Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
 
  97
  98struct backref_cache {
  99	/* red black tree of all backref nodes in the cache */
 100	struct rb_root rb_root;
 101	/* for passing backref nodes to btrfs_reloc_cow_block */
 102	struct backref_node *path[BTRFS_MAX_LEVEL];
 103	/*
 104	 * list of blocks that have been cowed but some block
 105	 * pointers in upper level blocks may not reflect the
 106	 * new location
 107	 */
 108	struct list_head pending[BTRFS_MAX_LEVEL];
 109	/* list of backref nodes with no child node */
 110	struct list_head leaves;
 111	/* list of blocks that have been cowed in current transaction */
 112	struct list_head changed;
 113	/* list of detached backref node. */
 114	struct list_head detached;
 115
 116	u64 last_trans;
 117
 118	int nr_nodes;
 119	int nr_edges;
 120};
 121
 122/*
 123 * map address of tree root to tree
 124 */
 125struct mapping_node {
 126	struct rb_node rb_node;
 127	u64 bytenr;
 128	void *data;
 129};
 130
 131struct mapping_tree {
 132	struct rb_root rb_root;
 133	spinlock_t lock;
 134};
 135
 136/*
 137 * present a tree block to process
 138 */
 139struct tree_block {
 140	struct rb_node rb_node;
 141	u64 bytenr;
 142	struct btrfs_key key;
 143	unsigned int level:8;
 144	unsigned int key_ready:1;
 145};
 146
 147#define MAX_EXTENTS 128
 148
 149struct file_extent_cluster {
 150	u64 start;
 151	u64 end;
 152	u64 boundary[MAX_EXTENTS];
 153	unsigned int nr;
 154};
 155
 156struct reloc_control {
 157	/* block group to relocate */
 158	struct btrfs_block_group_cache *block_group;
 159	/* extent tree */
 160	struct btrfs_root *extent_root;
 161	/* inode for moving data */
 162	struct inode *data_inode;
 163
 164	struct btrfs_block_rsv *block_rsv;
 165
 166	struct backref_cache backref_cache;
 167
 168	struct file_extent_cluster cluster;
 169	/* tree blocks have been processed */
 170	struct extent_io_tree processed_blocks;
 171	/* map start of tree root to corresponding reloc tree */
 172	struct mapping_tree reloc_root_tree;
 173	/* list of reloc trees */
 174	struct list_head reloc_roots;
 175	/* size of metadata reservation for merging reloc trees */
 176	u64 merging_rsv_size;
 177	/* size of relocated tree nodes */
 178	u64 nodes_relocated;
 
 
 179
 180	u64 search_start;
 181	u64 extents_found;
 182
 183	unsigned int stage:8;
 184	unsigned int create_reloc_tree:1;
 185	unsigned int merge_reloc_tree:1;
 186	unsigned int found_file_extent:1;
 187	unsigned int commit_transaction:1;
 188};
 189
 190/* stages of data relocation */
 191#define MOVE_DATA_EXTENTS	0
 192#define UPDATE_DATA_PTRS	1
 193
 194static void remove_backref_node(struct backref_cache *cache,
 195				struct backref_node *node);
 196static void __mark_block_processed(struct reloc_control *rc,
 197				   struct backref_node *node);
 198
 199static void mapping_tree_init(struct mapping_tree *tree)
 200{
 201	tree->rb_root = RB_ROOT;
 202	spin_lock_init(&tree->lock);
 203}
 204
 205static void backref_cache_init(struct backref_cache *cache)
 206{
 207	int i;
 208	cache->rb_root = RB_ROOT;
 209	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 210		INIT_LIST_HEAD(&cache->pending[i]);
 211	INIT_LIST_HEAD(&cache->changed);
 212	INIT_LIST_HEAD(&cache->detached);
 213	INIT_LIST_HEAD(&cache->leaves);
 214}
 215
 216static void backref_cache_cleanup(struct backref_cache *cache)
 217{
 218	struct backref_node *node;
 219	int i;
 220
 221	while (!list_empty(&cache->detached)) {
 222		node = list_entry(cache->detached.next,
 223				  struct backref_node, list);
 224		remove_backref_node(cache, node);
 225	}
 226
 227	while (!list_empty(&cache->leaves)) {
 228		node = list_entry(cache->leaves.next,
 229				  struct backref_node, lower);
 230		remove_backref_node(cache, node);
 231	}
 232
 233	cache->last_trans = 0;
 234
 235	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 236		BUG_ON(!list_empty(&cache->pending[i]));
 237	BUG_ON(!list_empty(&cache->changed));
 238	BUG_ON(!list_empty(&cache->detached));
 239	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 240	BUG_ON(cache->nr_nodes);
 241	BUG_ON(cache->nr_edges);
 242}
 243
 244static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 245{
 246	struct backref_node *node;
 247
 248	node = kzalloc(sizeof(*node), GFP_NOFS);
 249	if (node) {
 250		INIT_LIST_HEAD(&node->list);
 251		INIT_LIST_HEAD(&node->upper);
 252		INIT_LIST_HEAD(&node->lower);
 253		RB_CLEAR_NODE(&node->rb_node);
 254		cache->nr_nodes++;
 255	}
 256	return node;
 257}
 258
 259static void free_backref_node(struct backref_cache *cache,
 260			      struct backref_node *node)
 261{
 262	if (node) {
 263		cache->nr_nodes--;
 264		kfree(node);
 265	}
 266}
 267
 268static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 269{
 270	struct backref_edge *edge;
 271
 272	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 273	if (edge)
 274		cache->nr_edges++;
 275	return edge;
 276}
 277
 278static void free_backref_edge(struct backref_cache *cache,
 279			      struct backref_edge *edge)
 280{
 281	if (edge) {
 282		cache->nr_edges--;
 283		kfree(edge);
 284	}
 285}
 286
 287static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 288				   struct rb_node *node)
 289{
 290	struct rb_node **p = &root->rb_node;
 291	struct rb_node *parent = NULL;
 292	struct tree_entry *entry;
 293
 294	while (*p) {
 295		parent = *p;
 296		entry = rb_entry(parent, struct tree_entry, rb_node);
 297
 298		if (bytenr < entry->bytenr)
 299			p = &(*p)->rb_left;
 300		else if (bytenr > entry->bytenr)
 301			p = &(*p)->rb_right;
 302		else
 303			return parent;
 304	}
 305
 306	rb_link_node(node, parent, p);
 307	rb_insert_color(node, root);
 308	return NULL;
 309}
 310
 311static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 312{
 313	struct rb_node *n = root->rb_node;
 314	struct tree_entry *entry;
 315
 316	while (n) {
 317		entry = rb_entry(n, struct tree_entry, rb_node);
 318
 319		if (bytenr < entry->bytenr)
 320			n = n->rb_left;
 321		else if (bytenr > entry->bytenr)
 322			n = n->rb_right;
 323		else
 324			return n;
 325	}
 326	return NULL;
 327}
 328
 
 
 
 
 
 
 
 
 
 
 
 
 
 329/*
 330 * walk up backref nodes until reach node presents tree root
 331 */
 332static struct backref_node *walk_up_backref(struct backref_node *node,
 333					    struct backref_edge *edges[],
 334					    int *index)
 335{
 336	struct backref_edge *edge;
 337	int idx = *index;
 338
 339	while (!list_empty(&node->upper)) {
 340		edge = list_entry(node->upper.next,
 341				  struct backref_edge, list[LOWER]);
 342		edges[idx++] = edge;
 343		node = edge->node[UPPER];
 344	}
 345	BUG_ON(node->detached);
 346	*index = idx;
 347	return node;
 348}
 349
 350/*
 351 * walk down backref nodes to find start of next reference path
 352 */
 353static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 354					      int *index)
 355{
 356	struct backref_edge *edge;
 357	struct backref_node *lower;
 358	int idx = *index;
 359
 360	while (idx > 0) {
 361		edge = edges[idx - 1];
 362		lower = edge->node[LOWER];
 363		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 364			idx--;
 365			continue;
 366		}
 367		edge = list_entry(edge->list[LOWER].next,
 368				  struct backref_edge, list[LOWER]);
 369		edges[idx - 1] = edge;
 370		*index = idx;
 371		return edge->node[UPPER];
 372	}
 373	*index = 0;
 374	return NULL;
 375}
 376
 377static void unlock_node_buffer(struct backref_node *node)
 378{
 379	if (node->locked) {
 380		btrfs_tree_unlock(node->eb);
 381		node->locked = 0;
 382	}
 383}
 384
 385static void drop_node_buffer(struct backref_node *node)
 386{
 387	if (node->eb) {
 388		unlock_node_buffer(node);
 389		free_extent_buffer(node->eb);
 390		node->eb = NULL;
 391	}
 392}
 393
 394static void drop_backref_node(struct backref_cache *tree,
 395			      struct backref_node *node)
 396{
 397	BUG_ON(!list_empty(&node->upper));
 398
 399	drop_node_buffer(node);
 400	list_del(&node->list);
 401	list_del(&node->lower);
 402	if (!RB_EMPTY_NODE(&node->rb_node))
 403		rb_erase(&node->rb_node, &tree->rb_root);
 404	free_backref_node(tree, node);
 405}
 406
 407/*
 408 * remove a backref node from the backref cache
 409 */
 410static void remove_backref_node(struct backref_cache *cache,
 411				struct backref_node *node)
 412{
 413	struct backref_node *upper;
 414	struct backref_edge *edge;
 415
 416	if (!node)
 417		return;
 418
 419	BUG_ON(!node->lowest && !node->detached);
 420	while (!list_empty(&node->upper)) {
 421		edge = list_entry(node->upper.next, struct backref_edge,
 422				  list[LOWER]);
 423		upper = edge->node[UPPER];
 424		list_del(&edge->list[LOWER]);
 425		list_del(&edge->list[UPPER]);
 426		free_backref_edge(cache, edge);
 427
 428		if (RB_EMPTY_NODE(&upper->rb_node)) {
 429			BUG_ON(!list_empty(&node->upper));
 430			drop_backref_node(cache, node);
 431			node = upper;
 432			node->lowest = 1;
 433			continue;
 434		}
 435		/*
 436		 * add the node to leaf node list if no other
 437		 * child block cached.
 438		 */
 439		if (list_empty(&upper->lower)) {
 440			list_add_tail(&upper->lower, &cache->leaves);
 441			upper->lowest = 1;
 442		}
 443	}
 444
 445	drop_backref_node(cache, node);
 446}
 447
 448static void update_backref_node(struct backref_cache *cache,
 449				struct backref_node *node, u64 bytenr)
 450{
 451	struct rb_node *rb_node;
 452	rb_erase(&node->rb_node, &cache->rb_root);
 453	node->bytenr = bytenr;
 454	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 455	BUG_ON(rb_node);
 
 456}
 457
 458/*
 459 * update backref cache after a transaction commit
 460 */
 461static int update_backref_cache(struct btrfs_trans_handle *trans,
 462				struct backref_cache *cache)
 463{
 464	struct backref_node *node;
 465	int level = 0;
 466
 467	if (cache->last_trans == 0) {
 468		cache->last_trans = trans->transid;
 469		return 0;
 470	}
 471
 472	if (cache->last_trans == trans->transid)
 473		return 0;
 474
 475	/*
 476	 * detached nodes are used to avoid unnecessary backref
 477	 * lookup. transaction commit changes the extent tree.
 478	 * so the detached nodes are no longer useful.
 479	 */
 480	while (!list_empty(&cache->detached)) {
 481		node = list_entry(cache->detached.next,
 482				  struct backref_node, list);
 483		remove_backref_node(cache, node);
 484	}
 485
 486	while (!list_empty(&cache->changed)) {
 487		node = list_entry(cache->changed.next,
 488				  struct backref_node, list);
 489		list_del_init(&node->list);
 490		BUG_ON(node->pending);
 491		update_backref_node(cache, node, node->new_bytenr);
 492	}
 493
 494	/*
 495	 * some nodes can be left in the pending list if there were
 496	 * errors during processing the pending nodes.
 497	 */
 498	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 499		list_for_each_entry(node, &cache->pending[level], list) {
 500			BUG_ON(!node->pending);
 501			if (node->bytenr == node->new_bytenr)
 502				continue;
 503			update_backref_node(cache, node, node->new_bytenr);
 504		}
 505	}
 506
 507	cache->last_trans = 0;
 508	return 1;
 509}
 510
 511
 512static int should_ignore_root(struct btrfs_root *root)
 513{
 514	struct btrfs_root *reloc_root;
 515
 516	if (!root->ref_cows)
 517		return 0;
 518
 519	reloc_root = root->reloc_root;
 520	if (!reloc_root)
 521		return 0;
 522
 523	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 524	    root->fs_info->running_transaction->transid - 1)
 525		return 0;
 526	/*
 527	 * if there is reloc tree and it was created in previous
 528	 * transaction backref lookup can find the reloc tree,
 529	 * so backref node for the fs tree root is useless for
 530	 * relocation.
 531	 */
 532	return 1;
 533}
 534/*
 535 * find reloc tree by address of tree root
 536 */
 537static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 538					  u64 bytenr)
 539{
 540	struct rb_node *rb_node;
 541	struct mapping_node *node;
 542	struct btrfs_root *root = NULL;
 543
 544	spin_lock(&rc->reloc_root_tree.lock);
 545	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 546	if (rb_node) {
 547		node = rb_entry(rb_node, struct mapping_node, rb_node);
 548		root = (struct btrfs_root *)node->data;
 549	}
 550	spin_unlock(&rc->reloc_root_tree.lock);
 551	return root;
 552}
 553
 554static int is_cowonly_root(u64 root_objectid)
 555{
 556	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 557	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 558	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 559	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 560	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 561	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
 
 
 
 562		return 1;
 563	return 0;
 564}
 565
 566static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 567					u64 root_objectid)
 568{
 569	struct btrfs_key key;
 570
 571	key.objectid = root_objectid;
 572	key.type = BTRFS_ROOT_ITEM_KEY;
 573	if (is_cowonly_root(root_objectid))
 574		key.offset = 0;
 575	else
 576		key.offset = (u64)-1;
 577
 578	return btrfs_read_fs_root_no_name(fs_info, &key);
 579}
 580
 581#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 582static noinline_for_stack
 583struct btrfs_root *find_tree_root(struct reloc_control *rc,
 584				  struct extent_buffer *leaf,
 585				  struct btrfs_extent_ref_v0 *ref0)
 586{
 587	struct btrfs_root *root;
 588	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 589	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 590
 591	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 592
 593	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 594	BUG_ON(IS_ERR(root));
 595
 596	if (root->ref_cows &&
 597	    generation != btrfs_root_generation(&root->root_item))
 598		return NULL;
 599
 600	return root;
 601}
 602#endif
 603
 604static noinline_for_stack
 605int find_inline_backref(struct extent_buffer *leaf, int slot,
 606			unsigned long *ptr, unsigned long *end)
 607{
 
 608	struct btrfs_extent_item *ei;
 609	struct btrfs_tree_block_info *bi;
 610	u32 item_size;
 611
 
 
 612	item_size = btrfs_item_size_nr(leaf, slot);
 613#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 614	if (item_size < sizeof(*ei)) {
 615		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 616		return 1;
 617	}
 618#endif
 619	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 620	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 621		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 622
 623	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
 
 624		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 625		return 1;
 626	}
 
 
 
 
 
 627
 628	bi = (struct btrfs_tree_block_info *)(ei + 1);
 629	*ptr = (unsigned long)(bi + 1);
 
 
 
 
 630	*end = (unsigned long)ei + item_size;
 631	return 0;
 632}
 633
 634/*
 635 * build backref tree for a given tree block. root of the backref tree
 636 * corresponds the tree block, leaves of the backref tree correspond
 637 * roots of b-trees that reference the tree block.
 638 *
 639 * the basic idea of this function is check backrefs of a given block
 640 * to find upper level blocks that refernece the block, and then check
 641 * bakcrefs of these upper level blocks recursively. the recursion stop
 642 * when tree root is reached or backrefs for the block is cached.
 643 *
 644 * NOTE: if we find backrefs for a block are cached, we know backrefs
 645 * for all upper level blocks that directly/indirectly reference the
 646 * block are also cached.
 647 */
 648static noinline_for_stack
 649struct backref_node *build_backref_tree(struct reloc_control *rc,
 650					struct btrfs_key *node_key,
 651					int level, u64 bytenr)
 652{
 653	struct backref_cache *cache = &rc->backref_cache;
 654	struct btrfs_path *path1;
 655	struct btrfs_path *path2;
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root;
 658	struct backref_node *cur;
 659	struct backref_node *upper;
 660	struct backref_node *lower;
 661	struct backref_node *node = NULL;
 662	struct backref_node *exist = NULL;
 663	struct backref_edge *edge;
 664	struct rb_node *rb_node;
 665	struct btrfs_key key;
 666	unsigned long end;
 667	unsigned long ptr;
 668	LIST_HEAD(list);
 669	LIST_HEAD(useless);
 670	int cowonly;
 671	int ret;
 672	int err = 0;
 
 673
 674	path1 = btrfs_alloc_path();
 675	path2 = btrfs_alloc_path();
 676	if (!path1 || !path2) {
 677		err = -ENOMEM;
 678		goto out;
 679	}
 680	path1->reada = 1;
 681	path2->reada = 2;
 682
 683	node = alloc_backref_node(cache);
 684	if (!node) {
 685		err = -ENOMEM;
 686		goto out;
 687	}
 688
 689	node->bytenr = bytenr;
 690	node->level = level;
 691	node->lowest = 1;
 692	cur = node;
 693again:
 694	end = 0;
 695	ptr = 0;
 696	key.objectid = cur->bytenr;
 697	key.type = BTRFS_EXTENT_ITEM_KEY;
 698	key.offset = (u64)-1;
 699
 700	path1->search_commit_root = 1;
 701	path1->skip_locking = 1;
 702	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 703				0, 0);
 704	if (ret < 0) {
 705		err = ret;
 706		goto out;
 707	}
 708	BUG_ON(!ret || !path1->slots[0]);
 
 709
 710	path1->slots[0]--;
 711
 712	WARN_ON(cur->checked);
 713	if (!list_empty(&cur->upper)) {
 714		/*
 715		 * the backref was added previously when processing
 716		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 717		 */
 718		BUG_ON(!list_is_singular(&cur->upper));
 719		edge = list_entry(cur->upper.next, struct backref_edge,
 720				  list[LOWER]);
 721		BUG_ON(!list_empty(&edge->list[UPPER]));
 722		exist = edge->node[UPPER];
 723		/*
 724		 * add the upper level block to pending list if we need
 725		 * check its backrefs
 726		 */
 727		if (!exist->checked)
 728			list_add_tail(&edge->list[UPPER], &list);
 729	} else {
 730		exist = NULL;
 731	}
 732
 733	while (1) {
 734		cond_resched();
 735		eb = path1->nodes[0];
 736
 737		if (ptr >= end) {
 738			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 739				ret = btrfs_next_leaf(rc->extent_root, path1);
 740				if (ret < 0) {
 741					err = ret;
 742					goto out;
 743				}
 744				if (ret > 0)
 745					break;
 746				eb = path1->nodes[0];
 747			}
 748
 749			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 750			if (key.objectid != cur->bytenr) {
 751				WARN_ON(exist);
 752				break;
 753			}
 754
 755			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 
 756				ret = find_inline_backref(eb, path1->slots[0],
 757							  &ptr, &end);
 758				if (ret)
 759					goto next;
 760			}
 761		}
 762
 763		if (ptr < end) {
 764			/* update key for inline back ref */
 765			struct btrfs_extent_inline_ref *iref;
 
 766			iref = (struct btrfs_extent_inline_ref *)ptr;
 767			key.type = btrfs_extent_inline_ref_type(eb, iref);
 
 
 
 
 
