Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
 
 
 
 
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97
  98struct backref_cache {
  99	/* red black tree of all backref nodes in the cache */
 100	struct rb_root rb_root;
 101	/* for passing backref nodes to btrfs_reloc_cow_block */
 102	struct backref_node *path[BTRFS_MAX_LEVEL];
 103	/*
 104	 * list of blocks that have been cowed but some block
 105	 * pointers in upper level blocks may not reflect the
 106	 * new location
 107	 */
 108	struct list_head pending[BTRFS_MAX_LEVEL];
 109	/* list of backref nodes with no child node */
 110	struct list_head leaves;
 111	/* list of blocks that have been cowed in current transaction */
 112	struct list_head changed;
 113	/* list of detached backref node. */
 114	struct list_head detached;
 115
 116	u64 last_trans;
 117
 118	int nr_nodes;
 119	int nr_edges;
 120};
 121
 
 122/*
 123 * map address of tree root to tree
 124 */
 125struct mapping_node {
 126	struct rb_node rb_node;
 127	u64 bytenr;
 
 
 128	void *data;
 129};
 130
 131struct mapping_tree {
 132	struct rb_root rb_root;
 133	spinlock_t lock;
 134};
 135
 136/*
 137 * present a tree block to process
 138 */
 139struct tree_block {
 140	struct rb_node rb_node;
 141	u64 bytenr;
 
 
 142	struct btrfs_key key;
 143	unsigned int level:8;
 144	unsigned int key_ready:1;
 145};
 146
 147#define MAX_EXTENTS 128
 148
 149struct file_extent_cluster {
 150	u64 start;
 151	u64 end;
 152	u64 boundary[MAX_EXTENTS];
 153	unsigned int nr;
 154};
 155
 156struct reloc_control {
 157	/* block group to relocate */
 158	struct btrfs_block_group_cache *block_group;
 159	/* extent tree */
 160	struct btrfs_root *extent_root;
 161	/* inode for moving data */
 162	struct inode *data_inode;
 163
 164	struct btrfs_block_rsv *block_rsv;
 165
 166	struct backref_cache backref_cache;
 167
 168	struct file_extent_cluster cluster;
 169	/* tree blocks have been processed */
 170	struct extent_io_tree processed_blocks;
 171	/* map start of tree root to corresponding reloc tree */
 172	struct mapping_tree reloc_root_tree;
 173	/* list of reloc trees */
 174	struct list_head reloc_roots;
 
 
 175	/* size of metadata reservation for merging reloc trees */
 176	u64 merging_rsv_size;
 177	/* size of relocated tree nodes */
 178	u64 nodes_relocated;
 
 
 179
 180	u64 search_start;
 181	u64 extents_found;
 182
 183	unsigned int stage:8;
 184	unsigned int create_reloc_tree:1;
 185	unsigned int merge_reloc_tree:1;
 186	unsigned int found_file_extent:1;
 187	unsigned int commit_transaction:1;
 188};
 189
 190/* stages of data relocation */
 191#define MOVE_DATA_EXTENTS	0
 192#define UPDATE_DATA_PTRS	1
 193
 194static void remove_backref_node(struct backref_cache *cache,
 195				struct backref_node *node);
 196static void __mark_block_processed(struct reloc_control *rc,
 197				   struct backref_node *node);
 198
 199static void mapping_tree_init(struct mapping_tree *tree)
 200{
 201	tree->rb_root = RB_ROOT;
 202	spin_lock_init(&tree->lock);
 203}
 204
 205static void backref_cache_init(struct backref_cache *cache)
 206{
 207	int i;
 208	cache->rb_root = RB_ROOT;
 209	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 210		INIT_LIST_HEAD(&cache->pending[i]);
 211	INIT_LIST_HEAD(&cache->changed);
 212	INIT_LIST_HEAD(&cache->detached);
 213	INIT_LIST_HEAD(&cache->leaves);
 214}
 215
 216static void backref_cache_cleanup(struct backref_cache *cache)
 217{
 218	struct backref_node *node;
 219	int i;
 220
 221	while (!list_empty(&cache->detached)) {
 222		node = list_entry(cache->detached.next,
 223				  struct backref_node, list);
 224		remove_backref_node(cache, node);
 225	}
 226
 227	while (!list_empty(&cache->leaves)) {
 228		node = list_entry(cache->leaves.next,
 229				  struct backref_node, lower);
 230		remove_backref_node(cache, node);
 231	}
 232
 233	cache->last_trans = 0;
 234
 235	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 236		BUG_ON(!list_empty(&cache->pending[i]));
 237	BUG_ON(!list_empty(&cache->changed));
 238	BUG_ON(!list_empty(&cache->detached));
 239	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 240	BUG_ON(cache->nr_nodes);
 241	BUG_ON(cache->nr_edges);
 242}
 243
 244static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 245{
 246	struct backref_node *node;
 247
 248	node = kzalloc(sizeof(*node), GFP_NOFS);
 249	if (node) {
 250		INIT_LIST_HEAD(&node->list);
 251		INIT_LIST_HEAD(&node->upper);
 252		INIT_LIST_HEAD(&node->lower);
 253		RB_CLEAR_NODE(&node->rb_node);
 254		cache->nr_nodes++;
 255	}
 256	return node;
 257}
 258
 259static void free_backref_node(struct backref_cache *cache,
 260			      struct backref_node *node)
 261{
 262	if (node) {
 263		cache->nr_nodes--;
 264		kfree(node);
 265	}
 266}
 267
 268static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 269{
 270	struct backref_edge *edge;
 271
 272	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 273	if (edge)
 274		cache->nr_edges++;
 275	return edge;
 276}
 277
 278static void free_backref_edge(struct backref_cache *cache,
 279			      struct backref_edge *edge)
 280{
 281	if (edge) {
 282		cache->nr_edges--;
 283		kfree(edge);
 284	}
 
 285}
 286
 287static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 288				   struct rb_node *node)
 289{
 290	struct rb_node **p = &root->rb_node;
 291	struct rb_node *parent = NULL;
 292	struct tree_entry *entry;
 293
 294	while (*p) {
 295		parent = *p;
 296		entry = rb_entry(parent, struct tree_entry, rb_node);
 297
 298		if (bytenr < entry->bytenr)
 299			p = &(*p)->rb_left;
 300		else if (bytenr > entry->bytenr)
 301			p = &(*p)->rb_right;
 302		else
 303			return parent;
 304	}
 305
 306	rb_link_node(node, parent, p);
 307	rb_insert_color(node, root);
 308	return NULL;
 309}
 310
 311static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 312{
 313	struct rb_node *n = root->rb_node;
 314	struct tree_entry *entry;
 315
 316	while (n) {
 317		entry = rb_entry(n, struct tree_entry, rb_node);
 318
 319		if (bytenr < entry->bytenr)
 320			n = n->rb_left;
 321		else if (bytenr > entry->bytenr)
 322			n = n->rb_right;
 323		else
 324			return n;
 325	}
 326	return NULL;
 327}
 328
 329/*
 330 * walk up backref nodes until reach node presents tree root
 331 */
 332static struct backref_node *walk_up_backref(struct backref_node *node,
 333					    struct backref_edge *edges[],
 334					    int *index)
 335{
 336	struct backref_edge *edge;
 337	int idx = *index;
 338
 339	while (!list_empty(&node->upper)) {
 340		edge = list_entry(node->upper.next,
 341				  struct backref_edge, list[LOWER]);
 342		edges[idx++] = edge;
 343		node = edge->node[UPPER];
 344	}
 345	BUG_ON(node->detached);
 346	*index = idx;
 347	return node;
 348}
 349
 350/*
 351 * walk down backref nodes to find start of next reference path
 352 */
 353static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 354					      int *index)
 355{
 356	struct backref_edge *edge;
 357	struct backref_node *lower;
 358	int idx = *index;
 359
 360	while (idx > 0) {
 361		edge = edges[idx - 1];
 362		lower = edge->node[LOWER];
 363		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 364			idx--;
 365			continue;
 366		}
 367		edge = list_entry(edge->list[LOWER].next,
 368				  struct backref_edge, list[LOWER]);
 369		edges[idx - 1] = edge;
 370		*index = idx;
 371		return edge->node[UPPER];
 372	}
 373	*index = 0;
 374	return NULL;
 375}
 376
 377static void unlock_node_buffer(struct backref_node *node)
 378{
 379	if (node->locked) {
 380		btrfs_tree_unlock(node->eb);
 381		node->locked = 0;
 382	}
 383}
 384
 385static void drop_node_buffer(struct backref_node *node)
 386{
 387	if (node->eb) {
 388		unlock_node_buffer(node);
 389		free_extent_buffer(node->eb);
 390		node->eb = NULL;
 391	}
 392}
 393
 394static void drop_backref_node(struct backref_cache *tree,
 395			      struct backref_node *node)
 396{
 397	BUG_ON(!list_empty(&node->upper));
 398
 399	drop_node_buffer(node);
 400	list_del(&node->list);
 401	list_del(&node->lower);
 402	if (!RB_EMPTY_NODE(&node->rb_node))
 403		rb_erase(&node->rb_node, &tree->rb_root);
 404	free_backref_node(tree, node);
 405}
 406
 407/*
 408 * remove a backref node from the backref cache
 409 */
 410static void remove_backref_node(struct backref_cache *cache,
 411				struct backref_node *node)
 412{
 413	struct backref_node *upper;
 414	struct backref_edge *edge;
 415
 416	if (!node)
 417		return;
 418
 419	BUG_ON(!node->lowest && !node->detached);
 420	while (!list_empty(&node->upper)) {
 421		edge = list_entry(node->upper.next, struct backref_edge,
 422				  list[LOWER]);
 423		upper = edge->node[UPPER];
 424		list_del(&edge->list[LOWER]);
 425		list_del(&edge->list[UPPER]);
 426		free_backref_edge(cache, edge);
 427
 428		if (RB_EMPTY_NODE(&upper->rb_node)) {
 429			BUG_ON(!list_empty(&node->upper));
 430			drop_backref_node(cache, node);
 431			node = upper;
 432			node->lowest = 1;
 433			continue;
 434		}
 435		/*
 436		 * add the node to leaf node list if no other
 437		 * child block cached.
 438		 */
 439		if (list_empty(&upper->lower)) {
 440			list_add_tail(&upper->lower, &cache->leaves);
 441			upper->lowest = 1;
 442		}
 443	}
 444
 445	drop_backref_node(cache, node);
 446}
 447
 448static void update_backref_node(struct backref_cache *cache,
 449				struct backref_node *node, u64 bytenr)
 450{
 451	struct rb_node *rb_node;
 452	rb_erase(&node->rb_node, &cache->rb_root);
 453	node->bytenr = bytenr;
 454	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 455	BUG_ON(rb_node);
 
 456}
 457
 458/*
 459 * update backref cache after a transaction commit
 460 */
 461static int update_backref_cache(struct btrfs_trans_handle *trans,
 462				struct backref_cache *cache)
 463{
 464	struct backref_node *node;
 465	int level = 0;
 466
 467	if (cache->last_trans == 0) {
 468		cache->last_trans = trans->transid;
 469		return 0;
 470	}
 471
 472	if (cache->last_trans == trans->transid)
 473		return 0;
 474
 475	/*
 476	 * detached nodes are used to avoid unnecessary backref
 477	 * lookup. transaction commit changes the extent tree.
 478	 * so the detached nodes are no longer useful.
 479	 */
 480	while (!list_empty(&cache->detached)) {
 481		node = list_entry(cache->detached.next,
 482				  struct backref_node, list);
 483		remove_backref_node(cache, node);
 484	}
 485
 486	while (!list_empty(&cache->changed)) {
 487		node = list_entry(cache->changed.next,
 488				  struct backref_node, list);
 489		list_del_init(&node->list);
 490		BUG_ON(node->pending);
 491		update_backref_node(cache, node, node->new_bytenr);
 492	}
 493
 494	/*
 495	 * some nodes can be left in the pending list if there were
 496	 * errors during processing the pending nodes.
 497	 */
 498	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 499		list_for_each_entry(node, &cache->pending[level], list) {
 500			BUG_ON(!node->pending);
 501			if (node->bytenr == node->new_bytenr)
 502				continue;
 503			update_backref_node(cache, node, node->new_bytenr);
 504		}
 505	}
 506
 507	cache->last_trans = 0;
 508	return 1;
 509}
 510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511
 512static int should_ignore_root(struct btrfs_root *root)
 513{
 514	struct btrfs_root *reloc_root;
 515
 516	if (!root->ref_cows)
 517		return 0;
 518
 
 
 
 
 519	reloc_root = root->reloc_root;
 520	if (!reloc_root)
 521		return 0;
 522
 523	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 524	    root->fs_info->running_transaction->transid - 1)
 525		return 0;
 526	/*
 527	 * if there is reloc tree and it was created in previous
 528	 * transaction backref lookup can find the reloc tree,
 529	 * so backref node for the fs tree root is useless for
 530	 * relocation.
 531	 */
 532	return 1;
 533}
 
 534/*
 535 * find reloc tree by address of tree root
 536 */
 537static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 538					  u64 bytenr)
 539{
 
 540	struct rb_node *rb_node;
 541	struct mapping_node *node;
 542	struct btrfs_root *root = NULL;
 543
 
 544	spin_lock(&rc->reloc_root_tree.lock);
 545	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 546	if (rb_node) {
 547		node = rb_entry(rb_node, struct mapping_node, rb_node);
 548		root = (struct btrfs_root *)node->data;
 549	}
 550	spin_unlock(&rc->reloc_root_tree.lock);
 551	return root;
 552}
 553
 554static int is_cowonly_root(u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555{
 556	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 557	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 558	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 559	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 560	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 561	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
 562		return 1;
 563	return 0;
 564}
 565
 566static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 567					u64 root_objectid)
 568{
 569	struct btrfs_key key;
 570
 571	key.objectid = root_objectid;
 572	key.type = BTRFS_ROOT_ITEM_KEY;
 573	if (is_cowonly_root(root_objectid))
 574		key.offset = 0;
 575	else
 576		key.offset = (u64)-1;
 577
 578	return btrfs_read_fs_root_no_name(fs_info, &key);
 579}
 580
 581#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 582static noinline_for_stack
 583struct btrfs_root *find_tree_root(struct reloc_control *rc,
 584				  struct extent_buffer *leaf,
 585				  struct btrfs_extent_ref_v0 *ref0)
 586{
 587	struct btrfs_root *root;
 588	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 589	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 590
 591	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 592
 593	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 594	BUG_ON(IS_ERR(root));
 595
 596	if (root->ref_cows &&
 597	    generation != btrfs_root_generation(&root->root_item))
 598		return NULL;
 
 
 599
 600	return root;
 601}
 602#endif
 
 603
 604static noinline_for_stack
 605int find_inline_backref(struct extent_buffer *leaf, int slot,
 606			unsigned long *ptr, unsigned long *end)
 607{
 608	struct btrfs_extent_item *ei;
 609	struct btrfs_tree_block_info *bi;
 610	u32 item_size;
 611
 612	item_size = btrfs_item_size_nr(leaf, slot);
 613#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 614	if (item_size < sizeof(*ei)) {
 615		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 616		return 1;
 617	}
 618#endif
 619	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 620	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 621		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 622
 623	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
 624		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 625		return 1;
 
 
 
 
 
 
 
 
 
 626	}
 627
 628	bi = (struct btrfs_tree_block_info *)(ei + 1);
 629	*ptr = (unsigned long)(bi + 1);
 630	*end = (unsigned long)ei + item_size;
 631	return 0;
 632}
 633
 634/*
 635 * build backref tree for a given tree block. root of the backref tree
 636 * corresponds the tree block, leaves of the backref tree correspond
 637 * roots of b-trees that reference the tree block.
 638 *
 639 * the basic idea of this function is check backrefs of a given block
 640 * to find upper level blocks that refernece the block, and then check
 641 * bakcrefs of these upper level blocks recursively. the recursion stop
 642 * when tree root is reached or backrefs for the block is cached.
 643 *
 644 * NOTE: if we find backrefs for a block are cached, we know backrefs
 645 * for all upper level blocks that directly/indirectly reference the
 646 * block are also cached.
 647 */
 648static noinline_for_stack
 649struct backref_node *build_backref_tree(struct reloc_control *rc,
 650					struct btrfs_key *node_key,
 651					int level, u64 bytenr)
 652{
 653	struct backref_cache *cache = &rc->backref_cache;
 654	struct btrfs_path *path1;
 655	struct btrfs_path *path2;
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root;
 658	struct backref_node *cur;
 659	struct backref_node *upper;
 660	struct backref_node *lower;
 661	struct backref_node *node = NULL;
 662	struct backref_node *exist = NULL;
 663	struct backref_edge *edge;
 664	struct rb_node *rb_node;
 665	struct btrfs_key key;
 666	unsigned long end;
 667	unsigned long ptr;
 668	LIST_HEAD(list);
 669	LIST_HEAD(useless);
 670	int cowonly;
 671	int ret;
 672	int err = 0;
 673
 674	path1 = btrfs_alloc_path();
 675	path2 = btrfs_alloc_path();
 676	if (!path1 || !path2) {
 
 
 677		err = -ENOMEM;
 678		goto out;
 679	}
 680	path1->reada = 1;
 681	path2->reada = 2;
 682
 683	node = alloc_backref_node(cache);
 684	if (!node) {
 685		err = -ENOMEM;
 686		goto out;
 687	}
 688
 689	node->bytenr = bytenr;
 690	node->level = level;
 691	node->lowest = 1;
 692	cur = node;
 693again:
 694	end = 0;
 695	ptr = 0;
 696	key.objectid = cur->bytenr;
 697	key.type = BTRFS_EXTENT_ITEM_KEY;
 698	key.offset = (u64)-1;
 699
 700	path1->search_commit_root = 1;
 701	path1->skip_locking = 1;
 702	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 703				0, 0);
 704	if (ret < 0) {
 705		err = ret;
 706		goto out;
 707	}
 708	BUG_ON(!ret || !path1->slots[0]);
 709
 710	path1->slots[0]--;
 711
 712	WARN_ON(cur->checked);
 713	if (!list_empty(&cur->upper)) {
 714		/*
 715		 * the backref was added previously when processing
 716		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 717		 */
 718		BUG_ON(!list_is_singular(&cur->upper));
 719		edge = list_entry(cur->upper.next, struct backref_edge,
 720				  list[LOWER]);
 721		BUG_ON(!list_empty(&edge->list[UPPER]));
 722		exist = edge->node[UPPER];
 723		/*
 724		 * add the upper level block to pending list if we need
 725		 * check its backrefs
 726		 */
 727		if (!exist->checked)
 728			list_add_tail(&edge->list[UPPER], &list);
 729	} else {
 730		exist = NULL;
 731	}
 732
 733	while (1) {
 734		cond_resched();
 735		eb = path1->nodes[0];
 736
 737		if (ptr >= end) {
 738			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 739				ret = btrfs_next_leaf(rc->extent_root, path1);
 740				if (ret < 0) {
 741					err = ret;
 742					goto out;
 743				}
 744				if (ret > 0)
 745					break;
 746				eb = path1->nodes[0];
 747			}
 748
 749			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 750			if (key.objectid != cur->bytenr) {
 751				WARN_ON(exist);
 752				break;
 753			}
 754
 755			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 756				ret = find_inline_backref(eb, path1->slots[0],
 757							  &ptr, &end);
 758				if (ret)
 759					goto next;
 760			}
 761		}
 762
 763		if (ptr < end) {
 764			/* update key for inline back ref */
 765			struct btrfs_extent_inline_ref *iref;
 766			iref = (struct btrfs_extent_inline_ref *)ptr;
 767			key.type = btrfs_extent_inline_ref_type(eb, iref);
 768			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 769			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 770				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 771		}
 772
 773		if (exist &&
 774		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 775		      exist->owner == key.offset) ||
 776		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 777		      exist->bytenr == key.offset))) {
 778			exist = NULL;
 779			goto next;
 780		}
 781
 782#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 783		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 784		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 785			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 786				struct btrfs_extent_ref_v0 *ref0;
 787				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 788						struct btrfs_extent_ref_v0);
 789				if (key.objectid == key.offset) {
 790					root = find_tree_root(rc, eb, ref0);
 791					if (root && !should_ignore_root(root))
 792						cur->root = root;
 793					else
 794						list_add(&cur->list, &useless);
 795					break;
 796				}
 797				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 798								      ref0)))
 799					cur->cowonly = 1;
 800			}
 801#else
 802		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 803		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 804#endif
 805			if (key.objectid == key.offset) {
 806				/*
 807				 * only root blocks of reloc trees use
 808				 * backref of this type.
 809				 */
 810				root = find_reloc_root(rc, cur->bytenr);
 811				BUG_ON(!root);
 812				cur->root = root;
 813				break;
 814			}
 815
 816			edge = alloc_backref_edge(cache);
 817			if (!edge) {
 818				err = -ENOMEM;
 819				goto out;
 820			}
 821			rb_node = tree_search(&cache->rb_root, key.offset);
 822			if (!rb_node) {
 823				upper = alloc_backref_node(cache);
 824				if (!upper) {
 825					free_backref_edge(cache, edge);
 826					err = -ENOMEM;
 827					goto out;
 828				}
 829				upper->bytenr = key.offset;
 830				upper->level = cur->level + 1;
 831				/*
 832				 *  backrefs for the upper level block isn't
 833				 *  cached, add the block to pending list
 834				 */
 835				list_add_tail(&edge->list[UPPER], &list);
 836			} else {
 837				upper = rb_entry(rb_node, struct backref_node,
 838						 rb_node);
 839				BUG_ON(!upper->checked);
 840				INIT_LIST_HEAD(&edge->list[UPPER]);
 841			}
 842			list_add_tail(&edge->list[LOWER], &cur->upper);
 843			edge->node[LOWER] = cur;
 844			edge->node[UPPER] = upper;
 845
 846			goto next;
 847		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 848			goto next;
 849		}
 850
 851		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 852		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 853		if (IS_ERR(root)) {
 854			err = PTR_ERR(root);
 855			goto out;
 856		}
 857
 858		if (!root->ref_cows)
 859			cur->cowonly = 1;
 860
 861		if (btrfs_root_level(&root->root_item) == cur->level) {
 862			/* tree root */
 863			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 864			       cur->bytenr);
 865			if (should_ignore_root(root))
 866				list_add(&cur->list, &useless);
 867			else
 868				cur->root = root;
 869			break;
 870		}
 871
 872		level = cur->level + 1;
 873
 874		/*
 875		 * searching the tree to find upper level blocks
 876		 * reference the block.
 877		 */
 878		path2->search_commit_root = 1;
 879		path2->skip_locking = 1;
 880		path2->lowest_level = level;
 881		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 882		path2->lowest_level = 0;
 883		if (ret < 0) {
 884			err = ret;
 885			goto out;
 886		}
 887		if (ret > 0 && path2->slots[level] > 0)
 888			path2->slots[level]--;
 889
 890		eb = path2->nodes[level];
 891		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 892			cur->bytenr);
 893
 894		lower = cur;
 895		for (; level < BTRFS_MAX_LEVEL; level++) {
 896			if (!path2->nodes[level]) {
 897				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 898				       lower->bytenr);
 899				if (should_ignore_root(root))
 900					list_add(&lower->list, &useless);
 901				else
 902					lower->root = root;
 903				break;
 904			}
 905
 906			edge = alloc_backref_edge(cache);
 907			if (!edge) {
 908				err = -ENOMEM;
 909				goto out;
 910			}
 911
 912			eb = path2->nodes[level];
 913			rb_node = tree_search(&cache->rb_root, eb->start);
 914			if (!rb_node) {
 915				upper = alloc_backref_node(cache);
 916				if (!upper) {
 917					free_backref_edge(cache, edge);
 918					err = -ENOMEM;
 919					goto out;
 920				}
 921				upper->bytenr = eb->start;
 922				upper->owner = btrfs_header_owner(eb);
 923				upper->level = lower->level + 1;
 924				if (!root->ref_cows)
 925					upper->cowonly = 1;
 926
 927				/*
 928				 * if we know the block isn't shared
 929				 * we can void checking its backrefs.
 930				 */
 931				if (btrfs_block_can_be_shared(root, eb))
 932					upper->checked = 0;
 933				else
 934					upper->checked = 1;
 935
 936				/*
 937				 * add the block to pending list if we
 938				 * need check its backrefs. only block
 939				 * at 'cur->level + 1' is added to the
 940				 * tail of pending list. this guarantees
 941				 * we check backrefs from lower level
 942				 * blocks to upper level blocks.
 943				 */
 944				if (!upper->checked &&
 945				    level == cur->level + 1) {
 946					list_add_tail(&edge->list[UPPER],
 947						      &list);
 948				} else
 949					INIT_LIST_HEAD(&edge->list[UPPER]);
 950			} else {
 951				upper = rb_entry(rb_node, struct backref_node,
 952						 rb_node);
 953				BUG_ON(!upper->checked);
 954				INIT_LIST_HEAD(&edge->list[UPPER]);
 955				if (!upper->owner)
 956					upper->owner = btrfs_header_owner(eb);
 957			}
 958			list_add_tail(&edge->list[LOWER], &lower->upper);
 959			edge->node[LOWER] = lower;
 960			edge->node[UPPER] = upper;
 961
 962			if (rb_node)
 963				break;
 964			lower = upper;
 965			upper = NULL;
 966		}
 967		btrfs_release_path(path2);
 968next:
 969		if (ptr < end) {
 970			ptr += btrfs_extent_inline_ref_size(key.type);
 971			if (ptr >= end) {
 972				WARN_ON(ptr > end);
 973				ptr = 0;
 974				end = 0;
 975			}
 976		}
 977		if (ptr >= end)
 978			path1->slots[0]++;
 979	}
 980	btrfs_release_path(path1);
 981
 982	cur->checked = 1;
 983	WARN_ON(exist);
 984
 985	/* the pending list isn't empty, take the first block to process */
 986	if (!list_empty(&list)) {
 987		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
 988		list_del_init(&edge->list[UPPER]);
 989		cur = edge->node[UPPER];
 990		goto again;
 991	}
 992
 993	/*
 994	 * everything goes well, connect backref nodes and insert backref nodes
 995	 * into the cache.
 996	 */
 997	BUG_ON(!node->checked);
 998	cowonly = node->cowonly;
 999	if (!cowonly) {
1000		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1001				      &node->rb_node);
1002		BUG_ON(rb_node);
1003		list_add_tail(&node->lower, &cache->leaves);
1004	}
1005
1006	list_for_each_entry(edge, &node->upper, list[LOWER])
1007		list_add_tail(&edge->list[UPPER], &list);
1008
1009	while (!list_empty(&list)) {
1010		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1011		list_del_init(&edge->list[UPPER]);
1012		upper = edge->node[UPPER];
1013		if (upper->detached) {
1014			list_del(&edge->list[LOWER]);
1015			lower = edge->node[LOWER];
1016			free_backref_edge(cache, edge);
1017			if (list_empty(&lower->upper))
1018				list_add(&lower->list, &useless);
1019			continue;
1020		}
1021
1022		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1023			if (upper->lowest) {
1024				list_del_init(&upper->lower);
1025				upper->lowest = 0;
1026			}
1027
1028			list_add_tail(&edge->list[UPPER], &upper->lower);
1029			continue;
1030		}
1031
1032		BUG_ON(!upper->checked);
1033		BUG_ON(cowonly != upper->cowonly);
1034		if (!cowonly) {
1035			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1036					      &upper->rb_node);
1037			BUG_ON(rb_node);
1038		}
 
1039
1040		list_add_tail(&edge->list[UPPER], &upper->lower);
1041
1042		list_for_each_entry(edge, &upper->upper, list[LOWER])
1043			list_add_tail(&edge->list[UPPER], &list);
 
1044	}
1045	/*
1046	 * process useless backref nodes. backref nodes for tree leaves
1047	 * are deleted from the cache. backref nodes for upper level
1048	 * tree blocks are left in the cache to avoid unnecessary backref
1049	 * lookup.
1050	 */
1051	while (!list_empty(&useless)) {
1052		upper = list_entry(useless.next, struct backref_node, list);
1053		list_del_init(&upper->list);
1054		BUG_ON(!list_empty(&upper->upper));
1055		if (upper == node)
1056			node = NULL;
1057		if (upper->lowest) {
1058			list_del_init(&upper->lower);
1059			upper->lowest = 0;
1060		}
1061		while (!list_empty(&upper->lower)) {
1062			edge = list_entry(upper->lower.next,
1063					  struct backref_edge, list[UPPER]);
1064			list_del(&edge->list[UPPER]);
1065			list_del(&edge->list[LOWER]);
1066			lower = edge->node[LOWER];
1067			free_backref_edge(cache, edge);
1068
1069			if (list_empty(&lower->upper))
1070				list_add(&lower->list, &useless);
1071		}
1072		__mark_block_processed(rc, upper);
1073		if (upper->level > 0) {
1074			list_add(&upper->list, &cache->detached);
1075			upper->detached = 1;
1076		} else {
1077			rb_erase(&upper->rb_node, &cache->rb_root);
1078			free_backref_node(cache, upper);
1079		}
1080	}
1081out:
1082	btrfs_free_path(path1);
1083	btrfs_free_path(path2);
1084	if (err) {
1085		while (!list_empty(&useless)) {
1086			lower = list_entry(useless.next,
1087					   struct backref_node, upper);
1088			list_del_init(&lower->upper);
1089		}
1090		upper = node;
1091		INIT_LIST_HEAD(&list);
1092		while (upper) {
1093			if (RB_EMPTY_NODE(&upper->rb_node)) {
1094				list_splice_tail(&upper->upper, &list);
1095				free_backref_node(cache, upper);
1096			}
1097
1098			if (list_empty(&list))
1099				break;
1100
1101			edge = list_entry(list.next, struct backref_edge,
1102					  list[LOWER]);
1103			list_del(&edge->list[LOWER]);
1104			upper = edge->node[UPPER];
1105			free_backref_edge(cache, edge);
1106		}
1107		return ERR_PTR(err);
1108	}
1109	BUG_ON(node && node->detached);
 
 
1110	return node;
1111}
1112
1113/*
1114 * helper to add backref node for the newly created snapshot.
1115 * the backref node is created by cloning backref node that
1116 * corresponds to root of source tree
1117 */
1118static int clone_backref_node(struct btrfs_trans_handle *trans,
1119			      struct reloc_control *rc,
1120			      struct btrfs_root *src,
1121			      struct btrfs_root *dest)
1122{
1123	struct btrfs_root *reloc_root = src->reloc_root;
1124	struct backref_cache *cache = &rc->backref_cache;
1125	struct backref_node *node = NULL;
1126	struct backref_node *new_node;
1127	struct backref_edge *edge;
1128	struct backref_edge *new_edge;
1129	struct rb_node *rb_node;
1130
1131	if (cache->last_trans > 0)
1132		update_backref_cache(trans, cache);
1133
1134	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1135	if (rb_node) {
1136		node = rb_entry(rb_node, struct backref_node, rb_node);
1137		if (node->detached)
1138			node = NULL;
1139		else
1140			BUG_ON(node->new_bytenr != reloc_root->node->start);
1141	}
1142
1143	if (!node) {
1144		rb_node = tree_search(&cache->rb_root,
1145				      reloc_root->commit_root->start);
1146		if (rb_node) {
1147			node = rb_entry(rb_node, struct backref_node,
1148					rb_node);
1149			BUG_ON(node->detached);
1150		}
1151	}
1152
1153	if (!node)
1154		return 0;
1155
1156	new_node = alloc_backref_node(cache);
 
