	ext4_fsblk_t ee_start;
 469	unsigned short ee_len;
 470	int depth, ee_status, es_status;
 471
 472	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
 473	if (IS_ERR(path))
 474		return;
 475
 476	depth = ext_depth(inode);
 477	ex = path[depth].p_ext;
 478
 479	if (ex) {
 480
 481		ee_block = le32_to_cpu(ex->ee_block);
 482		ee_start = ext4_ext_pblock(ex);
 483		ee_len = ext4_ext_get_actual_len(ex);
 484
 485		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
 486		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
 487
 488		/*
 489		 * Make sure ex and es are not overlap when we try to insert
 490		 * a delayed/hole extent.
 491		 */
 492		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
 493			if (in_range(es->es_lblk, ee_block, ee_len)) {
 494				pr_warn("ES insert assertion failed for "
 495					"inode: %lu we can find an extent "
 496					"at block [%d/%d/%llu/%c], but we "
 497					"want to add a delayed/hole extent "
 498					"[%d/%d/%llu/%x]\n",
 499					inode->i_ino, ee_block, ee_len,
 500					ee_start, ee_status ? 'u' : 'w',
 501					es->es_lblk, es->es_len,
 502					ext4_es_pblock(es), ext4_es_status(es));
 503			}
 504			goto out;
 505		}
 506
 507		/*
 508		 * We don't check ee_block == es->es_lblk, etc. because es
 509		 * might be a part of whole extent, vice versa.
 510		 */
 511		if (es->es_lblk < ee_block ||
 512		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
 513			pr_warn("ES insert assertion failed for inode: %lu "
 514				"ex_status [%d/%d/%llu/%c] != "
 515				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
 516				ee_block, ee_len, ee_start,
 517				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
 518				ext4_es_pblock(es), es_status ? 'u' : 'w');
 519			goto out;
 520		}
 521
 522		if (ee_status ^ es_status) {
 523			pr_warn("ES insert assertion failed for inode: %lu "
 524				"ex_status [%d/%d/%llu/%c] != "
 525				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
 526				ee_block, ee_len, ee_start,
 527				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
 528				ext4_es_pblock(es), es_status ? 'u' : 'w');
 529		}
 530	} else {
 531		/*
 532		 * We can't find an extent on disk.  So we need to make sure
 533		 * that we don't want to add an written/unwritten extent.
 534		 */
 535		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
 536			pr_warn("ES insert assertion failed for inode: %lu "
 537				"can't find an extent at block %d but we want "
 538				"to add a written/unwritten extent "
 539				"[%d/%d/%llu/%x]\n", inode->i_ino,
 540				es->es_lblk, es->es_lblk, es->es_len,
 541				ext4_es_pblock(es), ext4_es_status(es));
 542		}
 543	}
 544out:
 545	ext4_ext_drop_refs(path);
 546	kfree(path);
 547}
 548
 549static void ext4_es_insert_extent_ind_check(struct inode *inode,
 550					    struct extent_status *es)
 551{
 552	struct ext4_map_blocks map;
 553	int retval;
 554
 555	/*
 556	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
 557	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
 558	 * access direct/indirect tree from outside.  It is too dirty to define
 559	 * this function in indirect.c file.
 560	 */
 561
 562	map.m_lblk = es->es_lblk;
 563	map.m_len = es->es_len;
 564
 565	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
 566	if (retval > 0) {
 567		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
 568			/*
 569			 * We want to add a delayed/hole extent but this
 570			 * block has been allocated.
 571			 */
 572			pr_warn("ES insert assertion failed for inode: %lu "
 573				"We can find blocks but we want to add a "
 574				"delayed/hole extent [%d/%d/%llu/%x]\n",
 575				inode->i_ino, es->es_lblk, es->es_len,
 576				ext4_es_pblock(es), ext4_es_status(es));
 577			return;
 578		} else if (ext4_es_is_written(es)) {
 579			if (retval != es->es_len) {
 580				pr_warn("ES insert assertion failed for "
 581					"inode: %lu retval %d != es_len %d\n",
 582					inode->i_ino, retval, es->es_len);
 583				return;
 584			}
 585			if (map.m_pblk != ext4_es_pblock(es)) {
 586				pr_warn("ES insert assertion failed for "
 587					"inode: %lu m_pblk %llu != "
 588					"es_pblk %llu\n",
 589					inode->i_ino, map.m_pblk,
 590					ext4_es_pblock(es));
 591				return;
 592			}
 593		} else {
 594			/*
 595			 * We don't need to check unwritten extent because
 596			 * indirect-based file doesn't have it.