 
 768			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 
 769			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 770				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 771		}
 772
 773		if (exist &&
 774		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 775		      exist->owner == key.offset) ||
 776		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 777		      exist->bytenr == key.offset))) {
 778			exist = NULL;
 779			goto next;
 780		}
 781
 782#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 783		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 784		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 785			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 786				struct btrfs_extent_ref_v0 *ref0;
 787				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 788						struct btrfs_extent_ref_v0);
 789				if (key.objectid == key.offset) {
 790					root = find_tree_root(rc, eb, ref0);
 791					if (root && !should_ignore_root(root))
 792						cur->root = root;
 793					else
 794						list_add(&cur->list, &useless);
 795					break;
 796				}
 797				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 798								      ref0)))
 799					cur->cowonly = 1;
 800			}
 801#else
 802		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 803		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 804#endif
 805			if (key.objectid == key.offset) {
 806				/*
 807				 * only root blocks of reloc trees use
 808				 * backref of this type.
 809				 */
 810				root = find_reloc_root(rc, cur->bytenr);
 811				BUG_ON(!root);
 812				cur->root = root;
 813				break;
 814			}
 815
 816			edge = alloc_backref_edge(cache);
 817			if (!edge) {
 818				err = -ENOMEM;
 819				goto out;
 820			}
 821			rb_node = tree_search(&cache->rb_root, key.offset);
 822			if (!rb_node) {
 823				upper = alloc_backref_node(cache);
 824				if (!upper) {
 825					free_backref_edge(cache, edge);
 826					err = -ENOMEM;
 827					goto out;
 828				}
 829				upper->bytenr = key.offset;
 830				upper->level = cur->level + 1;
 831				/*
 832				 *  backrefs for the upper level block isn't
 833				 *  cached, add the block to pending list
 834				 */
 835				list_add_tail(&edge->list[UPPER], &list);
 836			} else {
 837				upper = rb_entry(rb_node, struct backref_node,
 838						 rb_node);
 839				BUG_ON(!upper->checked);
 840				INIT_LIST_HEAD(&edge->list[UPPER]);
 841			}
 842			list_add_tail(&edge->list[LOWER], &cur->upper);
 843			edge->node[LOWER] = cur;
 844			edge->node[UPPER] = upper;
 845
 846			goto next;
 847		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 848			goto next;
 849		}
 850
 851		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 852		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 853		if (IS_ERR(root)) {
 854			err = PTR_ERR(root);
 855			goto out;
 856		}
 857
 858		if (!root->ref_cows)
 859			cur->cowonly = 1;
 860
 861		if (btrfs_root_level(&root->root_item) == cur->level) {
 862			/* tree root */
 863			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 864			       cur->bytenr);
 865			if (should_ignore_root(root))
 866				list_add(&cur->list, &useless);
 867			else
 868				cur->root = root;
 869			break;
 870		}
 871
 872		level = cur->level + 1;
 873
 874		/*
 875		 * searching the tree to find upper level blocks
 876		 * reference the block.
 877		 */
 878		path2->search_commit_root = 1;
 879		path2->skip_locking = 1;
 880		path2->lowest_level = level;
 881		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 882		path2->lowest_level = 0;
 883		if (ret < 0) {
 884			err = ret;
 885			goto out;
 886		}
 887		if (ret > 0 && path2->slots[level] > 0)
 888			path2->slots[level]--;
 889
 890		eb = path2->nodes[level];
 891		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 892			cur->bytenr);
 893
 
 
 
 
 
 
 
 894		lower = cur;
 
 895		for (; level < BTRFS_MAX_LEVEL; level++) {
 896			if (!path2->nodes[level]) {
 897				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 898				       lower->bytenr);
 899				if (should_ignore_root(root))
 900					list_add(&lower->list, &useless);
 901				else
 902					lower->root = root;
 903				break;
 904			}
 905
 906			edge = alloc_backref_edge(cache);
 907			if (!edge) {
 908				err = -ENOMEM;
 909				goto out;
 910			}
 911
 912			eb = path2->nodes[level];
 913			rb_node = tree_search(&cache->rb_root, eb->start);
 914			if (!rb_node) {
 915				upper = alloc_backref_node(cache);
 916				if (!upper) {
 917					free_backref_edge(cache, edge);
 918					err = -ENOMEM;
 919					goto out;
 920				}
 921				upper->bytenr = eb->start;
 922				upper->owner = btrfs_header_owner(eb);
 923				upper->level = lower->level + 1;
 924				if (!root->ref_cows)
 
 925					upper->cowonly = 1;
 926
 927				/*
 928				 * if we know the block isn't shared
 929				 * we can void checking its backrefs.
 930				 */
 931				if (btrfs_block_can_be_shared(root, eb))
 932					upper->checked = 0;
 933				else
 934					upper->checked = 1;
 935
 936				/*
 937				 * add the block to pending list if we
 938				 * need check its backrefs. only block
 939				 * at 'cur->level + 1' is added to the
 940				 * tail of pending list. this guarantees
 941				 * we check backrefs from lower level
 942				 * blocks to upper level blocks.
 943				 */
 944				if (!upper->checked &&
 945				    level == cur->level + 1) {
 946					list_add_tail(&edge->list[UPPER],
 947						      &list);
 948				} else
 
 
 949					INIT_LIST_HEAD(&edge->list[UPPER]);
 
 950			} else {
 951				upper = rb_entry(rb_node, struct backref_node,
 952						 rb_node);
 953				BUG_ON(!upper->checked);
 954				INIT_LIST_HEAD(&edge->list[UPPER]);
 955				if (!upper->owner)
 956					upper->owner = btrfs_header_owner(eb);
 957			}
 958			list_add_tail(&edge->list[LOWER], &lower->upper);
 959			edge->node[LOWER] = lower;
 960			edge->node[UPPER] = upper;
 961
 962			if (rb_node)
 963				break;
 964			lower = upper;
 965			upper = NULL;
 966		}
 967		btrfs_release_path(path2);
 968next:
 969		if (ptr < end) {
 970			ptr += btrfs_extent_inline_ref_size(key.type);
 971			if (ptr >= end) {
 972				WARN_ON(ptr > end);
 973				ptr = 0;
 974				end = 0;
 975			}
 976		}
 977		if (ptr >= end)
 978			path1->slots[0]++;
 979	}
 980	btrfs_release_path(path1);
 981
 982	cur->checked = 1;
 983	WARN_ON(exist);
 984
 985	/* the pending list isn't empty, take the first block to process */
 986	if (!list_empty(&list)) {
 987		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
 988		list_del_init(&edge->list[UPPER]);
 989		cur = edge->node[UPPER];
 990		goto again;
 991	}
 992
 993	/*
 994	 * everything goes well, connect backref nodes and insert backref nodes
 995	 * into the cache.
 996	 */
 997	BUG_ON(!node->checked);
 998	cowonly = node->cowonly;
 999	if (!cowonly) {
1000		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1001				      &node->rb_node);
1002		BUG_ON(rb_node);
 
1003		list_add_tail(&node->lower, &cache->leaves);
1004	}
1005
1006	list_for_each_entry(edge, &node->upper, list[LOWER])
1007		list_add_tail(&edge->list[UPPER], &list);
1008
1009	while (!list_empty(&list)) {
1010		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1011		list_del_init(&edge->list[UPPER]);
1012		upper = edge->node[UPPER];
1013		if (upper->detached) {
1014			list_del(&edge->list[LOWER]);
1015			lower = edge->node[LOWER];
1016			free_backref_edge(cache, edge);
1017			if (list_empty(&lower->upper))
1018				list_add(&lower->list, &useless);
1019			continue;
1020		}
1021
1022		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1023			if (upper->lowest) {
1024				list_del_init(&upper->lower);
1025				upper->lowest = 0;
1026			}
1027
1028			list_add_tail(&edge->list[UPPER], &upper->lower);
1029			continue;
1030		}
1031
1032		BUG_ON(!upper->checked);
1033		BUG_ON(cowonly != upper->cowonly);
 
 
 
 
 
 
 
 
 
 
 
 
 
1034		if (!cowonly) {
1035			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1036					      &upper->rb_node);
1037			BUG_ON(rb_node);
 
 
1038		}
1039
1040		list_add_tail(&edge->list[UPPER], &upper->lower);
1041
1042		list_for_each_entry(edge, &upper->upper, list[LOWER])
1043			list_add_tail(&edge->list[UPPER], &list);
1044	}
1045	/*
1046	 * process useless backref nodes. backref nodes for tree leaves
1047	 * are deleted from the cache. backref nodes for upper level
1048	 * tree blocks are left in the cache to avoid unnecessary backref
1049	 * lookup.
1050	 */
1051	while (!list_empty(&useless)) {
1052		upper = list_entry(useless.next, struct backref_node, list);
1053		list_del_init(&upper->list);
1054		BUG_ON(!list_empty(&upper->upper));
1055		if (upper == node)
1056			node = NULL;
1057		if (upper->lowest) {
1058			list_del_init(&upper->lower);
1059			upper->lowest = 0;
1060		}
1061		while (!list_empty(&upper->lower)) {
1062			edge = list_entry(upper->lower.next,
1063					  struct backref_edge, list[UPPER]);
1064			list_del(&edge->list[UPPER]);
1065			list_del(&edge->list[LOWER]);
1066			lower = edge->node[LOWER];
1067			free_backref_edge(cache, edge);
1068
1069			if (list_empty(&lower->upper))
1070				list_add(&lower->list, &useless);
1071		}
1072		__mark_block_processed(rc, upper);
1073		if (upper->level > 0) {
1074			list_add(&upper->list, &cache->detached);
1075			upper->detached = 1;
1076		} else {
1077			rb_erase(&upper->rb_node, &cache->rb_root);
1078			free_backref_node(cache, upper);
1079		}
1080	}
1081out:
1082	btrfs_free_path(path1);
1083	btrfs_free_path(path2);
1084	if (err) {
1085		while (!list_empty(&useless)) {
1086			lower = list_entry(useless.next,
1087					   struct backref_node, upper);
1088			list_del_init(&lower->upper);
1089		}
1090		upper = node;
1091		INIT_LIST_HEAD(&list);
1092		while (upper) {
1093			if (RB_EMPTY_NODE(&upper->rb_node)) {
1094				list_splice_tail(&upper->upper, &list);
1095				free_backref_node(cache, upper);
1096			}
1097
1098			if (list_empty(&list))
1099				break;
1100
1101			edge = list_entry(list.next, struct backref_edge,
1102					  list[LOWER]);
1103			list_del(&edge->list[LOWER]);
 
1104			upper = edge->node[UPPER];
1105			free_backref_edge(cache, edge);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106		}
 
 
1107		return ERR_PTR(err);
1108	}
1109	BUG_ON(node && node->detached);
1110	return node;
1111}
1112
1113/*
1114 * helper to add backref node for the newly created snapshot.
1115 * the backref node is created by cloning backref node that
1116 * corresponds to root of source tree
1117 */
1118static int clone_backref_node(struct btrfs_trans_handle *trans,
1119			      struct reloc_control *rc,
1120			      struct btrfs_root *src,
1121			      struct btrfs_root *dest)
1122{
1123	struct btrfs_root *reloc_root = src->reloc_root;
1124	struct backref_cache *cache = &rc->backref_cache;
1125	struct backref_node *node = NULL;
1126	struct backref_node *new_node;
1127	struct backref_edge *edge;
1128	struct backref_edge *new_edge;
1129	struct rb_node *rb_node;
1130
1131	if (cache->last_trans > 0)
1132		update_backref_cache(trans, cache);
1133
1134	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1135	if (rb_node) {
1136		node = rb_entry(rb_node, struct backref_node, rb_node);
1137		if (node->detached)
1138			node = NULL;
1139		else
1140			BUG_ON(node->new_bytenr != reloc_root->node->start);
1141	}
1142
1143	if (!node) {
1144		rb_node = tree_search(&cache->rb_root,
1145				      reloc_root->commit_root->start);
1146		if (rb_node) {
1147			node = rb_entry(rb_node, struct backref_node,
1148					rb_node);
1149			BUG_ON(node->detached);
1150		}
1151	}
1152
1153	if (!node)
1154		return 0;
1155
1156	new_node = alloc_backref_node(cache);
1157	if (!new_node)
1158		return -ENOMEM;
1159
1160	new_node->bytenr = dest->node->start;
1161	new_node->level = node->level;
1162	new_node->lowest = node->lowest;
1163	new_node->checked = 1;
1164	new_node->root = dest;
1165
1166	if (!node->lowest) {
1167		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1168			new_edge = alloc_backref_edge(cache);
1169			if (!new_edge)
1170				goto fail;
1171
1172			new_edge->node[UPPER] = new_node;
1173			new_edge->node[LOWER] = edge->node[LOWER];
1174			list_add_tail(&new_edge->list[UPPER],
1175				      &new_node->lower);
1176		}
 
 
1177	}
1178
1179	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1180			      &new_node->rb_node);
1181	BUG_ON(rb_node);
 
1182
1183	if (!new_node->lowest) {
1184		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1185			list_add_tail(&new_edge->list[LOWER],
1186				      &new_edge->node[LOWER]->upper);
1187		}
1188	}
1189	return 0;
1190fail:
1191	while (!list_empty(&new_node->lower)) {
1192		new_edge = list_entry(new_node->lower.next,
1193				      struct backref_edge, list[UPPER]);
1194		list_del(&new_edge->list[UPPER]);
1195		free_backref_edge(cache, new_edge);
1196	}
1197	free_backref_node(cache, new_node);
1198	return -ENOMEM;
1199}
1200
1201/*
1202 * helper to add 'address of tree root -> reloc tree' mapping
1203 */
1204static int __add_reloc_root(struct btrfs_root *root)
1205{
 
1206	struct rb_node *rb_node;
1207	struct mapping_node *node;
1208	struct reloc_control *rc = root->fs_info->reloc_ctl;
1209
1210	node = kmalloc(sizeof(*node), GFP_NOFS);
1211	BUG_ON(!node);
 
1212
1213	node->bytenr = root->node->start;
1214	node->data = root;
1215
1216	spin_lock(&rc->reloc_root_tree.lock);
1217	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1218			      node->bytenr, &node->rb_node);
1219	spin_unlock(&rc->reloc_root_tree.lock);
1220	BUG_ON(rb_node);
 
 
 
 
1221
1222	list_add_tail(&root->root_list, &rc->reloc_roots);
1223	return 0;
1224}
1225
1226/*
1227 * helper to update/delete the 'address of tree root -> reloc tree'
1228 * mapping
1229 */
1230static int __update_reloc_root(struct btrfs_root *root, int del)
1231{
 
1232	struct rb_node *rb_node;
1233	struct mapping_node *node = NULL;
1234	struct reloc_control *rc = root->fs_info->reloc_ctl;
1235
1236	spin_lock(&rc->reloc_root_tree.lock);
1237	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1238			      root->commit_root->start);
1239	if (rb_node) {
1240		node = rb_entry(rb_node, struct mapping_node, rb_node);
1241		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1242	}
1243	spin_unlock(&rc->reloc_root_tree.lock);
1244
 
 
1245	BUG_ON((struct btrfs_root *)node->data != root);
1246
1247	if (!del) {
1248		spin_lock(&rc->reloc_root_tree.lock);
1249		node->bytenr = root->node->start;
1250		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1251				      node->bytenr, &node->rb_node);
1252		spin_unlock(&rc->reloc_root_tree.lock);
1253		BUG_ON(rb_node);
1254	} else {
1255		list_del_init(&root->root_list);
1256		kfree(node);
 
 
 
 
 
 
 
 
 
 
 
 
 
1257	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1258	return 0;
1259}
1260
1261static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1262					struct btrfs_root *root, u64 objectid)
1263{
 
1264	struct btrfs_root *reloc_root;
1265	struct extent_buffer *eb;
1266	struct btrfs_root_item *root_item;
1267	struct btrfs_key root_key;
1268	int ret;
1269
1270	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1271	BUG_ON(!root_item);
1272
1273	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1274	root_key.type = BTRFS_ROOT_ITEM_KEY;
1275	root_key.offset = objectid;
1276
1277	if (root->root_key.objectid == objectid) {
 
 
1278		/* called by btrfs_init_reloc_root */
1279		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1280				      BTRFS_TREE_RELOC_OBJECTID);
1281		BUG_ON(ret);
1282
1283		btrfs_set_root_last_snapshot(&root->root_item,
1284					     trans->transid - 1);
 
 
 
 
 
 
 
1285	} else {
1286		/*
1287		 * called by btrfs_reloc_post_snapshot_hook.
1288		 * the source tree is a reloc tree, all tree blocks
1289		 * modified after it was created have RELOC flag
1290		 * set in their headers. so it's OK to not update
1291		 * the 'last_snapshot'.
1292		 */
1293		ret = btrfs_copy_root(trans, root, root->node, &eb,
1294				      BTRFS_TREE_RELOC_OBJECTID);
1295		BUG_ON(ret);
1296	}
1297
1298	memcpy(root_item, &root->root_item, sizeof(*root_item));
1299	btrfs_set_root_bytenr(root_item, eb->start);
1300	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1301	btrfs_set_root_generation(root_item, trans->transid);
1302
1303	if (root->root_key.objectid == objectid) {
1304		btrfs_set_root_refs(root_item, 0);
1305		memset(&root_item->drop_progress, 0,
1306		       sizeof(struct btrfs_disk_key));
1307		root_item->drop_level = 0;
1308	}
1309
1310	btrfs_tree_unlock(eb);
1311	free_extent_buffer(eb);
1312
1313	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1314				&root_key, root_item);
1315	BUG_ON(ret);
1316	kfree(root_item);
1317
1318	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1319						 &root_key);
1320	BUG_ON(IS_ERR(reloc_root));
1321	reloc_root->last_trans = trans->transid;
1322	return reloc_root;
1323}
1324
1325/*
1326 * create reloc tree for a given fs tree. reloc tree is just a
1327 * snapshot of the fs tree with special root objectid.
1328 */
1329int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1330			  struct btrfs_root *root)
1331{
 
1332	struct btrfs_root *reloc_root;
1333	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1334	int clear_rsv = 0;
 
1335
1336	if (root->reloc_root) {
1337		reloc_root = root->reloc_root;
1338		reloc_root->last_trans = trans->transid;
1339		return 0;
1340	}
1341
1342	if (!rc || !rc->create_reloc_tree ||
1343	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1344		return 0;
1345
1346	if (!trans->block_rsv) {
 
1347		trans->block_rsv = rc->block_rsv;
1348		clear_rsv = 1;
1349	}
1350	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1351	if (clear_rsv)
1352		trans->block_rsv = NULL;
1353
1354	__add_reloc_root(reloc_root);
 
1355	root->reloc_root = reloc_root;
1356	return 0;
1357}
1358
1359/*
1360 * update root item of reloc tree
1361 */
1362int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1363			    struct btrfs_root *root)
1364{
 
1365	struct btrfs_root *reloc_root;
1366	struct btrfs_root_item *root_item;
1367	int del = 0;
1368	int ret;
1369
1370	if (!root->reloc_root)
1371		goto out;
1372
1373	reloc_root = root->reloc_root;
1374	root_item = &reloc_root->root_item;
1375
1376	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1377	    btrfs_root_refs(root_item) == 0) {
1378		root->reloc_root = NULL;
1379		del = 1;
1380	}
1381
1382	__update_reloc_root(reloc_root, del);
1383
1384	if (reloc_root->commit_root != reloc_root->node) {
1385		btrfs_set_root_node(root_item, reloc_root->node);
1386		free_extent_buffer(reloc_root->commit_root);
1387		reloc_root->commit_root = btrfs_root_node(reloc_root);
1388	}
1389
1390	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1391				&reloc_root->root_key, root_item);
1392	BUG_ON(ret);
1393
1394out:
1395	return 0;
1396}
1397
1398/*
1399 * helper to find first cached inode with inode number >= objectid
1400 * in a subvolume
1401 */
1402static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1403{
1404	struct rb_node *node;
1405	struct rb_node *prev;
1406	struct btrfs_inode *entry;
1407	struct inode *inode;
1408
1409	spin_lock(&root->inode_lock);
1410again:
1411	node = root->inode_tree.rb_node;
1412	prev = NULL;
1413	while (node) {
1414		prev = node;
1415		entry = rb_entry(node, struct btrfs_inode, rb_node);
1416
1417		if (objectid < btrfs_ino(&entry->vfs_inode))
1418			node = node->rb_left;
1419		else if (objectid > btrfs_ino(&entry->vfs_inode))
1420			node = node->rb_right;
1421		else
1422			break;
1423	}
1424	if (!node) {
1425		while (prev) {
1426			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1427			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1428				node = prev;
1429				break;
1430			}
1431			prev = rb_next(prev);
1432		}
1433	}
1434	while (node) {
1435		entry = rb_entry(node, struct btrfs_inode, rb_node);
1436		inode = igrab(&entry->vfs_inode);
1437		if (inode) {
1438			spin_unlock(&root->inode_lock);
1439			return inode;
1440		}
1441
1442		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1443		if (cond_resched_lock(&root->inode_lock))
1444			goto again;
1445
1446		node = rb_next(node);
1447	}
1448	spin_unlock(&root->inode_lock);
1449	return NULL;
1450}
1451
1452static int in_block_group(u64 bytenr,
1453			  struct btrfs_block_group_cache *block_group)
1454{
1455	if (bytenr >= block_group->key.objectid &&
1456	    bytenr < block_group->key.objectid + block_group->key.offset)
1457		return 1;
1458	return 0;
1459}
1460
1461/*
1462 * get new location of data
1463 */
1464static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1465			    u64 bytenr, u64 num_bytes)
1466{
1467	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1468	struct btrfs_path *path;
1469	struct btrfs_file_extent_item *fi;
1470	struct extent_buffer *leaf;
1471	int ret;
1472
1473	path = btrfs_alloc_path();
1474	if (!path)
1475		return -ENOMEM;
1476
1477	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1478	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1479				       bytenr, 0);
1480	if (ret < 0)
1481		goto out;
1482	if (ret > 0) {
1483		ret = -ENOENT;
1484		goto out;
1485	}
1486
1487	leaf = path->nodes[0];
1488	fi = btrfs_item_ptr(leaf, path->slots[0],
1489			    struct btrfs_file_extent_item);
1490
1491	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1492	       btrfs_file_extent_compression(leaf, fi) ||
1493	       btrfs_file_extent_encryption(leaf, fi) ||
1494	       btrfs_file_extent_other_encoding(leaf, fi));
1495
1496	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1497		ret = 1;
1498		goto out;
1499	}
1500
1501	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1502	ret = 0;
1503out:
1504	btrfs_free_path(path);
1505	return ret;
1506}
1507
1508/*
1509 * update file extent items in the tree leaf to point to
1510 * the new locations.
1511 */
1512static noinline_for_stack
1513int replace_file_extents(struct btrfs_trans_handle *trans,
1514			 struct reloc_control *rc,
1515			 struct btrfs_root *root,
1516			 struct extent_buffer *leaf)
1517{
 