1157	if (!new_node)
1158		return -ENOMEM;
1159
1160	new_node->bytenr = dest->node->start;
1161	new_node->level = node->level;
1162	new_node->lowest = node->lowest;
1163	new_node->checked = 1;
1164	new_node->root = dest;
 
1165
1166	if (!node->lowest) {
1167		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1168			new_edge = alloc_backref_edge(cache);
1169			if (!new_edge)
1170				goto fail;
1171
1172			new_edge->node[UPPER] = new_node;
1173			new_edge->node[LOWER] = edge->node[LOWER];
1174			list_add_tail(&new_edge->list[UPPER],
1175				      &new_node->lower);
1176		}
 
 
1177	}
1178
1179	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1180			      &new_node->rb_node);
1181	BUG_ON(rb_node);
 
1182
1183	if (!new_node->lowest) {
1184		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1185			list_add_tail(&new_edge->list[LOWER],
1186				      &new_edge->node[LOWER]->upper);
1187		}
1188	}
1189	return 0;
1190fail:
1191	while (!list_empty(&new_node->lower)) {
1192		new_edge = list_entry(new_node->lower.next,
1193				      struct backref_edge, list[UPPER]);
1194		list_del(&new_edge->list[UPPER]);
1195		free_backref_edge(cache, new_edge);
1196	}
1197	free_backref_node(cache, new_node);
1198	return -ENOMEM;
1199}
1200
1201/*
1202 * helper to add 'address of tree root -> reloc tree' mapping
1203 */
1204static int __add_reloc_root(struct btrfs_root *root)
1205{
 
1206	struct rb_node *rb_node;
1207	struct mapping_node *node;
1208	struct reloc_control *rc = root->fs_info->reloc_ctl;
1209
1210	node = kmalloc(sizeof(*node), GFP_NOFS);
1211	BUG_ON(!node);
 
1212
1213	node->bytenr = root->node->start;
1214	node->data = root;
1215
1216	spin_lock(&rc->reloc_root_tree.lock);
1217	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1218			      node->bytenr, &node->rb_node);
1219	spin_unlock(&rc->reloc_root_tree.lock);
1220	BUG_ON(rb_node);
 
 
 
 
1221
1222	list_add_tail(&root->root_list, &rc->reloc_roots);
1223	return 0;
1224}
1225
1226/*
1227 * helper to update/delete the 'address of tree root -> reloc tree'
1228 * mapping
1229 */
1230static int __update_reloc_root(struct btrfs_root *root, int del)
1231{
 
1232	struct rb_node *rb_node;
1233	struct mapping_node *node = NULL;
1234	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235
1236	spin_lock(&rc->reloc_root_tree.lock);
1237	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1238			      root->commit_root->start);
1239	if (rb_node) {
1240		node = rb_entry(rb_node, struct mapping_node, rb_node);
1241		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1242	}
1243	spin_unlock(&rc->reloc_root_tree.lock);
1244
 
 
1245	BUG_ON((struct btrfs_root *)node->data != root);
1246
1247	if (!del) {
1248		spin_lock(&rc->reloc_root_tree.lock);
1249		node->bytenr = root->node->start;
1250		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1251				      node->bytenr, &node->rb_node);
1252		spin_unlock(&rc->reloc_root_tree.lock);
1253		BUG_ON(rb_node);
1254	} else {
1255		list_del_init(&root->root_list);
1256		kfree(node);
1257	}
1258	return 0;
1259}
1260
1261static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1262					struct btrfs_root *root, u64 objectid)
1263{
 
1264	struct btrfs_root *reloc_root;
1265	struct extent_buffer *eb;
1266	struct btrfs_root_item *root_item;
1267	struct btrfs_key root_key;
1268	int ret;
1269
1270	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1271	BUG_ON(!root_item);
1272
1273	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1274	root_key.type = BTRFS_ROOT_ITEM_KEY;
1275	root_key.offset = objectid;
1276
1277	if (root->root_key.objectid == objectid) {
 
 
1278		/* called by btrfs_init_reloc_root */
1279		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1280				      BTRFS_TREE_RELOC_OBJECTID);
1281		BUG_ON(ret);
1282
1283		btrfs_set_root_last_snapshot(&root->root_item,
1284					     trans->transid - 1);
 
 
 
 
 
 
 
1285	} else {
1286		/*
1287		 * called by btrfs_reloc_post_snapshot_hook.
1288		 * the source tree is a reloc tree, all tree blocks
1289		 * modified after it was created have RELOC flag
1290		 * set in their headers. so it's OK to not update
1291		 * the 'last_snapshot'.
1292		 */
1293		ret = btrfs_copy_root(trans, root, root->node, &eb,
1294				      BTRFS_TREE_RELOC_OBJECTID);
1295		BUG_ON(ret);
1296	}
1297
1298	memcpy(root_item, &root->root_item, sizeof(*root_item));
1299	btrfs_set_root_bytenr(root_item, eb->start);
1300	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1301	btrfs_set_root_generation(root_item, trans->transid);
1302
1303	if (root->root_key.objectid == objectid) {
1304		btrfs_set_root_refs(root_item, 0);
1305		memset(&root_item->drop_progress, 0,
1306		       sizeof(struct btrfs_disk_key));
1307		root_item->drop_level = 0;
1308	}
1309
1310	btrfs_tree_unlock(eb);
1311	free_extent_buffer(eb);
1312
1313	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1314				&root_key, root_item);
1315	BUG_ON(ret);
1316	kfree(root_item);
1317
1318	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1319						 &root_key);
1320	BUG_ON(IS_ERR(reloc_root));
 
1321	reloc_root->last_trans = trans->transid;
1322	return reloc_root;
1323}
1324
1325/*
1326 * create reloc tree for a given fs tree. reloc tree is just a
1327 * snapshot of the fs tree with special root objectid.
 
 
 
1328 */
1329int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1330			  struct btrfs_root *root)
1331{
 
1332	struct btrfs_root *reloc_root;
1333	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1334	int clear_rsv = 0;
 
 
 
 
 
 
 
 
 
 
 
1335
 
 
 
 
 
 
 
 
1336	if (root->reloc_root) {
1337		reloc_root = root->reloc_root;
1338		reloc_root->last_trans = trans->transid;
1339		return 0;
1340	}
1341
1342	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1343	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1344		return 0;
1345
1346	if (!trans->block_rsv) {
 
1347		trans->block_rsv = rc->block_rsv;
1348		clear_rsv = 1;
1349	}
1350	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1351	if (clear_rsv)
1352		trans->block_rsv = NULL;
1353
1354	__add_reloc_root(reloc_root);
1355	root->reloc_root = reloc_root;
 
1356	return 0;
1357}
1358
1359/*
1360 * update root item of reloc tree
1361 */
1362int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1363			    struct btrfs_root *root)
1364{
 
1365	struct btrfs_root *reloc_root;
1366	struct btrfs_root_item *root_item;
1367	int del = 0;
1368	int ret;
1369
1370	if (!root->reloc_root)
1371		goto out;
1372
1373	reloc_root = root->reloc_root;
1374	root_item = &reloc_root->root_item;
1375
1376	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
 
 
 
 
 
 
 
 
1377	    btrfs_root_refs(root_item) == 0) {
1378		root->reloc_root = NULL;
1379		del = 1;
 
 
 
 
 
1380	}
1381
1382	__update_reloc_root(reloc_root, del);
1383
1384	if (reloc_root->commit_root != reloc_root->node) {
 
1385		btrfs_set_root_node(root_item, reloc_root->node);
1386		free_extent_buffer(reloc_root->commit_root);
1387		reloc_root->commit_root = btrfs_root_node(reloc_root);
1388	}
1389
1390	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1391				&reloc_root->root_key, root_item);
1392	BUG_ON(ret);
1393
1394out:
1395	return 0;
1396}
1397
1398/*
1399 * helper to find first cached inode with inode number >= objectid
1400 * in a subvolume
1401 */
1402static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1403{
1404	struct rb_node *node;
1405	struct rb_node *prev;
1406	struct btrfs_inode *entry;
1407	struct inode *inode;
1408
1409	spin_lock(&root->inode_lock);
1410again:
1411	node = root->inode_tree.rb_node;
1412	prev = NULL;
1413	while (node) {
1414		prev = node;
1415		entry = rb_entry(node, struct btrfs_inode, rb_node);
1416
1417		if (objectid < btrfs_ino(&entry->vfs_inode))
1418			node = node->rb_left;
1419		else if (objectid > btrfs_ino(&entry->vfs_inode))
1420			node = node->rb_right;
1421		else
1422			break;
1423	}
1424	if (!node) {
1425		while (prev) {
1426			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1427			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1428				node = prev;
1429				break;
1430			}
1431			prev = rb_next(prev);
1432		}
1433	}
1434	while (node) {
1435		entry = rb_entry(node, struct btrfs_inode, rb_node);
1436		inode = igrab(&entry->vfs_inode);
1437		if (inode) {
1438			spin_unlock(&root->inode_lock);
1439			return inode;
1440		}
1441
1442		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1443		if (cond_resched_lock(&root->inode_lock))
1444			goto again;
1445
1446		node = rb_next(node);
1447	}
1448	spin_unlock(&root->inode_lock);
1449	return NULL;
1450}
1451
1452static int in_block_group(u64 bytenr,
1453			  struct btrfs_block_group_cache *block_group)
1454{
1455	if (bytenr >= block_group->key.objectid &&
1456	    bytenr < block_group->key.objectid + block_group->key.offset)
1457		return 1;
1458	return 0;
1459}
1460
1461/*
1462 * get new location of data
1463 */
1464static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1465			    u64 bytenr, u64 num_bytes)
1466{
1467	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1468	struct btrfs_path *path;
1469	struct btrfs_file_extent_item *fi;
1470	struct extent_buffer *leaf;
1471	int ret;
1472
1473	path = btrfs_alloc_path();
1474	if (!path)
1475		return -ENOMEM;
1476
1477	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1478	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1479				       bytenr, 0);
1480	if (ret < 0)
1481		goto out;
1482	if (ret > 0) {
1483		ret = -ENOENT;
1484		goto out;
1485	}
1486
1487	leaf = path->nodes[0];
1488	fi = btrfs_item_ptr(leaf, path->slots[0],
1489			    struct btrfs_file_extent_item);
1490
1491	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1492	       btrfs_file_extent_compression(leaf, fi) ||
1493	       btrfs_file_extent_encryption(leaf, fi) ||
1494	       btrfs_file_extent_other_encoding(leaf, fi));
1495
1496	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1497		ret = 1;
1498		goto out;
1499	}
1500
1501	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1502	ret = 0;
1503out:
1504	btrfs_free_path(path);
1505	return ret;
1506}
1507
1508/*
1509 * update file extent items in the tree leaf to point to
1510 * the new locations.
1511 */
1512static noinline_for_stack
1513int replace_file_extents(struct btrfs_trans_handle *trans,
1514			 struct reloc_control *rc,
1515			 struct btrfs_root *root,
1516			 struct extent_buffer *leaf)
1517{
 
1518	struct btrfs_key key;
1519	struct btrfs_file_extent_item *fi;
1520	struct inode *inode = NULL;
1521	u64 parent;
1522	u64 bytenr;
1523	u64 new_bytenr = 0;
1524	u64 num_bytes;
1525	u64 end;
1526	u32 nritems;
1527	u32 i;
1528	int ret;
1529	int first = 1;
1530	int dirty = 0;
1531
1532	if (rc->stage != UPDATE_DATA_PTRS)
1533		return 0;
1534
1535	/* reloc trees always use full backref */
1536	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1537		parent = leaf->start;
1538	else
1539		parent = 0;
1540
1541	nritems = btrfs_header_nritems(leaf);
1542	for (i = 0; i < nritems; i++) {
 
 
1543		cond_resched();
1544		btrfs_item_key_to_cpu(leaf, &key, i);
1545		if (key.type != BTRFS_EXTENT_DATA_KEY)
1546			continue;
1547		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1548		if (btrfs_file_extent_type(leaf, fi) ==
1549		    BTRFS_FILE_EXTENT_INLINE)
1550			continue;
1551		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1552		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1553		if (bytenr == 0)
1554			continue;
1555		if (!in_block_group(bytenr, rc->block_group))
 
1556			continue;
1557
1558		/*
1559		 * if we are modifying block in fs tree, wait for readpage
1560		 * to complete and drop the extent cache
1561		 */
1562		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1563			if (first) {
1564				inode = find_next_inode(root, key.objectid);
1565				first = 0;
1566			} else if (inode && btrfs_ino(inode) < key.objectid) {
1567				btrfs_add_delayed_iput(inode);
1568				inode = find_next_inode(root, key.objectid);
1569			}
1570			if (inode && btrfs_ino(inode) == key.objectid) {
1571				end = key.offset +
1572				      btrfs_file_extent_num_bytes(leaf, fi);
1573				WARN_ON(!IS_ALIGNED(key.offset,
1574						    root->sectorsize));
1575				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1576				end--;
1577				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1578						      key.offset, end,
1579						      GFP_NOFS);
1580				if (!ret)
1581					continue;
1582
1583				btrfs_drop_extent_cache(inode, key.offset, end,
1584							1);
1585				unlock_extent(&BTRFS_I(inode)->io_tree,
1586					      key.offset, end, GFP_NOFS);
1587			}
1588		}
1589
1590		ret = get_new_location(rc->data_inode, &new_bytenr,
1591				       bytenr, num_bytes);
1592		if (ret > 0) {
1593			WARN_ON(1);
1594			continue;
 
 
 
1595		}
1596		BUG_ON(ret < 0);
1597
1598		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1599		dirty = 1;
1600
1601		key.offset -= btrfs_file_extent_offset(leaf, fi);
1602		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1603					   num_bytes, parent,
1604					   btrfs_header_owner(leaf),
1605					   key.objectid, key.offset);
1606		BUG_ON(ret);
 
 
 
 
 
1607
1608		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1609					parent, btrfs_header_owner(leaf),
1610					key.objectid, key.offset);
1611		BUG_ON(ret);
 
 
 
 
 
 
1612	}
1613	if (dirty)
1614		btrfs_mark_buffer_dirty(leaf);
1615	if (inode)
1616		btrfs_add_delayed_iput(inode);
1617	return 0;
1618}
1619
1620static noinline_for_stack
1621int memcmp_node_keys(struct extent_buffer *eb, int slot,
1622		     struct btrfs_path *path, int level)
1623{
1624	struct btrfs_disk_key key1;
1625	struct btrfs_disk_key key2;
1626	btrfs_node_key(eb, &key1, slot);
1627	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1628	return memcmp(&key1, &key2, sizeof(key1));
1629}
1630
1631/*
1632 * try to replace tree blocks in fs tree with the new blocks
1633 * in reloc tree. tree blocks haven't been modified since the
1634 * reloc tree was create can be replaced.
1635 *
1636 * if a block was replaced, level of the block + 1 is returned.
1637 * if no block got replaced, 0 is returned. if there are other
1638 * errors, a negative error number is returned.
1639 */
1640static noinline_for_stack
1641int replace_path(struct btrfs_trans_handle *trans,
1642		 struct btrfs_root *dest, struct btrfs_root *src,
1643		 struct btrfs_path *path, struct btrfs_key *next_key,
1644		 int lowest_level, int max_level)
1645{
 
1646	struct extent_buffer *eb;
1647	struct extent_buffer *parent;
 
1648	struct btrfs_key key;
1649	u64 old_bytenr;
1650	u64 new_bytenr;
1651	u64 old_ptr_gen;
1652	u64 new_ptr_gen;
1653	u64 last_snapshot;
1654	u32 blocksize;
1655	int cow = 0;
1656	int level;
1657	int ret;
1658	int slot;
1659
1660	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1661	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1662
1663	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1664again:
1665	slot = path->slots[lowest_level];
1666	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1667
1668	eb = btrfs_lock_root_node(dest);
1669	btrfs_set_lock_blocking(eb);
1670	level = btrfs_header_level(eb);
1671
1672	if (level < lowest_level) {
1673		btrfs_tree_unlock(eb);
1674		free_extent_buffer(eb);
1675		return 0;
1676	}
1677
1678	if (cow) {
1679		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1680		BUG_ON(ret);
1681	}
1682	btrfs_set_lock_blocking(eb);
1683
1684	if (next_key) {
1685		next_key->objectid = (u64)-1;
1686		next_key->type = (u8)-1;
1687		next_key->offset = (u64)-1;
1688	}
1689
1690	parent = eb;
1691	while (1) {
 
 
1692		level = btrfs_header_level(parent);
1693		BUG_ON(level < lowest_level);
1694
1695		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1696		if (ret && slot > 0)
1697			slot--;
1698
1699		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1700			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1701
1702		old_bytenr = btrfs_node_blockptr(parent, slot);
1703		blocksize = btrfs_level_size(dest, level - 1);
1704		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
 
1705
1706		if (level <= max_level) {
1707			eb = path->nodes[level];
1708			new_bytenr = btrfs_node_blockptr(eb,
1709							path->slots[level]);
1710			new_ptr_gen = btrfs_node_ptr_generation(eb,
1711							path->slots[level]);
1712		} else {
1713			new_bytenr = 0;
1714			new_ptr_gen = 0;
1715		}
1716
1717		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1718			WARN_ON(1);
1719			ret = level;
1720			break;
1721		}
1722
1723		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1724		    memcmp_node_keys(parent, slot, path, level)) {
1725			if (level <= lowest_level) {
1726				ret = 0;
1727				break;
1728			}
1729
1730			eb = read_tree_block(dest, old_bytenr, blocksize,
1731					     old_ptr_gen);
1732			BUG_ON(!eb);
 
 
 
 
 
 
 
1733			btrfs_tree_lock(eb);
1734			if (cow) {
1735				ret = btrfs_cow_block(trans, dest, eb, parent,
1736						      slot, &eb);
1737				BUG_ON(ret);
1738			}
1739			btrfs_set_lock_blocking(eb);
1740
1741			btrfs_tree_unlock(parent);
1742			free_extent_buffer(parent);
1743
1744			parent = eb;
1745			continue;
1746		}
1747
1748		if (!cow) {
1749			btrfs_tree_unlock(parent);
1750			free_extent_buffer(parent);
1751			cow = 1;
1752			goto again;
1753		}
1754
1755		btrfs_node_key_to_cpu(path->nodes[level], &key,
1756				      path->slots[level]);
1757		btrfs_release_path(path);
1758
1759		path->lowest_level = level;
1760		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1761		path->lowest_level = 0;
1762		BUG_ON(ret);
1763
1764		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765		 * swap blocks in fs tree and reloc tree.
1766		 */
1767		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1768		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1769		btrfs_mark_buffer_dirty(parent);
1770
1771		btrfs_set_node_blockptr(path->nodes[level],
1772					path->slots[level], old_bytenr);
1773		btrfs_set_node_ptr_generation(path->nodes[level],
1774					      path->slots[level], old_ptr_gen);
1775		btrfs_mark_buffer_dirty(path->nodes[level]);
1776
1777		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1778					path->nodes[level]->start,
1779					src->root_key.objectid, level - 1, 0);
 
 
1780		BUG_ON(ret);
1781		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1782					0, dest->root_key.objectid, level - 1,
1783					0);
 
 
1784		BUG_ON(ret);
1785
1786		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1787					path->nodes[level]->start,
1788					src->root_key.objectid, level - 1, 0);
 
 
1789		BUG_ON(ret);
1790
1791		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1792					0, dest->root_key.objectid, level - 1,
1793					0);
 
 
1794		BUG_ON(ret);
1795
1796		btrfs_unlock_up_safe(path, 0);
1797
1798		ret = level;
1799		break;
1800	}
1801	btrfs_tree_unlock(parent);
1802	free_extent_buffer(parent);
1803	return ret;
1804}
1805
1806/*
1807 * helper to find next relocated block in reloc tree
1808 */
1809static noinline_for_stack
1810int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1811		       int *level)
1812{
1813	struct extent_buffer *eb;
1814	int i;
1815	u64 last_snapshot;
1816	u32 nritems;
1817
1818	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1819
1820	for (i = 0; i < *level; i++) {
1821		free_extent_buffer(path->nodes[i]);
1822		path->nodes[i] = NULL;
1823	}
1824
1825	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1826		eb = path->nodes[i];
1827		nritems = btrfs_header_nritems(eb);
1828		while (path->slots[i] + 1 < nritems) {
1829			path->slots[i]++;
1830			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1831			    last_snapshot)
1832				continue;
1833
1834			*level = i;
1835			return 0;
1836		}
1837		free_extent_buffer(path->nodes[i]);
1838		path->nodes[i] = NULL;
1839	}
1840	return 1;
1841}
1842
1843/*
1844 * walk down reloc tree to find relocated block of lowest level
1845 */
1846static noinline_for_stack
1847int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1848			 int *level)
1849{
 
1850	struct extent_buffer *eb = NULL;
1851	int i;
1852	u64 bytenr;
1853	u64 ptr_gen = 0;
1854	u64 last_snapshot;
1855	u32 blocksize;
1856	u32 nritems;
1857
1858	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1859
1860	for (i = *level; i > 0; i--) {
 
 
1861		eb = path->nodes[i];
1862		nritems = btrfs_header_nritems(eb);
1863		while (path->slots[i] < nritems) {
1864			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1865			if (ptr_gen > last_snapshot)
1866				break;
1867			path->slots[i]++;
1868		}
1869		if (path->slots[i] >= nritems) {
1870			if (i == *level)
1871				break;
1872			*level = i + 1;
1873			return 0;
1874		}
1875		if (i == 1) {
1876			*level = i;
1877			return 0;
1878		}
1879
1880		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1881		blocksize = btrfs_level_size(root, i - 1);
1882		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
 
 
 
 
 
 
 
1883		BUG_ON(btrfs_header_level(eb) != i - 1);
1884		path->nodes[i - 1] = eb;
1885		path->slots[i - 1] = 0;
1886	}
1887	return 1;
1888}
1889
1890/*
1891 * invalidate extent cache for file extents whose key in range of
1892 * [min_key, max_key)
1893 */
1894static int invalidate_extent_cache(struct btrfs_root *root,
1895				   struct btrfs_key *min_key,
1896				   struct btrfs_key *max_key)
1897{
 
1898	struct inode *inode = NULL;
1899	u64 objectid;
1900	u64 start, end;
1901	u64 ino;
1902
1903	objectid = min_key->objectid;
1904	while (1) {
1905		cond_resched();
1906		iput(inode);
1907
1908		if (objectid > max_key->objectid)
1909			break;
1910
1911		inode = find_next_inode(root, objectid);
1912		if (!inode)
1913			break;
1914		ino = btrfs_ino(inode);
1915
1916		if (ino > max_key->objectid) {
1917			iput(inode);
1918			break;
1919		}
1920
1921		objectid = ino + 1;
1922		if (!S_ISREG(inode->i_mode))
1923			continue;
1924
1925		if (unlikely(min_key->objectid == ino)) {
1926			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1927				continue;
1928			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1929				start = 0;
1930			else {
1931				start = min_key->offset;
1932				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1933			}
1934		} else {
1935			start = 0;
1936		}
1937
1938		if (unlikely(max_key->objectid == ino)) {
1939			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1940				continue;
1941			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1942				end = (u64)-1;
1943			} else {
1944				if (max_key->offset == 0)
1945					continue;
1946				end = max_key->offset;
1947				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1948				end--;
1949			}
1950		} else {
1951			end = (u64)-1;
1952		}
1953
1954		/* the lock_extent waits for readpage to complete */
1955		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1956		btrfs_drop_extent_cache(inode, start, end, 1);
1957		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1958	}
1959	return 0;
1960}
1961
1962static int find_next_key(struct btrfs_path *path, int level,
1963			 struct btrfs_key *key)
1964
1965{
1966	while (level < BTRFS_MAX_LEVEL) {
1967		if (!path->nodes[level])
1968			break;
1969		if (path->slots[level] + 1 <
1970		    btrfs_header_nritems(path->nodes[level])) {
1971			btrfs_node_key_to_cpu(path->nodes[level], key,
1972					      path->slots[level] + 1);
1973			return 0;
1974		}
1975		level++;
1976	}
1977	return 1;
1978}
1979
1980/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981 * merge the relocated tree blocks in reloc tree with corresponding
1982 * fs tree.
1983 */
1984static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1985					       struct btrfs_root *root)
1986{
1987	LIST_HEAD(inode_list);
1988	struct btrfs_key key;
1989	struct btrfs_key next_key;
1990	struct btrfs_trans_handle *trans;
1991	struct btrfs_root *reloc_root;
1992	struct btrfs_root_item *root_item;
1993	struct btrfs_path *path;
1994	struct extent_buffer *leaf;
1995	unsigned long nr;
1996	int level;
1997	int max_level;
1998	int replaced = 0;
1999	int ret;
2000	int err = 0;
2001	u32 min_reserved;
2002
2003	path = btrfs_alloc_path();
2004	if (!path)
2005		return -ENOMEM;
2006	path->reada = 1;
2007
2008	reloc_root = root->reloc_root;
2009	root_item = &reloc_root->root_item;
2010
2011	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2012		level = btrfs_root_level(root_item);
2013		extent_buffer_get(reloc_root->node);
2014		path->nodes[level] = reloc_root->node;
2015		path->slots[level] = 0;
2016	} else {
2017		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2018
2019		level = root_item->drop_level;
2020		BUG_ON(level == 0);
2021		path->lowest_level = level;
2022		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2023		path->lowest_level = 0;
2024		if (ret < 0) {
2025			btrfs_free_path(path);
2026			return ret;
2027		}
2028
2029		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2030				      path->slots[level]);
2031		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2032
2033		btrfs_unlock_up_safe(path, 0);
2034	}
2035
2036	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
2037	memset(&next_key, 0, sizeof(next_key));
2038
2039	while (1) {
2040		trans = btrfs_start_transaction(root, 0);
2041		BUG_ON(IS_ERR(trans));
2042		trans->block_rsv = rc->block_rsv;
2043
2044		ret = btrfs_block_rsv_check(trans, root, rc->block_rsv,
2045					    min_reserved, 0);
2046		if (ret) {
2047			BUG_ON(ret != -EAGAIN);
2048			ret = btrfs_commit_transaction(trans, root);
2049			BUG_ON(ret);
2050			continue;
 
 
 
 
2051		}
2052
 
 
 
 
 
 
 
 
 
 
 
 
 
2053		replaced = 0;
2054		max_level = level;
2055
2056		ret = walk_down_reloc_tree(reloc_root, path, &level);
2057		if (ret < 0) {
2058			err = ret;
2059			goto out;
2060		}
2061		if (ret > 0)
2062			break;
2063
2064		if (!find_next_key(path, level, &key) &&
2065		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2066			ret = 0;
2067		} else {
2068			ret = replace_path(trans, root, reloc_root, path,
2069					   &next_key, level, max_level);
2070		}
2071		if (ret < 0) {
2072			err = ret;
2073			goto out;
2074		}
2075
2076		if (ret > 0) {
2077			level = ret;
2078			btrfs_node_key_to_cpu(path->nodes[level], &key,
2079					      path->slots[level]);
2080			replaced = 1;
2081		}
2082
2083		ret = walk_up_reloc_tree(reloc_root, path, &level);
2084		if (ret > 0)
2085			break;
2086
2087		BUG_ON(level == 0);
2088		/*
2089		 * save the merging progress in the drop_progress.
2090		 * this is OK since root refs == 1 in this case.
2091		 */
2092		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2093			       path->slots[level]);
2094		root_item->drop_level = level;
2095
2096		nr = trans->blocks_used;
2097		btrfs_end_transaction_throttle(trans, root);
2098
2099		btrfs_btree_balance_dirty(root, nr);
2100
2101		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2102			invalidate_extent_cache(root, &key, &next_key);
2103	}
2104
2105	/*
2106	 * handle the case only one block in the fs tree need to be
2107	 * relocated and the block is tree root.
2108	 */
2109	leaf = btrfs_lock_root_node(root);
2110	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2111	btrfs_tree_unlock(leaf);
2112	free_extent_buffer(leaf);
2113	if (ret < 0)
2114		err = ret;
2115out:
2116	btrfs_free_path(path);
2117
2118	if (err == 0) {
2119		memset(&root_item->drop_progress, 0,
2120		       sizeof(root_item->drop_progress));
2121		root_item->drop_level = 0;
2122		btrfs_set_root_refs(root_item, 0);
2123		btrfs_update_reloc_root(trans, root);
2124	}
2125
2126	nr = trans->blocks_used;
2127	btrfs_end_transaction_throttle(trans, root);
2128
2129	btrfs_btree_balance_dirty(root, nr);
2130
2131	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2132		invalidate_extent_cache(root, &key, &next_key);
2133
2134	return err;
2135}
2136
2137static noinline_for_stack
2138int prepare_to_merge(struct reloc_control *rc, int err)
2139{
2140	struct btrfs_root *root = rc->extent_root;
 
2141	struct btrfs_root *reloc_root;
2142	struct btrfs_trans_handle *trans;
2143	LIST_HEAD(reloc_roots);
2144	u64 num_bytes = 0;
2145	int ret;
2146
2147	mutex_lock(&root->fs_info->reloc_mutex);
2148	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2149	rc->merging_rsv_size += rc->nodes_relocated * 2;
2150	mutex_unlock(&root->fs_info->reloc_mutex);
2151
2152again:
2153	if (!err) {
2154		num_bytes = rc->merging_rsv_size;
2155		ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv,
2156					  num_bytes);
2157		if (ret)
2158			err = ret;
2159	}
2160
2161	trans = btrfs_join_transaction(rc->extent_root);
2162	if (IS_ERR(trans)) {
2163		if (!err)
2164			btrfs_block_rsv_release(rc->extent_root,
2165						rc->block_rsv, num_bytes);
2166		return PTR_ERR(trans);
2167	}
2168
2169	if (!err) {
2170		if (num_bytes != rc->merging_rsv_size) {
2171			btrfs_end_transaction(trans, rc->extent_root);
2172			btrfs_block_rsv_release(rc->extent_root,
2173						rc->block_rsv, num_bytes);
2174			goto again;
2175		}
2176	}
2177
2178	rc->merge_reloc_tree = 1;
2179
2180	while (!list_empty(&rc->reloc_roots)) {
2181		reloc_root = list_entry(rc->reloc_roots.next,
2182					struct btrfs_root, root_list);
2183		list_del_init(&reloc_root->root_list);
2184
2185		root = read_fs_root(reloc_root->fs_info,
2186				    reloc_root->root_key.offset);
2187		BUG_ON(IS_ERR(root));
2188		BUG_ON(root->reloc_root != reloc_root);
2189
2190		/*
2191		 * set reference count to 1, so btrfs_recover_relocation
2192		 * knows it should resumes merging
2193		 */
2194		if (!err)
2195			btrfs_set_root_refs(&reloc_root->root_item, 1);
2196		btrfs_update_reloc_root(trans, root);
2197
2198		list_add(&reloc_root->root_list, &reloc_roots);
 