 597			 */
 598			BUG_ON(1);
 599		}
 600	} else if (retval == 0) {
 601		if (ext4_es_is_written(es)) {
 602			pr_warn("ES insert assertion failed for inode: %lu "
 603				"We can't find the block but we want to add "
 604				"a written extent [%d/%d/%llu/%x]\n",
 605				inode->i_ino, es->es_lblk, es->es_len,
 606				ext4_es_pblock(es), ext4_es_status(es));
 607			return;
 608		}
 609	}
 610}
 611
 612static inline void ext4_es_insert_extent_check(struct inode *inode,
 613					       struct extent_status *es)
 614{
 615	/*
 616	 * We don't need to worry about the race condition because
 617	 * caller takes i_data_sem locking.
 618	 */
 619	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
 620	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 621		ext4_es_insert_extent_ext_check(inode, es);
 622	else
 623		ext4_es_insert_extent_ind_check(inode, es);
 624}
 625#else
 626static inline void ext4_es_insert_extent_check(struct inode *inode,
 627					       struct extent_status *es)
 628{
 629}
 630#endif
 631
 632static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
 633{
 634	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 635	struct rb_node **p = &tree->root.rb_node;
 636	struct rb_node *parent = NULL;
 637	struct extent_status *es;
 638
 639	while (*p) {
 640		parent = *p;
 641		es = rb_entry(parent, struct extent_status, rb_node);
 642
 643		if (newes->es_lblk < es->es_lblk) {
 644			if (ext4_es_can_be_merged(newes, es)) {
 645				/*
 646				 * Here we can modify es_lblk directly
 647				 * because it isn't overlapped.
 648				 */
 649				es->es_lblk = newes->es_lblk;
 650				es->es_len += newes->es_len;
 651				if (ext4_es_is_written(es) ||
 652				    ext4_es_is_unwritten(es))
 653					ext4_es_store_pblock(es,
 654							     newes->es_pblk);
 655				es = ext4_es_try_to_merge_left(inode, es);
 656				goto out;
 657			}
 658			p = &(*p)->rb_left;
 659		} else if (newes->es_lblk > ext4_es_end(es)) {
 660			if (ext4_es_can_be_merged(es, newes)) {
 661				es->es_len += newes->es_len;
 662				es = ext4_es_try_to_merge_right(inode, es);
 663				goto out;
 664			}
 665			p = &(*p)->rb_right;
 666		} else {
 667			BUG_ON(1);
 668			return -EINVAL;
 669		}
 670	}
 671
 672	es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
 673				  newes->es_pblk);
 674	if (!es)
 675		return -ENOMEM;
 676	rb_link_node(&es->rb_node, parent, p);
 677	rb_insert_color(&es->rb_node, &tree->root);
 678
 679out:
 680	tree->cache_es = es;
 681	return 0;
 682}
 683
 684/*
 685 * ext4_es_insert_extent() adds information to an inode's extent
 686 * status tree.
 687 *
 688 * Return 0 on success, error code on failure.