1518	struct btrfs_key key;
1519	struct btrfs_file_extent_item *fi;
1520	struct inode *inode = NULL;
1521	u64 parent;
1522	u64 bytenr;
1523	u64 new_bytenr = 0;
1524	u64 num_bytes;
1525	u64 end;
1526	u32 nritems;
1527	u32 i;
1528	int ret;
1529	int first = 1;
1530	int dirty = 0;
1531
1532	if (rc->stage != UPDATE_DATA_PTRS)
1533		return 0;
1534
1535	/* reloc trees always use full backref */
1536	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1537		parent = leaf->start;
1538	else
1539		parent = 0;
1540
1541	nritems = btrfs_header_nritems(leaf);
1542	for (i = 0; i < nritems; i++) {
1543		cond_resched();
1544		btrfs_item_key_to_cpu(leaf, &key, i);
1545		if (key.type != BTRFS_EXTENT_DATA_KEY)
1546			continue;
1547		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1548		if (btrfs_file_extent_type(leaf, fi) ==
1549		    BTRFS_FILE_EXTENT_INLINE)
1550			continue;
1551		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1552		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1553		if (bytenr == 0)
1554			continue;
1555		if (!in_block_group(bytenr, rc->block_group))
1556			continue;
1557
1558		/*
1559		 * if we are modifying block in fs tree, wait for readpage
1560		 * to complete and drop the extent cache
1561		 */
1562		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1563			if (first) {
1564				inode = find_next_inode(root, key.objectid);
1565				first = 0;
1566			} else if (inode && btrfs_ino(inode) < key.objectid) {
1567				btrfs_add_delayed_iput(inode);
1568				inode = find_next_inode(root, key.objectid);
1569			}
1570			if (inode && btrfs_ino(inode) == key.objectid) {
1571				end = key.offset +
1572				      btrfs_file_extent_num_bytes(leaf, fi);
1573				WARN_ON(!IS_ALIGNED(key.offset,
1574						    root->sectorsize));
1575				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1576				end--;
1577				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1578						      key.offset, end,
1579						      GFP_NOFS);
1580				if (!ret)
1581					continue;
1582
1583				btrfs_drop_extent_cache(inode, key.offset, end,
1584							1);
1585				unlock_extent(&BTRFS_I(inode)->io_tree,
1586					      key.offset, end, GFP_NOFS);
1587			}
1588		}
1589
1590		ret = get_new_location(rc->data_inode, &new_bytenr,
1591				       bytenr, num_bytes);
1592		if (ret > 0) {
1593			WARN_ON(1);
1594			continue;
 
 
 
1595		}
1596		BUG_ON(ret < 0);
1597
1598		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1599		dirty = 1;
1600
1601		key.offset -= btrfs_file_extent_offset(leaf, fi);
1602		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1603					   num_bytes, parent,
1604					   btrfs_header_owner(leaf),
1605					   key.objectid, key.offset);
1606		BUG_ON(ret);
 
 
 
1607
1608		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1609					parent, btrfs_header_owner(leaf),
1610					key.objectid, key.offset);
1611		BUG_ON(ret);
 
 
 
1612	}
1613	if (dirty)
1614		btrfs_mark_buffer_dirty(leaf);
1615	if (inode)
1616		btrfs_add_delayed_iput(inode);
1617	return 0;
1618}
1619
1620static noinline_for_stack
1621int memcmp_node_keys(struct extent_buffer *eb, int slot,
1622		     struct btrfs_path *path, int level)
1623{
1624	struct btrfs_disk_key key1;
1625	struct btrfs_disk_key key2;
1626	btrfs_node_key(eb, &key1, slot);
1627	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1628	return memcmp(&key1, &key2, sizeof(key1));
1629}
1630
1631/*
1632 * try to replace tree blocks in fs tree with the new blocks
1633 * in reloc tree. tree blocks haven't been modified since the
1634 * reloc tree was create can be replaced.
1635 *
1636 * if a block was replaced, level of the block + 1 is returned.
1637 * if no block got replaced, 0 is returned. if there are other
1638 * errors, a negative error number is returned.
1639 */
1640static noinline_for_stack
1641int replace_path(struct btrfs_trans_handle *trans,
1642		 struct btrfs_root *dest, struct btrfs_root *src,
1643		 struct btrfs_path *path, struct btrfs_key *next_key,
1644		 int lowest_level, int max_level)
1645{
 
1646	struct extent_buffer *eb;
1647	struct extent_buffer *parent;
1648	struct btrfs_key key;
1649	u64 old_bytenr;
1650	u64 new_bytenr;
1651	u64 old_ptr_gen;
1652	u64 new_ptr_gen;
1653	u64 last_snapshot;
1654	u32 blocksize;
1655	int cow = 0;
1656	int level;
1657	int ret;
1658	int slot;
1659
1660	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1661	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1662
1663	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1664again:
1665	slot = path->slots[lowest_level];
1666	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1667
1668	eb = btrfs_lock_root_node(dest);
1669	btrfs_set_lock_blocking(eb);
1670	level = btrfs_header_level(eb);
1671
1672	if (level < lowest_level) {
1673		btrfs_tree_unlock(eb);
1674		free_extent_buffer(eb);
1675		return 0;
1676	}
1677
1678	if (cow) {
1679		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1680		BUG_ON(ret);
1681	}
1682	btrfs_set_lock_blocking(eb);
1683
1684	if (next_key) {
1685		next_key->objectid = (u64)-1;
1686		next_key->type = (u8)-1;
1687		next_key->offset = (u64)-1;
1688	}
1689
1690	parent = eb;
1691	while (1) {
 
 
1692		level = btrfs_header_level(parent);
1693		BUG_ON(level < lowest_level);
1694
1695		ret = btrfs_bin_search(parent, &key, level, &slot);
1696		if (ret && slot > 0)
1697			slot--;
1698
1699		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1700			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1701
1702		old_bytenr = btrfs_node_blockptr(parent, slot);
1703		blocksize = btrfs_level_size(dest, level - 1);
1704		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
 
1705
1706		if (level <= max_level) {
1707			eb = path->nodes[level];
1708			new_bytenr = btrfs_node_blockptr(eb,
1709							path->slots[level]);
1710			new_ptr_gen = btrfs_node_ptr_generation(eb,
1711							path->slots[level]);
1712		} else {
1713			new_bytenr = 0;
1714			new_ptr_gen = 0;
1715		}
1716
1717		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1718			WARN_ON(1);
1719			ret = level;
1720			break;
1721		}
1722
1723		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1724		    memcmp_node_keys(parent, slot, path, level)) {
1725			if (level <= lowest_level) {
1726				ret = 0;
1727				break;
1728			}
1729
1730			eb = read_tree_block(dest, old_bytenr, blocksize,
1731					     old_ptr_gen);
1732			BUG_ON(!eb);
 
 
 
 
 
 
 
1733			btrfs_tree_lock(eb);
1734			if (cow) {
1735				ret = btrfs_cow_block(trans, dest, eb, parent,
1736						      slot, &eb);
1737				BUG_ON(ret);
1738			}
1739			btrfs_set_lock_blocking(eb);
1740
1741			btrfs_tree_unlock(parent);
1742			free_extent_buffer(parent);
1743
1744			parent = eb;
1745			continue;
1746		}
1747
1748		if (!cow) {
1749			btrfs_tree_unlock(parent);
1750			free_extent_buffer(parent);
1751			cow = 1;
1752			goto again;
1753		}
1754
1755		btrfs_node_key_to_cpu(path->nodes[level], &key,
1756				      path->slots[level]);
1757		btrfs_release_path(path);
1758
1759		path->lowest_level = level;
1760		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1761		path->lowest_level = 0;
1762		BUG_ON(ret);
1763
1764		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765		 * swap blocks in fs tree and reloc tree.
1766		 */
1767		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1768		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1769		btrfs_mark_buffer_dirty(parent);
1770
1771		btrfs_set_node_blockptr(path->nodes[level],
1772					path->slots[level], old_bytenr);
1773		btrfs_set_node_ptr_generation(path->nodes[level],
1774					      path->slots[level], old_ptr_gen);
1775		btrfs_mark_buffer_dirty(path->nodes[level]);
1776
1777		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1778					path->nodes[level]->start,
1779					src->root_key.objectid, level - 1, 0);
1780		BUG_ON(ret);
1781		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1782					0, dest->root_key.objectid, level - 1,
1783					0);
1784		BUG_ON(ret);
1785
1786		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1787					path->nodes[level]->start,
1788					src->root_key.objectid, level - 1, 0);
1789		BUG_ON(ret);
1790
1791		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1792					0, dest->root_key.objectid, level - 1,
1793					0);
1794		BUG_ON(ret);
1795
1796		btrfs_unlock_up_safe(path, 0);
1797
1798		ret = level;
1799		break;
1800	}
1801	btrfs_tree_unlock(parent);
1802	free_extent_buffer(parent);
1803	return ret;
1804}
1805
1806/*
1807 * helper to find next relocated block in reloc tree
1808 */
1809static noinline_for_stack
1810int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1811		       int *level)
1812{
1813	struct extent_buffer *eb;
1814	int i;
1815	u64 last_snapshot;
1816	u32 nritems;
1817
1818	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1819
1820	for (i = 0; i < *level; i++) {
1821		free_extent_buffer(path->nodes[i]);
1822		path->nodes[i] = NULL;
1823	}
1824
1825	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1826		eb = path->nodes[i];
1827		nritems = btrfs_header_nritems(eb);
1828		while (path->slots[i] + 1 < nritems) {
1829			path->slots[i]++;
1830			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1831			    last_snapshot)
1832				continue;
1833
1834			*level = i;
1835			return 0;
1836		}
1837		free_extent_buffer(path->nodes[i]);
1838		path->nodes[i] = NULL;
1839	}
1840	return 1;
1841}
1842
1843/*
1844 * walk down reloc tree to find relocated block of lowest level
1845 */
1846static noinline_for_stack
1847int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1848			 int *level)
1849{
 
1850	struct extent_buffer *eb = NULL;
1851	int i;
1852	u64 bytenr;
1853	u64 ptr_gen = 0;
1854	u64 last_snapshot;
1855	u32 blocksize;
1856	u32 nritems;
1857
1858	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1859
1860	for (i = *level; i > 0; i--) {
 
 
1861		eb = path->nodes[i];
1862		nritems = btrfs_header_nritems(eb);
1863		while (path->slots[i] < nritems) {
1864			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1865			if (ptr_gen > last_snapshot)
1866				break;
1867			path->slots[i]++;
1868		}
1869		if (path->slots[i] >= nritems) {
1870			if (i == *level)
1871				break;
1872			*level = i + 1;
1873			return 0;
1874		}
1875		if (i == 1) {
1876			*level = i;
1877			return 0;
1878		}
1879
1880		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1881		blocksize = btrfs_level_size(root, i - 1);
1882		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
 
 
 
 
 
 
 
1883		BUG_ON(btrfs_header_level(eb) != i - 1);
1884		path->nodes[i - 1] = eb;
1885		path->slots[i - 1] = 0;
1886	}
1887	return 1;
1888}
1889
1890/*
1891 * invalidate extent cache for file extents whose key in range of
1892 * [min_key, max_key)
1893 */
1894static int invalidate_extent_cache(struct btrfs_root *root,
1895				   struct btrfs_key *min_key,
1896				   struct btrfs_key *max_key)
1897{
 
1898	struct inode *inode = NULL;
1899	u64 objectid;
1900	u64 start, end;
1901	u64 ino;
1902
1903	objectid = min_key->objectid;
1904	while (1) {
1905		cond_resched();
1906		iput(inode);
1907
1908		if (objectid > max_key->objectid)
1909			break;
1910
1911		inode = find_next_inode(root, objectid);
1912		if (!inode)
1913			break;
1914		ino = btrfs_ino(inode);
1915
1916		if (ino > max_key->objectid) {
1917			iput(inode);
1918			break;
1919		}
1920
1921		objectid = ino + 1;
1922		if (!S_ISREG(inode->i_mode))
1923			continue;
1924
1925		if (unlikely(min_key->objectid == ino)) {
1926			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1927				continue;
1928			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1929				start = 0;
1930			else {
1931				start = min_key->offset;
1932				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1933			}
1934		} else {
1935			start = 0;
1936		}
1937
1938		if (unlikely(max_key->objectid == ino)) {
1939			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1940				continue;
1941			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1942				end = (u64)-1;
1943			} else {
1944				if (max_key->offset == 0)
1945					continue;
1946				end = max_key->offset;
1947				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1948				end--;
1949			}
1950		} else {
1951			end = (u64)-1;
1952		}
1953
1954		/* the lock_extent waits for readpage to complete */
1955		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1956		btrfs_drop_extent_cache(inode, start, end, 1);
1957		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1958	}
1959	return 0;
1960}
1961
1962static int find_next_key(struct btrfs_path *path, int level,
1963			 struct btrfs_key *key)
1964
1965{
1966	while (level < BTRFS_MAX_LEVEL) {
1967		if (!path->nodes[level])
1968			break;
1969		if (path->slots[level] + 1 <
1970		    btrfs_header_nritems(path->nodes[level])) {
1971			btrfs_node_key_to_cpu(path->nodes[level], key,
1972					      path->slots[level] + 1);
1973			return 0;
1974		}
1975		level++;
1976	}
1977	return 1;
1978}
1979
1980/*
1981 * merge the relocated tree blocks in reloc tree with corresponding
1982 * fs tree.
1983 */
1984static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1985					       struct btrfs_root *root)
1986{
 
1987	LIST_HEAD(inode_list);
1988	struct btrfs_key key;
1989	struct btrfs_key next_key;
1990	struct btrfs_trans_handle *trans;
1991	struct btrfs_root *reloc_root;
1992	struct btrfs_root_item *root_item;
1993	struct btrfs_path *path;
1994	struct extent_buffer *leaf;
1995	unsigned long nr;
1996	int level;
1997	int max_level;
1998	int replaced = 0;
1999	int ret;
2000	int err = 0;
2001	u32 min_reserved;
2002
2003	path = btrfs_alloc_path();
2004	if (!path)
2005		return -ENOMEM;
2006	path->reada = 1;
2007
2008	reloc_root = root->reloc_root;
2009	root_item = &reloc_root->root_item;
2010
2011	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2012		level = btrfs_root_level(root_item);
2013		extent_buffer_get(reloc_root->node);
2014		path->nodes[level] = reloc_root->node;
2015		path->slots[level] = 0;
2016	} else {
2017		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2018
2019		level = root_item->drop_level;
2020		BUG_ON(level == 0);
2021		path->lowest_level = level;
2022		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2023		path->lowest_level = 0;
2024		if (ret < 0) {
2025			btrfs_free_path(path);
2026			return ret;
2027		}
2028
2029		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2030				      path->slots[level]);
2031		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2032
2033		btrfs_unlock_up_safe(path, 0);
2034	}
2035
2036	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2037	memset(&next_key, 0, sizeof(next_key));
2038
2039	while (1) {
2040		trans = btrfs_start_transaction(root, 0);
2041		BUG_ON(IS_ERR(trans));
2042		trans->block_rsv = rc->block_rsv;
2043
2044		ret = btrfs_block_rsv_check(trans, root, rc->block_rsv,
2045					    min_reserved, 0);
2046		if (ret) {
2047			BUG_ON(ret != -EAGAIN);
2048			ret = btrfs_commit_transaction(trans, root);
2049			BUG_ON(ret);
2050			continue;
 
 
 
 
2051		}
 
2052
2053		replaced = 0;
2054		max_level = level;
2055
2056		ret = walk_down_reloc_tree(reloc_root, path, &level);
2057		if (ret < 0) {
2058			err = ret;
2059			goto out;
2060		}
2061		if (ret > 0)
2062			break;
2063
2064		if (!find_next_key(path, level, &key) &&
2065		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2066			ret = 0;
2067		} else {
2068			ret = replace_path(trans, root, reloc_root, path,
2069					   &next_key, level, max_level);
2070		}
2071		if (ret < 0) {
2072			err = ret;
2073			goto out;
2074		}
2075
2076		if (ret > 0) {
2077			level = ret;
2078			btrfs_node_key_to_cpu(path->nodes[level], &key,
2079					      path->slots[level]);
2080			replaced = 1;
2081		}
2082
2083		ret = walk_up_reloc_tree(reloc_root, path, &level);
2084		if (ret > 0)
2085			break;
2086
2087		BUG_ON(level == 0);
2088		/*
2089		 * save the merging progress in the drop_progress.
2090		 * this is OK since root refs == 1 in this case.
2091		 */
2092		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2093			       path->slots[level]);
2094		root_item->drop_level = level;
2095
2096		nr = trans->blocks_used;
2097		btrfs_end_transaction_throttle(trans, root);
2098
2099		btrfs_btree_balance_dirty(root, nr);
2100
2101		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2102			invalidate_extent_cache(root, &key, &next_key);
2103	}
2104
2105	/*
2106	 * handle the case only one block in the fs tree need to be
2107	 * relocated and the block is tree root.
2108	 */
2109	leaf = btrfs_lock_root_node(root);
2110	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2111	btrfs_tree_unlock(leaf);
2112	free_extent_buffer(leaf);
2113	if (ret < 0)
2114		err = ret;
2115out:
2116	btrfs_free_path(path);
2117
2118	if (err == 0) {
2119		memset(&root_item->drop_progress, 0,
2120		       sizeof(root_item->drop_progress));
2121		root_item->drop_level = 0;
2122		btrfs_set_root_refs(root_item, 0);
2123		btrfs_update_reloc_root(trans, root);
2124	}
2125
2126	nr = trans->blocks_used;
2127	btrfs_end_transaction_throttle(trans, root);
2128
2129	btrfs_btree_balance_dirty(root, nr);
2130
2131	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2132		invalidate_extent_cache(root, &key, &next_key);
2133
2134	return err;
2135}
2136
2137static noinline_for_stack
2138int prepare_to_merge(struct reloc_control *rc, int err)
2139{
2140	struct btrfs_root *root = rc->extent_root;
 