2199	}
2200
2201	list_splice(&reloc_roots, &rc->reloc_roots);
2202
2203	if (!err)
2204		btrfs_commit_transaction(trans, rc->extent_root);
2205	else
2206		btrfs_end_transaction(trans, rc->extent_root);
2207	return err;
2208}
2209
2210static noinline_for_stack
2211int merge_reloc_roots(struct reloc_control *rc)
 
 
 
 
 
 
 
 
 
2212{
 
2213	struct btrfs_root *root;
2214	struct btrfs_root *reloc_root;
2215	LIST_HEAD(reloc_roots);
2216	int found = 0;
2217	int ret;
2218again:
2219	root = rc->extent_root;
2220
2221	/*
2222	 * this serializes us with btrfs_record_root_in_transaction,
2223	 * we have to make sure nobody is in the middle of
2224	 * adding their roots to the list while we are
2225	 * doing this splice
2226	 */
2227	mutex_lock(&root->fs_info->reloc_mutex);
2228	list_splice_init(&rc->reloc_roots, &reloc_roots);
2229	mutex_unlock(&root->fs_info->reloc_mutex);
2230
2231	while (!list_empty(&reloc_roots)) {
2232		found = 1;
2233		reloc_root = list_entry(reloc_roots.next,
2234					struct btrfs_root, root_list);
2235
 
 
2236		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2237			root = read_fs_root(reloc_root->fs_info,
2238					    reloc_root->root_key.offset);
2239			BUG_ON(IS_ERR(root));
2240			BUG_ON(root->reloc_root != reloc_root);
2241
2242			ret = merge_reloc_root(rc, root);
2243			BUG_ON(ret);
 
 
 
 
 
 
2244		} else {
 
 
 
 
 
 
 
 
 
 
2245			list_del_init(&reloc_root->root_list);
 
 
 
2246		}
2247		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
2248	}
2249
2250	if (found) {
2251		found = 0;
2252		goto again;
2253	}
2254	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2255	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256}
2257
2258static void free_block_list(struct rb_root *blocks)
2259{
2260	struct tree_block *block;
2261	struct rb_node *rb_node;
2262	while ((rb_node = rb_first(blocks))) {
2263		block = rb_entry(rb_node, struct tree_block, rb_node);
2264		rb_erase(rb_node, blocks);
2265		kfree(block);
2266	}
2267}
2268
2269static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2270				      struct btrfs_root *reloc_root)
2271{
 
2272	struct btrfs_root *root;
 
2273
2274	if (reloc_root->last_trans == trans->transid)
2275		return 0;
2276
2277	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2278	BUG_ON(IS_ERR(root));
2279	BUG_ON(root->reloc_root != reloc_root);
 
 
2280
2281	return btrfs_record_root_in_trans(trans, root);
2282}
2283
2284static noinline_for_stack
2285struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2286				     struct reloc_control *rc,
2287				     struct backref_node *node,
2288				     struct backref_edge *edges[], int *nr)
2289{
2290	struct backref_node *next;
2291	struct btrfs_root *root;
2292	int index = 0;
2293
2294	next = node;
2295	while (1) {
2296		cond_resched();
2297		next = walk_up_backref(next, edges, &index);
2298		root = next->root;
2299		BUG_ON(!root);
2300		BUG_ON(!root->ref_cows);
2301
2302		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2303			record_reloc_root_in_trans(trans, root);
2304			break;
2305		}
2306
2307		btrfs_record_root_in_trans(trans, root);
2308		root = root->reloc_root;
2309
2310		if (next->new_bytenr != root->node->start) {
2311			BUG_ON(next->new_bytenr);
2312			BUG_ON(!list_empty(&next->list));
2313			next->new_bytenr = root->node->start;
2314			next->root = root;
 
 
2315			list_add_tail(&next->list,
2316				      &rc->backref_cache.changed);
2317			__mark_block_processed(rc, next);
2318			break;
2319		}
2320
2321		WARN_ON(1);
2322		root = NULL;
2323		next = walk_down_backref(edges, &index);
2324		if (!next || next->level <= node->level)
2325			break;
2326	}
2327	if (!root)
2328		return NULL;
2329
2330	*nr = index;
2331	next = node;
2332	/* setup backref node path for btrfs_reloc_cow_block */
2333	while (1) {
2334		rc->backref_cache.path[next->level] = next;
2335		if (--index < 0)
2336			break;
2337		next = edges[index]->node[UPPER];
2338	}
2339	return root;
2340}
2341
2342/*
2343 * select a tree root for relocation. return NULL if the block
2344 * is reference counted. we should use do_relocation() in this
2345 * case. return a tree root pointer if the block isn't reference
2346 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2347 */
2348static noinline_for_stack
2349struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2350				   struct backref_node *node)
2351{
2352	struct backref_node *next;
2353	struct btrfs_root *root;
2354	struct btrfs_root *fs_root = NULL;
2355	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2356	int index = 0;
2357
2358	next = node;
2359	while (1) {
2360		cond_resched();
2361		next = walk_up_backref(next, edges, &index);
2362		root = next->root;
2363		BUG_ON(!root);
2364
2365		/* no other choice for non-references counted tree */
2366		if (!root->ref_cows)
2367			return root;
2368
2369		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2370			fs_root = root;
2371
2372		if (next != node)
2373			return NULL;
2374
2375		next = walk_down_backref(edges, &index);
2376		if (!next || next->level <= node->level)
2377			break;
2378	}
2379
2380	if (!fs_root)
2381		return ERR_PTR(-ENOENT);
2382	return fs_root;
2383}
2384
2385static noinline_for_stack
2386u64 calcu_metadata_size(struct reloc_control *rc,
2387			struct backref_node *node, int reserve)
2388{
2389	struct backref_node *next = node;
2390	struct backref_edge *edge;
2391	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2392	u64 num_bytes = 0;
2393	int index = 0;
2394
2395	BUG_ON(reserve && node->processed);
2396
2397	while (next) {
2398		cond_resched();
2399		while (1) {
2400			if (next->processed && (reserve || next != node))
2401				break;
2402
2403			num_bytes += btrfs_level_size(rc->extent_root,
2404						      next->level);
2405
2406			if (list_empty(&next->upper))
2407				break;
2408
2409			edge = list_entry(next->upper.next,
2410					  struct backref_edge, list[LOWER]);
2411			edges[index++] = edge;
2412			next = edge->node[UPPER];
2413		}
2414		next = walk_down_backref(edges, &index);
2415	}
2416	return num_bytes;
2417}
2418
2419static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2420				  struct reloc_control *rc,
2421				  struct backref_node *node)
2422{
2423	struct btrfs_root *root = rc->extent_root;
 
2424	u64 num_bytes;
2425	int ret;
 
2426
2427	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2428
2429	trans->block_rsv = rc->block_rsv;
2430	ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes);
 
 
 
 
 
 
 
 
2431	if (ret) {
2432		if (ret == -EAGAIN)
2433			rc->commit_transaction = 1;
2434		return ret;
 
 
 
 
 
 
 
 
 
 
2435	}
2436
2437	return 0;
2438}
2439
2440static void release_metadata_space(struct reloc_control *rc,
2441				   struct backref_node *node)
2442{
2443	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2444	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2445}
2446
2447/*
2448 * relocate a block tree, and then update pointers in upper level
2449 * blocks that reference the block to point to the new location.
2450 *
2451 * if called by link_to_upper, the block has already been relocated.
2452 * in that case this function just updates pointers.
2453 */
2454static int do_relocation(struct btrfs_trans_handle *trans,
2455			 struct reloc_control *rc,
2456			 struct backref_node *node,
2457			 struct btrfs_key *key,
2458			 struct btrfs_path *path, int lowest)
2459{
2460	struct backref_node *upper;
2461	struct backref_edge *edge;
2462	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2463	struct btrfs_root *root;
2464	struct extent_buffer *eb;
2465	u32 blocksize;
2466	u64 bytenr;
2467	u64 generation;
2468	int nr;
2469	int slot;
2470	int ret;
2471	int err = 0;
2472
2473	BUG_ON(lowest && node->eb);
2474
2475	path->lowest_level = node->level + 1;
2476	rc->backref_cache.path[node->level] = node;
2477	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
 
2478		cond_resched();
2479
2480		upper = edge->node[UPPER];
2481		root = select_reloc_root(trans, rc, upper, edges, &nr);
2482		BUG_ON(!root);
2483
2484		if (upper->eb && !upper->locked) {
2485			if (!lowest) {
2486				ret = btrfs_bin_search(upper->eb, key,
2487						       upper->level, &slot);
 
 
 
2488				BUG_ON(ret);
2489				bytenr = btrfs_node_blockptr(upper->eb, slot);
2490				if (node->eb->start == bytenr)
2491					goto next;
2492			}
2493			drop_node_buffer(upper);
2494		}
2495
2496		if (!upper->eb) {
2497			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2498			if (ret < 0) {
2499				err = ret;
 
 
 
 
 
2500				break;
2501			}
2502			BUG_ON(ret > 0);
2503
2504			if (!upper->eb) {
2505				upper->eb = path->nodes[upper->level];
2506				path->nodes[upper->level] = NULL;
2507			} else {
2508				BUG_ON(upper->eb != path->nodes[upper->level]);
2509			}
2510
2511			upper->locked = 1;
2512			path->locks[upper->level] = 0;
2513
2514			slot = path->slots[upper->level];
2515			btrfs_release_path(path);
2516		} else {
2517			ret = btrfs_bin_search(upper->eb, key, upper->level,
2518					       &slot);
 
 
 
2519			BUG_ON(ret);
2520		}
2521
2522		bytenr = btrfs_node_blockptr(upper->eb, slot);
2523		if (lowest) {
2524			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2525		} else {
2526			if (node->eb->start == bytenr)
2527				goto next;
2528		}
2529
2530		blocksize = btrfs_level_size(root, node->level);
2531		generation = btrfs_node_ptr_generation(upper->eb, slot);
2532		eb = read_tree_block(root, bytenr, blocksize, generation);
2533		if (!eb) {
 
 
 
 
 
 
2534			err = -EIO;
2535			goto next;
2536		}
2537		btrfs_tree_lock(eb);
2538		btrfs_set_lock_blocking(eb);
2539
2540		if (!node->eb) {
2541			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2542					      slot, &eb);
2543			btrfs_tree_unlock(eb);
2544			free_extent_buffer(eb);
2545			if (ret < 0) {
2546				err = ret;
2547				goto next;
2548			}
2549			BUG_ON(node->eb != eb);
2550		} else {
2551			btrfs_set_node_blockptr(upper->eb, slot,
2552						node->eb->start);
2553			btrfs_set_node_ptr_generation(upper->eb, slot,
2554						      trans->transid);
2555			btrfs_mark_buffer_dirty(upper->eb);
2556
2557			ret = btrfs_inc_extent_ref(trans, root,
2558						node->eb->start, blocksize,
2559						upper->eb->start,
2560						btrfs_header_owner(upper->eb),
2561						node->level, 0);
 
 
2562			BUG_ON(ret);
2563
2564			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2565			BUG_ON(ret);
2566		}
2567next:
2568		if (!upper->pending)
2569			drop_node_buffer(upper);
2570		else
2571			unlock_node_buffer(upper);
2572		if (err)
2573			break;
2574	}
2575
2576	if (!err && node->pending) {
2577		drop_node_buffer(node);
2578		list_move_tail(&node->list, &rc->backref_cache.changed);
2579		node->pending = 0;
2580	}
2581
2582	path->lowest_level = 0;
2583	BUG_ON(err == -ENOSPC);
2584	return err;
2585}
2586
2587static int link_to_upper(struct btrfs_trans_handle *trans,
2588			 struct reloc_control *rc,
2589			 struct backref_node *node,
2590			 struct btrfs_path *path)
2591{
2592	struct btrfs_key key;
2593
2594	btrfs_node_key_to_cpu(node->eb, &key, 0);
2595	return do_relocation(trans, rc, node, &key, path, 0);
2596}
2597
2598static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2599				struct reloc_control *rc,
2600				struct btrfs_path *path, int err)
2601{
2602	LIST_HEAD(list);
2603	struct backref_cache *cache = &rc->backref_cache;
2604	struct backref_node *node;
2605	int level;
2606	int ret;
2607
2608	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2609		while (!list_empty(&cache->pending[level])) {
2610			node = list_entry(cache->pending[level].next,
2611					  struct backref_node, list);
2612			list_move_tail(&node->list, &list);
2613			BUG_ON(!node->pending);
2614
2615			if (!err) {
2616				ret = link_to_upper(trans, rc, node, path);
2617				if (ret < 0)
2618					err = ret;
2619			}
2620		}
2621		list_splice_init(&list, &cache->pending[level]);
2622	}
2623	return err;
2624}
2625
2626static void mark_block_processed(struct reloc_control *rc,
2627				 u64 bytenr, u32 blocksize)
2628{
2629	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2630			EXTENT_DIRTY, GFP_NOFS);
2631}
2632
2633static void __mark_block_processed(struct reloc_control *rc,
2634				   struct backref_node *node)
2635{
2636	u32 blocksize;
2637	if (node->level == 0 ||
2638	    in_block_group(node->bytenr, rc->block_group)) {
2639		blocksize = btrfs_level_size(rc->extent_root, node->level);
2640		mark_block_processed(rc, node->bytenr, blocksize);
2641	}
2642	node->processed = 1;
2643}
2644
2645/*
2646 * mark a block and all blocks directly/indirectly reference the block
2647 * as processed.
2648 */
2649static void update_processed_blocks(struct reloc_control *rc,
2650				    struct backref_node *node)
2651{
2652	struct backref_node *next = node;
2653	struct backref_edge *edge;
2654	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2655	int index = 0;
2656
2657	while (next) {
2658		cond_resched();
2659		while (1) {
2660			if (next->processed)
2661				break;
2662
2663			__mark_block_processed(rc, next);
2664
2665			if (list_empty(&next->upper))
2666				break;
2667
2668			edge = list_entry(next->upper.next,
2669					  struct backref_edge, list[LOWER]);
2670			edges[index++] = edge;
2671			next = edge->node[UPPER];
2672		}
2673		next = walk_down_backref(edges, &index);
2674	}
2675}
2676
2677static int tree_block_processed(u64 bytenr, u32 blocksize,
2678				struct reloc_control *rc)
2679{
 
 
2680	if (test_range_bit(&rc->processed_blocks, bytenr,
2681			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2682		return 1;
2683	return 0;
2684}
2685
2686static int get_tree_block_key(struct reloc_control *rc,
2687			      struct tree_block *block)
2688{
2689	struct extent_buffer *eb;
2690
2691	BUG_ON(block->key_ready);
2692	eb = read_tree_block(rc->extent_root, block->bytenr,
2693			     block->key.objectid, block->key.offset);
2694	BUG_ON(!eb);
2695	WARN_ON(btrfs_header_level(eb) != block->level);
 
 
 
2696	if (block->level == 0)
2697		btrfs_item_key_to_cpu(eb, &block->key, 0);
2698	else
2699		btrfs_node_key_to_cpu(eb, &block->key, 0);
2700	free_extent_buffer(eb);
2701	block->key_ready = 1;
2702	return 0;
2703}
2704
2705static int reada_tree_block(struct reloc_control *rc,
2706			    struct tree_block *block)
2707{
2708	BUG_ON(block->key_ready);
2709	readahead_tree_block(rc->extent_root, block->bytenr,
2710			     block->key.objectid, block->key.offset);
2711	return 0;
2712}
2713
2714/*
2715 * helper function to relocate a tree block
2716 */
2717static int relocate_tree_block(struct btrfs_trans_handle *trans,
2718				struct reloc_control *rc,
2719				struct backref_node *node,
2720				struct btrfs_key *key,
2721				struct btrfs_path *path)
2722{
2723	struct btrfs_root *root;
2724	int release = 0;
2725	int ret = 0;
2726
2727	if (!node)
2728		return 0;
2729
 
 
 
 
 
 
 
 
2730	BUG_ON(node->processed);
2731	root = select_one_root(trans, node);
2732	if (root == ERR_PTR(-ENOENT)) {
2733		update_processed_blocks(rc, node);
2734		goto out;
2735	}
2736
2737	if (!root || root->ref_cows) {
2738		ret = reserve_metadata_space(trans, rc, node);
2739		if (ret)
2740			goto out;
2741		release = 1;
2742	}
2743
2744	if (root) {
2745		if (root->ref_cows) {
2746			BUG_ON(node->new_bytenr);
2747			BUG_ON(!list_empty(&node->list));
2748			btrfs_record_root_in_trans(trans, root);
2749			root = root->reloc_root;
2750			node->new_bytenr = root->node->start;
2751			node->root = root;
 
 
2752			list_add_tail(&node->list, &rc->backref_cache.changed);
2753		} else {
2754			path->lowest_level = node->level;
2755			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2756			btrfs_release_path(path);
2757			if (ret > 0)
2758				ret = 0;
2759		}
2760		if (!ret)
2761			update_processed_blocks(rc, node);
2762	} else {
2763		ret = do_relocation(trans, rc, node, key, path, 1);
2764	}
2765out:
2766	if (ret || node->level == 0 || node->cowonly) {
2767		if (release)
2768			release_metadata_space(rc, node);
2769		remove_backref_node(&rc->backref_cache, node);
2770	}
2771	return ret;
2772}
2773
2774/*
2775 * relocate a list of blocks
2776 */
2777static noinline_for_stack
2778int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2779			 struct reloc_control *rc, struct rb_root *blocks)
2780{
2781	struct backref_node *node;
 
2782	struct btrfs_path *path;
2783	struct tree_block *block;
2784	struct rb_node *rb_node;
2785	int ret;
2786	int err = 0;
2787
2788	path = btrfs_alloc_path();
2789	if (!path)
2790		return -ENOMEM;
2791
2792	rb_node = rb_first(blocks);
2793	while (rb_node) {
2794		block = rb_entry(rb_node, struct tree_block, rb_node);
2795		if (!block->key_ready)
2796			reada_tree_block(rc, block);
2797		rb_node = rb_next(rb_node);
2798	}
2799
2800	rb_node = rb_first(blocks);
2801	while (rb_node) {
2802		block = rb_entry(rb_node, struct tree_block, rb_node);
2803		if (!block->key_ready)
2804			get_tree_block_key(rc, block);
2805		rb_node = rb_next(rb_node);
2806	}
2807
2808	rb_node = rb_first(blocks);
2809	while (rb_node) {
2810		block = rb_entry(rb_node, struct tree_block, rb_node);
 
 
 
 
 
2811
 
 
2812		node = build_backref_tree(rc, &block->key,
2813					  block->level, block->bytenr);
2814		if (IS_ERR(node)) {
2815			err = PTR_ERR(node);
2816			goto out;
2817		}
2818
2819		ret = relocate_tree_block(trans, rc, node, &block->key,
2820					  path);
2821		if (ret < 0) {
2822			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2823				err = ret;
2824			goto out;
2825		}
2826		rb_node = rb_next(rb_node);
2827	}
2828out:
2829	free_block_list(blocks);
2830	err = finish_pending_nodes(trans, rc, path, err);
2831
 
2832	btrfs_free_path(path);
 
 
2833	return err;
2834}
2835
2836static noinline_for_stack
2837int prealloc_file_extent_cluster(struct inode *inode,
2838				 struct file_extent_cluster *cluster)
2839{
2840	u64 alloc_hint = 0;
2841	u64 start;
2842	u64 end;
2843	u64 offset = BTRFS_I(inode)->index_cnt;
2844	u64 num_bytes;
2845	int nr = 0;
2846	int ret = 0;
 
 
 
2847
2848	BUG_ON(cluster->start != cluster->boundary[0]);
2849	mutex_lock(&inode->i_mutex);
2850
2851	ret = btrfs_check_data_free_space(inode, cluster->end +
2852					  1 - cluster->start);
2853	if (ret)
2854		goto out;
2855
2856	while (nr < cluster->nr) {
 
2857		start = cluster->boundary[nr] - offset;
2858		if (nr + 1 < cluster->nr)
2859			end = cluster->boundary[nr + 1] - 1 - offset;
2860		else
2861			end = cluster->end - offset;
2862
2863		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2864		num_bytes = end + 1 - start;
2865		ret = btrfs_prealloc_file_range(inode, 0, start,
2866						num_bytes, num_bytes,
2867						end + 1, &alloc_hint);
2868		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
 
2869		if (ret)
2870			break;
2871		nr++;
2872	}
2873	btrfs_free_reserved_data_space(inode, cluster->end +
2874				       1 - cluster->start);
2875out:
2876	mutex_unlock(&inode->i_mutex);
 
2877	return ret;
2878}
2879
2880static noinline_for_stack
2881int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2882			 u64 block_start)
2883{
2884	struct btrfs_root *root = BTRFS_I(inode)->root;
2885	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2886	struct extent_map *em;
2887	int ret = 0;
2888
2889	em = alloc_extent_map();
2890	if (!em)
2891		return -ENOMEM;
2892
2893	em->start = start;
2894	em->len = end + 1 - start;
2895	em->block_len = em->len;
2896	em->block_start = block_start;
2897	em->bdev = root->fs_info->fs_devices->latest_bdev;
2898	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2899
2900	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2901	while (1) {
2902		write_lock(&em_tree->lock);
2903		ret = add_extent_mapping(em_tree, em);
2904		write_unlock(&em_tree->lock);
2905		if (ret != -EEXIST) {
2906			free_extent_map(em);
2907			break;
2908		}
2909		btrfs_drop_extent_cache(inode, start, end, 0);
2910	}
2911	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2912	return ret;
2913}
2914
 
 
 
 
 
 
 
 
 
 
2915static int relocate_file_extent_cluster(struct inode *inode,
2916					struct file_extent_cluster *cluster)
2917{
 
2918	u64 page_start;
2919	u64 page_end;
2920	u64 offset = BTRFS_I(inode)->index_cnt;
2921	unsigned long index;
2922	unsigned long last_index;
2923	struct page *page;
2924	struct file_ra_state *ra;
 
2925	int nr = 0;
2926	int ret = 0;
2927
2928	if (!cluster->nr)
2929		return 0;
2930
2931	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2932	if (!ra)
2933		return -ENOMEM;
2934
2935	ret = prealloc_file_extent_cluster(inode, cluster);
2936	if (ret)
2937		goto out;
2938
2939	file_ra_state_init(ra, inode->i_mapping);
2940
2941	ret = setup_extent_mapping(inode, cluster->start - offset,
2942				   cluster->end - offset, cluster->start);
2943	if (ret)
2944		goto out;
2945
2946	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2947	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2948	while (index <= last_index) {
2949		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
 
2950		if (ret)
2951			goto out;
2952
2953		page = find_lock_page(inode->i_mapping, index);
2954		if (!page) {
2955			page_cache_sync_readahead(inode->i_mapping,
2956						  ra, NULL, index,
2957						  last_index + 1 - index);
2958			page = find_or_create_page(inode->i_mapping, index,
2959						   GFP_NOFS);
2960			if (!page) {
2961				btrfs_delalloc_release_metadata(inode,
2962							PAGE_CACHE_SIZE);
 
 
2963				ret = -ENOMEM;
2964				goto out;
2965			}
2966		}
2967
2968		if (PageReadahead(page)) {
2969			page_cache_async_readahead(inode->i_mapping,
2970						   ra, NULL, page, index,
2971						   last_index + 1 - index);
2972		}
2973
2974		if (!PageUptodate(page)) {
2975			btrfs_readpage(NULL, page);
2976			lock_page(page);
2977			if (!PageUptodate(page)) {
2978				unlock_page(page);
2979				page_cache_release(page);
2980				btrfs_delalloc_release_metadata(inode,
2981							PAGE_CACHE_SIZE);
 
 
2982				ret = -EIO;
2983				goto out;
2984			}
2985		}
2986
2987		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2988		page_end = page_start + PAGE_CACHE_SIZE - 1;
2989
2990		lock_extent(&BTRFS_I(inode)->io_tree,
2991			    page_start, page_end, GFP_NOFS);
2992
2993		set_page_extent_mapped(page);
2994
2995		if (nr < cluster->nr &&
2996		    page_start + offset == cluster->boundary[nr]) {
2997			set_extent_bits(&BTRFS_I(inode)->io_tree,
2998					page_start, page_end,
2999					EXTENT_BOUNDARY, GFP_NOFS);
3000			nr++;
3001		}
3002
3003		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004		set_page_dirty(page);
3005
3006		unlock_extent(&BTRFS_I(inode)->io_tree,
3007			      page_start, page_end, GFP_NOFS);
3008		unlock_page(page);
3009		page_cache_release(page);
3010
3011		index++;
 
3012		balance_dirty_pages_ratelimited(inode->i_mapping);
3013		btrfs_throttle(BTRFS_I(inode)->root);
 
 
 
 
3014	}
3015	WARN_ON(nr != cluster->nr);
3016out:
3017	kfree(ra);
3018	return ret;
3019}
3020
3021static noinline_for_stack
3022int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3023			 struct file_extent_cluster *cluster)
3024{
3025	int ret;
3026
3027	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3028		ret = relocate_file_extent_cluster(inode, cluster);
3029		if (ret)
3030			return ret;
3031		cluster->nr = 0;
3032	}
3033
3034	if (!cluster->nr)
3035		cluster->start = extent_key->objectid;
3036	else
3037		BUG_ON(cluster->nr >= MAX_EXTENTS);
3038	cluster->end = extent_key->objectid + extent_key->offset - 1;
3039	cluster->boundary[cluster->nr] = extent_key->objectid;
3040	cluster->nr++;
3041
3042	if (cluster->nr >= MAX_EXTENTS) {
3043		ret = relocate_file_extent_cluster(inode, cluster);
3044		if (ret)
3045			return ret;
3046		cluster->nr = 0;
3047	}
3048	return 0;
3049}
3050
3051#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3052static int get_ref_objectid_v0(struct reloc_control *rc,
3053			       struct btrfs_path *path,
3054			       struct btrfs_key *extent_key,
3055			       u64 *ref_objectid, int *path_change)
3056{
3057	struct btrfs_key key;
3058	struct extent_buffer *leaf;
3059	struct btrfs_extent_ref_v0 *ref0;
3060	int ret;
3061	int slot;
3062
3063	leaf = path->nodes[0];
3064	slot = path->slots[0];
3065	while (1) {
3066		if (slot >= btrfs_header_nritems(leaf)) {
3067			ret = btrfs_next_leaf(rc->extent_root, path);
3068			if (ret < 0)
3069				return ret;
3070			BUG_ON(ret > 0);
3071			leaf = path->nodes[0];
3072			slot = path->slots[0];
3073			if (path_change)
3074				*path_change = 1;
3075		}
3076		btrfs_item_key_to_cpu(leaf, &key, slot);
3077		if (key.objectid != extent_key->objectid)
3078			return -ENOENT;
3079
3080		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3081			slot++;
3082			continue;
3083		}
3084		ref0 = btrfs_item_ptr(leaf, slot,
3085				struct btrfs_extent_ref_v0);
3086		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3087		break;
3088	}
3089	return 0;
3090}
3091#endif
3092
3093/*
3094 * helper to add a tree block to the list.
3095 * the major work is getting the generation and level of the block
3096 */
3097static int add_tree_block(struct reloc_control *rc,
3098			  struct btrfs_key *extent_key,
3099			  struct btrfs_path *path,
3100			  struct rb_root *blocks)
3101{
3102	struct extent_buffer *eb;
3103	struct btrfs_extent_item *ei;
3104	struct btrfs_tree_block_info *bi;
3105	struct tree_block *block;
3106	struct rb_node *rb_node;
3107	u32 item_size;
3108	int level = -1;
3109	int generation;
3110
3111	eb =  path->nodes[0];
3112	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3113
3114	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
 
3115		ei = btrfs_item_ptr(eb, path->slots[0],
3116				struct btrfs_extent_item);
3117		bi = (struct btrfs_tree_block_info *)(ei + 1);
 
 
 
 
 
3118		generation = btrfs_extent_generation(eb, ei);
3119		level = btrfs_tree_block_level(eb, bi);
 
 
 
3120	} else {
3121#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3122		u64 ref_owner;
3123		int ret;
3124
3125		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3126		ret = get_ref_objectid_v0(rc, path, extent_key,
3127					  &ref_owner, NULL);
3128		if (ret < 0)
3129			return ret;
3130		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3131		level = (int)ref_owner;
3132		/* FIXME: get real generation */
3133		generation = 0;
3134#else
3135		BUG();
3136#endif
3137	}
3138
3139	btrfs_release_path(path);
3140
3141	BUG_ON(level == -1);
3142
3143	block = kmalloc(sizeof(*block), GFP_NOFS);
3144	if (!block)
3145		return -ENOMEM;
3146
3147	block->bytenr = extent_key->objectid;
3148	block->key.objectid = extent_key->offset;
3149	block->key.offset = generation;
3150	block->level = level;
3151	block->key_ready = 0;
3152
3153	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3154	BUG_ON(rb_node);
 
 
3155
3156	return 0;
3157}
3158
3159/*
3160 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3161 */
3162static int __add_tree_block(struct reloc_control *rc,
3163			    u64 bytenr, u32 blocksize,
3164			    struct rb_root *blocks)
3165{
 
3166	struct btrfs_path *path;
3167	struct btrfs_key key;
3168	int ret;
 
3169
3170	if (tree_block_processed(bytenr, blocksize, rc))
3171		return 0;
3172
3173	if (tree_search(blocks, bytenr))
3174		return 0;
3175
3176	path = btrfs_alloc_path();
3177	if (!path)
3178		return -ENOMEM;
3179
3180	key.objectid = bytenr;
3181	key.type = BTRFS_EXTENT_ITEM_KEY;
3182	key.offset = blocksize;
 
 
 
 
 
3183
3184	path->search_commit_root = 1;
3185	path->skip_locking = 1;
3186	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3187	if (ret < 0)
3188		goto out;
3189	BUG_ON(ret);
3190
3191	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192	ret = add_tree_block(rc, &key, path, blocks);
3193out:
3194	btrfs_free_path(path);
3195	return ret;
3196}
3197
3198/*
3199 * helper to check if the block use full backrefs for pointers in it
3200 */
3201static int block_use_full_backref(struct reloc_control *rc,
3202				  struct extent_buffer *eb)
3203{
3204	u64 flags;
3205	int ret;
3206
3207	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3208	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3209		return 1;
3210
3211	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3212				       eb->start, eb->len, NULL, &flags);
3213	BUG_ON(ret);
3214
3215	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3216		ret = 1;
3217	else
3218		ret = 0;
3219	return ret;
3220}
3221
3222static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3223				    struct inode *inode, u64 ino)
 