 689 */
 690int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
 691			  ext4_lblk_t len, ext4_fsblk_t pblk,
 692			  unsigned int status)
 693{
 694	struct extent_status newes;
 695	ext4_lblk_t end = lblk + len - 1;
 696	int err = 0;
 697
 698	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
 699		 lblk, len, pblk, status, inode->i_ino);
 700
 701	if (!len)
 702		return 0;
 703
 704	BUG_ON(end < lblk);
 705
 706	if ((status & EXTENT_STATUS_DELAYED) &&
 707	    (status & EXTENT_STATUS_WRITTEN)) {
 708		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
 709				" delayed and written which can potentially "
 710				" cause data loss.\n", lblk, len);
 711		WARN_ON(1);
 712	}
 713
 714	newes.es_lblk = lblk;
 715	newes.es_len = len;
 716	ext4_es_store_pblock_status(&newes, pblk, status);
 717	trace_ext4_es_insert_extent(inode, &newes);
 718
 719	ext4_es_insert_extent_check(inode, &newes);
 720
 721	write_lock(&EXT4_I(inode)->i_es_lock);
 722	err = __es_remove_extent(inode, lblk, end);
 723	if (err != 0)
 724		goto error;
 725retry:
 726	err = __es_insert_extent(inode, &newes);
 727	if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
 728					  128, EXT4_I(inode)))
 729		goto retry;
 730	if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
 731		err = 0;
 732
 733error:
 734	write_unlock(&EXT4_I(inode)->i_es_lock);
 735
 736	ext4_es_print_tree(inode);
 737
 738	return err;
 739}
 740
 741/*
 742 * ext4_es_cache_extent() inserts information into the extent status
 743 * tree if and only if there isn't information about the range in
 744 * question already.
 745 */
 746void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
 747			  ext4_lblk_t len, ext4_fsblk_t pblk,
 748			  unsigned int status)
 749{
 750	struct extent_status *es;
 751	struct extent_status newes;
 752	ext4_lblk_t end = lblk + len - 1;
 753
 754	newes.es_lblk = lblk;
 755	newes.es_len = len;
 756	ext4_es_store_pblock_status(&newes, pblk, status);
 757	trace_ext4_es_cache_extent(inode, &newes);
 758
 759	if (!len)
 760		return;
 761
 762	BUG_ON(end < lblk);
 763
 764	write_lock(&EXT4_I(inode)->i_es_lock);
 765
 766	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
 767	if (!es || es->es_lblk > end)
 768		__es_insert_extent(inode, &newes);
 769	write_unlock(&EXT4_I(inode)->i_es_lock);
 770}
 771
 772/*
 773 * ext4_es_lookup_extent() looks up an extent in extent status tree.
 774 *
 775 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
 776 *
 777 * Return: 1 on found, 0 on not
 778 */
 779int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
 780			  struct extent_status *es)
 781{
 782	struct ext4_es_tree *tree;
 783	struct ext4_es_stats *stats;
 784	struct extent_status *es1 = NULL;
 785	struct rb_node *node;
 786	int found = 0;
 787
 788	trace_ext4_es_lookup_extent_enter(inode, lblk);
 789	es_debug("lookup extent in block %u\n", lblk);
 790
 791	tree = &EXT4_I(inode)->i_es_tree;
 792	read_lock(&EXT4_I(inode)->i_es_lock);
 793
 794	/* find extent in cache firstly */
 795	es->es_lblk = es->es_len = es->es_pblk = 0;
 796	if (tree->cache_es) {
 797		es1 = tree->cache_es;
 798		if (in_range(lblk, es1->es_lblk, es1->es_len)) {
 799			es_debug("%u cached by [%u/%u)\n",
 800				 lblk, es1->es_lblk, es1->es_len);
 801			found = 1;
 802			goto out;
 803		}
 804	}
 805
 806	node = tree->root.rb_node;
 807	while (node) {
 808		es1 = rb_entry(node, struct extent_status, rb_node);
 809		if (lblk < es1->es_lblk)
 810			node = node->rb_left;
 811		else if (lblk > ext4_es_end(es1))
 812			node = node->rb_right;
 813		else {
 814			found = 1;
 815			break;
 816		}
 817	}
 818
 819out:
 820	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
 821	if (found) {
 822		BUG_ON(!es1);
 823		es->es_lblk = es1->es_lblk;