2141	struct btrfs_root *reloc_root;
2142	struct btrfs_trans_handle *trans;
2143	LIST_HEAD(reloc_roots);
2144	u64 num_bytes = 0;
2145	int ret;
2146
2147	mutex_lock(&root->fs_info->reloc_mutex);
2148	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2149	rc->merging_rsv_size += rc->nodes_relocated * 2;
2150	mutex_unlock(&root->fs_info->reloc_mutex);
2151
2152again:
2153	if (!err) {
2154		num_bytes = rc->merging_rsv_size;
2155		ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv,
2156					  num_bytes);
2157		if (ret)
2158			err = ret;
2159	}
2160
2161	trans = btrfs_join_transaction(rc->extent_root);
2162	if (IS_ERR(trans)) {
2163		if (!err)
2164			btrfs_block_rsv_release(rc->extent_root,
2165						rc->block_rsv, num_bytes);
2166		return PTR_ERR(trans);
2167	}
2168
2169	if (!err) {
2170		if (num_bytes != rc->merging_rsv_size) {
2171			btrfs_end_transaction(trans, rc->extent_root);
2172			btrfs_block_rsv_release(rc->extent_root,
2173						rc->block_rsv, num_bytes);
2174			goto again;
2175		}
2176	}
2177
2178	rc->merge_reloc_tree = 1;
2179
2180	while (!list_empty(&rc->reloc_roots)) {
2181		reloc_root = list_entry(rc->reloc_roots.next,
2182					struct btrfs_root, root_list);
2183		list_del_init(&reloc_root->root_list);
2184
2185		root = read_fs_root(reloc_root->fs_info,
2186				    reloc_root->root_key.offset);
2187		BUG_ON(IS_ERR(root));
2188		BUG_ON(root->reloc_root != reloc_root);
2189
2190		/*
2191		 * set reference count to 1, so btrfs_recover_relocation
2192		 * knows it should resumes merging
2193		 */
2194		if (!err)
2195			btrfs_set_root_refs(&reloc_root->root_item, 1);
2196		btrfs_update_reloc_root(trans, root);
2197
2198		list_add(&reloc_root->root_list, &reloc_roots);
2199	}
2200
2201	list_splice(&reloc_roots, &rc->reloc_roots);
2202
2203	if (!err)
2204		btrfs_commit_transaction(trans, rc->extent_root);
2205	else
2206		btrfs_end_transaction(trans, rc->extent_root);
2207	return err;
2208}
2209
2210static noinline_for_stack
2211int merge_reloc_roots(struct reloc_control *rc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212{
 
2213	struct btrfs_root *root;
2214	struct btrfs_root *reloc_root;
2215	LIST_HEAD(reloc_roots);
2216	int found = 0;
2217	int ret;
2218again:
2219	root = rc->extent_root;
2220
2221	/*
2222	 * this serializes us with btrfs_record_root_in_transaction,
2223	 * we have to make sure nobody is in the middle of
2224	 * adding their roots to the list while we are
2225	 * doing this splice
2226	 */
2227	mutex_lock(&root->fs_info->reloc_mutex);
2228	list_splice_init(&rc->reloc_roots, &reloc_roots);
2229	mutex_unlock(&root->fs_info->reloc_mutex);
2230
2231	while (!list_empty(&reloc_roots)) {
2232		found = 1;
2233		reloc_root = list_entry(reloc_roots.next,
2234					struct btrfs_root, root_list);
2235
2236		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2237			root = read_fs_root(reloc_root->fs_info,
2238					    reloc_root->root_key.offset);
2239			BUG_ON(IS_ERR(root));
2240			BUG_ON(root->reloc_root != reloc_root);
2241
2242			ret = merge_reloc_root(rc, root);
2243			BUG_ON(ret);
 
 
 
 
 
2244		} else {
2245			list_del_init(&reloc_root->root_list);
2246		}
2247		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
 
 
 
 
 
 
 
2248	}
2249
2250	if (found) {
2251		found = 0;
2252		goto again;
2253	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2254	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2255	return 0;
2256}
2257
2258static void free_block_list(struct rb_root *blocks)
2259{
2260	struct tree_block *block;
2261	struct rb_node *rb_node;
2262	while ((rb_node = rb_first(blocks))) {
2263		block = rb_entry(rb_node, struct tree_block, rb_node);
2264		rb_erase(rb_node, blocks);
2265		kfree(block);
2266	}
2267}
2268
2269static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2270				      struct btrfs_root *reloc_root)
2271{
 
2272	struct btrfs_root *root;
2273
2274	if (reloc_root->last_trans == trans->transid)
2275		return 0;
2276
2277	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2278	BUG_ON(IS_ERR(root));
2279	BUG_ON(root->reloc_root != reloc_root);
2280
2281	return btrfs_record_root_in_trans(trans, root);
2282}
2283
2284static noinline_for_stack
2285struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2286				     struct reloc_control *rc,
2287				     struct backref_node *node,
2288				     struct backref_edge *edges[], int *nr)
2289{
2290	struct backref_node *next;
2291	struct btrfs_root *root;
2292	int index = 0;
2293
2294	next = node;
2295	while (1) {
2296		cond_resched();
2297		next = walk_up_backref(next, edges, &index);
2298		root = next->root;
2299		BUG_ON(!root);
2300		BUG_ON(!root->ref_cows);
2301
2302		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2303			record_reloc_root_in_trans(trans, root);
2304			break;
2305		}
2306
2307		btrfs_record_root_in_trans(trans, root);
2308		root = root->reloc_root;
2309
2310		if (next->new_bytenr != root->node->start) {
2311			BUG_ON(next->new_bytenr);
2312			BUG_ON(!list_empty(&next->list));
2313			next->new_bytenr = root->node->start;
2314			next->root = root;
2315			list_add_tail(&next->list,
2316				      &rc->backref_cache.changed);
2317			__mark_block_processed(rc, next);
2318			break;
2319		}
2320
2321		WARN_ON(1);
2322		root = NULL;
2323		next = walk_down_backref(edges, &index);
2324		if (!next || next->level <= node->level)
2325			break;
2326	}
2327	if (!root)
2328		return NULL;
2329
2330	*nr = index;
2331	next = node;
2332	/* setup backref node path for btrfs_reloc_cow_block */
2333	while (1) {
2334		rc->backref_cache.path[next->level] = next;
2335		if (--index < 0)
2336			break;
2337		next = edges[index]->node[UPPER];
2338	}
2339	return root;
2340}
2341
2342/*
2343 * select a tree root for relocation. return NULL if the block
2344 * is reference counted. we should use do_relocation() in this
2345 * case. return a tree root pointer if the block isn't reference
2346 * counted. return -ENOENT if the block is root of reloc tree.
2347 */
2348static noinline_for_stack
2349struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2350				   struct backref_node *node)
2351{
2352	struct backref_node *next;
2353	struct btrfs_root *root;
2354	struct btrfs_root *fs_root = NULL;
2355	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2356	int index = 0;
2357
2358	next = node;
2359	while (1) {
2360		cond_resched();
2361		next = walk_up_backref(next, edges, &index);
2362		root = next->root;
2363		BUG_ON(!root);
2364
2365		/* no other choice for non-references counted tree */
2366		if (!root->ref_cows)
2367			return root;
2368
2369		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2370			fs_root = root;
2371
2372		if (next != node)
2373			return NULL;
2374
2375		next = walk_down_backref(edges, &index);
2376		if (!next || next->level <= node->level)
2377			break;
2378	}
2379
2380	if (!fs_root)
2381		return ERR_PTR(-ENOENT);
2382	return fs_root;
2383}
2384
2385static noinline_for_stack
2386u64 calcu_metadata_size(struct reloc_control *rc,
2387			struct backref_node *node, int reserve)
2388{
 
2389	struct backref_node *next = node;
2390	struct backref_edge *edge;
2391	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2392	u64 num_bytes = 0;
2393	int index = 0;
2394
2395	BUG_ON(reserve && node->processed);
2396
2397	while (next) {
2398		cond_resched();
2399		while (1) {
2400			if (next->processed && (reserve || next != node))
2401				break;
2402
2403			num_bytes += btrfs_level_size(rc->extent_root,
2404						      next->level);
2405
2406			if (list_empty(&next->upper))
2407				break;
2408
2409			edge = list_entry(next->upper.next,
2410					  struct backref_edge, list[LOWER]);
2411			edges[index++] = edge;
2412			next = edge->node[UPPER];
2413		}
2414		next = walk_down_backref(edges, &index);
2415	}
2416	return num_bytes;
2417}
2418
2419static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2420				  struct reloc_control *rc,
2421				  struct backref_node *node)
2422{
2423	struct btrfs_root *root = rc->extent_root;
 
2424	u64 num_bytes;
2425	int ret;
 
2426
2427	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2428
2429	trans->block_rsv = rc->block_rsv;
2430	ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes);
 
 
 
 
 
 
 
 
2431	if (ret) {
2432		if (ret == -EAGAIN)
2433			rc->commit_transaction = 1;
2434		return ret;
 
 
 
 
 
 
 
 
 
 
2435	}
2436
2437	return 0;
2438}
2439
2440static void release_metadata_space(struct reloc_control *rc,
2441				   struct backref_node *node)
2442{
2443	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2444	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2445}
2446
2447/*
2448 * relocate a block tree, and then update pointers in upper level
2449 * blocks that reference the block to point to the new location.
2450 *
2451 * if called by link_to_upper, the block has already been relocated.
2452 * in that case this function just updates pointers.
2453 */
2454static int do_relocation(struct btrfs_trans_handle *trans,
2455			 struct reloc_control *rc,
2456			 struct backref_node *node,
2457			 struct btrfs_key *key,
2458			 struct btrfs_path *path, int lowest)
2459{
 
2460	struct backref_node *upper;
2461	struct backref_edge *edge;
2462	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2463	struct btrfs_root *root;
2464	struct extent_buffer *eb;
2465	u32 blocksize;
2466	u64 bytenr;
2467	u64 generation;
2468	int nr;
2469	int slot;
2470	int ret;
2471	int err = 0;
2472
2473	BUG_ON(lowest && node->eb);
2474
2475	path->lowest_level = node->level + 1;
2476	rc->backref_cache.path[node->level] = node;
2477	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
2478		cond_resched();
2479
2480		upper = edge->node[UPPER];
2481		root = select_reloc_root(trans, rc, upper, edges, &nr);
2482		BUG_ON(!root);
2483
2484		if (upper->eb && !upper->locked) {
2485			if (!lowest) {
2486				ret = btrfs_bin_search(upper->eb, key,
2487						       upper->level, &slot);
2488				BUG_ON(ret);
2489				bytenr = btrfs_node_blockptr(upper->eb, slot);
2490				if (node->eb->start == bytenr)
2491					goto next;
2492			}
2493			drop_node_buffer(upper);
2494		}
2495
2496		if (!upper->eb) {
2497			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2498			if (ret < 0) {
2499				err = ret;
 
 
 
 
 
2500				break;
2501			}
2502			BUG_ON(ret > 0);
2503
2504			if (!upper->eb) {
2505				upper->eb = path->nodes[upper->level];
2506				path->nodes[upper->level] = NULL;
2507			} else {
2508				BUG_ON(upper->eb != path->nodes[upper->level]);
2509			}
2510
2511			upper->locked = 1;
2512			path->locks[upper->level] = 0;
2513
2514			slot = path->slots[upper->level];
2515			btrfs_release_path(path);
2516		} else {
2517			ret = btrfs_bin_search(upper->eb, key, upper->level,
2518					       &slot);
2519			BUG_ON(ret);
2520		}
2521
2522		bytenr = btrfs_node_blockptr(upper->eb, slot);
2523		if (lowest) {
2524			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2525		} else {
2526			if (node->eb->start == bytenr)
2527				goto next;
2528		}
2529
2530		blocksize = btrfs_level_size(root, node->level);
2531		generation = btrfs_node_ptr_generation(upper->eb, slot);
2532		eb = read_tree_block(root, bytenr, blocksize, generation);
2533		if (!eb) {
 
 
 
 
 
 
2534			err = -EIO;
2535			goto next;
2536		}
2537		btrfs_tree_lock(eb);
2538		btrfs_set_lock_blocking(eb);
2539
2540		if (!node->eb) {
2541			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2542					      slot, &eb);
2543			btrfs_tree_unlock(eb);
2544			free_extent_buffer(eb);
2545			if (ret < 0) {
2546				err = ret;
2547				goto next;
2548			}
2549			BUG_ON(node->eb != eb);
2550		} else {
2551			btrfs_set_node_blockptr(upper->eb, slot,
2552						node->eb->start);
2553			btrfs_set_node_ptr_generation(upper->eb, slot,
2554						      trans->transid);
2555			btrfs_mark_buffer_dirty(upper->eb);
2556
2557			ret = btrfs_inc_extent_ref(trans, root,
2558						node->eb->start, blocksize,
2559						upper->eb->start,
2560						btrfs_header_owner(upper->eb),
2561						node->level, 0);
2562			BUG_ON(ret);
2563
2564			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2565			BUG_ON(ret);
2566		}
2567next:
2568		if (!upper->pending)
2569			drop_node_buffer(upper);
2570		else
2571			unlock_node_buffer(upper);
2572		if (err)
2573			break;
2574	}
2575
2576	if (!err && node->pending) {
2577		drop_node_buffer(node);
2578		list_move_tail(&node->list, &rc->backref_cache.changed);
2579		node->pending = 0;
2580	}
2581
2582	path->lowest_level = 0;
2583	BUG_ON(err == -ENOSPC);
2584	return err;
2585}
2586
2587static int link_to_upper(struct btrfs_trans_handle *trans,
2588			 struct reloc_control *rc,
2589			 struct backref_node *node,
2590			 struct btrfs_path *path)
2591{
2592	struct btrfs_key key;
2593
2594	btrfs_node_key_to_cpu(node->eb, &key, 0);
2595	return do_relocation(trans, rc, node, &key, path, 0);
2596}
2597
2598static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2599				struct reloc_control *rc,
2600				struct btrfs_path *path, int err)
2601{
2602	LIST_HEAD(list);
2603	struct backref_cache *cache = &rc->backref_cache;
2604	struct backref_node *node;
2605	int level;
2606	int ret;
2607
2608	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2609		while (!list_empty(&cache->pending[level])) {
2610			node = list_entry(cache->pending[level].next,
2611					  struct backref_node, list);
2612			list_move_tail(&node->list, &list);
2613			BUG_ON(!node->pending);
2614
2615			if (!err) {
2616				ret = link_to_upper(trans, rc, node, path);
2617				if (ret < 0)
2618					err = ret;
2619			}
2620		}
2621		list_splice_init(&list, &cache->pending[level]);
2622	}
2623	return err;
2624}
2625
2626static void mark_block_processed(struct reloc_control *rc,
2627				 u64 bytenr, u32 blocksize)
2628{
2629	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2630			EXTENT_DIRTY, GFP_NOFS);
2631}
2632
2633static void __mark_block_processed(struct reloc_control *rc,
2634				   struct backref_node *node)
2635{
2636	u32 blocksize;
2637	if (node->level == 0 ||
2638	    in_block_group(node->bytenr, rc->block_group)) {
2639		blocksize = btrfs_level_size(rc->extent_root, node->level);
2640		mark_block_processed(rc, node->bytenr, blocksize);
2641	}
2642	node->processed = 1;
2643}
2644
2645/*
2646 * mark a block and all blocks directly/indirectly reference the block
2647 * as processed.
2648 */
2649static void update_processed_blocks(struct reloc_control *rc,
2650				    struct backref_node *node)
2651{
2652	struct backref_node *next = node;
2653	struct backref_edge *edge;
2654	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2655	int index = 0;
2656
2657	while (next) {
2658		cond_resched();
2659		while (1) {
2660			if (next->processed)
2661				break;
2662
2663			__mark_block_processed(rc, next);
2664
2665			if (list_empty(&next->upper))
2666				break;
2667
2668			edge = list_entry(next->upper.next,
2669					  struct backref_edge, list[LOWER]);
2670			edges[index++] = edge;
2671			next = edge->node[UPPER];
2672		}
2673		next = walk_down_backref(edges, &index);
2674	}
2675}
2676
2677static int tree_block_processed(u64 bytenr, u32 blocksize,
2678				struct reloc_control *rc)
2679{
 
 
2680	if (test_range_bit(&rc->processed_blocks, bytenr,
2681			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2682		return 1;
2683	return 0;
2684}
2685
2686static int get_tree_block_key(struct reloc_control *rc,
2687			      struct tree_block *block)
2688{
2689	struct extent_buffer *eb;
2690
2691	BUG_ON(block->key_ready);
2692	eb = read_tree_block(rc->extent_root, block->bytenr,
2693			     block->key.objectid, block->key.offset);
2694	BUG_ON(!eb);
 
 
 
 
 
2695	WARN_ON(btrfs_header_level(eb) != block->level);
2696	if (block->level == 0)
2697		btrfs_item_key_to_cpu(eb, &block->key, 0);
2698	else
2699		btrfs_node_key_to_cpu(eb, &block->key, 0);
2700	free_extent_buffer(eb);
2701	block->key_ready = 1;
2702	return 0;
2703}
2704
2705static int reada_tree_block(struct reloc_control *rc,
2706			    struct tree_block *block)
2707{
2708	BUG_ON(block->key_ready);
2709	readahead_tree_block(rc->extent_root, block->bytenr,
2710			     block->key.objectid, block->key.offset);
2711	return 0;
2712}
2713
2714/*
2715 * helper function to relocate a tree block
2716 */
2717static int relocate_tree_block(struct btrfs_trans_handle *trans,
2718				struct reloc_control *rc,
2719				struct backref_node *node,
2720				struct btrfs_key *key,
2721				struct btrfs_path *path)
2722{
2723	struct btrfs_root *root;
2724	int release = 0;
2725	int ret = 0;
2726
2727	if (!node)
2728		return 0;
2729
2730	BUG_ON(node->processed);
2731	root = select_one_root(trans, node);
2732	if (root == ERR_PTR(-ENOENT)) {
2733		update_processed_blocks(rc, node);
2734		goto out;
2735	}
2736
2737	if (!root || root->ref_cows) {
2738		ret = reserve_metadata_space(trans, rc, node);
2739		if (ret)
2740			goto out;
2741		release = 1;
2742	}
2743
2744	if (root) {
2745		if (root->ref_cows) {
2746			BUG_ON(node->new_bytenr);
2747			BUG_ON(!list_empty(&node->list));
2748			btrfs_record_root_in_trans(trans, root);
2749			root = root->reloc_root;
2750			node->new_bytenr = root->node->start;
2751			node->root = root;
2752			list_add_tail(&node->list, &rc->backref_cache.changed);
2753		} else {
2754			path->lowest_level = node->level;
2755			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2756			btrfs_release_path(path);
2757			if (ret > 0)
2758				ret = 0;
2759		}
2760		if (!ret)
2761			update_processed_blocks(rc, node);
2762	} else {
2763		ret = do_relocation(trans, rc, node, key, path, 1);
2764	}
2765out:
2766	if (ret || node->level == 0 || node->cowonly) {
2767		if (release)
2768			release_metadata_space(rc, node);
2769		remove_backref_node(&rc->backref_cache, node);
2770	}
2771	return ret;
2772}
2773
2774/*
2775 * relocate a list of blocks
2776 */
2777static noinline_for_stack
2778int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2779			 struct reloc_control *rc, struct rb_root *blocks)
2780{
 
2781	struct backref_node *node;
2782	struct btrfs_path *path;
2783	struct tree_block *block;
2784	struct rb_node *rb_node;
2785	int ret;
2786	int err = 0;
2787
2788	path = btrfs_alloc_path();
2789	if (!path)
2790		return -ENOMEM;
 
 
2791
2792	rb_node = rb_first(blocks);
2793	while (rb_node) {
2794		block = rb_entry(rb_node, struct tree_block, rb_node);
2795		if (!block->key_ready)
2796			reada_tree_block(rc, block);
2797		rb_node = rb_next(rb_node);
2798	}
2799
2800	rb_node = rb_first(blocks);
2801	while (rb_node) {
2802		block = rb_entry(rb_node, struct tree_block, rb_node);
2803		if (!block->key_ready)
2804			get_tree_block_key(rc, block);
 
 
 
2805		rb_node = rb_next(rb_node);
2806	}
2807
2808	rb_node = rb_first(blocks);
2809	while (rb_node) {
2810		block = rb_entry(rb_node, struct tree_block, rb_node);
2811
2812		node = build_backref_tree(rc, &block->key,
2813					  block->level, block->bytenr);
2814		if (IS_ERR(node)) {
2815			err = PTR_ERR(node);
2816			goto out;
2817		}
2818
2819		ret = relocate_tree_block(trans, rc, node, &block->key,
2820					  path);
2821		if (ret < 0) {
2822			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2823				err = ret;
2824			goto out;
2825		}
2826		rb_node = rb_next(rb_node);
2827	}
2828out:
2829	free_block_list(blocks);
2830	err = finish_pending_nodes(trans, rc, path, err);
2831
 