 
3224{
3225	struct btrfs_key key;
3226	struct btrfs_path *path;
3227	struct btrfs_root *root = fs_info->tree_root;
3228	struct btrfs_trans_handle *trans;
3229	unsigned long nr;
3230	int ret = 0;
3231
3232	if (inode)
3233		goto truncate;
3234
3235	key.objectid = ino;
3236	key.type = BTRFS_INODE_ITEM_KEY;
3237	key.offset = 0;
3238
3239	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3240	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3241		if (inode && !IS_ERR(inode))
3242			iput(inode);
3243		return -ENOENT;
3244	}
3245
3246truncate:
3247	path = btrfs_alloc_path();
3248	if (!path) {
3249		ret = -ENOMEM;
3250		goto out;
3251	}
3252
3253	trans = btrfs_join_transaction(root);
3254	if (IS_ERR(trans)) {
3255		btrfs_free_path(path);
3256		ret = PTR_ERR(trans);
3257		goto out;
3258	}
3259
3260	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3261
3262	btrfs_free_path(path);
3263	nr = trans->blocks_used;
3264	btrfs_end_transaction(trans, root);
3265	btrfs_btree_balance_dirty(root, nr);
3266out:
3267	iput(inode);
3268	return ret;
3269}
3270
3271/*
3272 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3273 * this function scans fs tree to find blocks reference the data extent
3274 */
3275static int find_data_references(struct reloc_control *rc,
3276				struct btrfs_key *extent_key,
3277				struct extent_buffer *leaf,
3278				struct btrfs_extent_data_ref *ref,
3279				struct rb_root *blocks)
3280{
3281	struct btrfs_path *path;
3282	struct tree_block *block;
3283	struct btrfs_root *root;
3284	struct btrfs_file_extent_item *fi;
3285	struct rb_node *rb_node;
3286	struct btrfs_key key;
3287	u64 ref_root;
3288	u64 ref_objectid;
3289	u64 ref_offset;
3290	u32 ref_count;
3291	u32 nritems;
3292	int err = 0;
3293	int added = 0;
3294	int counted;
3295	int ret;
3296
3297	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3298	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3299	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3300	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3301
3302	/*
3303	 * This is an extent belonging to the free space cache, lets just delete
3304	 * it and redo the search.
3305	 */
3306	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3307		ret = delete_block_group_cache(rc->extent_root->fs_info,
3308					       NULL, ref_objectid);
3309		if (ret != -ENOENT)
3310			return ret;
3311		ret = 0;
3312	}
3313
3314	path = btrfs_alloc_path();
3315	if (!path)
3316		return -ENOMEM;
3317	path->reada = 1;
3318
3319	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3320	if (IS_ERR(root)) {
3321		err = PTR_ERR(root);
3322		goto out;
3323	}
3324
3325	key.objectid = ref_objectid;
3326	key.offset = ref_offset;
3327	key.type = BTRFS_EXTENT_DATA_KEY;
3328
3329	path->search_commit_root = 1;
3330	path->skip_locking = 1;
3331	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3332	if (ret < 0) {
3333		err = ret;
3334		goto out;
3335	}
3336
3337	leaf = path->nodes[0];
3338	nritems = btrfs_header_nritems(leaf);
3339	/*
3340	 * the references in tree blocks that use full backrefs
3341	 * are not counted in
3342	 */
3343	if (block_use_full_backref(rc, leaf))
3344		counted = 0;
3345	else
3346		counted = 1;
3347	rb_node = tree_search(blocks, leaf->start);
3348	if (rb_node) {
3349		if (counted)
3350			added = 1;
3351		else
3352			path->slots[0] = nritems;
3353	}
3354
3355	while (ref_count > 0) {
3356		while (path->slots[0] >= nritems) {
3357			ret = btrfs_next_leaf(root, path);
3358			if (ret < 0) {
3359				err = ret;
3360				goto out;
3361			}
3362			if (ret > 0) {
3363				WARN_ON(1);
3364				goto out;
3365			}
3366
3367			leaf = path->nodes[0];
3368			nritems = btrfs_header_nritems(leaf);
3369			added = 0;
3370
3371			if (block_use_full_backref(rc, leaf))
3372				counted = 0;
3373			else
3374				counted = 1;
3375			rb_node = tree_search(blocks, leaf->start);
3376			if (rb_node) {
3377				if (counted)
3378					added = 1;
3379				else
3380					path->slots[0] = nritems;
3381			}
3382		}
3383
3384		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3385		if (key.objectid != ref_objectid ||
3386		    key.type != BTRFS_EXTENT_DATA_KEY) {
3387			WARN_ON(1);
 
 
 
 
 
3388			break;
3389		}
3390
3391		fi = btrfs_item_ptr(leaf, path->slots[0],
3392				    struct btrfs_file_extent_item);
3393
3394		if (btrfs_file_extent_type(leaf, fi) ==
3395		    BTRFS_FILE_EXTENT_INLINE)
3396			goto next;
3397
3398		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3399		    extent_key->objectid)
3400			goto next;
3401
3402		key.offset -= btrfs_file_extent_offset(leaf, fi);
3403		if (key.offset != ref_offset)
3404			goto next;
3405
3406		if (counted)
3407			ref_count--;
3408		if (added)
3409			goto next;
3410
3411		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3412			block = kmalloc(sizeof(*block), GFP_NOFS);
3413			if (!block) {
3414				err = -ENOMEM;
3415				break;
3416			}
3417			block->bytenr = leaf->start;
3418			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3419			block->level = 0;
3420			block->key_ready = 1;
3421			rb_node = tree_insert(blocks, block->bytenr,
3422					      &block->rb_node);
3423			BUG_ON(rb_node);
3424		}
3425		if (counted)
3426			added = 1;
3427		else
3428			path->slots[0] = nritems;
3429next:
3430		path->slots[0]++;
3431
3432	}
3433out:
3434	btrfs_free_path(path);
3435	return err;
 
 
3436}
3437
3438/*
3439 * hepler to find all tree blocks that reference a given data extent
3440 */
3441static noinline_for_stack
3442int add_data_references(struct reloc_control *rc,
3443			struct btrfs_key *extent_key,
3444			struct btrfs_path *path,
3445			struct rb_root *blocks)
3446{
3447	struct btrfs_key key;
3448	struct extent_buffer *eb;
3449	struct btrfs_extent_data_ref *dref;
3450	struct btrfs_extent_inline_ref *iref;
3451	unsigned long ptr;
3452	unsigned long end;
3453	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3454	int ret;
3455	int err = 0;
3456
3457	eb = path->nodes[0];
3458	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3459	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3461	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3462		ptr = end;
3463	else
3464#endif
3465		ptr += sizeof(struct btrfs_extent_item);
3466
3467	while (ptr < end) {
3468		iref = (struct btrfs_extent_inline_ref *)ptr;
3469		key.type = btrfs_extent_inline_ref_type(eb, iref);
3470		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3471			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3472			ret = __add_tree_block(rc, key.offset, blocksize,
3473					       blocks);
3474		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3475			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3476			ret = find_data_references(rc, extent_key,
3477						   eb, dref, blocks);
3478		} else {
3479			BUG();
3480		}
3481		ptr += btrfs_extent_inline_ref_size(key.type);
3482	}
3483	WARN_ON(ptr > end);
3484
3485	while (1) {
3486		cond_resched();
3487		eb = path->nodes[0];
3488		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3489			ret = btrfs_next_leaf(rc->extent_root, path);
3490			if (ret < 0) {
3491				err = ret;
3492				break;
3493			}
3494			if (ret > 0)
3495				break;
3496			eb = path->nodes[0];
3497		}
3498
3499		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3500		if (key.objectid != extent_key->objectid)
 
3501			break;
3502
3503#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3504		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3505		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3506#else
3507		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3508		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3509#endif
3510			ret = __add_tree_block(rc, key.offset, blocksize,
3511					       blocks);
3512		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3513			dref = btrfs_item_ptr(eb, path->slots[0],
3514					      struct btrfs_extent_data_ref);
3515			ret = find_data_references(rc, extent_key,
3516						   eb, dref, blocks);
3517		} else {
3518			ret = 0;
3519		}
3520		if (ret) {
3521			err = ret;
 
 
 
 
 
3522			break;
3523		}
3524		path->slots[0]++;
3525	}
3526	btrfs_release_path(path);
3527	if (err)
3528		free_block_list(blocks);
3529	return err;
 
3530}
3531
3532/*
3533 * hepler to find next unprocessed extent
3534 */
3535static noinline_for_stack
3536int find_next_extent(struct btrfs_trans_handle *trans,
3537		     struct reloc_control *rc, struct btrfs_path *path,
3538		     struct btrfs_key *extent_key)
3539{
 
3540	struct btrfs_key key;
3541	struct extent_buffer *leaf;
3542	u64 start, end, last;
3543	int ret;
3544
3545	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3546	while (1) {
3547		cond_resched();
3548		if (rc->search_start >= last) {
3549			ret = 1;
3550			break;
3551		}
3552
3553		key.objectid = rc->search_start;
3554		key.type = BTRFS_EXTENT_ITEM_KEY;
3555		key.offset = 0;
3556
3557		path->search_commit_root = 1;
3558		path->skip_locking = 1;
3559		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3560					0, 0);
3561		if (ret < 0)
3562			break;
3563next:
3564		leaf = path->nodes[0];
3565		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3566			ret = btrfs_next_leaf(rc->extent_root, path);
3567			if (ret != 0)
3568				break;
3569			leaf = path->nodes[0];
3570		}
3571
3572		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3573		if (key.objectid >= last) {
3574			ret = 1;
3575			break;
3576		}
3577
3578		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
 
 
 
 
 
 
3579		    key.objectid + key.offset <= rc->search_start) {
3580			path->slots[0]++;
3581			goto next;
3582		}
3583
 
 
 
 
 
 
 
3584		ret = find_first_extent_bit(&rc->processed_blocks,
3585					    key.objectid, &start, &end,
3586					    EXTENT_DIRTY);
3587
3588		if (ret == 0 && start <= key.objectid) {
3589			btrfs_release_path(path);
3590			rc->search_start = end + 1;
3591		} else {
3592			rc->search_start = key.objectid + key.offset;
 
 
 
 
3593			memcpy(extent_key, &key, sizeof(key));
3594			return 0;
3595		}
3596	}
3597	btrfs_release_path(path);
3598	return ret;
3599}
3600
3601static void set_reloc_control(struct reloc_control *rc)
3602{
3603	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3604
3605	mutex_lock(&fs_info->reloc_mutex);
3606	fs_info->reloc_ctl = rc;
3607	mutex_unlock(&fs_info->reloc_mutex);
3608}
3609
3610static void unset_reloc_control(struct reloc_control *rc)
3611{
3612	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3613
3614	mutex_lock(&fs_info->reloc_mutex);
3615	fs_info->reloc_ctl = NULL;
3616	mutex_unlock(&fs_info->reloc_mutex);
3617}
3618
3619static int check_extent_flags(u64 flags)
3620{
3621	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3622	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3623		return 1;
3624	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3625	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3626		return 1;
3627	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3628	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3629		return 1;
3630	return 0;
3631}
3632
3633static noinline_for_stack
3634int prepare_to_relocate(struct reloc_control *rc)
3635{
3636	struct btrfs_trans_handle *trans;
3637	int ret;
3638
3639	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
 
3640	if (!rc->block_rsv)
3641		return -ENOMEM;
3642
3643	/*
3644	 * reserve some space for creating reloc trees.
3645	 * btrfs_init_reloc_root will use them when there
3646	 * is no reservation in transaction handle.
3647	 */
3648	ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv,
3649				  rc->extent_root->nodesize * 256);
3650	if (ret)
3651		return ret;
3652
3653	rc->block_rsv->refill_used = 1;
3654	btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv);
3655
3656	memset(&rc->cluster, 0, sizeof(rc->cluster));
3657	rc->search_start = rc->block_group->key.objectid;
3658	rc->extents_found = 0;
3659	rc->nodes_relocated = 0;
3660	rc->merging_rsv_size = 0;
 
 
 
 
 
 
 
 
3661
3662	rc->create_reloc_tree = 1;
3663	set_reloc_control(rc);
3664
3665	trans = btrfs_join_transaction(rc->extent_root);
3666	BUG_ON(IS_ERR(trans));
3667	btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
 
 
 
 
 
3668	return 0;
3669}
3670
3671static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3672{
 
3673	struct rb_root blocks = RB_ROOT;
3674	struct btrfs_key key;
3675	struct btrfs_trans_handle *trans = NULL;
3676	struct btrfs_path *path;
3677	struct btrfs_extent_item *ei;
3678	unsigned long nr;
3679	u64 flags;
3680	u32 item_size;
3681	int ret;
3682	int err = 0;
3683	int progress = 0;
3684
3685	path = btrfs_alloc_path();
3686	if (!path)
3687		return -ENOMEM;
3688	path->reada = 1;
3689
3690	ret = prepare_to_relocate(rc);
3691	if (ret) {
3692		err = ret;
3693		goto out_free;
3694	}
3695
3696	while (1) {
 
 
 
 
 
 
 
 
3697		progress++;
3698		trans = btrfs_start_transaction(rc->extent_root, 0);
3699		BUG_ON(IS_ERR(trans));
 
 
 
 
3700restart:
3701		if (update_backref_cache(trans, &rc->backref_cache)) {
3702			btrfs_end_transaction(trans, rc->extent_root);
 
3703			continue;
3704		}
3705
3706		ret = find_next_extent(trans, rc, path, &key);
3707		if (ret < 0)
3708			err = ret;
3709		if (ret != 0)
3710			break;
3711
3712		rc->extents_found++;
3713
3714		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3715				    struct btrfs_extent_item);
3716		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3717		if (item_size >= sizeof(*ei)) {
3718			flags = btrfs_extent_flags(path->nodes[0], ei);
3719			ret = check_extent_flags(flags);
3720			BUG_ON(ret);
3721
 
 
 
 
3722		} else {
3723#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3724			u64 ref_owner;
3725			int path_change = 0;
3726
3727			BUG_ON(item_size !=
3728			       sizeof(struct btrfs_extent_item_v0));
3729			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3730						  &path_change);
3731			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3732				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3733			else
3734				flags = BTRFS_EXTENT_FLAG_DATA;
3735
3736			if (path_change) {
3737				btrfs_release_path(path);
3738
3739				path->search_commit_root = 1;
3740				path->skip_locking = 1;
3741				ret = btrfs_search_slot(NULL, rc->extent_root,
3742							&key, path, 0, 0);
3743				if (ret < 0) {
3744					err = ret;
3745					break;
3746				}
3747				BUG_ON(ret > 0);
3748			}
3749#else
3750			BUG();
3751#endif
3752		}
3753
3754		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3755			ret = add_tree_block(rc, &key, path, &blocks);
3756		} else if (rc->stage == UPDATE_DATA_PTRS &&
3757			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3758			ret = add_data_references(rc, &key, path, &blocks);
3759		} else {
3760			btrfs_release_path(path);
3761			ret = 0;
3762		}
3763		if (ret < 0) {
3764			err = ret;
3765			break;
3766		}
3767
3768		if (!RB_EMPTY_ROOT(&blocks)) {
3769			ret = relocate_tree_blocks(trans, rc, &blocks);
3770			if (ret < 0) {
3771				if (ret != -EAGAIN) {
3772					err = ret;
3773					break;
3774				}
3775				rc->extents_found--;
3776				rc->search_start = key.objectid;
3777			}
3778		}
3779
3780		ret = btrfs_block_rsv_check(trans, rc->extent_root,
3781					    rc->block_rsv, 0, 5);
3782		if (ret < 0) {
3783			if (ret != -EAGAIN) {
3784				err = ret;
3785				WARN_ON(1);
3786				break;
3787			}
3788			rc->commit_transaction = 1;
3789		}
3790
3791		if (rc->commit_transaction) {
3792			rc->commit_transaction = 0;
3793			ret = btrfs_commit_transaction(trans, rc->extent_root);
3794			BUG_ON(ret);
3795		} else {
3796			nr = trans->blocks_used;
3797			btrfs_end_transaction_throttle(trans, rc->extent_root);
3798			btrfs_btree_balance_dirty(rc->extent_root, nr);
3799		}
3800		trans = NULL;
3801
3802		if (rc->stage == MOVE_DATA_EXTENTS &&
3803		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3804			rc->found_file_extent = 1;
3805			ret = relocate_data_extent(rc->data_inode,
3806						   &key, &rc->cluster);
3807			if (ret < 0) {
3808				err = ret;
3809				break;
3810			}
3811		}
 
 
 
 
3812	}
3813	if (trans && progress && err == -ENOSPC) {
3814		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3815					      rc->block_group->flags);
3816		if (ret == 0) {
3817			err = 0;
3818			progress = 0;
3819			goto restart;
3820		}
3821	}
3822
3823	btrfs_release_path(path);
3824	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3825			  GFP_NOFS);
3826
3827	if (trans) {
3828		nr = trans->blocks_used;
3829		btrfs_end_transaction_throttle(trans, rc->extent_root);
3830		btrfs_btree_balance_dirty(rc->extent_root, nr);
3831	}
3832
3833	if (!err) {
3834		ret = relocate_file_extent_cluster(rc->data_inode,
3835						   &rc->cluster);
3836		if (ret < 0)
3837			err = ret;
3838	}
3839
3840	rc->create_reloc_tree = 0;
3841	set_reloc_control(rc);
3842
3843	backref_cache_cleanup(&rc->backref_cache);
3844	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3845
 
 
 
 
 
 
 
 
3846	err = prepare_to_merge(rc, err);
3847
3848	merge_reloc_roots(rc);
3849
3850	rc->merge_reloc_tree = 0;
3851	unset_reloc_control(rc);
3852	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3853
3854	/* get rid of pinned extents */
3855	trans = btrfs_join_transaction(rc->extent_root);
3856	if (IS_ERR(trans))
3857		err = PTR_ERR(trans);
3858	else
3859		btrfs_commit_transaction(trans, rc->extent_root);
 
3860out_free:
3861	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
 
 
 
3862	btrfs_free_path(path);
3863	return err;
3864}
3865
3866static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3867				 struct btrfs_root *root, u64 objectid)
3868{
3869	struct btrfs_path *path;
3870	struct btrfs_inode_item *item;
3871	struct extent_buffer *leaf;
3872	int ret;
3873
3874	path = btrfs_alloc_path();
3875	if (!path)
3876		return -ENOMEM;
3877
3878	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3879	if (ret)
3880		goto out;
3881
3882	leaf = path->nodes[0];
3883	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3884	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3885	btrfs_set_inode_generation(leaf, item, 1);
3886	btrfs_set_inode_size(leaf, item, 0);
3887	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3888	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3889					  BTRFS_INODE_PREALLOC);
3890	btrfs_mark_buffer_dirty(leaf);
3891	btrfs_release_path(path);
3892out:
3893	btrfs_free_path(path);
3894	return ret;
3895}
3896
3897/*
3898 * helper to create inode for data relocation.
3899 * the inode is in data relocation tree and its link count is 0
3900 */
3901static noinline_for_stack
3902struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3903				 struct btrfs_block_group_cache *group)
3904{
3905	struct inode *inode = NULL;
3906	struct btrfs_trans_handle *trans;
3907	struct btrfs_root *root;
3908	struct btrfs_key key;
3909	unsigned long nr;
3910	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3911	int err = 0;
3912
3913	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3914	if (IS_ERR(root))
3915		return ERR_CAST(root);
3916
3917	trans = btrfs_start_transaction(root, 6);
3918	if (IS_ERR(trans))
 
3919		return ERR_CAST(trans);
 
3920
3921	err = btrfs_find_free_objectid(root, &objectid);
3922	if (err)
3923		goto out;
3924
3925	err = __insert_orphan_inode(trans, root, objectid);
3926	BUG_ON(err);
3927
3928	key.objectid = objectid;
3929	key.type = BTRFS_INODE_ITEM_KEY;
3930	key.offset = 0;
3931	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3932	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3933	BTRFS_I(inode)->index_cnt = group->key.objectid;
3934
3935	err = btrfs_orphan_add(trans, inode);
3936out:
3937	nr = trans->blocks_used;
3938	btrfs_end_transaction(trans, root);
3939	btrfs_btree_balance_dirty(root, nr);
3940	if (err) {
3941		if (inode)
3942			iput(inode);
3943		inode = ERR_PTR(err);
3944	}
3945	return inode;
3946}
3947
3948static struct reloc_control *alloc_reloc_control(void)
3949{
3950	struct reloc_control *rc;
3951
3952	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3953	if (!rc)
3954		return NULL;
3955
3956	INIT_LIST_HEAD(&rc->reloc_roots);
3957	backref_cache_init(&rc->backref_cache);
 
3958	mapping_tree_init(&rc->reloc_root_tree);
3959	extent_io_tree_init(&rc->processed_blocks, NULL);
 
3960	return rc;
3961}
3962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3963/*
3964 * function to relocate all extents in a block group.
3965 */
3966int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3967{
3968	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 
3969	struct reloc_control *rc;
3970	struct inode *inode;
3971	struct btrfs_path *path;
3972	int ret;
3973	int rw = 0;
3974	int err = 0;
3975
3976	rc = alloc_reloc_control();
3977	if (!rc)
 
 
 
 
 
 
 
 
 
 
3978		return -ENOMEM;
 
3979
3980	rc->extent_root = extent_root;
 
3981
3982	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3983	BUG_ON(!rc->block_group);
3984
3985	if (!rc->block_group->ro) {
3986		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3987		if (ret) {
3988			err = ret;
3989			goto out;
3990		}
3991		rw = 1;
3992	}
 
3993
3994	path = btrfs_alloc_path();
3995	if (!path) {
3996		err = -ENOMEM;
3997		goto out;
3998	}
3999
4000	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4001					path);
4002	btrfs_free_path(path);
4003
4004	if (!IS_ERR(inode))
4005		ret = delete_block_group_cache(fs_info, inode, 0);
4006	else
4007		ret = PTR_ERR(inode);
4008
4009	if (ret && ret != -ENOENT) {
4010		err = ret;
4011		goto out;
4012	}
4013
4014	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4015	if (IS_ERR(rc->data_inode)) {
4016		err = PTR_ERR(rc->data_inode);
4017		rc->data_inode = NULL;
4018		goto out;
4019	}
4020
4021	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4022	       (unsigned long long)rc->block_group->key.objectid,
4023	       (unsigned long long)rc->block_group->flags);
4024
4025	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4026	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
 
 
 
4027
4028	while (1) {
4029		mutex_lock(&fs_info->cleaner_mutex);
4030
4031		btrfs_clean_old_snapshots(fs_info->tree_root);
4032		ret = relocate_block_group(rc);
4033
4034		mutex_unlock(&fs_info->cleaner_mutex);
4035		if (ret < 0) {
4036			err = ret;
4037			goto out;
4038		}
4039
4040		if (rc->extents_found == 0)
4041			break;
4042
4043		printk(KERN_INFO "btrfs: found %llu extents\n",
4044			(unsigned long long)rc->extents_found);
4045
 
 
 
 
 
 
 
 
 
 
4046		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4047			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
 
 
 
4048			invalidate_mapping_pages(rc->data_inode->i_mapping,
4049						 0, -1);
4050			rc->stage = UPDATE_DATA_PTRS;
4051		}
4052	}
4053
4054	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4055				     rc->block_group->key.objectid,
4056				     rc->block_group->key.objectid +
4057				     rc->block_group->key.offset - 1);
 
 
 
 
 
4058
4059	WARN_ON(rc->block_group->pinned > 0);
4060	WARN_ON(rc->block_group->reserved > 0);
4061	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4062out:
4063	if (err && rw)
4064		btrfs_set_block_group_rw(extent_root, rc->block_group);
4065	iput(rc->data_inode);
4066	btrfs_put_block_group(rc->block_group);
4067	kfree(rc);
4068	return err;
4069}
4070
4071static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4072{
 
4073	struct btrfs_trans_handle *trans;
4074	int ret;
4075
4076	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4077	BUG_ON(IS_ERR(trans));
 
4078
4079	memset(&root->root_item.drop_progress, 0,
4080		sizeof(root->root_item.drop_progress));
4081	root->root_item.drop_level = 0;
4082	btrfs_set_root_refs(&root->root_item, 0);
4083	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4084				&root->root_key, &root->root_item);
4085	BUG_ON(ret);
4086
4087	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4088	BUG_ON(ret);
4089	return 0;
 
4090}
4091
4092/*
4093 * recover relocation interrupted by system crash.
4094 *
4095 * this function resumes merging reloc trees with corresponding fs trees.
4096 * this is important for keeping the sharing of tree blocks
4097 */
4098int btrfs_recover_relocation(struct btrfs_root *root)
4099{
 
4100	LIST_HEAD(reloc_roots);
4101	struct btrfs_key key;
4102	struct btrfs_root *fs_root;
4103	struct btrfs_root *reloc_root;
4104	struct btrfs_path *path;
4105	struct extent_buffer *leaf;
4106	struct reloc_control *rc = NULL;
4107	struct btrfs_trans_handle *trans;
4108	int ret;
4109	int err = 0;
4110
4111	path = btrfs_alloc_path();
4112	if (!path)
4113		return -ENOMEM;
4114	path->reada = -1;
4115
4116	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4117	key.type = BTRFS_ROOT_ITEM_KEY;
4118	key.offset = (u64)-1;
4119
4120	while (1) {
4121		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4122					path, 0, 0);
4123		if (ret < 0) {
4124			err = ret;
4125			goto out;
4126		}
4127		if (ret > 0) {
4128			if (path->slots[0] == 0)
4129				break;
4130			path->slots[0]--;
4131		}
4132		leaf = path->nodes[0];
4133		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4134		btrfs_release_path(path);
4135
4136		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4137		    key.type != BTRFS_ROOT_ITEM_KEY)
4138			break;
4139
4140		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4141		if (IS_ERR(reloc_root)) {
4142			err = PTR_ERR(reloc_root);
4143			goto out;
4144		}
4145
 
4146		list_add(&reloc_root->root_list, &reloc_roots);
4147
4148		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4149			fs_root = read_fs_root(root->fs_info,
4150					       reloc_root->root_key.offset);
4151			if (IS_ERR(fs_root)) {
4152				ret = PTR_ERR(fs_root);
4153				if (ret != -ENOENT) {
4154					err = ret;
4155					goto out;
4156				}
4157				mark_garbage_root(reloc_root);
 
 
 
 
 
 
4158			}
4159		}
4160
4161		if (key.offset == 0)
4162			break;
4163
4164		key.offset--;
4165	}
4166	btrfs_release_path(path);
4167
4168	if (list_empty(&reloc_roots))
4169		goto out;
4170
4171	rc = alloc_reloc_control();
4172	if (!rc) {
4173		err = -ENOMEM;
4174		goto out;
4175	}
4176
4177	rc->extent_root = root->fs_info->extent_root;
4178
4179	set_reloc_control(rc);
4180
4181	trans = btrfs_join_transaction(rc->extent_root);
4182	if (IS_ERR(trans)) {
4183		unset_reloc_control(rc);
4184		err = PTR_ERR(trans);
4185		goto out_free;
4186	}
4187
4188	rc->merge_reloc_tree = 1;
4189
4190	while (!list_empty(&reloc_roots)) {
4191		reloc_root = list_entry(reloc_roots.next,
4192					struct btrfs_root, root_list);
4193		list_del(&reloc_root->root_list);
4194
4195		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4196			list_add_tail(&reloc_root->root_list,
4197				      &rc->reloc_roots);
4198			continue;
4199		}
4200
4201		fs_root = read_fs_root(root->fs_info,
4202				       reloc_root->root_key.offset);
4203		BUG_ON(IS_ERR(fs_root));
 
 
 
 
 
4204
4205		__add_reloc_root(reloc_root);
4206		fs_root->reloc_root = reloc_root;
 
 
4207	}
4208
4209	btrfs_commit_transaction(trans, rc->extent_root);
 
 
4210
4211	merge_reloc_roots(rc);
4212
4213	unset_reloc_control(rc);
4214
4215	trans = btrfs_join_transaction(rc->extent_root);
4216	if (IS_ERR(trans))
4217		err = PTR_ERR(trans);
4218	else
4219		btrfs_commit_transaction(trans, rc->extent_root);
4220out_free:
4221	kfree(rc);
4222out:
4223	while (!list_empty(&reloc_roots)) {
4224		reloc_root = list_entry(reloc_roots.next,
4225					struct btrfs_root, root_list);
4226		list_del(&reloc_root->root_list);
4227		free_extent_buffer(reloc_root->node);
4228		free_extent_buffer(reloc_root->commit_root);
4229		kfree(reloc_root);
4230	}
 
 
 
 
 
 
 
 
 
 
 
4231	btrfs_free_path(path);
4232
4233	if (err == 0) {
4234		/* cleanup orphan inode in data relocation tree */
4235		fs_root = read_fs_root(root->fs_info,
4236				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4237		if (IS_ERR(fs_root))
4238			err = PTR_ERR(fs_root);
4239		else
4240			err = btrfs_orphan_cleanup(fs_root);
4241	}
4242	return err;
4243}
4244
4245/*
4246 * helper to add ordered checksum for data relocation.
4247 *
4248 * cloning checksum properly handles the nodatasum extents.
4249 * it also saves CPU time to re-calculate the checksum.
4250 */
4251int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4252{
 
4253	struct btrfs_ordered_sum *sums;
4254	struct btrfs_sector_sum *sector_sum;
4255	struct btrfs_ordered_extent *ordered;
4256	struct btrfs_root *root = BTRFS_I(inode)->root;
4257	size_t offset;
4258	int ret;
4259	u64 disk_bytenr;
 
4260	LIST_HEAD(list);
4261
4262	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4263	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4264
4265	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4266	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4267				       disk_bytenr + len - 1, &list, 0);
 
 
4268
4269	while (!list_empty(&list)) {
4270		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4271		list_del_init(&sums->list);
4272
4273		sector_sum = sums->sums;
4274		sums->bytenr = ordered->start;
4275
4276		offset = 0;
4277		while (offset < sums->len) {
4278			sector_sum->bytenr += ordered->start - disk_bytenr;
4279			sector_sum++;
4280			offset += root->sectorsize;
4281		}
 
 
 
 
 
4282
4283		btrfs_add_ordered_sum(inode, ordered, sums);
4284	}
 
4285	btrfs_put_ordered_extent(ordered);
4286	return ret;
4287}
4288
4289void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4290			   struct btrfs_root *root, struct extent_buffer *buf,
4291			   struct extent_buffer *cow)
4292{
 