 824		es->es_len = es1->es_len;
 825		es->es_pblk = es1->es_pblk;
 826		if (!ext4_es_is_referenced(es1))
 827			ext4_es_set_referenced(es1);
 828		stats->es_stats_cache_hits++;
 829	} else {
 830		stats->es_stats_cache_misses++;
 831	}
 832
 833	read_unlock(&EXT4_I(inode)->i_es_lock);
 834
 835	trace_ext4_es_lookup_extent_exit(inode, es, found);
 836	return found;
 837}
 838
 839static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 840			      ext4_lblk_t end)
 841{
 842	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
 843	struct rb_node *node;
 844	struct extent_status *es;
 845	struct extent_status orig_es;
 846	ext4_lblk_t len1, len2;
 847	ext4_fsblk_t block;
 848	int err;
 849
 850retry:
 851	err = 0;
 852	es = __es_tree_search(&tree->root, lblk);
 853	if (!es)
 854		goto out;
 855	if (es->es_lblk > end)
 856		goto out;
 857
 858	/* Simply invalidate cache_es. */
 859	tree->cache_es = NULL;
 860
 861	orig_es.es_lblk = es->es_lblk;
 862	orig_es.es_len = es->es_len;
 863	orig_es.es_pblk = es->es_pblk;
 864
 865	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
 866	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
 867	if (len1 > 0)
 868		es->es_len = len1;
 869	if (len2 > 0) {
 870		if (len1 > 0) {
 871			struct extent_status newes;
 872
 873			newes.es_lblk = end + 1;
 874			newes.es_len = len2;
 875			block = 0x7FDEADBEEFULL;
 876			if (ext4_es_is_written(&orig_es) ||
 877			    ext4_es_is_unwritten(&orig_es))
 878				block = ext4_es_pblock(&orig_es) +
 879					orig_es.es_len - len2;
 880			ext4_es_store_pblock_status(&newes, block,
 881						    ext4_es_status(&orig_es));
 882			err = __es_insert_extent(inode, &newes);
 883			if (err) {
 884				es->es_lblk = orig_es.es_lblk;
 885				es->es_len = orig_es.es_len;
 886				if ((err == -ENOMEM) &&
 887				    __es_shrink(EXT4_SB(inode->i_sb),
 888							128, EXT4_I(inode)))
 889					goto retry;
 890				goto out;
 891			}
 892		} else {
 893			es->es_lblk = end + 1;
 894			es->es_len = len2;
 895			if (ext4_es_is_written(es) ||
 896			    ext4_es_is_unwritten(es)) {
 897				block = orig_es.es_pblk + orig_es.es_len - len2;
 898				ext4_es_store_pblock(es, block);
 899			}
 900		}
 901		goto out;
 902	}
 903
 904	if (len1 > 0) {
 905		node = rb_next(&es->rb_node);
 906		if (node)
 907			es = rb_entry(node, struct extent_status, rb_node);
 908		else
 909			es = NULL;
 910	}
 911
 912	while (es && ext4_es_end(es) <= end) {
 913		node = rb_next(&es->rb_node);
 914		rb_erase(&es->rb_node, &tree->root);
 915		ext4_es_free_extent(inode, es);
 916		if (!node) {
 917			es = NULL;
 918			break;
 919		}
 920		es = rb_entry(node, struct extent_status, rb_node);
 921	}
 922
 923	if (es && es->es_lblk < end + 1) {
 924		ext4_lblk_t orig_len = es->es_len;
 925
 926		len1 = ext4_es_end(es) - end;
 927		es->es_lblk = end + 1;
 928		es->es_len = len1;
 929		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
 930			block = es->es_pblk + orig_len - len1;
 931			ext4_es_store_pblock(es, block);
 932		}
 933	}
 934
 935out:
 936	return err;
 937}
 938
 939/*
 940 * ext4_es_remove_extent() removes a space from a extent status tree.
 941 *
 942 * Return 0 on success, error code on failure.
 943 */
 944int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
 945			  ext4_lblk_t len)
 946{
 947	ext4_lblk_t end;
 948	int err = 0;
 949
 950	trace_ext4_es_remove_extent(inode, lblk, len);
 951	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
 952		 lblk, len, inode->i_ino);
 953
 954	if (!len)
 955		return err;
 956
 957	end = lblk + len - 1;
 958	BUG_ON(end < lblk);
 959
 960	/*
 961	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
 962	 * so that we are sure __es_shrink() is done with the inode before it
 963	 * is reclaimed.