2832	btrfs_free_path(path);
 
 
2833	return err;
2834}
2835
2836static noinline_for_stack
2837int prealloc_file_extent_cluster(struct inode *inode,
2838				 struct file_extent_cluster *cluster)
2839{
2840	u64 alloc_hint = 0;
2841	u64 start;
2842	u64 end;
2843	u64 offset = BTRFS_I(inode)->index_cnt;
2844	u64 num_bytes;
2845	int nr = 0;
2846	int ret = 0;
 
 
 
 
2847
2848	BUG_ON(cluster->start != cluster->boundary[0]);
2849	mutex_lock(&inode->i_mutex);
2850
2851	ret = btrfs_check_data_free_space(inode, cluster->end +
2852					  1 - cluster->start);
2853	if (ret)
2854		goto out;
2855
 
2856	while (nr < cluster->nr) {
2857		start = cluster->boundary[nr] - offset;
2858		if (nr + 1 < cluster->nr)
2859			end = cluster->boundary[nr + 1] - 1 - offset;
2860		else
2861			end = cluster->end - offset;
2862
2863		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2864		num_bytes = end + 1 - start;
 
 
 
2865		ret = btrfs_prealloc_file_range(inode, 0, start,
2866						num_bytes, num_bytes,
2867						end + 1, &alloc_hint);
2868		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
 
2869		if (ret)
2870			break;
2871		nr++;
2872	}
2873	btrfs_free_reserved_data_space(inode, cluster->end +
2874				       1 - cluster->start);
 
2875out:
2876	mutex_unlock(&inode->i_mutex);
 
2877	return ret;
2878}
2879
2880static noinline_for_stack
2881int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2882			 u64 block_start)
2883{
2884	struct btrfs_root *root = BTRFS_I(inode)->root;
2885	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2886	struct extent_map *em;
2887	int ret = 0;
2888
2889	em = alloc_extent_map();
2890	if (!em)
2891		return -ENOMEM;
2892
2893	em->start = start;
2894	em->len = end + 1 - start;
2895	em->block_len = em->len;
2896	em->block_start = block_start;
2897	em->bdev = root->fs_info->fs_devices->latest_bdev;
2898	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2899
2900	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2901	while (1) {
2902		write_lock(&em_tree->lock);
2903		ret = add_extent_mapping(em_tree, em);
2904		write_unlock(&em_tree->lock);
2905		if (ret != -EEXIST) {
2906			free_extent_map(em);
2907			break;
2908		}
2909		btrfs_drop_extent_cache(inode, start, end, 0);
2910	}
2911	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2912	return ret;
2913}
2914
2915static int relocate_file_extent_cluster(struct inode *inode,
2916					struct file_extent_cluster *cluster)
2917{
 
2918	u64 page_start;
2919	u64 page_end;
2920	u64 offset = BTRFS_I(inode)->index_cnt;
2921	unsigned long index;
2922	unsigned long last_index;
2923	struct page *page;
2924	struct file_ra_state *ra;
 
2925	int nr = 0;
2926	int ret = 0;
2927
2928	if (!cluster->nr)
2929		return 0;
2930
2931	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2932	if (!ra)
2933		return -ENOMEM;
2934
2935	ret = prealloc_file_extent_cluster(inode, cluster);
2936	if (ret)
2937		goto out;
2938
2939	file_ra_state_init(ra, inode->i_mapping);
2940
2941	ret = setup_extent_mapping(inode, cluster->start - offset,
2942				   cluster->end - offset, cluster->start);
2943	if (ret)
2944		goto out;
2945
2946	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2947	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2948	while (index <= last_index) {
2949		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
 
2950		if (ret)
2951			goto out;
2952
2953		page = find_lock_page(inode->i_mapping, index);
2954		if (!page) {
2955			page_cache_sync_readahead(inode->i_mapping,
2956						  ra, NULL, index,
2957						  last_index + 1 - index);
2958			page = find_or_create_page(inode->i_mapping, index,
2959						   GFP_NOFS);
2960			if (!page) {
2961				btrfs_delalloc_release_metadata(inode,
2962							PAGE_CACHE_SIZE);
2963				ret = -ENOMEM;
2964				goto out;
2965			}
2966		}
2967
2968		if (PageReadahead(page)) {
2969			page_cache_async_readahead(inode->i_mapping,
2970						   ra, NULL, page, index,
2971						   last_index + 1 - index);
2972		}
2973
2974		if (!PageUptodate(page)) {
2975			btrfs_readpage(NULL, page);
2976			lock_page(page);
2977			if (!PageUptodate(page)) {
2978				unlock_page(page);
2979				page_cache_release(page);
2980				btrfs_delalloc_release_metadata(inode,
2981							PAGE_CACHE_SIZE);
 
 
2982				ret = -EIO;
2983				goto out;
2984			}
2985		}
2986
2987		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2988		page_end = page_start + PAGE_CACHE_SIZE - 1;
2989
2990		lock_extent(&BTRFS_I(inode)->io_tree,
2991			    page_start, page_end, GFP_NOFS);
2992
2993		set_page_extent_mapped(page);
2994
2995		if (nr < cluster->nr &&
2996		    page_start + offset == cluster->boundary[nr]) {
2997			set_extent_bits(&BTRFS_I(inode)->io_tree,
2998					page_start, page_end,
2999					EXTENT_BOUNDARY, GFP_NOFS);
3000			nr++;
3001		}
3002
3003		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004		set_page_dirty(page);
3005
3006		unlock_extent(&BTRFS_I(inode)->io_tree,
3007			      page_start, page_end, GFP_NOFS);
3008		unlock_page(page);
3009		page_cache_release(page);
3010
3011		index++;
 
 
3012		balance_dirty_pages_ratelimited(inode->i_mapping);
3013		btrfs_throttle(BTRFS_I(inode)->root);
3014	}
3015	WARN_ON(nr != cluster->nr);
3016out:
3017	kfree(ra);
3018	return ret;
3019}
3020
3021static noinline_for_stack
3022int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3023			 struct file_extent_cluster *cluster)
3024{
3025	int ret;
3026
3027	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3028		ret = relocate_file_extent_cluster(inode, cluster);
3029		if (ret)
3030			return ret;
3031		cluster->nr = 0;
3032	}
3033
3034	if (!cluster->nr)
3035		cluster->start = extent_key->objectid;
3036	else
3037		BUG_ON(cluster->nr >= MAX_EXTENTS);
3038	cluster->end = extent_key->objectid + extent_key->offset - 1;
3039	cluster->boundary[cluster->nr] = extent_key->objectid;
3040	cluster->nr++;
3041
3042	if (cluster->nr >= MAX_EXTENTS) {
3043		ret = relocate_file_extent_cluster(inode, cluster);
3044		if (ret)
3045			return ret;
3046		cluster->nr = 0;
3047	}
3048	return 0;
3049}
3050
3051#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3052static int get_ref_objectid_v0(struct reloc_control *rc,
3053			       struct btrfs_path *path,
3054			       struct btrfs_key *extent_key,
3055			       u64 *ref_objectid, int *path_change)
3056{
3057	struct btrfs_key key;
3058	struct extent_buffer *leaf;
3059	struct btrfs_extent_ref_v0 *ref0;
3060	int ret;
3061	int slot;
3062
3063	leaf = path->nodes[0];
3064	slot = path->slots[0];
3065	while (1) {
3066		if (slot >= btrfs_header_nritems(leaf)) {
3067			ret = btrfs_next_leaf(rc->extent_root, path);
3068			if (ret < 0)
3069				return ret;
3070			BUG_ON(ret > 0);
3071			leaf = path->nodes[0];
3072			slot = path->slots[0];
3073			if (path_change)
3074				*path_change = 1;
3075		}
3076		btrfs_item_key_to_cpu(leaf, &key, slot);
3077		if (key.objectid != extent_key->objectid)
3078			return -ENOENT;
3079
3080		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3081			slot++;
3082			continue;
3083		}
3084		ref0 = btrfs_item_ptr(leaf, slot,
3085				struct btrfs_extent_ref_v0);
3086		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3087		break;
3088	}
3089	return 0;
3090}
3091#endif
3092
3093/*
3094 * helper to add a tree block to the list.
3095 * the major work is getting the generation and level of the block
3096 */
3097static int add_tree_block(struct reloc_control *rc,
3098			  struct btrfs_key *extent_key,
3099			  struct btrfs_path *path,
3100			  struct rb_root *blocks)
3101{
3102	struct extent_buffer *eb;
3103	struct btrfs_extent_item *ei;
3104	struct btrfs_tree_block_info *bi;
3105	struct tree_block *block;
3106	struct rb_node *rb_node;
3107	u32 item_size;
3108	int level = -1;
3109	int generation;
3110
3111	eb =  path->nodes[0];
3112	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3113
3114	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
 
3115		ei = btrfs_item_ptr(eb, path->slots[0],
3116				struct btrfs_extent_item);
3117		bi = (struct btrfs_tree_block_info *)(ei + 1);
 
 
 
 
 
3118		generation = btrfs_extent_generation(eb, ei);
3119		level = btrfs_tree_block_level(eb, bi);
3120	} else {
3121#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3122		u64 ref_owner;
3123		int ret;
3124
3125		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3126		ret = get_ref_objectid_v0(rc, path, extent_key,
3127					  &ref_owner, NULL);
3128		if (ret < 0)
3129			return ret;
3130		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3131		level = (int)ref_owner;
3132		/* FIXME: get real generation */
3133		generation = 0;
3134#else
3135		BUG();
3136#endif
3137	}
3138
3139	btrfs_release_path(path);
3140
3141	BUG_ON(level == -1);
3142
3143	block = kmalloc(sizeof(*block), GFP_NOFS);
3144	if (!block)
3145		return -ENOMEM;
3146
3147	block->bytenr = extent_key->objectid;
3148	block->key.objectid = extent_key->offset;
3149	block->key.offset = generation;
3150	block->level = level;
3151	block->key_ready = 0;
3152
3153	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3154	BUG_ON(rb_node);
 
3155
3156	return 0;
3157}
3158
3159/*
3160 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3161 */
3162static int __add_tree_block(struct reloc_control *rc,
3163			    u64 bytenr, u32 blocksize,
3164			    struct rb_root *blocks)
3165{
 
3166	struct btrfs_path *path;
3167	struct btrfs_key key;
3168	int ret;
 
3169
3170	if (tree_block_processed(bytenr, blocksize, rc))
3171		return 0;
3172
3173	if (tree_search(blocks, bytenr))
3174		return 0;
3175
3176	path = btrfs_alloc_path();
3177	if (!path)
3178		return -ENOMEM;
3179
3180	key.objectid = bytenr;
3181	key.type = BTRFS_EXTENT_ITEM_KEY;
3182	key.offset = blocksize;
 
 
 
 
 
3183
3184	path->search_commit_root = 1;
3185	path->skip_locking = 1;
3186	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3187	if (ret < 0)
3188		goto out;
3189	BUG_ON(ret);
3190
3191	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192	ret = add_tree_block(rc, &key, path, blocks);
3193out:
3194	btrfs_free_path(path);
3195	return ret;
3196}
3197
3198/*
3199 * helper to check if the block use full backrefs for pointers in it
3200 */
3201static int block_use_full_backref(struct reloc_control *rc,
3202				  struct extent_buffer *eb)
3203{
3204	u64 flags;
3205	int ret;
3206
3207	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3208	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3209		return 1;
3210
3211	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3212				       eb->start, eb->len, NULL, &flags);
 
3213	BUG_ON(ret);
3214
3215	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3216		ret = 1;
3217	else
3218		ret = 0;
3219	return ret;
3220}
3221
3222static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3223				    struct inode *inode, u64 ino)
 
 
3224{
3225	struct btrfs_key key;
3226	struct btrfs_path *path;
3227	struct btrfs_root *root = fs_info->tree_root;
3228	struct btrfs_trans_handle *trans;
3229	unsigned long nr;
3230	int ret = 0;
3231
3232	if (inode)
3233		goto truncate;
3234
3235	key.objectid = ino;
3236	key.type = BTRFS_INODE_ITEM_KEY;
3237	key.offset = 0;
3238
3239	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3240	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3241		if (inode && !IS_ERR(inode))
3242			iput(inode);
3243		return -ENOENT;
3244	}
3245
3246truncate:
3247	path = btrfs_alloc_path();
3248	if (!path) {
3249		ret = -ENOMEM;
3250		goto out;
3251	}
3252
3253	trans = btrfs_join_transaction(root);
3254	if (IS_ERR(trans)) {
3255		btrfs_free_path(path);
3256		ret = PTR_ERR(trans);
3257		goto out;
3258	}
3259
3260	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3261
3262	btrfs_free_path(path);
3263	nr = trans->blocks_used;
3264	btrfs_end_transaction(trans, root);
3265	btrfs_btree_balance_dirty(root, nr);
3266out:
3267	iput(inode);
3268	return ret;
3269}
3270
3271/*
3272 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3273 * this function scans fs tree to find blocks reference the data extent
3274 */
3275static int find_data_references(struct reloc_control *rc,
3276				struct btrfs_key *extent_key,
3277				struct extent_buffer *leaf,
3278				struct btrfs_extent_data_ref *ref,
3279				struct rb_root *blocks)
3280{
 
3281	struct btrfs_path *path;
3282	struct tree_block *block;
3283	struct btrfs_root *root;
3284	struct btrfs_file_extent_item *fi;
3285	struct rb_node *rb_node;
3286	struct btrfs_key key;
3287	u64 ref_root;
3288	u64 ref_objectid;
3289	u64 ref_offset;
3290	u32 ref_count;
3291	u32 nritems;
3292	int err = 0;
3293	int added = 0;
3294	int counted;
3295	int ret;
3296
3297	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3298	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3299	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3300	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3301
3302	/*
3303	 * This is an extent belonging to the free space cache, lets just delete
3304	 * it and redo the search.
3305	 */
3306	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3307		ret = delete_block_group_cache(rc->extent_root->fs_info,
3308					       NULL, ref_objectid);
3309		if (ret != -ENOENT)
3310			return ret;
3311		ret = 0;
3312	}
3313
3314	path = btrfs_alloc_path();
3315	if (!path)
3316		return -ENOMEM;
3317	path->reada = 1;
3318
3319	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3320	if (IS_ERR(root)) {
3321		err = PTR_ERR(root);
3322		goto out;
3323	}
3324
3325	key.objectid = ref_objectid;
3326	key.offset = ref_offset;
3327	key.type = BTRFS_EXTENT_DATA_KEY;
 
 
 
 
3328
3329	path->search_commit_root = 1;
3330	path->skip_locking = 1;
3331	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3332	if (ret < 0) {
3333		err = ret;
3334		goto out;
3335	}
3336
3337	leaf = path->nodes[0];
3338	nritems = btrfs_header_nritems(leaf);
3339	/*
3340	 * the references in tree blocks that use full backrefs
3341	 * are not counted in
3342	 */
3343	if (block_use_full_backref(rc, leaf))
3344		counted = 0;
3345	else
3346		counted = 1;
3347	rb_node = tree_search(blocks, leaf->start);
3348	if (rb_node) {
3349		if (counted)
3350			added = 1;
3351		else
3352			path->slots[0] = nritems;
3353	}
3354
3355	while (ref_count > 0) {
3356		while (path->slots[0] >= nritems) {
3357			ret = btrfs_next_leaf(root, path);
3358			if (ret < 0) {
3359				err = ret;
3360				goto out;
3361			}
3362			if (ret > 0) {
3363				WARN_ON(1);
3364				goto out;
3365			}
3366
3367			leaf = path->nodes[0];
3368			nritems = btrfs_header_nritems(leaf);
3369			added = 0;
3370
3371			if (block_use_full_backref(rc, leaf))
3372				counted = 0;
3373			else
3374				counted = 1;
3375			rb_node = tree_search(blocks, leaf->start);
3376			if (rb_node) {
3377				if (counted)
3378					added = 1;
3379				else
3380					path->slots[0] = nritems;
3381			}
3382		}
3383
3384		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3385		if (key.objectid != ref_objectid ||
3386		    key.type != BTRFS_EXTENT_DATA_KEY) {
3387			WARN_ON(1);
3388			break;
3389		}
3390
3391		fi = btrfs_item_ptr(leaf, path->slots[0],
3392				    struct btrfs_file_extent_item);
3393
3394		if (btrfs_file_extent_type(leaf, fi) ==
3395		    BTRFS_FILE_EXTENT_INLINE)
3396			goto next;
3397
3398		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3399		    extent_key->objectid)
3400			goto next;
3401
3402		key.offset -= btrfs_file_extent_offset(leaf, fi);
3403		if (key.offset != ref_offset)
3404			goto next;
3405
3406		if (counted)
3407			ref_count--;
3408		if (added)
3409			goto next;
3410
3411		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3412			block = kmalloc(sizeof(*block), GFP_NOFS);
3413			if (!block) {
3414				err = -ENOMEM;
3415				break;
3416			}
3417			block->bytenr = leaf->start;
3418			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3419			block->level = 0;
3420			block->key_ready = 1;
3421			rb_node = tree_insert(blocks, block->bytenr,
3422					      &block->rb_node);
3423			BUG_ON(rb_node);
 
 
3424		}
3425		if (counted)
3426			added = 1;
3427		else
3428			path->slots[0] = nritems;
3429next:
3430		path->slots[0]++;
3431
3432	}
3433out:
3434	btrfs_free_path(path);
3435	return err;
3436}
3437
3438/*
3439 * hepler to find all tree blocks that reference a given data extent
3440 */
3441static noinline_for_stack
3442int add_data_references(struct reloc_control *rc,
3443			struct btrfs_key *extent_key,
3444			struct btrfs_path *path,
3445			struct rb_root *blocks)
3446{
3447	struct btrfs_key key;
3448	struct extent_buffer *eb;
3449	struct btrfs_extent_data_ref *dref;
3450	struct btrfs_extent_inline_ref *iref;
3451	unsigned long ptr;
3452	unsigned long end;
3453	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3454	int ret;
3455	int err = 0;
3456
3457	eb = path->nodes[0];
3458	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3459	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3461	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3462		ptr = end;
3463	else
3464#endif
3465		ptr += sizeof(struct btrfs_extent_item);
3466
3467	while (ptr < end) {
3468		iref = (struct btrfs_extent_inline_ref *)ptr;
3469		key.type = btrfs_extent_inline_ref_type(eb, iref);
 
3470		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3471			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3472			ret = __add_tree_block(rc, key.offset, blocksize,
3473					       blocks);
3474		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3475			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3476			ret = find_data_references(rc, extent_key,
3477						   eb, dref, blocks);
3478		} else {
3479			BUG();
 
 
 
 
 
 
 
3480		}
3481		ptr += btrfs_extent_inline_ref_size(key.type);
3482	}
3483	WARN_ON(ptr > end);
3484
3485	while (1) {
3486		cond_resched();
3487		eb = path->nodes[0];
3488		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3489			ret = btrfs_next_leaf(rc->extent_root, path);
3490			if (ret < 0) {
3491				err = ret;
3492				break;
3493			}
3494			if (ret > 0)
3495				break;
3496			eb = path->nodes[0];
3497		}
3498
3499		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3500		if (key.objectid != extent_key->objectid)
3501			break;
3502
3503#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3504		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3505		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3506#else
3507		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3508		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3509#endif
3510			ret = __add_tree_block(rc, key.offset, blocksize,
3511					       blocks);
3512		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3513			dref = btrfs_item_ptr(eb, path->slots[0],
3514					      struct btrfs_extent_data_ref);
3515			ret = find_data_references(rc, extent_key,
3516						   eb, dref, blocks);
3517		} else {
3518			ret = 0;
3519		}
3520		if (ret) {
3521			err = ret;
3522			break;
3523		}
3524		path->slots[0]++;
3525	}
 
3526	btrfs_release_path(path);
3527	if (err)
3528		free_block_list(blocks);
3529	return err;
3530}
3531
3532/*
3533 * hepler to find next unprocessed extent
3534 */
3535static noinline_for_stack
3536int find_next_extent(struct btrfs_trans_handle *trans,
3537		     struct reloc_control *rc, struct btrfs_path *path,
3538		     struct btrfs_key *extent_key)
3539{
 