4293	struct reloc_control *rc;
4294	struct backref_node *node;
4295	int first_cow = 0;
4296	int level;
4297	int ret;
4298
4299	rc = root->fs_info->reloc_ctl;
4300	if (!rc)
4301		return;
4302
4303	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4304	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4305
4306	level = btrfs_header_level(buf);
4307	if (btrfs_header_generation(buf) <=
4308	    btrfs_root_last_snapshot(&root->root_item))
4309		first_cow = 1;
4310
4311	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4312	    rc->create_reloc_tree) {
4313		WARN_ON(!first_cow && level == 0);
4314
4315		node = rc->backref_cache.path[level];
4316		BUG_ON(node->bytenr != buf->start &&
4317		       node->new_bytenr != buf->start);
4318
4319		drop_node_buffer(node);
4320		extent_buffer_get(cow);
4321		node->eb = cow;
4322		node->new_bytenr = cow->start;
4323
4324		if (!node->pending) {
4325			list_move_tail(&node->list,
4326				       &rc->backref_cache.pending[level]);
4327			node->pending = 1;
4328		}
4329
4330		if (first_cow)
4331			__mark_block_processed(rc, node);
4332
4333		if (first_cow && level > 0)
4334			rc->nodes_relocated += buf->len;
4335	}
4336
4337	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4338		ret = replace_file_extents(trans, rc, root, cow);
4339		BUG_ON(ret);
4340	}
4341}
4342
4343/*
4344 * called before creating snapshot. it calculates metadata reservation
4345 * requried for relocating tree blocks in the snapshot
4346 */
4347void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4348			      struct btrfs_pending_snapshot *pending,
4349			      u64 *bytes_to_reserve)
4350{
4351	struct btrfs_root *root;
4352	struct reloc_control *rc;
4353
4354	root = pending->root;
4355	if (!root->reloc_root)
4356		return;
4357
4358	rc = root->fs_info->reloc_ctl;
4359	if (!rc->merge_reloc_tree)
4360		return;
4361
4362	root = root->reloc_root;
4363	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4364	/*
4365	 * relocation is in the stage of merging trees. the space
4366	 * used by merging a reloc tree is twice the size of
4367	 * relocated tree nodes in the worst case. half for cowing
4368	 * the reloc tree, half for cowing the fs tree. the space
4369	 * used by cowing the reloc tree will be freed after the
4370	 * tree is dropped. if we create snapshot, cowing the fs
4371	 * tree may use more space than it frees. so we need
4372	 * reserve extra space.
4373	 */
4374	*bytes_to_reserve += rc->nodes_relocated;
4375}
4376
4377/*
4378 * called after snapshot is created. migrate block reservation
4379 * and create reloc root for the newly created snapshot
 
 
 
 
4380 */
4381void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4382			       struct btrfs_pending_snapshot *pending)
4383{
4384	struct btrfs_root *root = pending->root;
4385	struct btrfs_root *reloc_root;
4386	struct btrfs_root *new_root;
4387	struct reloc_control *rc;
4388	int ret;
4389
4390	if (!root->reloc_root)
4391		return;
4392
4393	rc = root->fs_info->reloc_ctl;
4394	rc->merging_rsv_size += rc->nodes_relocated;
4395
4396	if (rc->merge_reloc_tree) {
4397		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4398					      rc->block_rsv,
4399					      rc->nodes_relocated);
4400		BUG_ON(ret);
 
4401	}
4402
4403	new_root = pending->snap;
4404	reloc_root = create_reloc_root(trans, root->reloc_root,
4405				       new_root->root_key.objectid);
 
 
4406
4407	__add_reloc_root(reloc_root);
4408	new_root->reloc_root = reloc_root;
 
4409
4410	if (rc->create_reloc_tree) {
4411		ret = clone_backref_node(trans, rc, root, reloc_root);
4412		BUG_ON(ret);
4413	}
4414}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "inode-map.h"
  22#include "qgroup.h"
  23#include "print-tree.h"
  24#include "delalloc-space.h"
  25#include "block-group.h"
  26#include "backref.h"
  27#include "misc.h"
  28
  29/*
  30 * Relocation overview
  31 *
  32 * [What does relocation do]
  33 *
  34 * The objective of relocation is to relocate all extents of the target block
  35 * group to other block groups.
  36 * This is utilized by resize (shrink only), profile converting, compacting
  37 * space, or balance routine to spread chunks over devices.
  38 *
  39 * 		Before		|		After
  40 * ------------------------------------------------------------------
  41 *  BG A: 10 data extents	| BG A: deleted
  42 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  43 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  44 *
  45 * [How does relocation work]
  46 *
  47 * 1.   Mark the target block group read-only
  48 *      New extents won't be allocated from the target block group.
  49 *
  50 * 2.1  Record each extent in the target block group
  51 *      To build a proper map of extents to be relocated.
  52 *
  53 * 2.2  Build data reloc tree and reloc trees
  54 *      Data reloc tree will contain an inode, recording all newly relocated
  55 *      data extents.
  56 *      There will be only one data reloc tree for one data block group.
  57 *
  58 *      Reloc tree will be a special snapshot of its source tree, containing
  59 *      relocated tree blocks.
  60 *      Each tree referring to a tree block in target block group will get its
  61 *      reloc tree built.
  62 *
  63 * 2.3  Swap source tree with its corresponding reloc tree
  64 *      Each involved tree only refers to new extents after swap.
  65 *
  66 * 3.   Cleanup reloc trees and data reloc tree.
  67 *      As old extents in the target block group are still referenced by reloc
  68 *      trees, we need to clean them up before really freeing the target block
  69 *      group.
  70 *
  71 * The main complexity is in steps 2.2 and 2.3.
  72 *
  73 * The entry point of relocation is relocate_block_group() function.
 
 
 
 
 
 
 
 
 
  74 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76#define RELOCATION_RESERVED_NODES	256
  77/*
  78 * map address of tree root to tree
  79 */
  80struct mapping_node {
  81	struct {
  82		struct rb_node rb_node;
  83		u64 bytenr;
  84	}; /* Use rb_simle_node for search/insert */
  85	void *data;
  86};
  87
  88struct mapping_tree {
  89	struct rb_root rb_root;
  90	spinlock_t lock;
  91};
  92
  93/*
  94 * present a tree block to process
  95 */
  96struct tree_block {
  97	struct {
  98		struct rb_node rb_node;
  99		u64 bytenr;
 100	}; /* Use rb_simple_node for search/insert */
 101	struct btrfs_key key;
 102	unsigned int level:8;
 103	unsigned int key_ready:1;
 104};
 105
 106#define MAX_EXTENTS 128
 107
 108struct file_extent_cluster {
 109	u64 start;
 110	u64 end;
 111	u64 boundary[MAX_EXTENTS];
 112	unsigned int nr;
 113};
 114
 115struct reloc_control {
 116	/* block group to relocate */
 117	struct btrfs_block_group *block_group;
 118	/* extent tree */
 119	struct btrfs_root *extent_root;
 120	/* inode for moving data */
 121	struct inode *data_inode;
 122
 123	struct btrfs_block_rsv *block_rsv;
 124
 125	struct btrfs_backref_cache backref_cache;
 126
 127	struct file_extent_cluster cluster;
 128	/* tree blocks have been processed */
 129	struct extent_io_tree processed_blocks;
 130	/* map start of tree root to corresponding reloc tree */
 131	struct mapping_tree reloc_root_tree;
 132	/* list of reloc trees */
 133	struct list_head reloc_roots;
 134	/* list of subvolume trees that get relocated */
 135	struct list_head dirty_subvol_roots;
 136	/* size of metadata reservation for merging reloc trees */
 137	u64 merging_rsv_size;
 138	/* size of relocated tree nodes */
 139	u64 nodes_relocated;
 140	/* reserved size for block group relocation*/
 141	u64 reserved_bytes;
 142
 143	u64 search_start;
 144	u64 extents_found;
 145
 146	unsigned int stage:8;
 147	unsigned int create_reloc_tree:1;
 148	unsigned int merge_reloc_tree:1;
 149	unsigned int found_file_extent:1;
 
 150};
 151
 152/* stages of data relocation */
 153#define MOVE_DATA_EXTENTS	0
 154#define UPDATE_DATA_PTRS	1
 155
 156static void mark_block_processed(struct reloc_control *rc,
 157				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158{
 159	u32 blocksize;
 
 
 
 
 
 
 160
 161	if (node->level == 0 ||
 162	    in_range(node->bytenr, rc->block_group->start,
 163		     rc->block_group->length)) {
 164		blocksize = rc->extent_root->fs_info->nodesize;
 165		set_extent_bits(&rc->processed_blocks, node->bytenr,
 166				node->bytenr + blocksize - 1, EXTENT_DIRTY);
 167	}
 168	node->processed = 1;
 169}
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171
 172static void mapping_tree_init(struct mapping_tree *tree)
 173{
 174	tree->rb_root = RB_ROOT;
 175	spin_lock_init(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 176}
 177
 178/*
 179 * walk up backref nodes until reach node presents tree root
 180 */
 181static struct btrfs_backref_node *walk_up_backref(
 182		struct btrfs_backref_node *node,
 183		struct btrfs_backref_edge *edges[], int *index)
 184{
 185	struct btrfs_backref_edge *edge;
 186	int idx = *index;
 187
 188	while (!list_empty(&node->upper)) {
 189		edge = list_entry(node->upper.next,
 190				  struct btrfs_backref_edge, list[LOWER]);
 191		edges[idx++] = edge;
 192		node = edge->node[UPPER];
 193	}
 194	BUG_ON(node->detached);
 195	*index = idx;
 196	return node;
 197}
 198
 199/*
 200 * walk down backref nodes to find start of next reference path
 201 */
 202static struct btrfs_backref_node *walk_down_backref(
 203		struct btrfs_backref_edge *edges[], int *index)
 204{
 205	struct btrfs_backref_edge *edge;
 206	struct btrfs_backref_node *lower;
 207	int idx = *index;
 208
 209	while (idx > 0) {
 210		edge = edges[idx - 1];
 211		lower = edge->node[LOWER];
 212		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 213			idx--;
 214			continue;
 215		}
 216		edge = list_entry(edge->list[LOWER].next,
 217				  struct btrfs_backref_edge, list[LOWER]);
 218		edges[idx - 1] = edge;
 219		*index = idx;
 220		return edge->node[UPPER];
 221	}
 222	*index = 0;
 223	return NULL;
 224}
 225
 226static void update_backref_node(struct btrfs_backref_cache *cache,
 227				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 229	struct rb_node *rb_node;
 230	rb_erase(&node->rb_node, &cache->rb_root);
 231	node->bytenr = bytenr;
 232	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 233	if (rb_node)
 234		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 235}
 236
 237/*
 238 * update backref cache after a transaction commit
 239 */
 240static int update_backref_cache(struct btrfs_trans_handle *trans,
 241				struct btrfs_backref_cache *cache)
 242{
 243	struct btrfs_backref_node *node;
 244	int level = 0;
 245
 246	if (cache->last_trans == 0) {
 247		cache->last_trans = trans->transid;
 248		return 0;
 249	}
 250
 251	if (cache->last_trans == trans->transid)
 252		return 0;
 253
 254	/*
 255	 * detached nodes are used to avoid unnecessary backref
 256	 * lookup. transaction commit changes the extent tree.
 257	 * so the detached nodes are no longer useful.
 258	 */
 259	while (!list_empty(&cache->detached)) {
 260		node = list_entry(cache->detached.next,
 261				  struct btrfs_backref_node, list);
 262		btrfs_backref_cleanup_node(cache, node);
 263	}
 264
 265	while (!list_empty(&cache->changed)) {
 266		node = list_entry(cache->changed.next,
 267				  struct btrfs_backref_node, list);
 268		list_del_init(&node->list);
 269		BUG_ON(node->pending);
 270		update_backref_node(cache, node, node->new_bytenr);
 271	}
 272
 273	/*
 274	 * some nodes can be left in the pending list if there were
 275	 * errors during processing the pending nodes.
 276	 */
 277	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 278		list_for_each_entry(node, &cache->pending[level], list) {
 279			BUG_ON(!node->pending);
 280			if (node->bytenr == node->new_bytenr)
 281				continue;
 282			update_backref_node(cache, node, node->new_bytenr);
 283		}
 284	}
 285
 286	cache->last_trans = 0;
 287	return 1;
 288}
 289
 290static bool reloc_root_is_dead(struct btrfs_root *root)
 291{
 292	/*
 293	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 294	 * btrfs_update_reloc_root. We need to see the updated bit before
 295	 * trying to access reloc_root
 296	 */
 297	smp_rmb();
 298	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 299		return true;
 300	return false;
 301}
 302
 303/*
 304 * Check if this subvolume tree has valid reloc tree.
 305 *
 306 * Reloc tree after swap is considered dead, thus not considered as valid.
 307 * This is enough for most callers, as they don't distinguish dead reloc root
 308 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 309 * special case.
 310 */
 311static bool have_reloc_root(struct btrfs_root *root)
 312{
 313	if (reloc_root_is_dead(root))
 314		return false;
 315	if (!root->reloc_root)
 316		return false;
 317	return true;
 318}
 319
 320int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 321{
 322	struct btrfs_root *reloc_root;
 323
 324	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 325		return 0;
 326
 327	/* This root has been merged with its reloc tree, we can ignore it */
 328	if (reloc_root_is_dead(root))
 329		return 1;
 330
 331	reloc_root = root->reloc_root;
 332	if (!reloc_root)
 333		return 0;
 334
 335	if (btrfs_header_generation(reloc_root->commit_root) ==
 336	    root->fs_info->running_transaction->transid)
 337		return 0;
 338	/*
 339	 * if there is reloc tree and it was created in previous
 340	 * transaction backref lookup can find the reloc tree,
 341	 * so backref node for the fs tree root is useless for
 342	 * relocation.
 343	 */
 344	return 1;
 345}
 346
 347/*
 348 * find reloc tree by address of tree root
 349 */
 350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 351{
 352	struct reloc_control *rc = fs_info->reloc_ctl;
 353	struct rb_node *rb_node;
 354	struct mapping_node *node;
 355	struct btrfs_root *root = NULL;
 356
 357	ASSERT(rc);
 358	spin_lock(&rc->reloc_root_tree.lock);
 359	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 360	if (rb_node) {
 361		node = rb_entry(rb_node, struct mapping_node, rb_node);
 362		root = (struct btrfs_root *)node->data;
 363	}
 364	spin_unlock(&rc->reloc_root_tree.lock);
 365	return btrfs_grab_root(root);
 366}
 367
 368/*
 369 * For useless nodes, do two major clean ups:
 370 *
 371 * - Cleanup the children edges and nodes
 372 *   If child node is also orphan (no parent) during cleanup, then the child
 373 *   node will also be cleaned up.
 374 *
 375 * - Freeing up leaves (level 0), keeps nodes detached
 376 *   For nodes, the node is still cached as "detached"
 377 *
 378 * Return false if @node is not in the @useless_nodes list.
 379 * Return true if @node is in the @useless_nodes list.
 380 */
 381static bool handle_useless_nodes(struct reloc_control *rc,
 382				 struct btrfs_backref_node *node)
 383{
 384	struct btrfs_backref_cache *cache = &rc->backref_cache;
 385	struct list_head *useless_node = &cache->useless_node;
 386	bool ret = false;
 
 
 
 
 
 
 387
 388	while (!list_empty(useless_node)) {
 389		struct btrfs_backref_node *cur;
 
 
 390
 391		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 392				 list);
 393		list_del_init(&cur->list);
 
 
 
 394
 395		/* Only tree root nodes can be added to @useless_nodes */
 396		ASSERT(list_empty(&cur->upper));
 
 
 
 
 
 
 
 
 
 
 
 
 397
 398		if (cur == node)
 399			ret = true;
 400
 401		/* The node is the lowest node */
 402		if (cur->lowest) {
 403			list_del_init(&cur->lower);
 404			cur->lowest = 0;
 405		}
 406
 407		/* Cleanup the lower edges */
 408		while (!list_empty(&cur->lower)) {
 409			struct btrfs_backref_edge *edge;
 410			struct btrfs_backref_node *lower;
 411
 412			edge = list_entry(cur->lower.next,
 413					struct btrfs_backref_edge, list[UPPER]);
 414			list_del(&edge->list[UPPER]);
 415			list_del(&edge->list[LOWER]);
 416			lower = edge->node[LOWER];
 417			btrfs_backref_free_edge(cache, edge);
 
 418
 419			/* Child node is also orphan, queue for cleanup */
 420			if (list_empty(&lower->upper))
 421				list_add(&lower->list, useless_node);
 422		}
 423		/* Mark this block processed for relocation */
 424		mark_block_processed(rc, cur);
 
 
 
 
 425
 426		/*
 427		 * Backref nodes for tree leaves are deleted from the cache.
 428		 * Backref nodes for upper level tree blocks are left in the
 429		 * cache to avoid unnecessary backref lookup.
 430		 */
 431		if (cur->level > 0) {
 432			list_add(&cur->list, &cache->detached);
 433			cur->detached = 1;
 434		} else {
 435			rb_erase(&cur->rb_node, &cache->rb_root);
 436			btrfs_backref_free_node(cache, cur);
 437		}
 438	}
 439	return ret;
 
 
 
 
 440}
 441
 442/*
 443 * Build backref tree for a given tree block. Root of the backref tree
 444 * corresponds the tree block, leaves of the backref tree correspond roots of
 445 * b-trees that reference the tree block.
 446 *
 447 * The basic idea of this function is check backrefs of a given block to find
 448 * upper level blocks that reference the block, and then check backrefs of
 449 * these upper level blocks recursively. The recursion stops when tree root is
 450 * reached or backrefs for the block is cached.
 451 *
 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 453 * all upper level blocks that directly/indirectly reference the block are also
 454 * cached.
 455 */
 456static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 457			struct reloc_control *rc, struct btrfs_key *node_key,
 458			int level, u64 bytenr)
 459{
 460	struct btrfs_backref_iter *iter;
 461	struct btrfs_backref_cache *cache = &rc->backref_cache;
 462	/* For searching parent of TREE_BLOCK_REF */
 463	struct btrfs_path *path;
 464	struct btrfs_backref_node *cur;
 465	struct btrfs_backref_node *node = NULL;
 466	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 
 467	int ret;
 468	int err = 0;
 469
 470	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
 471	if (!iter)
 472		return ERR_PTR(-ENOMEM);
 473	path = btrfs_alloc_path();
 474	if (!path) {
 475		err = -ENOMEM;
 476		goto out;
 477	}
 
 
 478
 479	node = btrfs_backref_alloc_node(cache, bytenr, level);
 480	if (!node) {
 481		err = -ENOMEM;
 482		goto out;
 483	}
 484
 
 
 485	node->lowest = 1;
 486	cur = node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	/* Breadth-first search to build backref cache */
 489	do {
 490		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 491						  cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492		if (ret < 0) {
 493			err = ret;
 494			goto out;
 495		}
 496		edge = list_first_entry_or_null(&cache->pending_edge,
 497				struct btrfs_backref_edge, list[UPPER]);
 498		/*
 499		 * The pending list isn't empty, take the first block to
 500		 * process
 501		 */
 502		if (edge) {
 503			list_del_init(&edge->list[UPPER]);
 504			cur = edge->node[UPPER];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505		}
 506	} while (edge);
 507
 508	/* Finish the upper linkage of newly added edges/nodes */
 509	ret = btrfs_backref_finish_upper_links(cache, node);
 510	if (ret < 0) {
 511		err = ret;
 512		goto out;
 513	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514
 515	if (handle_useless_nodes(rc, node))
 516		node = NULL;
 
 
 
 
 
 
 
 
 
 
 517out:
 518	btrfs_backref_iter_free(iter);
 519	btrfs_free_path(path);
 520	if (err) {
 521		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522		return ERR_PTR(err);
 523	}
 524	ASSERT(!node || !node->detached);
 525	ASSERT(list_empty(&cache->useless_node) &&
 526	       list_empty(&cache->pending_edge));
 527	return node;
 528}
 529
 530/*
 531 * helper to add backref node for the newly created snapshot.
 532 * the backref node is created by cloning backref node that
 533 * corresponds to root of source tree
 534 */
 535static int clone_backref_node(struct btrfs_trans_handle *trans,
 536			      struct reloc_control *rc,
 537			      struct btrfs_root *src,
 538			      struct btrfs_root *dest)
 539{
 540	struct btrfs_root *reloc_root = src->reloc_root;
 541	struct btrfs_backref_cache *cache = &rc->backref_cache;
 542	struct btrfs_backref_node *node = NULL;
 543	struct btrfs_backref_node *new_node;
 544	struct btrfs_backref_edge *edge;
 545	struct btrfs_backref_edge *new_edge;
 546	struct rb_node *rb_node;
 547
 548	if (cache->last_trans > 0)
 549		update_backref_cache(trans, cache);
 550
 551	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 552	if (rb_node) {
 553		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 554		if (node->detached)
 555			node = NULL;
 556		else
 557			BUG_ON(node->new_bytenr != reloc_root->node->start);
 558	}
 559
 560	if (!node) {
 561		rb_node = rb_simple_search(&cache->rb_root,
 562					   reloc_root->commit_root->start);
 563		if (rb_node) {
 564			node = rb_entry(rb_node, struct btrfs_backref_node,
 565					rb_node);
 566			BUG_ON(node->detached);
 567		}
 568	}
 569
 570	if (!node)
 571		return 0;
 572
 573	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 574					    node->level);
 575	if (!new_node)
 576		return -ENOMEM;
 577
 
 
 578	new_node->lowest = node->lowest;
 579	new_node->checked = 1;
 580	new_node->root = btrfs_grab_root(dest);
 581	ASSERT(new_node->root);
 582
 583	if (!node->lowest) {
 584		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 585			new_edge = btrfs_backref_alloc_edge(cache);
 586			if (!new_edge)
 587				goto fail;
 588
 589			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 590						new_node, LINK_UPPER);
 
 
 591		}
 592	} else {
 593		list_add_tail(&new_node->lower, &cache->leaves);
 594	}
 595
 596	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 597				   &new_node->rb_node);
 598	if (rb_node)
 599		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 600
 601	if (!new_node->lowest) {
 602		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 603			list_add_tail(&new_edge->list[LOWER],
 604				      &new_edge->node[LOWER]->upper);
 605		}
 606	}
 607	return 0;
 608fail:
 609	while (!list_empty(&new_node->lower)) {
 610		new_edge = list_entry(new_node->lower.next,
 611				      struct btrfs_backref_edge, list[UPPER]);
 612		list_del(&new_edge->list[UPPER]);
 613		btrfs_backref_free_edge(cache, new_edge);
 614	}
 615	btrfs_backref_free_node(cache, new_node);
 616	return -ENOMEM;
 617}
 618
 619/*
 620 * helper to add 'address of tree root -> reloc tree' mapping
 621 */
 622static int __must_check __add_reloc_root(struct btrfs_root *root)
 623{
 624	struct btrfs_fs_info *fs_info = root->fs_info;
 625	struct rb_node *rb_node;
 626	struct mapping_node *node;
 627	struct reloc_control *rc = fs_info->reloc_ctl;
 628
 629	node = kmalloc(sizeof(*node), GFP_NOFS);
 630	if (!node)
 631		return -ENOMEM;
 632
 633	node->bytenr = root->commit_root->start;
 634	node->data = root;
 635
 636	spin_lock(&rc->reloc_root_tree.lock);
 637	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 638				   node->bytenr, &node->rb_node);
 639	spin_unlock(&rc->reloc_root_tree.lock);
 640	if (rb_node) {
 641		btrfs_panic(fs_info, -EEXIST,
 642			    "Duplicate root found for start=%llu while inserting into relocation tree",
 643			    node->bytenr);
 644	}
 645
 646	list_add_tail(&root->root_list, &rc->reloc_roots);
 647	return 0;
 648}
 649
 650/*
 651 * helper to delete the 'address of tree root -> reloc tree'
 652 * mapping
 653 */
 654static void __del_reloc_root(struct btrfs_root *root)
 655{
 656	struct btrfs_fs_info *fs_info = root->fs_info;
 657	struct rb_node *rb_node;
 658	struct mapping_node *node = NULL;
 659	struct reloc_control *rc = fs_info->reloc_ctl;
 660	bool put_ref = false;
 661
 662	if (rc && root->node) {
 663		spin_lock(&rc->reloc_root_tree.lock);
 664		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 665					   root->commit_root->start);
 666		if (rb_node) {
 667			node = rb_entry(rb_node, struct mapping_node, rb_node);
 668			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 669			RB_CLEAR_NODE(&node->rb_node);
 670		}
 671		spin_unlock(&rc->reloc_root_tree.lock);
 672		if (!node)
 673			return;
 674		BUG_ON((struct btrfs_root *)node->data != root);
 675	}
 676
 677	/*
 678	 * We only put the reloc root here if it's on the list.  There's a lot
 679	 * of places where the pattern is to splice the rc->reloc_roots, process
 680	 * the reloc roots, and then add the reloc root back onto
 681	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 682	 * list we don't want the reference being dropped, because the guy
 683	 * messing with the list is in charge of the reference.
 684	 */
 685	spin_lock(&fs_info->trans_lock);
 686	if (!list_empty(&root->root_list)) {
 687		put_ref = true;
 688		list_del_init(&root->root_list);
 689	}
 690	spin_unlock(&fs_info->trans_lock);
 691	if (put_ref)
 692		btrfs_put_root(root);
 693	kfree(node);
 694}
 695
 696/*
 697 * helper to update the 'address of tree root -> reloc tree'
 698 * mapping
 699 */
 700static int __update_reloc_root(struct btrfs_root *root)
 701{
 702	struct btrfs_fs_info *fs_info = root->fs_info;
 703	struct rb_node *rb_node;
 704	struct mapping_node *node = NULL;
 705	struct reloc_control *rc = fs_info->reloc_ctl;
 706
 707	spin_lock(&rc->reloc_root_tree.lock);
 708	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 709				   root->commit_root->start);
 710	if (rb_node) {
 711		node = rb_entry(rb_node, struct mapping_node, rb_node);
 712		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 713	}
 714	spin_unlock(&rc->reloc_root_tree.lock);
 715
 716	if (!node)
 717		return 0;
 718	BUG_ON((struct btrfs_root *)node->data != root);
 719
 720	spin_lock(&rc->reloc_root_tree.lock);
 721	node->bytenr = root->node->start;
 722	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 723				   node->bytenr, &node->rb_node);
 724	spin_unlock(&rc->reloc_root_tree.lock);
 725	if (rb_node)
 726		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 
 
 
 
 727	return 0;
 728}
 729
 730static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 731					struct btrfs_root *root, u64 objectid)
 732{
 733	struct btrfs_fs_info *fs_info = root->fs_info;
 734	struct btrfs_root *reloc_root;
 735	struct extent_buffer *eb;
 736	struct btrfs_root_item *root_item;
 737	struct btrfs_key root_key;
 738	int ret;
 739
 740	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 741	BUG_ON(!root_item);
 742
 743	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 744	root_key.type = BTRFS_ROOT_ITEM_KEY;
 745	root_key.offset = objectid;
 746
 747	if (root->root_key.objectid == objectid) {
 748		u64 commit_root_gen;
 749
 750		/* called by btrfs_init_reloc_root */
 751		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 752				      BTRFS_TREE_RELOC_OBJECTID);
 753		BUG_ON(ret);
 754		/*
 755		 * Set the last_snapshot field to the generation of the commit
 756		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 757		 * correctly (returns true) when the relocation root is created
 758		 * either inside the critical section of a transaction commit
 759		 * (through transaction.c:qgroup_account_snapshot()) and when
 760		 * it's created before the transaction commit is started.
 761		 */
 762		commit_root_gen = btrfs_header_generation(root->commit_root);
 763		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 764	} else {
 765		/*
 766		 * called by btrfs_reloc_post_snapshot_hook.
 767		 * the source tree is a reloc tree, all tree blocks
 768		 * modified after it was created have RELOC flag
 769		 * set in their headers. so it's OK to not update
 770		 * the 'last_snapshot'.
 771		 */
 772		ret = btrfs_copy_root(trans, root, root->node, &eb,
 773				      BTRFS_TREE_RELOC_OBJECTID);
 774		BUG_ON(ret);
 775	}
 776
 777	memcpy(root_item, &root->root_item, sizeof(*root_item));
 778	btrfs_set_root_bytenr(root_item, eb->start);
 779	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 780	btrfs_set_root_generation(root_item, trans->transid);
 781
 782	if (root->root_key.objectid == objectid) {
 783		btrfs_set_root_refs(root_item, 0);
 784		memset(&root_item->drop_progress, 0,
 785		       sizeof(struct btrfs_disk_key));
 786		root_item->drop_level = 0;
 787	}
 788
 789	btrfs_tree_unlock(eb);
 790	free_extent_buffer(eb);
 791
 792	ret = btrfs_insert_root(trans, fs_info->tree_root,
 793				&root_key, root_item);
 794	BUG_ON(ret);
 795	kfree(root_item);
 796
 797	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 
 798	BUG_ON(IS_ERR(reloc_root));
 799	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 800	reloc_root->last_trans = trans->transid;
 801	return reloc_root;
 802}
 803
 804/*
 805 * create reloc tree for a given fs tree. reloc tree is just a
 806 * snapshot of the fs tree with special root objectid.
 807 *
 808 * The reloc_root comes out of here with two references, one for
 809 * root->reloc_root, and another for being on the rc->reloc_roots list.
 810 */
 811int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 812			  struct btrfs_root *root)
 813{
 814	struct btrfs_fs_info *fs_info = root->fs_info;
 815	struct btrfs_root *reloc_root;
 816	struct reloc_control *rc = fs_info->reloc_ctl;
 817	struct btrfs_block_rsv *rsv;
 818	int clear_rsv = 0;
 819	int ret;
 820
 821	if (!rc)
 822		return 0;
 823
 824	/*
 825	 * The subvolume has reloc tree but the swap is finished, no need to
 826	 * create/update the dead reloc tree
 827	 */
 828	if (reloc_root_is_dead(root))
 829		return 0;
 830
 831	/*
 832	 * This is subtle but important.  We do not do
 833	 * record_root_in_transaction for reloc roots, instead we record their
 834	 * corresponding fs root, and then here we update the last trans for the
 835	 * reloc root.  This means that we have to do this for the entire life
 836	 * of the reloc root, regardless of which stage of the relocation we are
 837	 * in.
 838	 */
 839	if (root->reloc_root) {
 840		reloc_root = root->reloc_root;
 841		reloc_root->last_trans = trans->transid;
 842		return 0;
 843	}
 844
 845	/*
 846	 * We are merging reloc roots, we do not need new reloc trees.  Also
 847	 * reloc trees never need their own reloc tree.
 848	 */
 849	if (!rc->create_reloc_tree ||
 850	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 851		return 0;
 852
 853	if (!trans->reloc_reserved) {
 854		rsv = trans->block_rsv;
 855		trans->block_rsv = rc->block_rsv;
 856		clear_rsv = 1;
 857	}
 858	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 859	if (clear_rsv)
 860		trans->block_rsv = rsv;
 861
 862	ret = __add_reloc_root(reloc_root);
 863	BUG_ON(ret < 0);
 864	root->reloc_root = btrfs_grab_root(reloc_root);
 865	return 0;
 866}
 867
 868/*
 869 * update root item of reloc tree
 870 */
 871int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 872			    struct btrfs_root *root)
 873{
 874	struct btrfs_fs_info *fs_info = root->fs_info;
 875	struct btrfs_root *reloc_root;
 876	struct btrfs_root_item *root_item;
 