 964	 */
 965	write_lock(&EXT4_I(inode)->i_es_lock);
 966	err = __es_remove_extent(inode, lblk, end);
 967	write_unlock(&EXT4_I(inode)->i_es_lock);
 968	ext4_es_print_tree(inode);
 969	return err;
 970}
 971
 972static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
 973		       struct ext4_inode_info *locked_ei)
 974{
 975	struct ext4_inode_info *ei;
 976	struct ext4_es_stats *es_stats;
 977	ktime_t start_time;
 978	u64 scan_time;
 979	int nr_to_walk;
 980	int nr_shrunk = 0;
 981	int retried = 0, nr_skipped = 0;
 982
 983	es_stats = &sbi->s_es_stats;
 984	start_time = ktime_get();
 985
 986retry:
 987	spin_lock(&sbi->s_es_lock);
 988	nr_to_walk = sbi->s_es_nr_inode;
 989	while (nr_to_walk-- > 0) {
 990		if (list_empty(&sbi->s_es_list)) {
 991			spin_unlock(&sbi->s_es_lock);
 992			goto out;
 993		}
 994		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
 995				      i_es_list);
 996		/* Move the inode to the tail */
 997		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
 998
 999		/*
1000		 * Normally we try hard to avoid shrinking precached inodes,
1001		 * but we will as a last resort.
1002		 */
1003		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1004						EXT4_STATE_EXT_PRECACHED)) {
1005			nr_skipped++;
1006			continue;
1007		}
1008
1009		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1010			nr_skipped++;
1011			continue;
1012		}
1013		/*
1014		 * Now we hold i_es_lock which protects us from inode reclaim
1015		 * freeing inode under us
1016		 */
1017		spin_unlock(&sbi->s_es_lock);
1018
1019		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1020		write_unlock(&ei->i_es_lock);
1021
1022		if (nr_to_scan <= 0)
1023			goto out;
1024		spin_lock(&sbi->s_es_lock);
1025	}
1026	spin_unlock(&sbi->s_es_lock);
1027
1028	/*
1029	 * If we skipped any inodes, and we weren't able to make any
1030	 * forward progress, try again to scan precached inodes.
1031	 */
1032	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1033		retried++;
1034		goto retry;
1035	}
1036
1037	if (locked_ei && nr_shrunk == 0)
1038		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1039
1040out:
1041	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1042	if (likely(es_stats->es_stats_scan_time))
1043		es_stats->es_stats_scan_time = (scan_time +
1044				es_stats->es_stats_scan_time*3) / 4;
1045	else
1046		es_stats->es_stats_scan_time = scan_time;
1047	if (scan_time > es_stats->es_stats_max_scan_time)
1048		es_stats->es_stats_max_scan_time = scan_time;
1049	if (likely(es_stats->es_stats_shrunk))
1050		es_stats->es_stats_shrunk = (nr_shrunk +
1051				es_stats->es_stats_shrunk*3) / 4;
1052	else
1053		es_stats->es_stats_shrunk = nr_shrunk;
1054
1055	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1056			     nr_skipped, retried);
1057	return nr_shrunk;
1058}
1059
1060static unsigned long ext4_es_count(struct shrinker *shrink,
1061				   struct shrink_control *sc)
1062{
1063	unsigned long nr;
1064	struct ext4_sb_info *sbi;
1065
1066	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1067	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1068	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1069	return nr;
1070}
1071
1072static unsigned long ext4_es_scan(struct shrinker *shrink,
1073				  struct shrink_control *sc)
1074{
1075	struct ext4_sb_info *sbi = container_of(shrink,
1076					struct ext4_sb_info, s_es_shrinker);
1077	int nr_to_scan = sc->nr_to_scan;
1078	int ret, nr_shrunk;
1079
1080	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1081	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1082
1083	if (!nr_to_scan)
1084		return ret;
1085
1086	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1087
1088	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1089	return nr_shrunk;
1090}
1091
1092int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1093{
1094	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1095	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1096	struct ext4_inode_info *ei, *max = NULL;
1097	unsigned int inode_cnt = 0;
1098
1099	if (v != SEQ_START_TOKEN)
1100		return 0;
1101
1102	/* here we just find an inode that has the max nr. of objects */
1103	spin_lock(&sbi->s_es_lock);
1104	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1105		inode_cnt++;
1106		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1107			max = ei;
1108		else if (!max)
1109			max = ei;
1110	}
1111	spin_unlock(&sbi->s_es_lock);
1112