3540	struct btrfs_key key;
3541	struct extent_buffer *leaf;
3542	u64 start, end, last;
3543	int ret;
3544
3545	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3546	while (1) {
3547		cond_resched();
3548		if (rc->search_start >= last) {
3549			ret = 1;
3550			break;
3551		}
3552
3553		key.objectid = rc->search_start;
3554		key.type = BTRFS_EXTENT_ITEM_KEY;
3555		key.offset = 0;
3556
3557		path->search_commit_root = 1;
3558		path->skip_locking = 1;
3559		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3560					0, 0);
3561		if (ret < 0)
3562			break;
3563next:
3564		leaf = path->nodes[0];
3565		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3566			ret = btrfs_next_leaf(rc->extent_root, path);
3567			if (ret != 0)
3568				break;
3569			leaf = path->nodes[0];
3570		}
3571
3572		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3573		if (key.objectid >= last) {
3574			ret = 1;
3575			break;
3576		}
3577
3578		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
 
 
 
 
 
 
3579		    key.objectid + key.offset <= rc->search_start) {
3580			path->slots[0]++;
3581			goto next;
3582		}
3583
 
 
 
 
 
 
 
3584		ret = find_first_extent_bit(&rc->processed_blocks,
3585					    key.objectid, &start, &end,
3586					    EXTENT_DIRTY);
3587
3588		if (ret == 0 && start <= key.objectid) {
3589			btrfs_release_path(path);
3590			rc->search_start = end + 1;
3591		} else {
3592			rc->search_start = key.objectid + key.offset;
 
 
 
 
3593			memcpy(extent_key, &key, sizeof(key));
3594			return 0;
3595		}
3596	}
3597	btrfs_release_path(path);
3598	return ret;
3599}
3600
3601static void set_reloc_control(struct reloc_control *rc)
3602{
3603	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3604
3605	mutex_lock(&fs_info->reloc_mutex);
3606	fs_info->reloc_ctl = rc;
3607	mutex_unlock(&fs_info->reloc_mutex);
3608}
3609
3610static void unset_reloc_control(struct reloc_control *rc)
3611{
3612	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3613
3614	mutex_lock(&fs_info->reloc_mutex);
3615	fs_info->reloc_ctl = NULL;
3616	mutex_unlock(&fs_info->reloc_mutex);
3617}
3618
3619static int check_extent_flags(u64 flags)
3620{
3621	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3622	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3623		return 1;
3624	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3625	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3626		return 1;
3627	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3628	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3629		return 1;
3630	return 0;
3631}
3632
3633static noinline_for_stack
3634int prepare_to_relocate(struct reloc_control *rc)
3635{
3636	struct btrfs_trans_handle *trans;
3637	int ret;
3638
3639	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
 
3640	if (!rc->block_rsv)
3641		return -ENOMEM;
3642
3643	/*
3644	 * reserve some space for creating reloc trees.
3645	 * btrfs_init_reloc_root will use them when there
3646	 * is no reservation in transaction handle.
3647	 */
3648	ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv,
3649				  rc->extent_root->nodesize * 256);
3650	if (ret)
3651		return ret;
3652
3653	rc->block_rsv->refill_used = 1;
3654	btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv);
3655
3656	memset(&rc->cluster, 0, sizeof(rc->cluster));
3657	rc->search_start = rc->block_group->key.objectid;
3658	rc->extents_found = 0;
3659	rc->nodes_relocated = 0;
3660	rc->merging_rsv_size = 0;
 
 
 
 
 
 
 
 
3661
3662	rc->create_reloc_tree = 1;
3663	set_reloc_control(rc);
3664
3665	trans = btrfs_join_transaction(rc->extent_root);
3666	BUG_ON(IS_ERR(trans));
3667	btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
 
 
 
 
 
3668	return 0;
3669}
3670
3671static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3672{
 
3673	struct rb_root blocks = RB_ROOT;
3674	struct btrfs_key key;
3675	struct btrfs_trans_handle *trans = NULL;
3676	struct btrfs_path *path;
3677	struct btrfs_extent_item *ei;
3678	unsigned long nr;
3679	u64 flags;
3680	u32 item_size;
3681	int ret;
3682	int err = 0;
3683	int progress = 0;
3684
3685	path = btrfs_alloc_path();
3686	if (!path)
3687		return -ENOMEM;
3688	path->reada = 1;
3689
3690	ret = prepare_to_relocate(rc);
3691	if (ret) {
3692		err = ret;
3693		goto out_free;
3694	}
3695
3696	while (1) {
 
 
 
 
 
 
 
 
3697		progress++;
3698		trans = btrfs_start_transaction(rc->extent_root, 0);
3699		BUG_ON(IS_ERR(trans));
 
 
 
 
3700restart:
3701		if (update_backref_cache(trans, &rc->backref_cache)) {
3702			btrfs_end_transaction(trans, rc->extent_root);
3703			continue;
3704		}
3705
3706		ret = find_next_extent(trans, rc, path, &key);
3707		if (ret < 0)
3708			err = ret;
3709		if (ret != 0)
3710			break;
3711
3712		rc->extents_found++;
3713
3714		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3715				    struct btrfs_extent_item);
3716		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3717		if (item_size >= sizeof(*ei)) {
3718			flags = btrfs_extent_flags(path->nodes[0], ei);
3719			ret = check_extent_flags(flags);
3720			BUG_ON(ret);
3721
3722		} else {
3723#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3724			u64 ref_owner;
3725			int path_change = 0;
3726
3727			BUG_ON(item_size !=
3728			       sizeof(struct btrfs_extent_item_v0));
3729			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3730						  &path_change);
 
 
 
 
3731			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3732				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3733			else
3734				flags = BTRFS_EXTENT_FLAG_DATA;
3735
3736			if (path_change) {
3737				btrfs_release_path(path);
3738
3739				path->search_commit_root = 1;
3740				path->skip_locking = 1;
3741				ret = btrfs_search_slot(NULL, rc->extent_root,
3742							&key, path, 0, 0);
3743				if (ret < 0) {
3744					err = ret;
3745					break;
3746				}
3747				BUG_ON(ret > 0);
3748			}
3749#else
3750			BUG();
3751#endif
3752		}
3753
3754		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3755			ret = add_tree_block(rc, &key, path, &blocks);
3756		} else if (rc->stage == UPDATE_DATA_PTRS &&
3757			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3758			ret = add_data_references(rc, &key, path, &blocks);
3759		} else {
3760			btrfs_release_path(path);
3761			ret = 0;
3762		}
3763		if (ret < 0) {
3764			err = ret;
3765			break;
3766		}
3767
3768		if (!RB_EMPTY_ROOT(&blocks)) {
3769			ret = relocate_tree_blocks(trans, rc, &blocks);
3770			if (ret < 0) {
 
 
 
 
 
 
3771				if (ret != -EAGAIN) {
3772					err = ret;
3773					break;
3774				}
3775				rc->extents_found--;
3776				rc->search_start = key.objectid;
3777			}
3778		}
3779
3780		ret = btrfs_block_rsv_check(trans, rc->extent_root,
3781					    rc->block_rsv, 0, 5);
3782		if (ret < 0) {
3783			if (ret != -EAGAIN) {
3784				err = ret;
3785				WARN_ON(1);
3786				break;
3787			}
3788			rc->commit_transaction = 1;
3789		}
3790
3791		if (rc->commit_transaction) {
3792			rc->commit_transaction = 0;
3793			ret = btrfs_commit_transaction(trans, rc->extent_root);
3794			BUG_ON(ret);
3795		} else {
3796			nr = trans->blocks_used;
3797			btrfs_end_transaction_throttle(trans, rc->extent_root);
3798			btrfs_btree_balance_dirty(rc->extent_root, nr);
3799		}
3800		trans = NULL;
3801
3802		if (rc->stage == MOVE_DATA_EXTENTS &&
3803		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3804			rc->found_file_extent = 1;
3805			ret = relocate_data_extent(rc->data_inode,
3806						   &key, &rc->cluster);
3807			if (ret < 0) {
3808				err = ret;
3809				break;
3810			}
3811		}
3812	}
3813	if (trans && progress && err == -ENOSPC) {
3814		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3815					      rc->block_group->flags);
3816		if (ret == 0) {
3817			err = 0;
3818			progress = 0;
3819			goto restart;
3820		}
3821	}
3822
3823	btrfs_release_path(path);
3824	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3825			  GFP_NOFS);
3826
3827	if (trans) {
3828		nr = trans->blocks_used;
3829		btrfs_end_transaction_throttle(trans, rc->extent_root);
3830		btrfs_btree_balance_dirty(rc->extent_root, nr);
3831	}
3832
3833	if (!err) {
3834		ret = relocate_file_extent_cluster(rc->data_inode,
3835						   &rc->cluster);
3836		if (ret < 0)
3837			err = ret;
3838	}
3839
3840	rc->create_reloc_tree = 0;
3841	set_reloc_control(rc);
3842
3843	backref_cache_cleanup(&rc->backref_cache);
3844	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3845
3846	err = prepare_to_merge(rc, err);
3847
3848	merge_reloc_roots(rc);
3849
3850	rc->merge_reloc_tree = 0;
3851	unset_reloc_control(rc);
3852	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3853
3854	/* get rid of pinned extents */
3855	trans = btrfs_join_transaction(rc->extent_root);
3856	if (IS_ERR(trans))
3857		err = PTR_ERR(trans);
3858	else
3859		btrfs_commit_transaction(trans, rc->extent_root);
 
3860out_free:
3861	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3862	btrfs_free_path(path);
3863	return err;
3864}
3865
3866static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3867				 struct btrfs_root *root, u64 objectid)
3868{
3869	struct btrfs_path *path;
3870	struct btrfs_inode_item *item;
3871	struct extent_buffer *leaf;
3872	int ret;
3873
3874	path = btrfs_alloc_path();
3875	if (!path)
3876		return -ENOMEM;
3877
3878	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3879	if (ret)
3880		goto out;
3881
3882	leaf = path->nodes[0];
3883	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3884	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3885	btrfs_set_inode_generation(leaf, item, 1);
3886	btrfs_set_inode_size(leaf, item, 0);
3887	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3888	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3889					  BTRFS_INODE_PREALLOC);
3890	btrfs_mark_buffer_dirty(leaf);
3891	btrfs_release_path(path);
3892out:
3893	btrfs_free_path(path);
3894	return ret;
3895}
3896
3897/*
3898 * helper to create inode for data relocation.
3899 * the inode is in data relocation tree and its link count is 0
3900 */
3901static noinline_for_stack
3902struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3903				 struct btrfs_block_group_cache *group)
3904{
3905	struct inode *inode = NULL;
3906	struct btrfs_trans_handle *trans;
3907	struct btrfs_root *root;
3908	struct btrfs_key key;
3909	unsigned long nr;
3910	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3911	int err = 0;
3912
3913	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3914	if (IS_ERR(root))
3915		return ERR_CAST(root);
3916
3917	trans = btrfs_start_transaction(root, 6);
3918	if (IS_ERR(trans))
3919		return ERR_CAST(trans);
3920
3921	err = btrfs_find_free_objectid(root, &objectid);
3922	if (err)
3923		goto out;
3924
3925	err = __insert_orphan_inode(trans, root, objectid);
3926	BUG_ON(err);
3927
3928	key.objectid = objectid;
3929	key.type = BTRFS_INODE_ITEM_KEY;
3930	key.offset = 0;
3931	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3932	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3933	BTRFS_I(inode)->index_cnt = group->key.objectid;
3934
3935	err = btrfs_orphan_add(trans, inode);
3936out:
3937	nr = trans->blocks_used;
3938	btrfs_end_transaction(trans, root);
3939	btrfs_btree_balance_dirty(root, nr);
3940	if (err) {
3941		if (inode)
3942			iput(inode);
3943		inode = ERR_PTR(err);
3944	}
3945	return inode;
3946}
3947
3948static struct reloc_control *alloc_reloc_control(void)
3949{
3950	struct reloc_control *rc;
3951
3952	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3953	if (!rc)
3954		return NULL;
3955
3956	INIT_LIST_HEAD(&rc->reloc_roots);
3957	backref_cache_init(&rc->backref_cache);
3958	mapping_tree_init(&rc->reloc_root_tree);
3959	extent_io_tree_init(&rc->processed_blocks, NULL);
3960	return rc;
3961}
3962
3963/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3964 * function to relocate all extents in a block group.
3965 */
3966int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3967{
3968	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3969	struct reloc_control *rc;
3970	struct inode *inode;
3971	struct btrfs_path *path;
3972	int ret;
3973	int rw = 0;
3974	int err = 0;
3975
3976	rc = alloc_reloc_control();
3977	if (!rc)
3978		return -ENOMEM;
3979
3980	rc->extent_root = extent_root;
3981
3982	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3983	BUG_ON(!rc->block_group);
3984
3985	if (!rc->block_group->ro) {
3986		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3987		if (ret) {
3988			err = ret;
3989			goto out;
3990		}
3991		rw = 1;
3992	}
 
3993
3994	path = btrfs_alloc_path();
3995	if (!path) {
3996		err = -ENOMEM;
3997		goto out;
3998	}
3999
4000	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4001					path);
4002	btrfs_free_path(path);
4003
4004	if (!IS_ERR(inode))
4005		ret = delete_block_group_cache(fs_info, inode, 0);
4006	else
4007		ret = PTR_ERR(inode);
4008
4009	if (ret && ret != -ENOENT) {
4010		err = ret;
4011		goto out;
4012	}
4013
4014	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4015	if (IS_ERR(rc->data_inode)) {
4016		err = PTR_ERR(rc->data_inode);
4017		rc->data_inode = NULL;
4018		goto out;
4019	}
4020
4021	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4022	       (unsigned long long)rc->block_group->key.objectid,
4023	       (unsigned long long)rc->block_group->flags);
4024
4025	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4026	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
 
 
 
4027
4028	while (1) {
4029		mutex_lock(&fs_info->cleaner_mutex);
4030
4031		btrfs_clean_old_snapshots(fs_info->tree_root);
4032		ret = relocate_block_group(rc);
4033
4034		mutex_unlock(&fs_info->cleaner_mutex);
4035		if (ret < 0) {
4036			err = ret;
4037			goto out;
4038		}
4039
4040		if (rc->extents_found == 0)
4041			break;
4042
4043		printk(KERN_INFO "btrfs: found %llu extents\n",
4044			(unsigned long long)rc->extents_found);
4045
4046		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4047			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
 
 
 
 
 
4048			invalidate_mapping_pages(rc->data_inode->i_mapping,
4049						 0, -1);
4050			rc->stage = UPDATE_DATA_PTRS;
4051		}
4052	}
4053
4054	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4055				     rc->block_group->key.objectid,
4056				     rc->block_group->key.objectid +
4057				     rc->block_group->key.offset - 1);
4058
4059	WARN_ON(rc->block_group->pinned > 0);
4060	WARN_ON(rc->block_group->reserved > 0);
4061	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4062out:
4063	if (err && rw)
4064		btrfs_set_block_group_rw(extent_root, rc->block_group);
4065	iput(rc->data_inode);
4066	btrfs_put_block_group(rc->block_group);
4067	kfree(rc);
4068	return err;
4069}
4070
4071static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4072{
 
4073	struct btrfs_trans_handle *trans;
4074	int ret;
4075
4076	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4077	BUG_ON(IS_ERR(trans));
 
4078
4079	memset(&root->root_item.drop_progress, 0,
4080		sizeof(root->root_item.drop_progress));
4081	root->root_item.drop_level = 0;
4082	btrfs_set_root_refs(&root->root_item, 0);
4083	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4084				&root->root_key, &root->root_item);
4085	BUG_ON(ret);
4086
4087	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4088	BUG_ON(ret);
4089	return 0;
 
4090}
4091
4092/*
4093 * recover relocation interrupted by system crash.
4094 *
4095 * this function resumes merging reloc trees with corresponding fs trees.
4096 * this is important for keeping the sharing of tree blocks
4097 */
4098int btrfs_recover_relocation(struct btrfs_root *root)
4099{
 
4100	LIST_HEAD(reloc_roots);
4101	struct btrfs_key key;
4102	struct btrfs_root *fs_root;
4103	struct btrfs_root *reloc_root;
4104	struct btrfs_path *path;
4105	struct extent_buffer *leaf;
4106	struct reloc_control *rc = NULL;
4107	struct btrfs_trans_handle *trans;
4108	int ret;
4109	int err = 0;
4110
4111	path = btrfs_alloc_path();
4112	if (!path)
4113		return -ENOMEM;
4114	path->reada = -1;
4115
4116	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4117	key.type = BTRFS_ROOT_ITEM_KEY;
4118	key.offset = (u64)-1;
4119
4120	while (1) {
4121		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4122					path, 0, 0);
4123		if (ret < 0) {
4124			err = ret;
4125			goto out;
4126		}
4127		if (ret > 0) {
4128			if (path->slots[0] == 0)
4129				break;
4130			path->slots[0]--;
4131		}
4132		leaf = path->nodes[0];
4133		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4134		btrfs_release_path(path);
4135
4136		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4137		    key.type != BTRFS_ROOT_ITEM_KEY)
4138			break;
4139
4140		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4141		if (IS_ERR(reloc_root)) {
4142			err = PTR_ERR(reloc_root);
4143			goto out;
4144		}
4145
4146		list_add(&reloc_root->root_list, &reloc_roots);
4147
4148		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4149			fs_root = read_fs_root(root->fs_info,
4150					       reloc_root->root_key.offset);
4151			if (IS_ERR(fs_root)) {
4152				ret = PTR_ERR(fs_root);
4153				if (ret != -ENOENT) {
4154					err = ret;
4155					goto out;
4156				}
4157				mark_garbage_root(reloc_root);
 
 
 
 
4158			}
4159		}
4160
4161		if (key.offset == 0)
4162			break;
4163
4164		key.offset--;
4165	}
4166	btrfs_release_path(path);
4167
4168	if (list_empty(&reloc_roots))
4169		goto out;
4170
4171	rc = alloc_reloc_control();
4172	if (!rc) {
4173		err = -ENOMEM;
4174		goto out;
4175	}
4176
4177	rc->extent_root = root->fs_info->extent_root;
4178
4179	set_reloc_control(rc);
4180
4181	trans = btrfs_join_transaction(rc->extent_root);
4182	if (IS_ERR(trans)) {
4183		unset_reloc_control(rc);
4184		err = PTR_ERR(trans);
4185		goto out_free;
4186	}
4187
4188	rc->merge_reloc_tree = 1;
4189
4190	while (!list_empty(&reloc_roots)) {
4191		reloc_root = list_entry(reloc_roots.next,
4192					struct btrfs_root, root_list);
4193		list_del(&reloc_root->root_list);
4194
4195		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4196			list_add_tail(&reloc_root->root_list,
4197				      &rc->reloc_roots);
4198			continue;
4199		}
4200
4201		fs_root = read_fs_root(root->fs_info,
4202				       reloc_root->root_key.offset);
4203		BUG_ON(IS_ERR(fs_root));
 
 
4204
4205		__add_reloc_root(reloc_root);
 
4206		fs_root->reloc_root = reloc_root;
4207	}
4208
4209	btrfs_commit_transaction(trans, rc->extent_root);
 
 
4210
4211	merge_reloc_roots(rc);
4212
4213	unset_reloc_control(rc);
4214
4215	trans = btrfs_join_transaction(rc->extent_root);
4216	if (IS_ERR(trans))
4217		err = PTR_ERR(trans);
4218	else
4219		btrfs_commit_transaction(trans, rc->extent_root);
 
4220out_free:
4221	kfree(rc);
4222out:
4223	while (!list_empty(&reloc_roots)) {
4224		reloc_root = list_entry(reloc_roots.next,
4225					struct btrfs_root, root_list);
4226		list_del(&reloc_root->root_list);
4227		free_extent_buffer(reloc_root->node);
4228		free_extent_buffer(reloc_root->commit_root);
4229		kfree(reloc_root);
4230	}
4231	btrfs_free_path(path);
4232
4233	if (err == 0) {
4234		/* cleanup orphan inode in data relocation tree */
4235		fs_root = read_fs_root(root->fs_info,
4236				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4237		if (IS_ERR(fs_root))
4238			err = PTR_ERR(fs_root);
4239		else
4240			err = btrfs_orphan_cleanup(fs_root);
4241	}
4242	return err;
4243}
4244
4245/*
4246 * helper to add ordered checksum for data relocation.
4247 *
4248 * cloning checksum properly handles the nodatasum extents.
4249 * it also saves CPU time to re-calculate the checksum.
4250 */
4251int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4252{
 