 877	int ret;
 878
 879	if (!have_reloc_root(root))
 880		goto out;
 881
 882	reloc_root = root->reloc_root;
 883	root_item = &reloc_root->root_item;
 884
 885	/*
 886	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 887	 * the root.  We have the ref for root->reloc_root, but just in case
 888	 * hold it while we update the reloc root.
 889	 */
 890	btrfs_grab_root(reloc_root);
 891
 892	/* root->reloc_root will stay until current relocation finished */
 893	if (fs_info->reloc_ctl->merge_reloc_tree &&
 894	    btrfs_root_refs(root_item) == 0) {
 895		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 896		/*
 897		 * Mark the tree as dead before we change reloc_root so
 898		 * have_reloc_root will not touch it from now on.
 899		 */
 900		smp_wmb();
 901		__del_reloc_root(reloc_root);
 902	}
 903
 
 
 904	if (reloc_root->commit_root != reloc_root->node) {
 905		__update_reloc_root(reloc_root);
 906		btrfs_set_root_node(root_item, reloc_root->node);
 907		free_extent_buffer(reloc_root->commit_root);
 908		reloc_root->commit_root = btrfs_root_node(reloc_root);
 909	}
 910
 911	ret = btrfs_update_root(trans, fs_info->tree_root,
 912				&reloc_root->root_key, root_item);
 913	BUG_ON(ret);
 914	btrfs_put_root(reloc_root);
 915out:
 916	return 0;
 917}
 918
 919/*
 920 * helper to find first cached inode with inode number >= objectid
 921 * in a subvolume
 922 */
 923static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 924{
 925	struct rb_node *node;
 926	struct rb_node *prev;
 927	struct btrfs_inode *entry;
 928	struct inode *inode;
 929
 930	spin_lock(&root->inode_lock);
 931again:
 932	node = root->inode_tree.rb_node;
 933	prev = NULL;
 934	while (node) {
 935		prev = node;
 936		entry = rb_entry(node, struct btrfs_inode, rb_node);
 937
 938		if (objectid < btrfs_ino(entry))
 939			node = node->rb_left;
 940		else if (objectid > btrfs_ino(entry))
 941			node = node->rb_right;
 942		else
 943			break;
 944	}
 945	if (!node) {
 946		while (prev) {
 947			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 948			if (objectid <= btrfs_ino(entry)) {
 949				node = prev;
 950				break;
 951			}
 952			prev = rb_next(prev);
 953		}
 954	}
 955	while (node) {
 956		entry = rb_entry(node, struct btrfs_inode, rb_node);
 957		inode = igrab(&entry->vfs_inode);
 958		if (inode) {
 959			spin_unlock(&root->inode_lock);
 960			return inode;
 961		}
 962
 963		objectid = btrfs_ino(entry) + 1;
 964		if (cond_resched_lock(&root->inode_lock))
 965			goto again;
 966
 967		node = rb_next(node);
 968	}
 969	spin_unlock(&root->inode_lock);
 970	return NULL;
 971}
 972
 
 
 
 
 
 
 
 
 
 973/*
 974 * get new location of data
 975 */
 976static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
 977			    u64 bytenr, u64 num_bytes)
 978{
 979	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
 980	struct btrfs_path *path;
 981	struct btrfs_file_extent_item *fi;
 982	struct extent_buffer *leaf;
 983	int ret;
 984
 985	path = btrfs_alloc_path();
 986	if (!path)
 987		return -ENOMEM;
 988
 989	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
 990	ret = btrfs_lookup_file_extent(NULL, root, path,
 991			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
 992	if (ret < 0)
 993		goto out;
 994	if (ret > 0) {
 995		ret = -ENOENT;
 996		goto out;
 997	}
 998
 999	leaf = path->nodes[0];
1000	fi = btrfs_item_ptr(leaf, path->slots[0],
1001			    struct btrfs_file_extent_item);
1002
1003	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004	       btrfs_file_extent_compression(leaf, fi) ||
1005	       btrfs_file_extent_encryption(leaf, fi) ||
1006	       btrfs_file_extent_other_encoding(leaf, fi));
1007
1008	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009		ret = -EINVAL;
1010		goto out;
1011	}
1012
1013	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014	ret = 0;
1015out:
1016	btrfs_free_path(path);
1017	return ret;
1018}
1019
1020/*
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1023 */
1024static noinline_for_stack
1025int replace_file_extents(struct btrfs_trans_handle *trans,
1026			 struct reloc_control *rc,
1027			 struct btrfs_root *root,
1028			 struct extent_buffer *leaf)
1029{
1030	struct btrfs_fs_info *fs_info = root->fs_info;
1031	struct btrfs_key key;
1032	struct btrfs_file_extent_item *fi;
1033	struct inode *inode = NULL;
1034	u64 parent;
1035	u64 bytenr;
1036	u64 new_bytenr = 0;
1037	u64 num_bytes;
1038	u64 end;
1039	u32 nritems;
1040	u32 i;
1041	int ret = 0;
1042	int first = 1;
1043	int dirty = 0;
1044
1045	if (rc->stage != UPDATE_DATA_PTRS)
1046		return 0;
1047
1048	/* reloc trees always use full backref */
1049	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050		parent = leaf->start;
1051	else
1052		parent = 0;
1053
1054	nritems = btrfs_header_nritems(leaf);
1055	for (i = 0; i < nritems; i++) {
1056		struct btrfs_ref ref = { 0 };
1057
1058		cond_resched();
1059		btrfs_item_key_to_cpu(leaf, &key, i);
1060		if (key.type != BTRFS_EXTENT_DATA_KEY)
1061			continue;
1062		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063		if (btrfs_file_extent_type(leaf, fi) ==
1064		    BTRFS_FILE_EXTENT_INLINE)
1065			continue;
1066		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068		if (bytenr == 0)
1069			continue;
1070		if (!in_range(bytenr, rc->block_group->start,
1071			      rc->block_group->length))
1072			continue;
1073
1074		/*
1075		 * if we are modifying block in fs tree, wait for readpage
1076		 * to complete and drop the extent cache
1077		 */
1078		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079			if (first) {
1080				inode = find_next_inode(root, key.objectid);
1081				first = 0;
1082			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083				btrfs_add_delayed_iput(inode);
1084				inode = find_next_inode(root, key.objectid);
1085			}
1086			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087				end = key.offset +
1088				      btrfs_file_extent_num_bytes(leaf, fi);
1089				WARN_ON(!IS_ALIGNED(key.offset,
1090						    fs_info->sectorsize));
1091				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092				end--;
1093				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094						      key.offset, end);
 
1095				if (!ret)
1096					continue;
1097
1098				btrfs_drop_extent_cache(BTRFS_I(inode),
1099						key.offset,	end, 1);
1100				unlock_extent(&BTRFS_I(inode)->io_tree,
1101					      key.offset, end);
1102			}
1103		}
1104
1105		ret = get_new_location(rc->data_inode, &new_bytenr,
1106				       bytenr, num_bytes);
1107		if (ret) {
1108			/*
1109			 * Don't have to abort since we've not changed anything
1110			 * in the file extent yet.
1111			 */
1112			break;
1113		}
 
1114
1115		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116		dirty = 1;
1117
1118		key.offset -= btrfs_file_extent_offset(leaf, fi);
1119		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120				       num_bytes, parent);
1121		ref.real_root = root->root_key.objectid;
1122		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123				    key.objectid, key.offset);
1124		ret = btrfs_inc_extent_ref(trans, &ref);
1125		if (ret) {
1126			btrfs_abort_transaction(trans, ret);
1127			break;
1128		}
1129
1130		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131				       num_bytes, parent);
1132		ref.real_root = root->root_key.objectid;
1133		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134				    key.objectid, key.offset);
1135		ret = btrfs_free_extent(trans, &ref);
1136		if (ret) {
1137			btrfs_abort_transaction(trans, ret);
1138			break;
1139		}
1140	}
1141	if (dirty)
1142		btrfs_mark_buffer_dirty(leaf);
1143	if (inode)
1144		btrfs_add_delayed_iput(inode);
1145	return ret;
1146}
1147
1148static noinline_for_stack
1149int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150		     struct btrfs_path *path, int level)
1151{
1152	struct btrfs_disk_key key1;
1153	struct btrfs_disk_key key2;
1154	btrfs_node_key(eb, &key1, slot);
1155	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156	return memcmp(&key1, &key2, sizeof(key1));
1157}
1158
1159/*
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1163 *
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1167 */
1168static noinline_for_stack
1169int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170		 struct btrfs_root *dest, struct btrfs_root *src,
1171		 struct btrfs_path *path, struct btrfs_key *next_key,
1172		 int lowest_level, int max_level)
1173{
1174	struct btrfs_fs_info *fs_info = dest->fs_info;
1175	struct extent_buffer *eb;
1176	struct extent_buffer *parent;
1177	struct btrfs_ref ref = { 0 };
1178	struct btrfs_key key;
1179	u64 old_bytenr;
1180	u64 new_bytenr;
1181	u64 old_ptr_gen;
1182	u64 new_ptr_gen;
1183	u64 last_snapshot;
1184	u32 blocksize;
1185	int cow = 0;
1186	int level;
1187	int ret;
1188	int slot;
1189
1190	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192
1193	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194again:
1195	slot = path->slots[lowest_level];
1196	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197
1198	eb = btrfs_lock_root_node(dest);
1199	btrfs_set_lock_blocking_write(eb);
1200	level = btrfs_header_level(eb);
1201
1202	if (level < lowest_level) {
1203		btrfs_tree_unlock(eb);
1204		free_extent_buffer(eb);
1205		return 0;
1206	}
1207
1208	if (cow) {
1209		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1210		BUG_ON(ret);
1211	}
1212	btrfs_set_lock_blocking_write(eb);
1213
1214	if (next_key) {
1215		next_key->objectid = (u64)-1;
1216		next_key->type = (u8)-1;
1217		next_key->offset = (u64)-1;
1218	}
1219
1220	parent = eb;
1221	while (1) {
1222		struct btrfs_key first_key;
1223
1224		level = btrfs_header_level(parent);
1225		BUG_ON(level < lowest_level);
1226
1227		ret = btrfs_bin_search(parent, &key, &slot);
1228		if (ret < 0)
1229			break;
1230		if (ret && slot > 0)
1231			slot--;
1232
1233		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1234			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1235
1236		old_bytenr = btrfs_node_blockptr(parent, slot);
1237		blocksize = fs_info->nodesize;
1238		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1239		btrfs_node_key_to_cpu(parent, &first_key, slot);
1240
1241		if (level <= max_level) {
1242			eb = path->nodes[level];
1243			new_bytenr = btrfs_node_blockptr(eb,
1244							path->slots[level]);
1245			new_ptr_gen = btrfs_node_ptr_generation(eb,
1246							path->slots[level]);
1247		} else {
1248			new_bytenr = 0;
1249			new_ptr_gen = 0;
1250		}
1251
1252		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
 
1253			ret = level;
1254			break;
1255		}
1256
1257		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1258		    memcmp_node_keys(parent, slot, path, level)) {
1259			if (level <= lowest_level) {
1260				ret = 0;
1261				break;
1262			}
1263
1264			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1265					     level - 1, &first_key);
1266			if (IS_ERR(eb)) {
1267				ret = PTR_ERR(eb);
1268				break;
1269			} else if (!extent_buffer_uptodate(eb)) {
1270				ret = -EIO;
1271				free_extent_buffer(eb);
1272				break;
1273			}
1274			btrfs_tree_lock(eb);
1275			if (cow) {
1276				ret = btrfs_cow_block(trans, dest, eb, parent,
1277						      slot, &eb);
1278				BUG_ON(ret);
1279			}
1280			btrfs_set_lock_blocking_write(eb);
1281
1282			btrfs_tree_unlock(parent);
1283			free_extent_buffer(parent);
1284
1285			parent = eb;
1286			continue;
1287		}
1288
1289		if (!cow) {
1290			btrfs_tree_unlock(parent);
1291			free_extent_buffer(parent);
1292			cow = 1;
1293			goto again;
1294		}
1295
1296		btrfs_node_key_to_cpu(path->nodes[level], &key,
1297				      path->slots[level]);
1298		btrfs_release_path(path);
1299
1300		path->lowest_level = level;
1301		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1302		path->lowest_level = 0;
1303		BUG_ON(ret);
1304
1305		/*
1306		 * Info qgroup to trace both subtrees.
1307		 *
1308		 * We must trace both trees.
1309		 * 1) Tree reloc subtree
1310		 *    If not traced, we will leak data numbers
1311		 * 2) Fs subtree
1312		 *    If not traced, we will double count old data
1313		 *
1314		 * We don't scan the subtree right now, but only record
1315		 * the swapped tree blocks.
1316		 * The real subtree rescan is delayed until we have new
1317		 * CoW on the subtree root node before transaction commit.
1318		 */
1319		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1320				rc->block_group, parent, slot,
1321				path->nodes[level], path->slots[level],
1322				last_snapshot);
1323		if (ret < 0)
1324			break;
1325		/*
1326		 * swap blocks in fs tree and reloc tree.
1327		 */
1328		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1329		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1330		btrfs_mark_buffer_dirty(parent);
1331
1332		btrfs_set_node_blockptr(path->nodes[level],
1333					path->slots[level], old_bytenr);
1334		btrfs_set_node_ptr_generation(path->nodes[level],
1335					      path->slots[level], old_ptr_gen);
1336		btrfs_mark_buffer_dirty(path->nodes[level]);
1337
1338		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1339				       blocksize, path->nodes[level]->start);
1340		ref.skip_qgroup = true;
1341		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1342		ret = btrfs_inc_extent_ref(trans, &ref);
1343		BUG_ON(ret);
1344		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1345				       blocksize, 0);
1346		ref.skip_qgroup = true;
1347		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1348		ret = btrfs_inc_extent_ref(trans, &ref);
1349		BUG_ON(ret);
1350
1351		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1352				       blocksize, path->nodes[level]->start);
1353		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1354		ref.skip_qgroup = true;
1355		ret = btrfs_free_extent(trans, &ref);
1356		BUG_ON(ret);
1357
1358		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1359				       blocksize, 0);
1360		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1361		ref.skip_qgroup = true;
1362		ret = btrfs_free_extent(trans, &ref);
1363		BUG_ON(ret);
1364
1365		btrfs_unlock_up_safe(path, 0);
1366
1367		ret = level;
1368		break;
1369	}
1370	btrfs_tree_unlock(parent);
1371	free_extent_buffer(parent);
1372	return ret;
1373}
1374
1375/*
1376 * helper to find next relocated block in reloc tree
1377 */
1378static noinline_for_stack
1379int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1380		       int *level)
1381{
1382	struct extent_buffer *eb;
1383	int i;
1384	u64 last_snapshot;
1385	u32 nritems;
1386
1387	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1388
1389	for (i = 0; i < *level; i++) {
1390		free_extent_buffer(path->nodes[i]);
1391		path->nodes[i] = NULL;
1392	}
1393
1394	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1395		eb = path->nodes[i];
1396		nritems = btrfs_header_nritems(eb);
1397		while (path->slots[i] + 1 < nritems) {
1398			path->slots[i]++;
1399			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1400			    last_snapshot)
1401				continue;
1402
1403			*level = i;
1404			return 0;
1405		}
1406		free_extent_buffer(path->nodes[i]);
1407		path->nodes[i] = NULL;
1408	}
1409	return 1;
1410}
1411
1412/*
1413 * walk down reloc tree to find relocated block of lowest level
1414 */
1415static noinline_for_stack
1416int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1417			 int *level)
1418{
1419	struct btrfs_fs_info *fs_info = root->fs_info;
1420	struct extent_buffer *eb = NULL;
1421	int i;
1422	u64 bytenr;
1423	u64 ptr_gen = 0;
1424	u64 last_snapshot;
 
1425	u32 nritems;
1426
1427	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1428
1429	for (i = *level; i > 0; i--) {
1430		struct btrfs_key first_key;
1431
1432		eb = path->nodes[i];
1433		nritems = btrfs_header_nritems(eb);
1434		while (path->slots[i] < nritems) {
1435			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1436			if (ptr_gen > last_snapshot)
1437				break;
1438			path->slots[i]++;
1439		}
1440		if (path->slots[i] >= nritems) {
1441			if (i == *level)
1442				break;
1443			*level = i + 1;
1444			return 0;
1445		}
1446		if (i == 1) {
1447			*level = i;
1448			return 0;
1449		}
1450
1451		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1452		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1453		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1454				     &first_key);
1455		if (IS_ERR(eb)) {
1456			return PTR_ERR(eb);
1457		} else if (!extent_buffer_uptodate(eb)) {
1458			free_extent_buffer(eb);
1459			return -EIO;
1460		}
1461		BUG_ON(btrfs_header_level(eb) != i - 1);
1462		path->nodes[i - 1] = eb;
1463		path->slots[i - 1] = 0;
1464	}
1465	return 1;
1466}
1467
1468/*
1469 * invalidate extent cache for file extents whose key in range of
1470 * [min_key, max_key)
1471 */
1472static int invalidate_extent_cache(struct btrfs_root *root,
1473				   struct btrfs_key *min_key,
1474				   struct btrfs_key *max_key)
1475{
1476	struct btrfs_fs_info *fs_info = root->fs_info;
1477	struct inode *inode = NULL;
1478	u64 objectid;
1479	u64 start, end;
1480	u64 ino;
1481
1482	objectid = min_key->objectid;
1483	while (1) {
1484		cond_resched();
1485		iput(inode);
1486
1487		if (objectid > max_key->objectid)
1488			break;
1489
1490		inode = find_next_inode(root, objectid);
1491		if (!inode)
1492			break;
1493		ino = btrfs_ino(BTRFS_I(inode));
1494
1495		if (ino > max_key->objectid) {
1496			iput(inode);
1497			break;
1498		}
1499
1500		objectid = ino + 1;
1501		if (!S_ISREG(inode->i_mode))
1502			continue;
1503
1504		if (unlikely(min_key->objectid == ino)) {
1505			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1506				continue;
1507			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1508				start = 0;
1509			else {
1510				start = min_key->offset;
1511				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1512			}
1513		} else {
1514			start = 0;
1515		}
1516
1517		if (unlikely(max_key->objectid == ino)) {
1518			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1519				continue;
1520			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1521				end = (u64)-1;
1522			} else {
1523				if (max_key->offset == 0)
1524					continue;
1525				end = max_key->offset;
1526				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1527				end--;
1528			}
1529		} else {
1530			end = (u64)-1;
1531		}
1532
1533		/* the lock_extent waits for readpage to complete */
1534		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1535		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1536		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537	}
1538	return 0;
1539}
1540
1541static int find_next_key(struct btrfs_path *path, int level,
1542			 struct btrfs_key *key)
1543
1544{
1545	while (level < BTRFS_MAX_LEVEL) {
1546		if (!path->nodes[level])
1547			break;
1548		if (path->slots[level] + 1 <
1549		    btrfs_header_nritems(path->nodes[level])) {
1550			btrfs_node_key_to_cpu(path->nodes[level], key,
1551					      path->slots[level] + 1);
1552			return 0;
1553		}
1554		level++;
1555	}
1556	return 1;
1557}
1558
1559/*
1560 * Insert current subvolume into reloc_control::dirty_subvol_roots
1561 */
1562static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1563				struct reloc_control *rc,
1564				struct btrfs_root *root)
1565{
1566	struct btrfs_root *reloc_root = root->reloc_root;
1567	struct btrfs_root_item *reloc_root_item;
1568
1569	/* @root must be a subvolume tree root with a valid reloc tree */
1570	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1571	ASSERT(reloc_root);
1572
1573	reloc_root_item = &reloc_root->root_item;
1574	memset(&reloc_root_item->drop_progress, 0,
1575		sizeof(reloc_root_item->drop_progress));
1576	reloc_root_item->drop_level = 0;
1577	btrfs_set_root_refs(reloc_root_item, 0);
1578	btrfs_update_reloc_root(trans, root);
1579
1580	if (list_empty(&root->reloc_dirty_list)) {
1581		btrfs_grab_root(root);
1582		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1583	}
1584}
1585
1586static int clean_dirty_subvols(struct reloc_control *rc)
1587{
1588	struct btrfs_root *root;
1589	struct btrfs_root *next;
1590	int ret = 0;
1591	int ret2;
1592
1593	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1594				 reloc_dirty_list) {
1595		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1596			/* Merged subvolume, cleanup its reloc root */
1597			struct btrfs_root *reloc_root = root->reloc_root;
1598
1599			list_del_init(&root->reloc_dirty_list);
1600			root->reloc_root = NULL;
1601			/*
1602			 * Need barrier to ensure clear_bit() only happens after
1603			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1604			 */
1605			smp_wmb();
1606			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1607			if (reloc_root) {
1608				/*
1609				 * btrfs_drop_snapshot drops our ref we hold for
1610				 * ->reloc_root.  If it fails however we must
1611				 * drop the ref ourselves.
1612				 */
1613				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1614				if (ret2 < 0) {
1615					btrfs_put_root(reloc_root);
1616					if (!ret)
1617						ret = ret2;
1618				}
1619			}
1620			btrfs_put_root(root);
1621		} else {
1622			/* Orphan reloc tree, just clean it up */
1623			ret2 = btrfs_drop_snapshot(root, 0, 1);
1624			if (ret2 < 0) {
1625				btrfs_put_root(root);
1626				if (!ret)
1627					ret = ret2;
1628			}
1629		}
1630	}
1631	return ret;
1632}
1633
1634/*
1635 * merge the relocated tree blocks in reloc tree with corresponding
1636 * fs tree.
1637 */
1638static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1639					       struct btrfs_root *root)
1640{
1641	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1642	struct btrfs_key key;
1643	struct btrfs_key next_key;
1644	struct btrfs_trans_handle *trans = NULL;
1645	struct btrfs_root *reloc_root;
1646	struct btrfs_root_item *root_item;
1647	struct btrfs_path *path;
1648	struct extent_buffer *leaf;
 
1649	int level;
1650	int max_level;
1651	int replaced = 0;
1652	int ret;
1653	int err = 0;
1654	u32 min_reserved;
1655
1656	path = btrfs_alloc_path();
1657	if (!path)
1658		return -ENOMEM;
1659	path->reada = READA_FORWARD;
1660
1661	reloc_root = root->reloc_root;
1662	root_item = &reloc_root->root_item;
1663
1664	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1665		level = btrfs_root_level(root_item);
1666		atomic_inc(&reloc_root->node->refs);
1667		path->nodes[level] = reloc_root->node;
1668		path->slots[level] = 0;
1669	} else {
1670		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1671
1672		level = root_item->drop_level;
1673		BUG_ON(level == 0);
1674		path->lowest_level = level;
1675		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1676		path->lowest_level = 0;
1677		if (ret < 0) {
1678			btrfs_free_path(path);
1679			return ret;
1680		}
1681
1682		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1683				      path->slots[level]);
1684		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1685
1686		btrfs_unlock_up_safe(path, 0);
1687	}
1688
1689	/*
1690	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1691	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1692	 * block COW, we COW at most from level 1 to root level for each tree.
1693	 *
1694	 * Thus the needed metadata size is at most root_level * nodesize,
1695	 * and * 2 since we have two trees to COW.
1696	 */
1697	min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2;
1698	memset(&next_key, 0, sizeof(next_key));
1699
1700	while (1) {
1701		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1702					     BTRFS_RESERVE_FLUSH_LIMIT);
 
 
 
 
1703		if (ret) {
1704			err = ret;
1705			goto out;
1706		}
1707		trans = btrfs_start_transaction(root, 0);
1708		if (IS_ERR(trans)) {
1709			err = PTR_ERR(trans);
1710			trans = NULL;
1711			goto out;
1712		}
1713
1714		/*
1715		 * At this point we no longer have a reloc_control, so we can't
1716		 * depend on btrfs_init_reloc_root to update our last_trans.
1717		 *
1718		 * But that's ok, we started the trans handle on our
1719		 * corresponding fs_root, which means it's been added to the
1720		 * dirty list.  At commit time we'll still call
1721		 * btrfs_update_reloc_root() and update our root item
1722		 * appropriately.
1723		 */
1724		reloc_root->last_trans = trans->transid;
1725		trans->block_rsv = rc->block_rsv;
1726
1727		replaced = 0;
1728		max_level = level;
1729
1730		ret = walk_down_reloc_tree(reloc_root, path, &level);
1731		if (ret < 0) {
1732			err = ret;
1733			goto out;
1734		}
1735		if (ret > 0)
1736			break;
1737
1738		if (!find_next_key(path, level, &key) &&
1739		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1740			ret = 0;
1741		} else {
1742			ret = replace_path(trans, rc, root, reloc_root, path,
1743					   &next_key, level, max_level);
1744		}
1745		if (ret < 0) {
1746			err = ret;
1747			goto out;
1748		}
1749
1750		if (ret > 0) {
1751			level = ret;
1752			btrfs_node_key_to_cpu(path->nodes[level], &key,
1753					      path->slots[level]);
1754			replaced = 1;
1755		}
1756
1757		ret = walk_up_reloc_tree(reloc_root, path, &level);
1758		if (ret > 0)
1759			break;
1760
1761		BUG_ON(level == 0);
1762		/*
1763		 * save the merging progress in the drop_progress.
1764		 * this is OK since root refs == 1 in this case.
1765		 */
1766		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1767			       path->slots[level]);
1768		root_item->drop_level = level;
1769
1770		btrfs_end_transaction_throttle(trans);
1771		trans = NULL;
1772
1773		btrfs_btree_balance_dirty(fs_info);
1774
1775		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1776			invalidate_extent_cache(root, &key, &next_key);
1777	}
1778
1779	/*
1780	 * handle the case only one block in the fs tree need to be
1781	 * relocated and the block is tree root.
1782	 */
1783	leaf = btrfs_lock_root_node(root);
1784	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1785	btrfs_tree_unlock(leaf);
1786	free_extent_buffer(leaf);
1787	if (ret < 0)
1788		err = ret;
1789out:
1790	btrfs_free_path(path);
1791
1792	if (err == 0)
1793		insert_dirty_subvol(trans, rc, root);
 
 
 
 
 
1794
1795	if (trans)
1796		btrfs_end_transaction_throttle(trans);
1797
1798	btrfs_btree_balance_dirty(fs_info);
1799
1800	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1801		invalidate_extent_cache(root, &key, &next_key);
1802
1803	return err;
1804}
1805
1806static noinline_for_stack
1807int prepare_to_merge(struct reloc_control *rc, int err)
1808{
1809	struct btrfs_root *root = rc->extent_root;
1810	struct btrfs_fs_info *fs_info = root->fs_info;
1811	struct btrfs_root *reloc_root;
1812	struct btrfs_trans_handle *trans;
1813	LIST_HEAD(reloc_roots);
1814	u64 num_bytes = 0;
1815	int ret;
1816
1817	mutex_lock(&fs_info->reloc_mutex);
1818	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1819	rc->merging_rsv_size += rc->nodes_relocated * 2;
1820	mutex_unlock(&fs_info->reloc_mutex);
1821
1822again:
1823	if (!err) {
1824		num_bytes = rc->merging_rsv_size;
1825		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1826					  BTRFS_RESERVE_FLUSH_ALL);
1827		if (ret)
1828			err = ret;
1829	}
1830
1831	trans = btrfs_join_transaction(rc->extent_root);
1832	if (IS_ERR(trans)) {
1833		if (!err)
1834			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1835						num_bytes, NULL);
1836		return PTR_ERR(trans);
1837	}
1838
1839	if (!err) {
1840		if (num_bytes != rc->merging_rsv_size) {
1841			btrfs_end_transaction(trans);
1842			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1843						num_bytes, NULL);
1844			goto again;
1845		}
1846	}
1847
1848	rc->merge_reloc_tree = 1;
1849
1850	while (!list_empty(&rc->reloc_roots)) {
1851		reloc_root = list_entry(rc->reloc_roots.next,
1852					struct btrfs_root, root_list);
1853		list_del_init(&reloc_root->root_list);
1854
1855		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1856				false);
1857		BUG_ON(IS_ERR(root));
1858		BUG_ON(root->reloc_root != reloc_root);
1859
1860		/*
1861		 * set reference count to 1, so btrfs_recover_relocation
1862		 * knows it should resumes merging
1863		 */
1864		if (!err)
1865			btrfs_set_root_refs(&reloc_root->root_item, 1);
1866		btrfs_update_reloc_root(trans, root);
1867
1868		list_add(&reloc_root->root_list, &reloc_roots);
1869		btrfs_put_root(root);
1870	}
1871
1872	list_splice(&reloc_roots, &rc->reloc_roots);
1873
1874	if (!err)
1875		btrfs_commit_transaction(trans);
1876	else
1877		btrfs_end_transaction(trans);
1878	return err;
1879}
1880
1881static noinline_for_stack
1882void free_reloc_roots(struct list_head *list)
1883{
1884	struct btrfs_root *reloc_root, *tmp;
1885
1886	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1887		__del_reloc_root(reloc_root);
1888}
1889
1890static noinline_for_stack
1891void merge_reloc_roots(struct reloc_control *rc)
1892{
1893	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1894	struct btrfs_root *root;
1895	struct btrfs_root *reloc_root;
1896	LIST_HEAD(reloc_roots);
1897	int found = 0;
1898	int ret = 0;
1899again:
1900	root = rc->extent_root;
1901
1902	/*
1903	 * this serializes us with btrfs_record_root_in_transaction,
1904	 * we have to make sure nobody is in the middle of
1905	 * adding their roots to the list while we are
1906	 * doing this splice
1907	 */
1908	mutex_lock(&fs_info->reloc_mutex);
1909	list_splice_init(&rc->reloc_roots, &reloc_roots);
1910	mutex_unlock(&fs_info->reloc_mutex);
1911
1912	while (!list_empty(&reloc_roots)) {
1913		found = 1;
1914		reloc_root = list_entry(reloc_roots.next,
1915					struct btrfs_root, root_list);
1916
1917		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1918					 false);
1919		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
 
 
1920			BUG_ON(IS_ERR(root));
1921			BUG_ON(root->reloc_root != reloc_root);
 
1922			ret = merge_reloc_root(rc, root);
1923			btrfs_put_root(root);
1924			if (ret) {
1925				if (list_empty(&reloc_root->root_list))
1926					list_add_tail(&reloc_root->root_list,
1927						      &reloc_roots);
1928				goto out;
1929			}
1930		} else {
1931			if (!IS_ERR(root)) {
1932				if (root->reloc_root == reloc_root) {
1933					root->reloc_root = NULL;
1934					btrfs_put_root(reloc_root);
1935				}
1936				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1937					  &root->state);
1938				btrfs_put_root(root);
1939			}
1940
1941			list_del_init(&reloc_root->root_list);
1942			/* Don't forget to queue this reloc root for cleanup */
1943			list_add_tail(&reloc_root->reloc_dirty_list,
1944				      &rc->dirty_subvol_roots);
1945		}
 