1113	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1114		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1115		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1116	seq_printf(seq, "  %lu/%lu cache hits/misses\n",
1117		   es_stats->es_stats_cache_hits,
1118		   es_stats->es_stats_cache_misses);
1119	if (inode_cnt)
1120		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1121
1122	seq_printf(seq, "average:\n  %llu us scan time\n",
1123	    div_u64(es_stats->es_stats_scan_time, 1000));
1124	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1125	if (inode_cnt)
1126		seq_printf(seq,
1127		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1128		    "  %llu us max scan time\n",
1129		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1130		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1131
1132	return 0;
1133}
1134
1135int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1136{
1137	int err;
1138
1139	/* Make sure we have enough bits for physical block number */
1140	BUILD_BUG_ON(ES_SHIFT < 48);
1141	INIT_LIST_HEAD(&sbi->s_es_list);
1142	sbi->s_es_nr_inode = 0;
1143	spin_lock_init(&sbi->s_es_lock);
1144	sbi->s_es_stats.es_stats_shrunk = 0;
1145	sbi->s_es_stats.es_stats_cache_hits = 0;
1146	sbi->s_es_stats.es_stats_cache_misses = 0;
1147	sbi->s_es_stats.es_stats_scan_time = 0;
1148	sbi->s_es_stats.es_stats_max_scan_time = 0;
1149	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1150	if (err)
1151		return err;
1152	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1153	if (err)
1154		goto err1;
1155
1156	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1157	sbi->s_es_shrinker.count_objects = ext4_es_count;
1158	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1159	err = register_shrinker(&sbi->s_es_shrinker);
1160	if (err)
1161		goto err2;
1162
1163	return 0;
1164
1165err2:
1166	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1167err1:
1168	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1169	return err;
1170}
1171
1172void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1173{
1174	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1175	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1176	unregister_shrinker(&sbi->s_es_shrinker);
1177}
1178
1179/*
1180 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1181 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1182 *
1183 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1184 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1185 * ei->i_es_shrink_lblk to where we should continue scanning.
1186 */
1187static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1188				 int *nr_to_scan, int *nr_shrunk)
1189{
1190	struct inode *inode = &ei->vfs_inode;
1191	struct ext4_es_tree *tree = &ei->i_es_tree;
1192	struct extent_status *es;
1193	struct rb_node *node;
1194
1195	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1196	if (!es)
1197		goto out_wrap;
1198	node = &es->rb_node;
1199	while (*nr_to_scan > 0) {
1200		if (es->es_lblk > end) {
1201			ei->i_es_shrink_lblk = end + 1;
1202			return 0;
1203		}
1204
1205		(*nr_to_scan)--;
1206		node = rb_next(&es->rb_node);
1207		/*
1208		 * We can't reclaim delayed extent from status tree because
1209		 * fiemap, bigallic, and seek_data/hole need to use it.
1210		 */
1211		if (ext4_es_is_delayed(es))
1212			goto next;
1213		if (ext4_es_is_referenced(es)) {
1214			ext4_es_clear_referenced(es);
1215			goto next;
1216		}
1217
1218		rb_erase(&es->rb_node, &tree->root);
1219		ext4_es_free_extent(inode, es);
1220		(*nr_shrunk)++;
1221next:
1222		if (!node)
1223			goto out_wrap;
1224		es = rb_entry(node, struct extent_status, rb_node);
1225	}
1226	ei->i_es_shrink_lblk = es->es_lblk;
1227	return 1;
1228out_wrap:
1229	ei->i_es_shrink_lblk = 0;
1230	return 0;
1231}
1232
1233static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1234{
1235	struct inode *inode = &ei->vfs_inode;
1236	int nr_shrunk = 0;
1237	ext4_lblk_t start = ei->i_es_shrink_lblk;
1238	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1239				      DEFAULT_RATELIMIT_BURST);
1240
1241	if (ei->i_es_shk_nr == 0)
1242		return 0;
1243
1244	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1245	    __ratelimit(&_rs))
1246		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1247
1248	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1249	    start != 0)
1250		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1251
1252	ei->i_es_tree.cache_es = NULL;
1253	return nr_shrunk;
1254}