4253	struct btrfs_ordered_sum *sums;
4254	struct btrfs_sector_sum *sector_sum;
4255	struct btrfs_ordered_extent *ordered;
4256	struct btrfs_root *root = BTRFS_I(inode)->root;
4257	size_t offset;
4258	int ret;
4259	u64 disk_bytenr;
 
4260	LIST_HEAD(list);
4261
4262	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4263	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4264
4265	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4266	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4267				       disk_bytenr + len - 1, &list, 0);
 
 
4268
4269	while (!list_empty(&list)) {
4270		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4271		list_del_init(&sums->list);
4272
4273		sector_sum = sums->sums;
4274		sums->bytenr = ordered->start;
4275
4276		offset = 0;
4277		while (offset < sums->len) {
4278			sector_sum->bytenr += ordered->start - disk_bytenr;
4279			sector_sum++;
4280			offset += root->sectorsize;
4281		}
 
 
 
 
 
4282
4283		btrfs_add_ordered_sum(inode, ordered, sums);
4284	}
 
4285	btrfs_put_ordered_extent(ordered);
4286	return ret;
4287}
4288
4289void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4290			   struct btrfs_root *root, struct extent_buffer *buf,
4291			   struct extent_buffer *cow)
4292{
 
4293	struct reloc_control *rc;
4294	struct backref_node *node;
4295	int first_cow = 0;
4296	int level;
4297	int ret;
4298
4299	rc = root->fs_info->reloc_ctl;
4300	if (!rc)
4301		return;
4302
4303	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4304	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4305
 
 
 
 
 
4306	level = btrfs_header_level(buf);
4307	if (btrfs_header_generation(buf) <=
4308	    btrfs_root_last_snapshot(&root->root_item))
4309		first_cow = 1;
4310
4311	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4312	    rc->create_reloc_tree) {
4313		WARN_ON(!first_cow && level == 0);
4314
4315		node = rc->backref_cache.path[level];
4316		BUG_ON(node->bytenr != buf->start &&
4317		       node->new_bytenr != buf->start);
4318
4319		drop_node_buffer(node);
4320		extent_buffer_get(cow);
4321		node->eb = cow;
4322		node->new_bytenr = cow->start;
4323
4324		if (!node->pending) {
4325			list_move_tail(&node->list,
4326				       &rc->backref_cache.pending[level]);
4327			node->pending = 1;
4328		}
4329
4330		if (first_cow)
4331			__mark_block_processed(rc, node);
4332
4333		if (first_cow && level > 0)
4334			rc->nodes_relocated += buf->len;
4335	}
4336
4337	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4338		ret = replace_file_extents(trans, rc, root, cow);
4339		BUG_ON(ret);
4340	}
4341}
4342
4343/*
4344 * called before creating snapshot. it calculates metadata reservation
4345 * requried for relocating tree blocks in the snapshot
4346 */
4347void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4348			      struct btrfs_pending_snapshot *pending,
4349			      u64 *bytes_to_reserve)
4350{
4351	struct btrfs_root *root;
4352	struct reloc_control *rc;
4353
4354	root = pending->root;
4355	if (!root->reloc_root)
4356		return;
4357
4358	rc = root->fs_info->reloc_ctl;
4359	if (!rc->merge_reloc_tree)
4360		return;
4361
4362	root = root->reloc_root;
4363	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4364	/*
4365	 * relocation is in the stage of merging trees. the space
4366	 * used by merging a reloc tree is twice the size of
4367	 * relocated tree nodes in the worst case. half for cowing
4368	 * the reloc tree, half for cowing the fs tree. the space
4369	 * used by cowing the reloc tree will be freed after the
4370	 * tree is dropped. if we create snapshot, cowing the fs
4371	 * tree may use more space than it frees. so we need
4372	 * reserve extra space.
4373	 */
4374	*bytes_to_reserve += rc->nodes_relocated;
4375}
4376
4377/*
4378 * called after snapshot is created. migrate block reservation
4379 * and create reloc root for the newly created snapshot
4380 */
4381void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4382			       struct btrfs_pending_snapshot *pending)
4383{
4384	struct btrfs_root *root = pending->root;
4385	struct btrfs_root *reloc_root;
4386	struct btrfs_root *new_root;
4387	struct reloc_control *rc;
4388	int ret;
4389
4390	if (!root->reloc_root)
4391		return;
4392
4393	rc = root->fs_info->reloc_ctl;
4394	rc->merging_rsv_size += rc->nodes_relocated;
4395
4396	if (rc->merge_reloc_tree) {
4397		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4398					      rc->block_rsv,
4399					      rc->nodes_relocated);
4400		BUG_ON(ret);
 
4401	}
4402
4403	new_root = pending->snap;
4404	reloc_root = create_reloc_root(trans, root->reloc_root,
4405				       new_root->root_key.objectid);
 
 
4406
4407	__add_reloc_root(reloc_root);
 
4408	new_root->reloc_root = reloc_root;
4409
4410	if (rc->create_reloc_tree) {
4411		ret = clone_backref_node(trans, rc, root, reloc_root);
4412		BUG_ON(ret);
4413	}
4414}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include "ctree.h"
  13#include "disk-io.h"
  14#include "transaction.h"
  15#include "volumes.h"
  16#include "locking.h"
  17#include "btrfs_inode.h"
  18#include "async-thread.h"
  19#include "free-space-cache.h"
  20#include "inode-map.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23
  24/*
  25 * backref_node, mapping_node and tree_block start with this
  26 */
  27struct tree_entry {
  28	struct rb_node rb_node;
  29	u64 bytenr;
  30};
  31
  32/*
  33 * present a tree block in the backref cache
  34 */
  35struct backref_node {
  36	struct rb_node rb_node;
  37	u64 bytenr;
  38
  39	u64 new_bytenr;
  40	/* objectid of tree block owner, can be not uptodate */
  41	u64 owner;
  42	/* link to pending, changed or detached list */
  43	struct list_head list;
  44	/* list of upper level blocks reference this block */
  45	struct list_head upper;
  46	/* list of child blocks in the cache */
  47	struct list_head lower;
  48	/* NULL if this node is not tree root */
  49	struct btrfs_root *root;
  50	/* extent buffer got by COW the block */
  51	struct extent_buffer *eb;
  52	/* level of tree block */
  53	unsigned int level:8;
  54	/* is the block in non-reference counted tree */
  55	unsigned int cowonly:1;
  56	/* 1 if no child node in the cache */
  57	unsigned int lowest:1;
  58	/* is the extent buffer locked */
  59	unsigned int locked:1;
  60	/* has the block been processed */
  61	unsigned int processed:1;
  62	/* have backrefs of this block been checked */
  63	unsigned int checked:1;
  64	/*
  65	 * 1 if corresponding block has been cowed but some upper
  66	 * level block pointers may not point to the new location
  67	 */
  68	unsigned int pending:1;
  69	/*
  70	 * 1 if the backref node isn't connected to any other
  71	 * backref node.
  72	 */
  73	unsigned int detached:1;
  74};
  75
  76/*
  77 * present a block pointer in the backref cache
  78 */
  79struct backref_edge {
  80	struct list_head list[2];
  81	struct backref_node *node[2];
  82};
  83
  84#define LOWER	0
  85#define UPPER	1
  86#define RELOCATION_RESERVED_NODES	256
  87
  88struct backref_cache {
  89	/* red black tree of all backref nodes in the cache */
  90	struct rb_root rb_root;
  91	/* for passing backref nodes to btrfs_reloc_cow_block */
  92	struct backref_node *path[BTRFS_MAX_LEVEL];
  93	/*
  94	 * list of blocks that have been cowed but some block
  95	 * pointers in upper level blocks may not reflect the
  96	 * new location
  97	 */
  98	struct list_head pending[BTRFS_MAX_LEVEL];
  99	/* list of backref nodes with no child node */
 100	struct list_head leaves;
 101	/* list of blocks that have been cowed in current transaction */
 102	struct list_head changed;
 103	/* list of detached backref node. */
 104	struct list_head detached;
 105
 106	u64 last_trans;
 107
 108	int nr_nodes;
 109	int nr_edges;
 110};
 111
 112/*
 113 * map address of tree root to tree
 114 */
 115struct mapping_node {
 116	struct rb_node rb_node;
 117	u64 bytenr;
 118	void *data;
 119};
 120
 121struct mapping_tree {
 122	struct rb_root rb_root;
 123	spinlock_t lock;
 124};
 125
 126/*
 127 * present a tree block to process
 128 */
 129struct tree_block {
 130	struct rb_node rb_node;
 131	u64 bytenr;
 132	struct btrfs_key key;
 133	unsigned int level:8;
 134	unsigned int key_ready:1;
 135};
 136
 137#define MAX_EXTENTS 128
 138
 139struct file_extent_cluster {
 140	u64 start;
 141	u64 end;
 142	u64 boundary[MAX_EXTENTS];
 143	unsigned int nr;
 144};
 145
 146struct reloc_control {
 147	/* block group to relocate */
 148	struct btrfs_block_group_cache *block_group;
 149	/* extent tree */
 150	struct btrfs_root *extent_root;
 151	/* inode for moving data */
 152	struct inode *data_inode;
 153
 154	struct btrfs_block_rsv *block_rsv;
 155
 156	struct backref_cache backref_cache;
 157
 158	struct file_extent_cluster cluster;
 159	/* tree blocks have been processed */
 160	struct extent_io_tree processed_blocks;
 161	/* map start of tree root to corresponding reloc tree */
 162	struct mapping_tree reloc_root_tree;
 163	/* list of reloc trees */
 164	struct list_head reloc_roots;
 165	/* size of metadata reservation for merging reloc trees */
 166	u64 merging_rsv_size;
 167	/* size of relocated tree nodes */
 168	u64 nodes_relocated;
 169	/* reserved size for block group relocation*/
 170	u64 reserved_bytes;
 171
 172	u64 search_start;
 173	u64 extents_found;
 174
 175	unsigned int stage:8;
 176	unsigned int create_reloc_tree:1;
 177	unsigned int merge_reloc_tree:1;
 178	unsigned int found_file_extent:1;
 