1946	}
1947
1948	if (found) {
1949		found = 0;
1950		goto again;
1951	}
1952out:
1953	if (ret) {
1954		btrfs_handle_fs_error(fs_info, ret, NULL);
1955		free_reloc_roots(&reloc_roots);
1956
1957		/* new reloc root may be added */
1958		mutex_lock(&fs_info->reloc_mutex);
1959		list_splice_init(&rc->reloc_roots, &reloc_roots);
1960		mutex_unlock(&fs_info->reloc_mutex);
1961		free_reloc_roots(&reloc_roots);
1962	}
1963
1964	/*
1965	 * We used to have
1966	 *
1967	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1968	 *
1969	 * here, but it's wrong.  If we fail to start the transaction in
1970	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1971	 * have actually been removed from the reloc_root_tree rb tree.  This is
1972	 * fine because we're bailing here, and we hold a reference on the root
1973	 * for the list that holds it, so these roots will be cleaned up when we
1974	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1975	 * will be cleaned up on unmount.
1976	 *
1977	 * The remaining nodes will be cleaned up by free_reloc_control.
1978	 */
1979}
1980
1981static void free_block_list(struct rb_root *blocks)
1982{
1983	struct tree_block *block;
1984	struct rb_node *rb_node;
1985	while ((rb_node = rb_first(blocks))) {
1986		block = rb_entry(rb_node, struct tree_block, rb_node);
1987		rb_erase(rb_node, blocks);
1988		kfree(block);
1989	}
1990}
1991
1992static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1993				      struct btrfs_root *reloc_root)
1994{
1995	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1996	struct btrfs_root *root;
1997	int ret;
1998
1999	if (reloc_root->last_trans == trans->transid)
2000		return 0;
2001
2002	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2003	BUG_ON(IS_ERR(root));
2004	BUG_ON(root->reloc_root != reloc_root);
2005	ret = btrfs_record_root_in_trans(trans, root);
2006	btrfs_put_root(root);
2007
2008	return ret;
2009}
2010
2011static noinline_for_stack
2012struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2013				     struct reloc_control *rc,
2014				     struct btrfs_backref_node *node,
2015				     struct btrfs_backref_edge *edges[])
2016{
2017	struct btrfs_backref_node *next;
2018	struct btrfs_root *root;
2019	int index = 0;
2020
2021	next = node;
2022	while (1) {
2023		cond_resched();
2024		next = walk_up_backref(next, edges, &index);
2025		root = next->root;
2026		BUG_ON(!root);
2027		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2028
2029		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2030			record_reloc_root_in_trans(trans, root);
2031			break;
2032		}
2033
2034		btrfs_record_root_in_trans(trans, root);
2035		root = root->reloc_root;
2036
2037		if (next->new_bytenr != root->node->start) {
2038			BUG_ON(next->new_bytenr);
2039			BUG_ON(!list_empty(&next->list));
2040			next->new_bytenr = root->node->start;
2041			btrfs_put_root(next->root);
2042			next->root = btrfs_grab_root(root);
2043			ASSERT(next->root);
2044			list_add_tail(&next->list,
2045				      &rc->backref_cache.changed);
2046			mark_block_processed(rc, next);
2047			break;
2048		}
2049
2050		WARN_ON(1);
2051		root = NULL;
2052		next = walk_down_backref(edges, &index);
2053		if (!next || next->level <= node->level)
2054			break;
2055	}
2056	if (!root)
2057		return NULL;
2058
 
2059	next = node;
2060	/* setup backref node path for btrfs_reloc_cow_block */
2061	while (1) {
2062		rc->backref_cache.path[next->level] = next;
2063		if (--index < 0)
2064			break;
2065		next = edges[index]->node[UPPER];
2066	}
2067	return root;
2068}
2069
2070/*
2071 * Select a tree root for relocation.
2072 *
2073 * Return NULL if the block is not shareable. We should use do_relocation() in
2074 * this case.
2075 *
2076 * Return a tree root pointer if the block is shareable.
2077 * Return -ENOENT if the block is root of reloc tree.
2078 */
2079static noinline_for_stack
2080struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
 
2081{
2082	struct btrfs_backref_node *next;
2083	struct btrfs_root *root;
2084	struct btrfs_root *fs_root = NULL;
2085	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2086	int index = 0;
2087
2088	next = node;
2089	while (1) {
2090		cond_resched();
2091		next = walk_up_backref(next, edges, &index);
2092		root = next->root;
2093		BUG_ON(!root);
2094
2095		/* No other choice for non-shareable tree */
2096		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2097			return root;
2098
2099		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2100			fs_root = root;
2101
2102		if (next != node)
2103			return NULL;
2104
2105		next = walk_down_backref(edges, &index);
2106		if (!next || next->level <= node->level)
2107			break;
2108	}
2109
2110	if (!fs_root)
2111		return ERR_PTR(-ENOENT);
2112	return fs_root;
2113}
2114
2115static noinline_for_stack
2116u64 calcu_metadata_size(struct reloc_control *rc,
2117			struct btrfs_backref_node *node, int reserve)
2118{
2119	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2120	struct btrfs_backref_node *next = node;
2121	struct btrfs_backref_edge *edge;
2122	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2123	u64 num_bytes = 0;
2124	int index = 0;
2125
2126	BUG_ON(reserve && node->processed);
2127
2128	while (next) {
2129		cond_resched();
2130		while (1) {
2131			if (next->processed && (reserve || next != node))
2132				break;
2133
2134			num_bytes += fs_info->nodesize;
 
2135
2136			if (list_empty(&next->upper))
2137				break;
2138
2139			edge = list_entry(next->upper.next,
2140					struct btrfs_backref_edge, list[LOWER]);
2141			edges[index++] = edge;
2142			next = edge->node[UPPER];
2143		}
2144		next = walk_down_backref(edges, &index);
2145	}
2146	return num_bytes;
2147}
2148
2149static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2150				  struct reloc_control *rc,
2151				  struct btrfs_backref_node *node)
2152{
2153	struct btrfs_root *root = rc->extent_root;
2154	struct btrfs_fs_info *fs_info = root->fs_info;
2155	u64 num_bytes;
2156	int ret;
2157	u64 tmp;
2158
2159	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2160
2161	trans->block_rsv = rc->block_rsv;
2162	rc->reserved_bytes += num_bytes;
2163
2164	/*
2165	 * We are under a transaction here so we can only do limited flushing.
2166	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2167	 * transaction and try to refill when we can flush all the things.
2168	 */
2169	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2170				BTRFS_RESERVE_FLUSH_LIMIT);
2171	if (ret) {
2172		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2173		while (tmp <= rc->reserved_bytes)
2174			tmp <<= 1;
2175		/*
2176		 * only one thread can access block_rsv at this point,
2177		 * so we don't need hold lock to protect block_rsv.
2178		 * we expand more reservation size here to allow enough
2179		 * space for relocation and we will return earlier in
2180		 * enospc case.
2181		 */
2182		rc->block_rsv->size = tmp + fs_info->nodesize *
2183				      RELOCATION_RESERVED_NODES;
2184		return -EAGAIN;
2185	}
2186
2187	return 0;
2188}
2189
 
 
 
 
 
 
 
2190/*
2191 * relocate a block tree, and then update pointers in upper level
2192 * blocks that reference the block to point to the new location.
2193 *
2194 * if called by link_to_upper, the block has already been relocated.
2195 * in that case this function just updates pointers.
2196 */
2197static int do_relocation(struct btrfs_trans_handle *trans,
2198			 struct reloc_control *rc,
2199			 struct btrfs_backref_node *node,
2200			 struct btrfs_key *key,
2201			 struct btrfs_path *path, int lowest)
2202{
2203	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2204	struct btrfs_backref_node *upper;
2205	struct btrfs_backref_edge *edge;
2206	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2207	struct btrfs_root *root;
2208	struct extent_buffer *eb;
2209	u32 blocksize;
2210	u64 bytenr;
2211	u64 generation;
 
2212	int slot;
2213	int ret;
2214	int err = 0;
2215
2216	BUG_ON(lowest && node->eb);
2217
2218	path->lowest_level = node->level + 1;
2219	rc->backref_cache.path[node->level] = node;
2220	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2221		struct btrfs_key first_key;
2222		struct btrfs_ref ref = { 0 };
2223
2224		cond_resched();
2225
2226		upper = edge->node[UPPER];
2227		root = select_reloc_root(trans, rc, upper, edges);
2228		BUG_ON(!root);
2229
2230		if (upper->eb && !upper->locked) {
2231			if (!lowest) {
2232				ret = btrfs_bin_search(upper->eb, key, &slot);
2233				if (ret < 0) {
2234					err = ret;
2235					goto next;
2236				}
2237				BUG_ON(ret);
2238				bytenr = btrfs_node_blockptr(upper->eb, slot);
2239				if (node->eb->start == bytenr)
2240					goto next;
2241			}
2242			btrfs_backref_drop_node_buffer(upper);
2243		}
2244
2245		if (!upper->eb) {
2246			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2247			if (ret) {
2248				if (ret < 0)
2249					err = ret;
2250				else
2251					err = -ENOENT;
2252
2253				btrfs_release_path(path);
2254				break;
2255			}
 
2256
2257			if (!upper->eb) {
2258				upper->eb = path->nodes[upper->level];
2259				path->nodes[upper->level] = NULL;
2260			} else {
2261				BUG_ON(upper->eb != path->nodes[upper->level]);
2262			}
2263
2264			upper->locked = 1;
2265			path->locks[upper->level] = 0;
2266
2267			slot = path->slots[upper->level];
2268			btrfs_release_path(path);
2269		} else {
2270			ret = btrfs_bin_search(upper->eb, key, &slot);
2271			if (ret < 0) {
2272				err = ret;
2273				goto next;
2274			}
2275			BUG_ON(ret);
2276		}
2277
2278		bytenr = btrfs_node_blockptr(upper->eb, slot);
2279		if (lowest) {
2280			if (bytenr != node->bytenr) {
2281				btrfs_err(root->fs_info,
2282		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2283					  bytenr, node->bytenr, slot,
2284					  upper->eb->start);
2285				err = -EIO;
2286				goto next;
2287			}
2288		} else {
2289			if (node->eb->start == bytenr)
2290				goto next;
2291		}
2292
2293		blocksize = root->fs_info->nodesize;
2294		generation = btrfs_node_ptr_generation(upper->eb, slot);
2295		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2296		eb = read_tree_block(fs_info, bytenr, generation,
2297				     upper->level - 1, &first_key);
2298		if (IS_ERR(eb)) {
2299			err = PTR_ERR(eb);
2300			goto next;
2301		} else if (!extent_buffer_uptodate(eb)) {
2302			free_extent_buffer(eb);
2303			err = -EIO;
2304			goto next;
2305		}
2306		btrfs_tree_lock(eb);
2307		btrfs_set_lock_blocking_write(eb);
2308
2309		if (!node->eb) {
2310			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2311					      slot, &eb);
2312			btrfs_tree_unlock(eb);
2313			free_extent_buffer(eb);
2314			if (ret < 0) {
2315				err = ret;
2316				goto next;
2317			}
2318			BUG_ON(node->eb != eb);
2319		} else {
2320			btrfs_set_node_blockptr(upper->eb, slot,
2321						node->eb->start);
2322			btrfs_set_node_ptr_generation(upper->eb, slot,
2323						      trans->transid);
2324			btrfs_mark_buffer_dirty(upper->eb);
2325
2326			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2327					       node->eb->start, blocksize,
2328					       upper->eb->start);
2329			ref.real_root = root->root_key.objectid;
2330			btrfs_init_tree_ref(&ref, node->level,
2331					    btrfs_header_owner(upper->eb));
2332			ret = btrfs_inc_extent_ref(trans, &ref);
2333			BUG_ON(ret);
2334
2335			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2336			BUG_ON(ret);
2337		}
2338next:
2339		if (!upper->pending)
2340			btrfs_backref_drop_node_buffer(upper);
2341		else
2342			btrfs_backref_unlock_node_buffer(upper);
2343		if (err)
2344			break;
2345	}
2346
2347	if (!err && node->pending) {
2348		btrfs_backref_drop_node_buffer(node);
2349		list_move_tail(&node->list, &rc->backref_cache.changed);
2350		node->pending = 0;
2351	}
2352
2353	path->lowest_level = 0;
2354	BUG_ON(err == -ENOSPC);
2355	return err;
2356}
2357
2358static int link_to_upper(struct btrfs_trans_handle *trans,
2359			 struct reloc_control *rc,
2360			 struct btrfs_backref_node *node,
2361			 struct btrfs_path *path)
2362{
2363	struct btrfs_key key;
2364
2365	btrfs_node_key_to_cpu(node->eb, &key, 0);
2366	return do_relocation(trans, rc, node, &key, path, 0);
2367}
2368
2369static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2370				struct reloc_control *rc,
2371				struct btrfs_path *path, int err)
2372{
2373	LIST_HEAD(list);
2374	struct btrfs_backref_cache *cache = &rc->backref_cache;
2375	struct btrfs_backref_node *node;
2376	int level;
2377	int ret;
2378
2379	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2380		while (!list_empty(&cache->pending[level])) {
2381			node = list_entry(cache->pending[level].next,
2382					  struct btrfs_backref_node, list);
2383			list_move_tail(&node->list, &list);
2384			BUG_ON(!node->pending);
2385
2386			if (!err) {
2387				ret = link_to_upper(trans, rc, node, path);
2388				if (ret < 0)
2389					err = ret;
2390			}
2391		}
2392		list_splice_init(&list, &cache->pending[level]);
2393	}
2394	return err;
2395}
2396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397/*
2398 * mark a block and all blocks directly/indirectly reference the block
2399 * as processed.
2400 */
2401static void update_processed_blocks(struct reloc_control *rc,
2402				    struct btrfs_backref_node *node)
2403{
2404	struct btrfs_backref_node *next = node;
2405	struct btrfs_backref_edge *edge;
2406	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2407	int index = 0;
2408
2409	while (next) {
2410		cond_resched();
2411		while (1) {
2412			if (next->processed)
2413				break;
2414
2415			mark_block_processed(rc, next);
2416
2417			if (list_empty(&next->upper))
2418				break;
2419
2420			edge = list_entry(next->upper.next,
2421					struct btrfs_backref_edge, list[LOWER]);
2422			edges[index++] = edge;
2423			next = edge->node[UPPER];
2424		}
2425		next = walk_down_backref(edges, &index);
2426	}
2427}
2428
2429static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2430{
2431	u32 blocksize = rc->extent_root->fs_info->nodesize;
2432
2433	if (test_range_bit(&rc->processed_blocks, bytenr,
2434			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2435		return 1;
2436	return 0;
2437}
2438
2439static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2440			      struct tree_block *block)
2441{
2442	struct extent_buffer *eb;
2443
2444	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2445			     block->level, NULL);
2446	if (IS_ERR(eb)) {
2447		return PTR_ERR(eb);
2448	} else if (!extent_buffer_uptodate(eb)) {
2449		free_extent_buffer(eb);
2450		return -EIO;
2451	}
2452	if (block->level == 0)
2453		btrfs_item_key_to_cpu(eb, &block->key, 0);
2454	else
2455		btrfs_node_key_to_cpu(eb, &block->key, 0);
2456	free_extent_buffer(eb);
2457	block->key_ready = 1;
2458	return 0;
2459}
2460
 
 
 
 
 
 
 
 
 
2461/*
2462 * helper function to relocate a tree block
2463 */
2464static int relocate_tree_block(struct btrfs_trans_handle *trans,
2465				struct reloc_control *rc,
2466				struct btrfs_backref_node *node,
2467				struct btrfs_key *key,
2468				struct btrfs_path *path)
2469{
2470	struct btrfs_root *root;
 
2471	int ret = 0;
2472
2473	if (!node)
2474		return 0;
2475
2476	/*
2477	 * If we fail here we want to drop our backref_node because we are going
2478	 * to start over and regenerate the tree for it.
2479	 */
2480	ret = reserve_metadata_space(trans, rc, node);
2481	if (ret)
2482		goto out;
2483
2484	BUG_ON(node->processed);
2485	root = select_one_root(node);
2486	if (root == ERR_PTR(-ENOENT)) {
2487		update_processed_blocks(rc, node);
2488		goto out;
2489	}
2490
 
 
 
 
 
 
 
2491	if (root) {
2492		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2493			BUG_ON(node->new_bytenr);
2494			BUG_ON(!list_empty(&node->list));
2495			btrfs_record_root_in_trans(trans, root);
2496			root = root->reloc_root;
2497			node->new_bytenr = root->node->start;
2498			btrfs_put_root(node->root);
2499			node->root = btrfs_grab_root(root);
2500			ASSERT(node->root);
2501			list_add_tail(&node->list, &rc->backref_cache.changed);
2502		} else {
2503			path->lowest_level = node->level;
2504			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2505			btrfs_release_path(path);
2506			if (ret > 0)
2507				ret = 0;
2508		}
2509		if (!ret)
2510			update_processed_blocks(rc, node);
2511	} else {
2512		ret = do_relocation(trans, rc, node, key, path, 1);
2513	}
2514out:
2515	if (ret || node->level == 0 || node->cowonly)
2516		btrfs_backref_cleanup_node(&rc->backref_cache, node);
 
 
 
2517	return ret;
2518}
2519
2520/*
2521 * relocate a list of blocks
2522 */
2523static noinline_for_stack
2524int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2525			 struct reloc_control *rc, struct rb_root *blocks)
2526{
2527	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2528	struct btrfs_backref_node *node;
2529	struct btrfs_path *path;
2530	struct tree_block *block;
2531	struct tree_block *next;
2532	int ret;
2533	int err = 0;
2534
2535	path = btrfs_alloc_path();
2536	if (!path) {
2537		err = -ENOMEM;
2538		goto out_free_blocks;
 
 
 
 
 
 
2539	}
2540
2541	/* Kick in readahead for tree blocks with missing keys */
2542	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2543		if (!block->key_ready)
2544			readahead_tree_block(fs_info, block->bytenr);
 
2545	}
2546
2547	/* Get first keys */
2548	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2549		if (!block->key_ready) {
2550			err = get_tree_block_key(fs_info, block);
2551			if (err)
2552				goto out_free_path;
2553		}
2554	}
2555
2556	/* Do tree relocation */
2557	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2558		node = build_backref_tree(rc, &block->key,
2559					  block->level, block->bytenr);
2560		if (IS_ERR(node)) {
2561			err = PTR_ERR(node);
2562			goto out;
2563		}
2564
2565		ret = relocate_tree_block(trans, rc, node, &block->key,
2566					  path);
2567		if (ret < 0) {
2568			err = ret;
2569			break;
 
2570		}
 
2571	}
2572out:
 
2573	err = finish_pending_nodes(trans, rc, path, err);
2574
2575out_free_path:
2576	btrfs_free_path(path);
2577out_free_blocks:
2578	free_block_list(blocks);
2579	return err;
2580}
2581
2582static noinline_for_stack int prealloc_file_extent_cluster(
2583				struct btrfs_inode *inode,
2584				struct file_extent_cluster *cluster)
2585{
2586	u64 alloc_hint = 0;
2587	u64 start;
2588	u64 end;
2589	u64 offset = inode->index_cnt;
2590	u64 num_bytes;
2591	int nr;
2592	int ret = 0;
2593	u64 prealloc_start = cluster->start - offset;
2594	u64 prealloc_end = cluster->end - offset;
2595	u64 cur_offset = prealloc_start;
2596
2597	BUG_ON(cluster->start != cluster->boundary[0]);
2598	ret = btrfs_alloc_data_chunk_ondemand(inode,
2599					      prealloc_end + 1 - prealloc_start);
 
 
2600	if (ret)
2601		return ret;
2602
2603	inode_lock(&inode->vfs_inode);
2604	for (nr = 0; nr < cluster->nr; nr++) {
2605		start = cluster->boundary[nr] - offset;
2606		if (nr + 1 < cluster->nr)
2607			end = cluster->boundary[nr + 1] - 1 - offset;
2608		else
2609			end = cluster->end - offset;
2610
2611		lock_extent(&inode->io_tree, start, end);
2612		num_bytes = end + 1 - start;
2613		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2614						num_bytes, num_bytes,
2615						end + 1, &alloc_hint);
2616		cur_offset = end + 1;
2617		unlock_extent(&inode->io_tree, start, end);
2618		if (ret)
2619			break;
 
2620	}
2621	inode_unlock(&inode->vfs_inode);
2622
2623	if (cur_offset < prealloc_end)
2624		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2625					       prealloc_end + 1 - cur_offset);
2626	return ret;
2627}
2628
2629static noinline_for_stack
2630int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2631			 u64 block_start)
2632{
 
2633	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2634	struct extent_map *em;
2635	int ret = 0;
2636
2637	em = alloc_extent_map();
2638	if (!em)
2639		return -ENOMEM;
2640
2641	em->start = start;
2642	em->len = end + 1 - start;
2643	em->block_len = em->len;
2644	em->block_start = block_start;
 
2645	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2646
2647	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2648	while (1) {
2649		write_lock(&em_tree->lock);
2650		ret = add_extent_mapping(em_tree, em, 0);
2651		write_unlock(&em_tree->lock);
2652		if (ret != -EEXIST) {
2653			free_extent_map(em);
2654			break;
2655		}
2656		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2657	}
2658	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2659	return ret;
2660}
2661
2662/*
2663 * Allow error injection to test balance cancellation
2664 */
2665int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2666{
2667	return atomic_read(&fs_info->balance_cancel_req) ||
2668		fatal_signal_pending(current);
2669}
2670ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2671
2672static int relocate_file_extent_cluster(struct inode *inode,
2673					struct file_extent_cluster *cluster)
2674{
2675	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2676	u64 page_start;
2677	u64 page_end;
2678	u64 offset = BTRFS_I(inode)->index_cnt;
2679	unsigned long index;
2680	unsigned long last_index;
2681	struct page *page;
2682	struct file_ra_state *ra;
2683	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2684	int nr = 0;
2685	int ret = 0;
2686
2687	if (!cluster->nr)
2688		return 0;
2689
2690	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2691	if (!ra)
2692		return -ENOMEM;
2693
2694	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2695	if (ret)
2696		goto out;
2697
2698	file_ra_state_init(ra, inode->i_mapping);
2699
2700	ret = setup_extent_mapping(inode, cluster->start - offset,
2701				   cluster->end - offset, cluster->start);
2702	if (ret)
2703		goto out;
2704
2705	index = (cluster->start - offset) >> PAGE_SHIFT;
2706	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2707	while (index <= last_index) {
2708		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2709				PAGE_SIZE);
2710		if (ret)
2711			goto out;
2712
2713		page = find_lock_page(inode->i_mapping, index);
2714		if (!page) {
2715			page_cache_sync_readahead(inode->i_mapping,
2716						  ra, NULL, index,
2717						  last_index + 1 - index);
2718			page = find_or_create_page(inode->i_mapping, index,
2719						   mask);
2720			if (!page) {
2721				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2722							PAGE_SIZE, true);
2723				btrfs_delalloc_release_extents(BTRFS_I(inode),
2724							PAGE_SIZE);
2725				ret = -ENOMEM;
2726				goto out;
2727			}
2728		}
2729
2730		if (PageReadahead(page)) {
2731			page_cache_async_readahead(inode->i_mapping,
2732						   ra, NULL, page, index,
2733						   last_index + 1 - index);
2734		}
2735
2736		if (!PageUptodate(page)) {
2737			btrfs_readpage(NULL, page);
2738			lock_page(page);
2739			if (!PageUptodate(page)) {
2740				unlock_page(page);
2741				put_page(page);
2742				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2743							PAGE_SIZE, true);
2744				btrfs_delalloc_release_extents(BTRFS_I(inode),
2745							       PAGE_SIZE);
2746				ret = -EIO;
2747				goto out;
2748			}
2749		}
2750
2751		page_start = page_offset(page);
2752		page_end = page_start + PAGE_SIZE - 1;
2753
2754		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
 
2755
2756		set_page_extent_mapped(page);
2757
2758		if (nr < cluster->nr &&
2759		    page_start + offset == cluster->boundary[nr]) {
2760			set_extent_bits(&BTRFS_I(inode)->io_tree,
2761					page_start, page_end,
2762					EXTENT_BOUNDARY);
2763			nr++;
2764		}
2765
2766		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2767						page_end, 0, NULL);
2768		if (ret) {
2769			unlock_page(page);
2770			put_page(page);
2771			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2772							 PAGE_SIZE, true);
2773			btrfs_delalloc_release_extents(BTRFS_I(inode),
2774			                               PAGE_SIZE);
2775
2776			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2777					  page_start, page_end,
2778					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2779			goto out;
2780
2781		}
2782		set_page_dirty(page);
2783
2784		unlock_extent(&BTRFS_I(inode)->io_tree,
2785			      page_start, page_end);
2786		unlock_page(page);
2787		put_page(page);
2788
2789		index++;
2790		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2791		balance_dirty_pages_ratelimited(inode->i_mapping);
2792		btrfs_throttle(fs_info);
2793		if (btrfs_should_cancel_balance(fs_info)) {
2794			ret = -ECANCELED;
2795			goto out;
2796		}
2797	}
2798	WARN_ON(nr != cluster->nr);
2799out:
2800	kfree(ra);
2801	return ret;
2802}
2803
2804static noinline_for_stack
2805int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2806			 struct file_extent_cluster *cluster)
2807{
2808	int ret;
2809
2810	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2811		ret = relocate_file_extent_cluster(inode, cluster);
2812		if (ret)
2813			return ret;
2814		cluster->nr = 0;
2815	}
2816
2817	if (!cluster->nr)
2818		cluster->start = extent_key->objectid;
2819	else
2820		BUG_ON(cluster->nr >= MAX_EXTENTS);
2821	cluster->end = extent_key->objectid + extent_key->offset - 1;
2822	cluster->boundary[cluster->nr] = extent_key->objectid;
2823	cluster->nr++;
2824
2825	if (cluster->nr >= MAX_EXTENTS) {
2826		ret = relocate_file_extent_cluster(inode, cluster);
2827		if (ret)
2828			return ret;
2829		cluster->nr = 0;
2830	}
2831	return 0;
2832}
2833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834/*
2835 * helper to add a tree block to the list.
2836 * the major work is getting the generation and level of the block
2837 */
2838static int add_tree_block(struct reloc_control *rc,
2839			  struct btrfs_key *extent_key,
2840			  struct btrfs_path *path,
2841			  struct rb_root *blocks)
2842{
2843	struct extent_buffer *eb;
2844	struct btrfs_extent_item *ei;
2845	struct btrfs_tree_block_info *bi;
2846	struct tree_block *block;
2847	struct rb_node *rb_node;
2848	u32 item_size;
2849	int level = -1;
2850	u64 generation;
2851
2852	eb =  path->nodes[0];
2853	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2854
2855	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2856	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2857		ei = btrfs_item_ptr(eb, path->slots[0],
2858				struct btrfs_extent_item);
2859		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2860			bi = (struct btrfs_tree_block_info *)(ei + 1);
2861			level = btrfs_tree_block_level(eb, bi);
2862		} else {
2863			level = (int)extent_key->offset;
2864		}
2865		generation = btrfs_extent_generation(eb, ei);
2866	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2867		btrfs_print_v0_err(eb->fs_info);
2868		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2869		return -EINVAL;
2870	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2871		BUG();
 
2872	}
2873
2874	btrfs_release_path(path);
2875
2876	BUG_ON(level == -1);
2877
2878	block = kmalloc(sizeof(*block), GFP_NOFS);
2879	if (!block)
2880		return -ENOMEM;
2881
2882	block->bytenr = extent_key->objectid;
2883	block->key.objectid = rc->extent_root->fs_info->nodesize;
2884	block->key.offset = generation;
2885	block->level = level;
2886	block->key_ready = 0;
2887
2888	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2889	if (rb_node)
2890		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2891				    -EEXIST);
2892
2893	return 0;
2894}
2895
2896/*
2897 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2898 */
2899static int __add_tree_block(struct reloc_control *rc,
2900			    u64 bytenr, u32 blocksize,
2901			    struct rb_root *blocks)
2902{
2903	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2904	struct btrfs_path *path;
2905	struct btrfs_key key;
2906	int ret;
2907	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2908
2909	if (tree_block_processed(bytenr, rc))
2910		return 0;
2911
2912	if (rb_simple_search(blocks, bytenr))
2913		return 0;
2914
2915	path = btrfs_alloc_path();
2916	if (!path)
2917		return -ENOMEM;
2918again:
2919	key.objectid = bytenr;
2920	if (skinny) {
2921		key.type = BTRFS_METADATA_ITEM_KEY;
2922		key.offset = (u64)-1;
2923	} else {
2924		key.type = BTRFS_EXTENT_ITEM_KEY;
2925		key.offset = blocksize;
2926	}
2927
2928	path->search_commit_root = 1;
2929	path->skip_locking = 1;
2930	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2931	if (ret < 0)
2932		goto out;
 
2933
2934	if (ret > 0 && skinny) {
2935		if (path->slots[0]) {
2936			path->slots[0]--;
2937			btrfs_item_key_to_cpu(path->nodes[0], &key,
2938					      path->slots[0]);
2939			if (key.objectid == bytenr &&
2940			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2941			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2942			      key.offset == blocksize)))
2943				ret = 0;
2944		}
2945
2946		if (ret) {
2947			skinny = false;
2948			btrfs_release_path(path);
2949			goto again;
2950		}
2951	}
2952	if (ret) {
2953		ASSERT(ret == 1);
2954		btrfs_print_leaf(path->nodes[0]);
2955		btrfs_err(fs_info,
2956	     "tree block extent item (%llu) is not found in extent tree",
2957		     bytenr);
2958		WARN_ON(1);
2959		ret = -EINVAL;
2960		goto out;
2961	}
2962
2963	ret = add_tree_block(rc, &key, path, blocks);
2964out:
2965	btrfs_free_path(path);
2966	return ret;
2967}
2968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2970				    struct btrfs_block_group *block_group,
2971				    struct inode *inode,
2972				    u64 ino)
2973{
 
 
2974	struct btrfs_root *root = fs_info->tree_root;
2975	struct btrfs_trans_handle *trans;
 
2976	int ret = 0;
2977
2978	if (inode)
2979		goto truncate;
2980
2981	inode = btrfs_iget(fs_info->sb, ino, root);
2982	if (IS_ERR(inode))
 
 
 
 
 
 
2983		return -ENOENT;
 
2984
2985truncate:
2986	ret = btrfs_check_trunc_cache_free_space(fs_info,
2987						 &fs_info->global_block_rsv);
2988	if (ret)
2989		goto out;
 
2990
2991	trans = btrfs_join_transaction(root);
2992	if (IS_ERR(trans)) {
 
2993		ret = PTR_ERR(trans);
2994		goto out;
2995	}
2996
2997	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2998
2999	btrfs_end_transaction(trans);
3000	btrfs_btree_balance_dirty(fs_info);
 
 
3001out:
3002	iput(inode);
3003	return ret;
3004}
3005
3006/*
3007 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3008 * cache inode, to avoid free space cache data extent blocking data relocation.
3009 */
3010static int delete_v1_space_cache(struct extent_buffer *leaf,
3011				 struct btrfs_block_group *block_group,
3012				 u64 data_bytenr)
 
 
3013{
3014	u64 space_cache_ino;
3015	struct btrfs_file_extent_item *ei;
 
 
 
3016	struct btrfs_key key;
3017	bool found = false;
3018	int i;
 
 
 
 
 
 
3019	int ret;
3020
3021	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3022		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023
3024	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3025		btrfs_item_key_to_cpu(leaf, &key, i);
3026		if (key.type != BTRFS_EXTENT_DATA_KEY)
3027			continue;
3028		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3029		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3030		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3031			found = true;
3032			space_cache_ino = key.objectid;
3033			break;
3034		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035	}
3036	if (!found)
3037		return -ENOENT;
3038	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3039					space_cache_ino);
3040	return ret;
3041}
3042
3043/*
3044 * helper to find all tree blocks that reference a given data extent
3045 */
3046static noinline_for_stack
3047int add_data_references(struct reloc_control *rc,
3048			struct btrfs_key *extent_key,
3049			struct btrfs_path *path,
3050			struct rb_root *blocks)
3051{
3052	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3053	struct ulist *leaves = NULL;
3054	struct ulist_iterator leaf_uiter;
3055	struct ulist_node *ref_node = NULL;
3056	const u32 blocksize = fs_info->nodesize;
3057	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3058
3059	btrfs_release_path(path);
3060	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3061				   0, &leaves, NULL, true);
3062	if (ret < 0)
3063		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3064
3065	ULIST_ITER_INIT(&leaf_uiter);
3066	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3067		struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
3068
3069		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3070		if (IS_ERR(eb)) {
3071			ret = PTR_ERR(eb);
3072			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073		}
3074		ret = delete_v1_space_cache(eb, rc->block_group,
3075					    extent_key->objectid);
3076		free_extent_buffer(eb);
3077		if (ret < 0)
3078			break;
3079		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3080		if (ret < 0)
3081			break;
 
 
3082	}
3083	if (ret < 0)
 
3084		free_block_list(blocks);
3085	ulist_free(leaves);
3086	return ret;
3087}
3088
3089/*
3090 * helper to find next unprocessed extent
3091 */
3092static noinline_for_stack
3093int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3094		     struct btrfs_key *extent_key)
3095{
3096	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3097	struct btrfs_key key;
3098	struct extent_buffer *leaf;
3099	u64 start, end, last;
3100	int ret;
3101
3102	last = rc->block_group->start + rc->block_group->length;
3103	while (1) {
3104		cond_resched();
3105		if (rc->search_start >= last) {
3106			ret = 1;
3107			break;
3108		}
3109
3110		key.objectid = rc->search_start;
3111		key.type = BTRFS_EXTENT_ITEM_KEY;
3112		key.offset = 0;
3113
3114		path->search_commit_root = 1;
3115		path->skip_locking = 1;
3116		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3117					0, 0);
3118		if (ret < 0)
3119			break;
3120next:
3121		leaf = path->nodes[0];
3122		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3123			ret = btrfs_next_leaf(rc->extent_root, path);
3124			if (ret != 0)
3125				break;
3126			leaf = path->nodes[0];
3127		}
3128
3129		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3130		if (key.objectid >= last) {
3131			ret = 1;
3132			break;
3133		}
3134
3135		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3136		    key.type != BTRFS_METADATA_ITEM_KEY) {
3137			path->slots[0]++;
3138			goto next;
3139		}
3140
3141		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3142		    key.objectid + key.offset <= rc->search_start) {
3143			path->slots[0]++;
3144			goto next;
3145		}
3146
3147		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3148		    key.objectid + fs_info->nodesize <=
3149		    rc->search_start) {
3150			path->slots[0]++;
3151			goto next;
3152		}
3153
3154		ret = find_first_extent_bit(&rc->processed_blocks,
3155					    key.objectid, &start, &end,
3156					    EXTENT_DIRTY, NULL);
3157
3158		if (ret == 0 && start <= key.objectid) {
3159			btrfs_release_path(path);
3160			rc->search_start = end + 1;
3161		} else {
3162			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3163				rc->search_start = key.objectid + key.offset;
3164			else
3165				rc->search_start = key.objectid +
3166					fs_info->nodesize;
3167			memcpy(extent_key, &key, sizeof(key));
3168			return 0;
3169		}
3170	}
3171	btrfs_release_path(path);
3172	return ret;
3173}
3174
3175static void set_reloc_control(struct reloc_control *rc)
3176{
3177	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3178
3179	mutex_lock(&fs_info->reloc_mutex);
3180	fs_info->reloc_ctl = rc;
3181	mutex_unlock(&fs_info->reloc_mutex);
3182}
3183
3184static void unset_reloc_control(struct reloc_control *rc)
3185{
3186	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3187
3188	mutex_lock(&fs_info->reloc_mutex);
3189	fs_info->reloc_ctl = NULL;
3190	mutex_unlock(&fs_info->reloc_mutex);
3191}
3192
3193static int check_extent_flags(u64 flags)
3194{
3195	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3196	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3197		return 1;
3198	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3199	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3200		return 1;
3201	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3202	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3203		return 1;
3204	return 0;
3205}
3206
3207static noinline_for_stack
3208int prepare_to_relocate(struct reloc_control *rc)
3209{
3210	struct btrfs_trans_handle *trans;
3211	int ret;
3212
3213	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3214					      BTRFS_BLOCK_RSV_TEMP);
3215	if (!rc->block_rsv)
3216		return -ENOMEM;
3217
 
 
 
 
 
 
 
 
 
 
 
 
 
3218	memset(&rc->cluster, 0, sizeof(rc->cluster));
3219	rc->search_start = rc->block_group->start;
3220	rc->extents_found = 0;
3221	rc->nodes_relocated = 0;
3222	rc->merging_rsv_size = 0;
3223	rc->reserved_bytes = 0;
3224	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3225			      RELOCATION_RESERVED_NODES;
3226	ret = btrfs_block_rsv_refill(rc->extent_root,
3227				     rc->block_rsv, rc->block_rsv->size,
3228				     BTRFS_RESERVE_FLUSH_ALL);
3229	if (ret)
3230		return ret;
3231
3232	rc->create_reloc_tree = 1;
3233	set_reloc_control(rc);
3234
3235	trans = btrfs_join_transaction(rc->extent_root);
3236	if (IS_ERR(trans)) {
3237		unset_reloc_control(rc);
3238		/*
3239		 * extent tree is not a ref_cow tree and has no reloc_root to
3240		 * cleanup.  And callers are responsible to free the above
3241		 * block rsv.
3242		 */
3243		return PTR_ERR(trans);
3244	}
3245	btrfs_commit_transaction(trans);
3246	return 0;
3247}
3248
3249static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3250{
3251	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3252	struct rb_root blocks = RB_ROOT;
3253	struct btrfs_key key;
3254	struct btrfs_trans_handle *trans = NULL;
3255	struct btrfs_path *path;
3256	struct btrfs_extent_item *ei;
 
3257	u64 flags;
3258	u32 item_size;
3259	int ret;
3260	int err = 0;
3261	int progress = 0;
3262
3263	path = btrfs_alloc_path();
3264	if (!path)
3265		return -ENOMEM;
3266	path->reada = READA_FORWARD;
3267
3268	ret = prepare_to_relocate(rc);
3269	if (ret) {
3270		err = ret;
3271		goto out_free;
3272	}
3273
3274	while (1) {
3275		rc->reserved_bytes = 0;
3276		ret = btrfs_block_rsv_refill(rc->extent_root,
3277					rc->block_rsv, rc->block_rsv->size,
3278					BTRFS_RESERVE_FLUSH_ALL);
3279		if (ret) {
3280			err = ret;
3281			break;
3282		}
3283		progress++;
3284		trans = btrfs_start_transaction(rc->extent_root, 0);
3285		if (IS_ERR(trans)) {
3286			err = PTR_ERR(trans);
3287			trans = NULL;
3288			break;
3289		}
3290restart:
3291		if (update_backref_cache(trans, &rc->backref_cache)) {
3292			btrfs_end_transaction(trans);
3293			trans = NULL;
3294			continue;
3295		}
3296
3297		ret = find_next_extent(rc, path, &key);
3298		if (ret < 0)
3299			err = ret;
3300		if (ret != 0)
3301			break;
3302
3303		rc->extents_found++;
3304
3305		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3306				    struct btrfs_extent_item);
3307		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3308		if (item_size >= sizeof(*ei)) {
3309			flags = btrfs_extent_flags(path->nodes[0], ei);
3310			ret = check_extent_flags(flags);
3311			BUG_ON(ret);
3312		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3313			err = -EINVAL;
3314			btrfs_print_v0_err(trans->fs_info);
3315			btrfs_abort_transaction(trans, err);
3316			break;
3317		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318			BUG();
 
3319		}
3320
3321		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3322			ret = add_tree_block(rc, &key, path, &blocks);
3323		} else if (rc->stage == UPDATE_DATA_PTRS &&
3324			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3325			ret = add_data_references(rc, &key, path, &blocks);
3326		} else {
3327			btrfs_release_path(path);
3328			ret = 0;
3329		}
3330		if (ret < 0) {
3331			err = ret;
3332			break;
3333		}
3334
3335		if (!RB_EMPTY_ROOT(&blocks)) {
3336			ret = relocate_tree_blocks(trans, rc, &blocks);
3337			if (ret < 0) {
3338				if (ret != -EAGAIN) {
3339					err = ret;
3340					break;
3341				}
3342				rc->extents_found--;
3343				rc->search_start = key.objectid;
3344			}
3345		}
3346
3347		btrfs_end_transaction_throttle(trans);
3348		btrfs_btree_balance_dirty(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3349		trans = NULL;
3350
3351		if (rc->stage == MOVE_DATA_EXTENTS &&
3352		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3353			rc->found_file_extent = 1;
3354			ret = relocate_data_extent(rc->data_inode,
3355						   &key, &rc->cluster);
3356			if (ret < 0) {
3357				err = ret;
3358				break;
3359			}
3360		}
3361		if (btrfs_should_cancel_balance(fs_info)) {
3362			err = -ECANCELED;
3363			break;
3364		}
3365	}
3366	if (trans && progress && err == -ENOSPC) {
3367		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3368		if (ret == 1) {
 
3369			err = 0;
3370			progress = 0;
3371			goto restart;
3372		}
3373	}
3374
3375	btrfs_release_path(path);
3376	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
3377
3378	if (trans) {
3379		btrfs_end_transaction_throttle(trans);
3380		btrfs_btree_balance_dirty(fs_info);
 
3381	}
3382
3383	if (!err) {
3384		ret = relocate_file_extent_cluster(rc->data_inode,
3385						   &rc->cluster);
3386		if (ret < 0)
3387			err = ret;
3388	}
3389
3390	rc->create_reloc_tree = 0;
3391	set_reloc_control(rc);
3392
3393	btrfs_backref_release_cache(&rc->backref_cache);
3394	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3395
3396	/*
3397	 * Even in the case when the relocation is cancelled, we should all go
3398	 * through prepare_to_merge() and merge_reloc_roots().
3399	 *
3400	 * For error (including cancelled balance), prepare_to_merge() will
3401	 * mark all reloc trees orphan, then queue them for cleanup in
3402	 * merge_reloc_roots()
3403	 */
3404	err = prepare_to_merge(rc, err);
3405
3406	merge_reloc_roots(rc);
3407
3408	rc->merge_reloc_tree = 0;
3409	unset_reloc_control(rc);
3410	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3411
3412	/* get rid of pinned extents */
3413	trans = btrfs_join_transaction(rc->extent_root);
3414	if (IS_ERR(trans)) {
3415		err = PTR_ERR(trans);
3416		goto out_free;
3417	}
3418	btrfs_commit_transaction(trans);
3419out_free:
3420	ret = clean_dirty_subvols(rc);
3421	if (ret < 0 && !err)
3422		err = ret;
3423	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3424	btrfs_free_path(path);
3425	return err;
3426}
3427
3428static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3429				 struct btrfs_root *root, u64 objectid)
3430{
3431	struct btrfs_path *path;
3432	struct btrfs_inode_item *item;
3433	struct extent_buffer *leaf;
3434	int ret;
3435
3436	path = btrfs_alloc_path();
3437	if (!path)
3438		return -ENOMEM;
3439
3440	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3441	if (ret)
3442		goto out;
3443
3444	leaf = path->nodes[0];
3445	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3446	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3447	btrfs_set_inode_generation(leaf, item, 1);
3448	btrfs_set_inode_size(leaf, item, 0);
3449	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3450	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3451					  BTRFS_INODE_PREALLOC);
3452	btrfs_mark_buffer_dirty(leaf);
 
3453out:
3454	btrfs_free_path(path);
3455	return ret;
3456}
3457
3458/*
3459 * helper to create inode for data relocation.
3460 * the inode is in data relocation tree and its link count is 0
3461 */
3462static noinline_for_stack
3463struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3464				 struct btrfs_block_group *group)
3465{
3466	struct inode *inode = NULL;
3467	struct btrfs_trans_handle *trans;
3468	struct btrfs_root *root;
3469	u64 objectid;
 
 
3470	int err = 0;
3471
3472	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3473	trans = btrfs_start_transaction(root, 6);
3474	if (IS_ERR(trans)) {
3475		btrfs_put_root(root);
3476		return ERR_CAST(trans);
3477	}
3478
3479	err = btrfs_find_free_objectid(root, &objectid);
3480	if (err)
3481		goto out;
3482
3483	err = __insert_orphan_inode(trans, root, objectid);
3484	BUG_ON(err);
3485
3486	inode = btrfs_iget(fs_info->sb, objectid, root);
3487	BUG_ON(IS_ERR(inode));
3488	BTRFS_I(inode)->index_cnt = group->start;
 
 
 
3489
3490	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3491out:
3492	btrfs_put_root(root);
3493	btrfs_end_transaction(trans);
3494	btrfs_btree_balance_dirty(fs_info);
3495	if (err) {
3496		if (inode)
3497			iput(inode);
3498		inode = ERR_PTR(err);
3499	}
3500	return inode;
3501}
3502
3503static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3504{
3505	struct reloc_control *rc;
3506
3507	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3508	if (!rc)
3509		return NULL;
3510
3511	INIT_LIST_HEAD(&rc->reloc_roots);
3512	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3513	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3514	mapping_tree_init(&rc->reloc_root_tree);
3515	extent_io_tree_init(fs_info, &rc->processed_blocks,
3516			    IO_TREE_RELOC_BLOCKS, NULL);
3517	return rc;
3518}
3519
3520static void free_reloc_control(struct reloc_control *rc)
3521{
3522	struct mapping_node *node, *tmp;
3523
3524	free_reloc_roots(&rc->reloc_roots);
3525	rbtree_postorder_for_each_entry_safe(node, tmp,
3526			&rc->reloc_root_tree.rb_root, rb_node)
3527		kfree(node);
3528
3529	kfree(rc);
3530}
3531
3532/*
3533 * Print the block group being relocated
3534 */
3535static void describe_relocation(struct btrfs_fs_info *fs_info,
3536				struct btrfs_block_group *block_group)
3537{
3538	char buf[128] = {'\0'};
3539
3540	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3541
3542	btrfs_info(fs_info,
3543		   "relocating block group %llu flags %s",
3544		   block_group->start, buf);
3545}
3546
3547static const char *stage_to_string(int stage)
3548{
3549	if (stage == MOVE_DATA_EXTENTS)
3550		return "move data extents";
3551	if (stage == UPDATE_DATA_PTRS)
3552		return "update data pointers";
3553	return "unknown";
3554}
3555
3556/*
3557 * function to relocate all extents in a block group.
3558 */
3559int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3560{
3561	struct btrfs_block_group *bg;
3562	struct btrfs_root *extent_root = fs_info->extent_root;
3563	struct reloc_control *rc;
3564	struct inode *inode;
3565	struct btrfs_path *path;
3566	int ret;
3567	int rw = 0;
3568	int err = 0;
3569
3570	bg = btrfs_lookup_block_group(fs_info, group_start);
3571	if (!bg)
3572		return -ENOENT;
3573
3574	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3575		btrfs_put_block_group(bg);
3576		return -ETXTBSY;
3577	}
3578
3579	rc = alloc_reloc_control(fs_info);
3580	if (!rc) {
3581		btrfs_put_block_group(bg);
3582		return -ENOMEM;
3583	}
3584
3585	rc->extent_root = extent_root;
3586	rc->block_group = bg;
3587
3588	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3589	if (ret) {
3590		err = ret;
3591		goto out;
 
 
 
 
 
 
3592	}
3593	rw = 1;
3594
3595	path = btrfs_alloc_path();
3596	if (!path) {
3597		err = -ENOMEM;
3598		goto out;
3599	}
3600
3601	inode = lookup_free_space_inode(rc->block_group, path);
 
3602	btrfs_free_path(path);
3603
3604	if (!IS_ERR(inode))
3605		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3606	else
3607		ret = PTR_ERR(inode);
3608
3609	if (ret && ret != -ENOENT) {
3610		err = ret;
3611		goto out;
3612	}
3613
3614	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3615	if (IS_ERR(rc->data_inode)) {
3616		err = PTR_ERR(rc->data_inode);
3617		rc->data_inode = NULL;
3618		goto out;
3619	}
3620
3621	describe_relocation(fs_info, rc->block_group);
 
 
3622
3623	btrfs_wait_block_group_reservations(rc->block_group);
3624	btrfs_wait_nocow_writers(rc->block_group);
3625	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3626				 rc->block_group->start,
3627				 rc->block_group->length);
3628
3629	while (1) {
3630		int finishes_stage;
3631
3632		mutex_lock(&fs_info->cleaner_mutex);
3633		ret = relocate_block_group(rc);
 
3634		mutex_unlock(&fs_info->cleaner_mutex);
3635		if (ret < 0)
3636			err = ret;
 
 
 
 
 
 
 
 
3637
3638		finishes_stage = rc->stage;
3639		/*
3640		 * We may have gotten ENOSPC after we already dirtied some
3641		 * extents.  If writeout happens while we're relocating a
3642		 * different block group we could end up hitting the
3643		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3644		 * btrfs_reloc_cow_block.  Make sure we write everything out
3645		 * properly so we don't trip over this problem, and then break
3646		 * out of the loop if we hit an error.
3647		 */
3648		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3649			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3650						       (u64)-1);
3651			if (ret)
3652				err = ret;
3653			invalidate_mapping_pages(rc->data_inode->i_mapping,
3654						 0, -1);
3655			rc->stage = UPDATE_DATA_PTRS;
3656		}
 
3657
3658		if (err < 0)
3659			goto out;
3660
3661		if (rc->extents_found == 0)
3662			break;
3663
3664		btrfs_info(fs_info, "found %llu extents, stage: %s",
3665			   rc->extents_found, stage_to_string(finishes_stage));
3666	}
3667
3668	WARN_ON(rc->block_group->pinned > 0);
3669	WARN_ON(rc->block_group->reserved > 0);
3670	WARN_ON(rc->block_group->used > 0);
3671out:
3672	if (err && rw)
3673		btrfs_dec_block_group_ro(rc->block_group);
3674	iput(rc->data_inode);
3675	btrfs_put_block_group(rc->block_group);
3676	free_reloc_control(rc);
3677	return err;
3678}
3679
3680static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3681{
3682	struct btrfs_fs_info *fs_info = root->fs_info;
3683	struct btrfs_trans_handle *trans;
3684	int ret, err;
3685
3686	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3687	if (IS_ERR(trans))
3688		return PTR_ERR(trans);
3689
3690	memset(&root->root_item.drop_progress, 0,
3691		sizeof(root->root_item.drop_progress));
3692	root->root_item.drop_level = 0;
3693	btrfs_set_root_refs(&root->root_item, 0);
3694	ret = btrfs_update_root(trans, fs_info->tree_root,
3695				&root->root_key, &root->root_item);
 
3696
3697	err = btrfs_end_transaction(trans);
3698	if (err)
3699		return err;
3700	return ret;
3701}
3702
3703/*
3704 * recover relocation interrupted by system crash.
3705 *
3706 * this function resumes merging reloc trees with corresponding fs trees.
3707 * this is important for keeping the sharing of tree blocks
3708 */
3709int btrfs_recover_relocation(struct btrfs_root *root)
3710{
3711	struct btrfs_fs_info *fs_info = root->fs_info;
3712	LIST_HEAD(reloc_roots);
3713	struct btrfs_key key;
3714	struct btrfs_root *fs_root;
3715	struct btrfs_root *reloc_root;
3716	struct btrfs_path *path;
3717	struct extent_buffer *leaf;
3718	struct reloc_control *rc = NULL;
3719	struct btrfs_trans_handle *trans;
3720	int ret;
3721	int err = 0;
3722
3723	path = btrfs_alloc_path();
3724	if (!path)
3725		return -ENOMEM;
3726	path->reada = READA_BACK;
3727
3728	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3729	key.type = BTRFS_ROOT_ITEM_KEY;
3730	key.offset = (u64)-1;
3731
3732	while (1) {
3733		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3734					path, 0, 0);
3735		if (ret < 0) {
3736			err = ret;
3737			goto out;
3738		}
3739		if (ret > 0) {
3740			if (path->slots[0] == 0)
3741				break;
3742			path->slots[0]--;
3743		}
3744		leaf = path->nodes[0];
3745		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3746		btrfs_release_path(path);
3747
3748		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3749		    key.type != BTRFS_ROOT_ITEM_KEY)
3750			break;
3751
3752		reloc_root = btrfs_read_tree_root(root, &key);
3753		if (IS_ERR(reloc_root)) {
3754			err = PTR_ERR(reloc_root);
3755			goto out;
3756		}
3757
3758		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3759		list_add(&reloc_root->root_list, &reloc_roots);
3760
3761		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3762			fs_root = btrfs_get_fs_root(fs_info,
3763					reloc_root->root_key.offset, false);
3764			if (IS_ERR(fs_root)) {
3765				ret = PTR_ERR(fs_root);
3766				if (ret != -ENOENT) {
3767					err = ret;
3768					goto out;
3769				}
3770				ret = mark_garbage_root(reloc_root);
3771				if (ret < 0) {
3772					err = ret;
3773					goto out;
3774				}
3775			} else {
3776				btrfs_put_root(fs_root);
3777			}
3778		}
3779
3780		if (key.offset == 0)
3781			break;
3782
3783		key.offset--;
3784	}
3785	btrfs_release_path(path);
3786
3787	if (list_empty(&reloc_roots))
3788		goto out;
3789
3790	rc = alloc_reloc_control(fs_info);
3791	if (!rc) {
3792		err = -ENOMEM;
3793		goto out;
3794	}
3795
3796	rc->extent_root = fs_info->extent_root;
3797
3798	set_reloc_control(rc);
3799
3800	trans = btrfs_join_transaction(rc->extent_root);
3801	if (IS_ERR(trans)) {
 
3802		err = PTR_ERR(trans);
3803		goto out_unset;
3804	}
3805
3806	rc->merge_reloc_tree = 1;
3807
3808	while (!list_empty(&reloc_roots)) {
3809		reloc_root = list_entry(reloc_roots.next,
3810					struct btrfs_root, root_list);
3811		list_del(&reloc_root->root_list);
3812
3813		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3814			list_add_tail(&reloc_root->root_list,
3815				      &rc->reloc_roots);
3816			continue;
3817		}
3818
3819		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3820					    false);
3821		if (IS_ERR(fs_root)) {
3822			err = PTR_ERR(fs_root);
3823			list_add_tail(&reloc_root->root_list, &reloc_roots);
3824			btrfs_end_transaction(trans);
3825			goto out_unset;
3826		}
3827
3828		err = __add_reloc_root(reloc_root);
3829		BUG_ON(err < 0); /* -ENOMEM or logic error */
3830		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3831		btrfs_put_root(fs_root);
3832	}
3833
3834	err = btrfs_commit_transaction(trans);
3835	if (err)
3836		goto out_unset;
3837
3838	merge_reloc_roots(rc);
3839
3840	unset_reloc_control(rc);
3841
3842	trans = btrfs_join_transaction(rc->extent_root);
3843	if (IS_ERR(trans)) {
3844		err = PTR_ERR(trans);
3845		goto out_clean;
 
 
 
 
 
 
 
 
 
 
 
3846	}
3847	err = btrfs_commit_transaction(trans);
3848out_clean:
3849	ret = clean_dirty_subvols(rc);
3850	if (ret < 0 && !err)
3851		err = ret;
3852out_unset:
3853	unset_reloc_control(rc);
3854	free_reloc_control(rc);
3855out:
3856	free_reloc_roots(&reloc_roots);
3857
3858	btrfs_free_path(path);
3859
3860	if (err == 0) {
3861		/* cleanup orphan inode in data relocation tree */
3862		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3863		ASSERT(fs_root);
3864		err = btrfs_orphan_cleanup(fs_root);
3865		btrfs_put_root(fs_root);
 
 
3866	}
3867	return err;
3868}
3869
3870/*
3871 * helper to add ordered checksum for data relocation.
3872 *
3873 * cloning checksum properly handles the nodatasum extents.
3874 * it also saves CPU time to re-calculate the checksum.
3875 */
3876int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3877{
3878	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3879	struct btrfs_ordered_sum *sums;
 
3880	struct btrfs_ordered_extent *ordered;
 
 
3881	int ret;
3882	u64 disk_bytenr;
3883	u64 new_bytenr;
3884	LIST_HEAD(list);
3885
3886	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3887	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3888
3889	disk_bytenr = file_pos + inode->index_cnt;
3890	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3891				       disk_bytenr + len - 1, &list, 0);
3892	if (ret)
3893		goto out;
3894
3895	while (!list_empty(&list)) {
3896		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3897		list_del_init(&sums->list);
3898
3899		/*
3900		 * We need to offset the new_bytenr based on where the csum is.
3901		 * We need to do this because we will read in entire prealloc
3902		 * extents but we may have written to say the middle of the
3903		 * prealloc extent, so we need to make sure the csum goes with
3904		 * the right disk offset.
3905		 *
3906		 * We can do this because the data reloc inode refers strictly
3907		 * to the on disk bytes, so we don't have to worry about
3908		 * disk_len vs real len like with real inodes since it's all
3909		 * disk length.
3910		 */
3911		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3912		sums->bytenr = new_bytenr;
3913
3914		btrfs_add_ordered_sum(ordered, sums);
3915	}
3916out:
3917	btrfs_put_ordered_extent(ordered);
3918	return ret;
3919}
3920
3921int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3922			  struct btrfs_root *root, struct extent_buffer *buf,
3923			  struct extent_buffer *cow)
3924{
3925	struct btrfs_fs_info *fs_info = root->fs_info;
3926	struct reloc_control *rc;
3927	struct btrfs_backref_node *node;
3928	int first_cow = 0;
3929	int level;
3930	int ret = 0;
3931
3932	rc = fs_info->reloc_ctl;
3933	if (!rc)
3934		return 0;
3935
3936	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3937	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3938
3939	level = btrfs_header_level(buf);
3940	if (btrfs_header_generation(buf) <=
3941	    btrfs_root_last_snapshot(&root->root_item))
3942		first_cow = 1;
3943
3944	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3945	    rc->create_reloc_tree) {
3946		WARN_ON(!first_cow && level == 0);
3947
3948		node = rc->backref_cache.path[level];
3949		BUG_ON(node->bytenr != buf->start &&
3950		       node->new_bytenr != buf->start);
3951
3952		btrfs_backref_drop_node_buffer(node);
3953		atomic_inc(&cow->refs);
3954		node->eb = cow;
3955		node->new_bytenr = cow->start;
3956
3957		if (!node->pending) {
3958			list_move_tail(&node->list,
3959				       &rc->backref_cache.pending[level]);
3960			node->pending = 1;
3961		}
3962
3963		if (first_cow)
3964			mark_block_processed(rc, node);
3965
3966		if (first_cow && level > 0)
3967			rc->nodes_relocated += buf->len;
3968	}
3969
3970	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3971		ret = replace_file_extents(trans, rc, root, cow);
3972	return ret;
 
3973}
3974
3975/*
3976 * called before creating snapshot. it calculates metadata reservation
3977 * required for relocating tree blocks in the snapshot
3978 */
3979void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
3980			      u64 *bytes_to_reserve)
3981{
3982	struct btrfs_root *root = pending->root;
3983	struct reloc_control *rc = root->fs_info->reloc_ctl;
3984
3985	if (!rc || !have_reloc_root(root))
 
3986		return;
3987
 
3988	if (!rc->merge_reloc_tree)
3989		return;
3990
3991	root = root->reloc_root;
3992	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3993	/*
3994	 * relocation is in the stage of merging trees. the space
3995	 * used by merging a reloc tree is twice the size of
3996	 * relocated tree nodes in the worst case. half for cowing
3997	 * the reloc tree, half for cowing the fs tree. the space
3998	 * used by cowing the reloc tree will be freed after the
3999	 * tree is dropped. if we create snapshot, cowing the fs
4000	 * tree may use more space than it frees. so we need
4001	 * reserve extra space.
4002	 */
4003	*bytes_to_reserve += rc->nodes_relocated;
4004}
4005
4006/*
4007 * called after snapshot is created. migrate block reservation
4008 * and create reloc root for the newly created snapshot
4009 *
4010 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4011 * references held on the reloc_root, one for root->reloc_root and one for
4012 * rc->reloc_roots.
4013 */
4014int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4015			       struct btrfs_pending_snapshot *pending)
4016{
4017	struct btrfs_root *root = pending->root;
4018	struct btrfs_root *reloc_root;
4019	struct btrfs_root *new_root;
4020	struct reloc_control *rc = root->fs_info->reloc_ctl;
4021	int ret;
4022
4023	if (!rc || !have_reloc_root(root))
4024		return 0;
4025
4026	rc = root->fs_info->reloc_ctl;
4027	rc->merging_rsv_size += rc->nodes_relocated;
4028
4029	if (rc->merge_reloc_tree) {
4030		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4031					      rc->block_rsv,
4032					      rc->nodes_relocated, true);
4033		if (ret)
4034			return ret;
4035	}
4036
4037	new_root = pending->snap;
4038	reloc_root = create_reloc_root(trans, root->reloc_root,
4039				       new_root->root_key.objectid);
4040	if (IS_ERR(reloc_root))
4041		return PTR_ERR(reloc_root);
4042
4043	ret = __add_reloc_root(reloc_root);
4044	BUG_ON(ret < 0);
4045	new_root->reloc_root = btrfs_grab_root(reloc_root);
4046
4047	if (rc->create_reloc_tree)
4048		ret = clone_backref_node(trans, rc, root, reloc_root);
4049	return ret;
 
4050}