 179};
 180
 181/* stages of data relocation */
 182#define MOVE_DATA_EXTENTS	0
 183#define UPDATE_DATA_PTRS	1
 184
 185static void remove_backref_node(struct backref_cache *cache,
 186				struct backref_node *node);
 187static void __mark_block_processed(struct reloc_control *rc,
 188				   struct backref_node *node);
 189
 190static void mapping_tree_init(struct mapping_tree *tree)
 191{
 192	tree->rb_root = RB_ROOT;
 193	spin_lock_init(&tree->lock);
 194}
 195
 196static void backref_cache_init(struct backref_cache *cache)
 197{
 198	int i;
 199	cache->rb_root = RB_ROOT;
 200	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 201		INIT_LIST_HEAD(&cache->pending[i]);
 202	INIT_LIST_HEAD(&cache->changed);
 203	INIT_LIST_HEAD(&cache->detached);
 204	INIT_LIST_HEAD(&cache->leaves);
 205}
 206
 207static void backref_cache_cleanup(struct backref_cache *cache)
 208{
 209	struct backref_node *node;
 210	int i;
 211
 212	while (!list_empty(&cache->detached)) {
 213		node = list_entry(cache->detached.next,
 214				  struct backref_node, list);
 215		remove_backref_node(cache, node);
 216	}
 217
 218	while (!list_empty(&cache->leaves)) {
 219		node = list_entry(cache->leaves.next,
 220				  struct backref_node, lower);
 221		remove_backref_node(cache, node);
 222	}
 223
 224	cache->last_trans = 0;
 225
 226	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 227		ASSERT(list_empty(&cache->pending[i]));
 228	ASSERT(list_empty(&cache->changed));
 229	ASSERT(list_empty(&cache->detached));
 230	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
 231	ASSERT(!cache->nr_nodes);
 232	ASSERT(!cache->nr_edges);
 233}
 234
 235static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 236{
 237	struct backref_node *node;
 238
 239	node = kzalloc(sizeof(*node), GFP_NOFS);
 240	if (node) {
 241		INIT_LIST_HEAD(&node->list);
 242		INIT_LIST_HEAD(&node->upper);
 243		INIT_LIST_HEAD(&node->lower);
 244		RB_CLEAR_NODE(&node->rb_node);
 245		cache->nr_nodes++;
 246	}
 247	return node;
 248}
 249
 250static void free_backref_node(struct backref_cache *cache,
 251			      struct backref_node *node)
 252{
 253	if (node) {
 254		cache->nr_nodes--;
 255		kfree(node);
 256	}
 257}
 258
 259static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 260{
 261	struct backref_edge *edge;
 262
 263	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 264	if (edge)
 265		cache->nr_edges++;
 266	return edge;
 267}
 268
 269static void free_backref_edge(struct backref_cache *cache,
 270			      struct backref_edge *edge)
 271{
 272	if (edge) {
 273		cache->nr_edges--;
 274		kfree(edge);
 275	}
 276}
 277
 278static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 279				   struct rb_node *node)
 280{
 281	struct rb_node **p = &root->rb_node;
 282	struct rb_node *parent = NULL;
 283	struct tree_entry *entry;
 284
 285	while (*p) {
 286		parent = *p;
 287		entry = rb_entry(parent, struct tree_entry, rb_node);
 288
 289		if (bytenr < entry->bytenr)
 290			p = &(*p)->rb_left;
 291		else if (bytenr > entry->bytenr)
 292			p = &(*p)->rb_right;
 293		else
 294			return parent;
 295	}
 296
 297	rb_link_node(node, parent, p);
 298	rb_insert_color(node, root);
 299	return NULL;
 300}
 301
 302static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 303{
 304	struct rb_node *n = root->rb_node;
 305	struct tree_entry *entry;
 306
 307	while (n) {
 308		entry = rb_entry(n, struct tree_entry, rb_node);
 309
 310		if (bytenr < entry->bytenr)
 311			n = n->rb_left;
 312		else if (bytenr > entry->bytenr)
 313			n = n->rb_right;
 314		else
 315			return n;
 316	}
 317	return NULL;
 318}
 319
 320static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 321{
 322
 323	struct btrfs_fs_info *fs_info = NULL;
 324	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 325					      rb_node);
 326	if (bnode->root)
 327		fs_info = bnode->root->fs_info;
 328	btrfs_panic(fs_info, errno,
 329		    "Inconsistency in backref cache found at offset %llu",
 330		    bytenr);
 331}
 332
 333/*
 334 * walk up backref nodes until reach node presents tree root
 335 */
 336static struct backref_node *walk_up_backref(struct backref_node *node,
 337					    struct backref_edge *edges[],
 338					    int *index)
 339{
 340	struct backref_edge *edge;
 341	int idx = *index;
 342
 343	while (!list_empty(&node->upper)) {
 344		edge = list_entry(node->upper.next,
 345				  struct backref_edge, list[LOWER]);
 346		edges[idx++] = edge;
 347		node = edge->node[UPPER];
 348	}
 349	BUG_ON(node->detached);
 350	*index = idx;
 351	return node;
 352}
 353
 354/*
 355 * walk down backref nodes to find start of next reference path
 356 */
 357static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 358					      int *index)
 359{
 360	struct backref_edge *edge;
 361	struct backref_node *lower;
 362	int idx = *index;
 363
 364	while (idx > 0) {
 365		edge = edges[idx - 1];
 366		lower = edge->node[LOWER];
 367		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 368			idx--;
 369			continue;
 370		}
 371		edge = list_entry(edge->list[LOWER].next,
 372				  struct backref_edge, list[LOWER]);
 373		edges[idx - 1] = edge;
 374		*index = idx;
 375		return edge->node[UPPER];
 376	}
 377	*index = 0;
 378	return NULL;
 379}
 380
 381static void unlock_node_buffer(struct backref_node *node)
 382{
 383	if (node->locked) {
 384		btrfs_tree_unlock(node->eb);
 385		node->locked = 0;
 386	}
 387}
 388
 389static void drop_node_buffer(struct backref_node *node)
 390{
 391	if (node->eb) {
 392		unlock_node_buffer(node);
 393		free_extent_buffer(node->eb);
 394		node->eb = NULL;
 395	}
 396}
 397
 398static void drop_backref_node(struct backref_cache *tree,
 399			      struct backref_node *node)
 400{
 401	BUG_ON(!list_empty(&node->upper));
 402
 403	drop_node_buffer(node);
 404	list_del(&node->list);
 405	list_del(&node->lower);
 406	if (!RB_EMPTY_NODE(&node->rb_node))
 407		rb_erase(&node->rb_node, &tree->rb_root);
 408	free_backref_node(tree, node);
 409}
 410
 411/*
 412 * remove a backref node from the backref cache
 413 */
 414static void remove_backref_node(struct backref_cache *cache,
 415				struct backref_node *node)
 416{
 417	struct backref_node *upper;
 418	struct backref_edge *edge;
 419
 420	if (!node)
 421		return;
 422
 423	BUG_ON(!node->lowest && !node->detached);
 424	while (!list_empty(&node->upper)) {
 425		edge = list_entry(node->upper.next, struct backref_edge,
 426				  list[LOWER]);
 427		upper = edge->node[UPPER];
 428		list_del(&edge->list[LOWER]);
 429		list_del(&edge->list[UPPER]);
 430		free_backref_edge(cache, edge);
 431
 432		if (RB_EMPTY_NODE(&upper->rb_node)) {
 433			BUG_ON(!list_empty(&node->upper));
 434			drop_backref_node(cache, node);
 435			node = upper;
 436			node->lowest = 1;
 437			continue;
 438		}
 439		/*
 440		 * add the node to leaf node list if no other
 441		 * child block cached.
 442		 */
 443		if (list_empty(&upper->lower)) {
 444			list_add_tail(&upper->lower, &cache->leaves);
 445			upper->lowest = 1;
 446		}
 447	}
 448
 449	drop_backref_node(cache, node);
 450}
 451
 452static void update_backref_node(struct backref_cache *cache,
 453				struct backref_node *node, u64 bytenr)
 454{
 455	struct rb_node *rb_node;
 456	rb_erase(&node->rb_node, &cache->rb_root);
 457	node->bytenr = bytenr;
 458	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 459	if (rb_node)
 460		backref_tree_panic(rb_node, -EEXIST, bytenr);
 461}
 462
 463/*
 464 * update backref cache after a transaction commit
 465 */
 466static int update_backref_cache(struct btrfs_trans_handle *trans,
 467				struct backref_cache *cache)
 468{
 469	struct backref_node *node;
 470	int level = 0;
 471
 472	if (cache->last_trans == 0) {
 473		cache->last_trans = trans->transid;
 474		return 0;
 475	}
 476
 477	if (cache->last_trans == trans->transid)
 478		return 0;
 479
 480	/*
 481	 * detached nodes are used to avoid unnecessary backref
 482	 * lookup. transaction commit changes the extent tree.
 483	 * so the detached nodes are no longer useful.
 484	 */
 485	while (!list_empty(&cache->detached)) {
 486		node = list_entry(cache->detached.next,
 487				  struct backref_node, list);
 488		remove_backref_node(cache, node);
 489	}
 490
 491	while (!list_empty(&cache->changed)) {
 492		node = list_entry(cache->changed.next,
 493				  struct backref_node, list);
 494		list_del_init(&node->list);
 495		BUG_ON(node->pending);
 496		update_backref_node(cache, node, node->new_bytenr);
 497	}
 498
 499	/*
 500	 * some nodes can be left in the pending list if there were
 501	 * errors during processing the pending nodes.
 502	 */
 503	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 504		list_for_each_entry(node, &cache->pending[level], list) {
 505			BUG_ON(!node->pending);
 506			if (node->bytenr == node->new_bytenr)
 507				continue;
 508			update_backref_node(cache, node, node->new_bytenr);
 509		}
 510	}
 511
 512	cache->last_trans = 0;
 513	return 1;
 514}
 515
 516
 517static int should_ignore_root(struct btrfs_root *root)
 518{
 519	struct btrfs_root *reloc_root;
 520
 521	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 522		return 0;
 523
 524	reloc_root = root->reloc_root;
 525	if (!reloc_root)
 526		return 0;
 527
 528	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 529	    root->fs_info->running_transaction->transid - 1)
 530		return 0;
 531	/*
 532	 * if there is reloc tree and it was created in previous
 533	 * transaction backref lookup can find the reloc tree,
 534	 * so backref node for the fs tree root is useless for
 535	 * relocation.
 536	 */
 537	return 1;
 538}
 539/*
 540 * find reloc tree by address of tree root
 541 */
 542static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 543					  u64 bytenr)
 544{
 545	struct rb_node *rb_node;
 546	struct mapping_node *node;
 547	struct btrfs_root *root = NULL;
 548
 549	spin_lock(&rc->reloc_root_tree.lock);
 550	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 551	if (rb_node) {
 552		node = rb_entry(rb_node, struct mapping_node, rb_node);
 553		root = (struct btrfs_root *)node->data;
 554	}
 555	spin_unlock(&rc->reloc_root_tree.lock);
 556	return root;
 557}
 558
 559static int is_cowonly_root(u64 root_objectid)
 560{
 561	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 562	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 563	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 564	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 565	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 566	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 567	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 568	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
 569	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 570		return 1;
 571	return 0;
 572}
 573
 574static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 575					u64 root_objectid)
 576{
 577	struct btrfs_key key;
 578
 579	key.objectid = root_objectid;
 580	key.type = BTRFS_ROOT_ITEM_KEY;
 581	if (is_cowonly_root(root_objectid))
 582		key.offset = 0;
 583	else
 584		key.offset = (u64)-1;
 585
 586	return btrfs_get_fs_root(fs_info, &key, false);
 587}
 588
 589#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 590static noinline_for_stack
 591struct btrfs_root *find_tree_root(struct reloc_control *rc,
 592				  struct extent_buffer *leaf,
 593				  struct btrfs_extent_ref_v0 *ref0)
 594{
 595	struct btrfs_root *root;
 596	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 597	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 598
 599	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 600
 601	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 602	BUG_ON(IS_ERR(root));
 603
 604	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 605	    generation != btrfs_root_generation(&root->root_item))
 606		return NULL;
 607
 608	return root;
 609}
 610#endif
 611
 612static noinline_for_stack
 613int find_inline_backref(struct extent_buffer *leaf, int slot,
 614			unsigned long *ptr, unsigned long *end)
 615{
 616	struct btrfs_key key;
 617	struct btrfs_extent_item *ei;
 618	struct btrfs_tree_block_info *bi;
 619	u32 item_size;
 620
 621	btrfs_item_key_to_cpu(leaf, &key, slot);
 622
 623	item_size = btrfs_item_size_nr(leaf, slot);
 624#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 625	if (item_size < sizeof(*ei)) {
 626		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 627		return 1;
 628	}
 629#endif
 630	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 631	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 632		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 633
 634	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 635	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 636		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 637		return 1;
 638	}
 639	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 640	    item_size <= sizeof(*ei)) {
 641		WARN_ON(item_size < sizeof(*ei));
 642		return 1;
 643	}
 644
 645	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 646		bi = (struct btrfs_tree_block_info *)(ei + 1);
 647		*ptr = (unsigned long)(bi + 1);
 648	} else {
 649		*ptr = (unsigned long)(ei + 1);
 650	}
 651	*end = (unsigned long)ei + item_size;
 652	return 0;
 653}
 654
 655/*
 656 * build backref tree for a given tree block. root of the backref tree
 657 * corresponds the tree block, leaves of the backref tree correspond
 658 * roots of b-trees that reference the tree block.
 659 *
 660 * the basic idea of this function is check backrefs of a given block
 661 * to find upper level blocks that reference the block, and then check
 662 * backrefs of these upper level blocks recursively. the recursion stop
 663 * when tree root is reached or backrefs for the block is cached.
 664 *
 665 * NOTE: if we find backrefs for a block are cached, we know backrefs
 666 * for all upper level blocks that directly/indirectly reference the
 667 * block are also cached.
 668 */
 669static noinline_for_stack
 670struct backref_node *build_backref_tree(struct reloc_control *rc,
 671					struct btrfs_key *node_key,
 672					int level, u64 bytenr)
 673{
 674	struct backref_cache *cache = &rc->backref_cache;
 675	struct btrfs_path *path1;
 676	struct btrfs_path *path2;
 677	struct extent_buffer *eb;
 678	struct btrfs_root *root;
 679	struct backref_node *cur;
 680	struct backref_node *upper;
 681	struct backref_node *lower;
 682	struct backref_node *node = NULL;
 683	struct backref_node *exist = NULL;
 684	struct backref_edge *edge;
 685	struct rb_node *rb_node;
 686	struct btrfs_key key;
 687	unsigned long end;
 688	unsigned long ptr;
 689	LIST_HEAD(list);
 690	LIST_HEAD(useless);
 691	int cowonly;
 692	int ret;
 693	int err = 0;
 694	bool need_check = true;
 695
 696	path1 = btrfs_alloc_path();
 697	path2 = btrfs_alloc_path();
 698	if (!path1 || !path2) {
 699		err = -ENOMEM;
 700		goto out;
 701	}
 702	path1->reada = READA_FORWARD;
 703	path2->reada = READA_FORWARD;
 704
 705	node = alloc_backref_node(cache);
 706	if (!node) {
 707		err = -ENOMEM;
 708		goto out;
 709	}
 710
 711	node->bytenr = bytenr;
 712	node->level = level;
 713	node->lowest = 1;
 714	cur = node;
 715again:
 716	end = 0;
 717	ptr = 0;
 718	key.objectid = cur->bytenr;
 719	key.type = BTRFS_METADATA_ITEM_KEY;
 720	key.offset = (u64)-1;
 721
 722	path1->search_commit_root = 1;
 723	path1->skip_locking = 1;
 724	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 725				0, 0);
 726	if (ret < 0) {
 727		err = ret;
 728		goto out;
 729	}
 730	ASSERT(ret);
 731	ASSERT(path1->slots[0]);
 732
 733	path1->slots[0]--;
 734
 735	WARN_ON(cur->checked);
 736	if (!list_empty(&cur->upper)) {
 737		/*
 738		 * the backref was added previously when processing
 739		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 740		 */
 741		ASSERT(list_is_singular(&cur->upper));
 742		edge = list_entry(cur->upper.next, struct backref_edge,
 743				  list[LOWER]);
 744		ASSERT(list_empty(&edge->list[UPPER]));
 745		exist = edge->node[UPPER];
 746		/*
 747		 * add the upper level block to pending list if we need
 748		 * check its backrefs
 749		 */
 750		if (!exist->checked)
 751			list_add_tail(&edge->list[UPPER], &list);
 752	} else {
 753		exist = NULL;
 754	}
 755
 756	while (1) {
 757		cond_resched();
 758		eb = path1->nodes[0];
 759
 760		if (ptr >= end) {
 761			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 762				ret = btrfs_next_leaf(rc->extent_root, path1);
 763				if (ret < 0) {
 764					err = ret;
 765					goto out;
 766				}
 767				if (ret > 0)
 768					break;
 769				eb = path1->nodes[0];
 770			}
 771
 772			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 773			if (key.objectid != cur->bytenr) {
 774				WARN_ON(exist);
 775				break;
 776			}
 777
 778			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 779			    key.type == BTRFS_METADATA_ITEM_KEY) {
 780				ret = find_inline_backref(eb, path1->slots[0],
 781							  &ptr, &end);
 782				if (ret)
 783					goto next;
 784			}
 785		}
 786
 787		if (ptr < end) {
 788			/* update key for inline back ref */
 789			struct btrfs_extent_inline_ref *iref;
 790			int type;
 791			iref = (struct btrfs_extent_inline_ref *)ptr;
 792			type = btrfs_get_extent_inline_ref_type(eb, iref,
 793							BTRFS_REF_TYPE_BLOCK);
 794			if (type == BTRFS_REF_TYPE_INVALID) {
 795				err = -EINVAL;
 796				goto out;
 797			}
 798			key.type = type;
 799			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 800
 801			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 802				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 803		}
 804
 805		if (exist &&
 806		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 807		      exist->owner == key.offset) ||
 808		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 809		      exist->bytenr == key.offset))) {
 810			exist = NULL;
 811			goto next;
 812		}
 813
 814#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 815		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 816		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 817			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 818				struct btrfs_extent_ref_v0 *ref0;
 819				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 820						struct btrfs_extent_ref_v0);
 821				if (key.objectid == key.offset) {
 822					root = find_tree_root(rc, eb, ref0);
 823					if (root && !should_ignore_root(root))
 824						cur->root = root;
 825					else
 826						list_add(&cur->list, &useless);
 827					break;
 828				}
 829				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 830								      ref0)))
 831					cur->cowonly = 1;
 832			}
 833#else
 834		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
 835		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 836#endif
 837			if (key.objectid == key.offset) {
 838				/*
 839				 * only root blocks of reloc trees use
 840				 * backref of this type.
 841				 */
 842				root = find_reloc_root(rc, cur->bytenr);
 843				ASSERT(root);
 844				cur->root = root;
 845				break;
 846			}
 847
 848			edge = alloc_backref_edge(cache);
 849			if (!edge) {
 850				err = -ENOMEM;
 851				goto out;
 852			}
 853			rb_node = tree_search(&cache->rb_root, key.offset);
 854			if (!rb_node) {
 855				upper = alloc_backref_node(cache);
 856				if (!upper) {
 857					free_backref_edge(cache, edge);
 858					err = -ENOMEM;
 859					goto out;
 860				}
 861				upper->bytenr = key.offset;
 862				upper->level = cur->level + 1;
 863				/*
 864				 *  backrefs for the upper level block isn't
 865				 *  cached, add the block to pending list
 866				 */
 867				list_add_tail(&edge->list[UPPER], &list);
 868			} else {
 869				upper = rb_entry(rb_node, struct backref_node,
 870						 rb_node);
 871				ASSERT(upper->checked);
 872				INIT_LIST_HEAD(&edge->list[UPPER]);
 873			}
 874			list_add_tail(&edge->list[LOWER], &cur->upper);
 875			edge->node[LOWER] = cur;
 876			edge->node[UPPER] = upper;
 877
 878			goto next;
 879		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 880			goto next;
 881		}
 882
 883		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 884		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 885		if (IS_ERR(root)) {
 886			err = PTR_ERR(root);
 887			goto out;
 888		}
 889
 890		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 891			cur->cowonly = 1;
 892
 893		if (btrfs_root_level(&root->root_item) == cur->level) {
 894			/* tree root */
 895			ASSERT(btrfs_root_bytenr(&root->root_item) ==
 896			       cur->bytenr);
 897			if (should_ignore_root(root))
 898				list_add(&cur->list, &useless);
 899			else
 900				cur->root = root;
 901			break;
 902		}
 903
 904		level = cur->level + 1;
 905
 906		/*
 907		 * searching the tree to find upper level blocks
 908		 * reference the block.
 909		 */
 910		path2->search_commit_root = 1;
 911		path2->skip_locking = 1;
 912		path2->lowest_level = level;
 913		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 914		path2->lowest_level = 0;
 915		if (ret < 0) {
 916			err = ret;
 917			goto out;
 918		}
 919		if (ret > 0 && path2->slots[level] > 0)
 920			path2->slots[level]--;
 921
 922		eb = path2->nodes[level];
 923		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
 924		    cur->bytenr) {
 925			btrfs_err(root->fs_info,
 926	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
 927				  cur->bytenr, level - 1, root->objectid,
 928				  node_key->objectid, node_key->type,
 929				  node_key->offset);
 930			err = -ENOENT;
 931			goto out;
 932		}
 933		lower = cur;
 934		need_check = true;
 935		for (; level < BTRFS_MAX_LEVEL; level++) {
 936			if (!path2->nodes[level]) {
 937				ASSERT(btrfs_root_bytenr(&root->root_item) ==
 938				       lower->bytenr);
 939				if (should_ignore_root(root))
 940					list_add(&lower->list, &useless);
 941				else
 942					lower->root = root;
 943				break;
 944			}
 945
 946			edge = alloc_backref_edge(cache);
 947			if (!edge) {
 948				err = -ENOMEM;
 949				goto out;
 950			}
 951
 952			eb = path2->nodes[level];
 953			rb_node = tree_search(&cache->rb_root, eb->start);
 954			if (!rb_node) {
 955				upper = alloc_backref_node(cache);
 956				if (!upper) {
 957					free_backref_edge(cache, edge);
 958					err = -ENOMEM;
 959					goto out;
 960				}
 961				upper->bytenr = eb->start;
 962				upper->owner = btrfs_header_owner(eb);
 963				upper->level = lower->level + 1;
 964				if (!test_bit(BTRFS_ROOT_REF_COWS,
 965					      &root->state))
 966					upper->cowonly = 1;
 967
 968				/*
 969				 * if we know the block isn't shared
 970				 * we can void checking its backrefs.
 971				 */
 972				if (btrfs_block_can_be_shared(root, eb))
 973					upper->checked = 0;
 974				else
 975					upper->checked = 1;
 976
 977				/*
 978				 * add the block to pending list if we
 979				 * need check its backrefs, we only do this once
 980				 * while walking up a tree as we will catch
 981				 * anything else later on.
 
 
 982				 */
 983				if (!upper->checked && need_check) {
 984					need_check = false;
 985					list_add_tail(&edge->list[UPPER],
 986						      &list);
 987				} else {
 988					if (upper->checked)
 989						need_check = true;
 990					INIT_LIST_HEAD(&edge->list[UPPER]);
 991				}
 992			} else {
 993				upper = rb_entry(rb_node, struct backref_node,
 994						 rb_node);
 995				ASSERT(upper->checked);
 996				INIT_LIST_HEAD(&edge->list[UPPER]);
 997				if (!upper->owner)
 998					upper->owner = btrfs_header_owner(eb);
 999			}
1000			list_add_tail(&edge->list[LOWER], &lower->upper);
1001			edge->node[LOWER] = lower;
1002			edge->node[UPPER] = upper;
1003
1004			if (rb_node)
1005				break;
1006			lower = upper;
1007			upper = NULL;
1008		}
1009		btrfs_release_path(path2);
1010next:
1011		if (ptr < end) {
1012			ptr += btrfs_extent_inline_ref_size(key.type);
1013			if (ptr >= end) {
1014				WARN_ON(ptr > end);
1015				ptr = 0;
1016				end = 0;
1017			}
1018		}
1019		if (ptr >= end)
1020			path1->slots[0]++;
1021	}
1022	btrfs_release_path(path1);
1023
1024	cur->checked = 1;
1025	WARN_ON(exist);
1026
1027	/* the pending list isn't empty, take the first block to process */
1028	if (!list_empty(&list)) {
1029		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1030		list_del_init(&edge->list[UPPER]);
1031		cur = edge->node[UPPER];
1032		goto again;
1033	}
1034
1035	/*
1036	 * everything goes well, connect backref nodes and insert backref nodes
1037	 * into the cache.
1038	 */
1039	ASSERT(node->checked);
1040	cowonly = node->cowonly;
1041	if (!cowonly) {
1042		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1043				      &node->rb_node);
1044		if (rb_node)
1045			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1046		list_add_tail(&node->lower, &cache->leaves);
1047	}
1048
1049	list_for_each_entry(edge, &node->upper, list[LOWER])
1050		list_add_tail(&edge->list[UPPER], &list);
1051
1052	while (!list_empty(&list)) {
1053		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1054		list_del_init(&edge->list[UPPER]);
1055		upper = edge->node[UPPER];
1056		if (upper->detached) {
1057			list_del(&edge->list[LOWER]);
1058			lower = edge->node[LOWER];
1059			free_backref_edge(cache, edge);
1060			if (list_empty(&lower->upper))
1061				list_add(&lower->list, &useless);
1062			continue;
1063		}
1064
1065		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1066			if (upper->lowest) {
1067				list_del_init(&upper->lower);
1068				upper->lowest = 0;
1069			}
1070
1071			list_add_tail(&edge->list[UPPER], &upper->lower);
1072			continue;
1073		}
1074
1075		if (!upper->checked) {
1076			/*
1077			 * Still want to blow up for developers since this is a
1078			 * logic bug.
1079			 */
1080			ASSERT(0);
1081			err = -EINVAL;
1082			goto out;
1083		}
1084		if (cowonly != upper->cowonly) {
1085			ASSERT(0);
1086			err = -EINVAL;
1087			goto out;
1088		}
1089
1090		if (!cowonly) {
1091			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1092					      &upper->rb_node);
1093			if (rb_node)
1094				backref_tree_panic(rb_node, -EEXIST,
1095						   upper->bytenr);
1096		}
1097
1098		list_add_tail(&edge->list[UPPER], &upper->lower);
1099
1100		list_for_each_entry(edge, &upper->upper, list[LOWER])
1101			list_add_tail(&edge->list[UPPER], &list);
1102	}
1103	/*
1104	 * process useless backref nodes. backref nodes for tree leaves
1105	 * are deleted from the cache. backref nodes for upper level
1106	 * tree blocks are left in the cache to avoid unnecessary backref
1107	 * lookup.
1108	 */
1109	while (!list_empty(&useless)) {
1110		upper = list_entry(useless.next, struct backref_node, list);
1111		list_del_init(&upper->list);
1112		ASSERT(list_empty(&upper->upper));
1113		if (upper == node)
1114			node = NULL;
1115		if (upper->lowest) {
1116			list_del_init(&upper->lower);
1117			upper->lowest = 0;
1118		}
1119		while (!list_empty(&upper->lower)) {
1120			edge = list_entry(upper->lower.next,
1121					  struct backref_edge, list[UPPER]);
1122			list_del(&edge->list[UPPER]);
1123			list_del(&edge->list[LOWER]);
1124			lower = edge->node[LOWER];
1125			free_backref_edge(cache, edge);
1126
1127			if (list_empty(&lower->upper))
1128				list_add(&lower->list, &useless);
1129		}
1130		__mark_block_processed(rc, upper);
1131		if (upper->level > 0) {
1132			list_add(&upper->list, &cache->detached);
1133			upper->detached = 1;
1134		} else {
1135			rb_erase(&upper->rb_node, &cache->rb_root);
1136			free_backref_node(cache, upper);
1137		}
1138	}
1139out:
1140	btrfs_free_path(path1);
1141	btrfs_free_path(path2);
1142	if (err) {
1143		while (!list_empty(&useless)) {
1144			lower = list_entry(useless.next,
1145					   struct backref_node, list);
1146			list_del_init(&lower->list);
1147		}
1148		while (!list_empty(&list)) {
1149			edge = list_first_entry(&list, struct backref_edge,
1150						list[UPPER]);
1151			list_del(&edge->list[UPPER]);
 
 
 
 
 
 
 
 
 
1152			list_del(&edge->list[LOWER]);
1153			lower = edge->node[LOWER];
1154			upper = edge->node[UPPER];
1155			free_backref_edge(cache, edge);
1156
1157			/*
1158			 * Lower is no longer linked to any upper backref nodes
1159			 * and isn't in the cache, we can free it ourselves.
1160			 */
1161			if (list_empty(&lower->upper) &&
1162			    RB_EMPTY_NODE(&lower->rb_node))
1163				list_add(&lower->list, &useless);
1164
1165			if (!RB_EMPTY_NODE(&upper->rb_node))
1166				continue;
1167
1168			/* Add this guy's upper edges to the list to process */
1169			list_for_each_entry(edge, &upper->upper, list[LOWER])
1170				list_add_tail(&edge->list[UPPER], &list);
1171			if (list_empty(&upper->upper))
1172				list_add(&upper->list, &useless);
1173		}
1174
1175		while (!list_empty(&useless)) {
1176			lower = list_entry(useless.next,
1177					   struct backref_node, list);
1178			list_del_init(&lower->list);
1179			if (lower == node)
1180				node = NULL;
1181			free_backref_node(cache, lower);
1182		}
1183
1184		free_backref_node(cache, node);
1185		return ERR_PTR(err);
1186	}
1187	ASSERT(!node || !node->detached);
1188	return node;
1189}
1190
1191/*
1192 * helper to add backref node for the newly created snapshot.
1193 * the backref node is created by cloning backref node that
1194 * corresponds to root of source tree
1195 */
1196static int clone_backref_node(struct btrfs_trans_handle *trans,
1197			      struct reloc_control *rc,
1198			      struct btrfs_root *src,
1199			      struct btrfs_root *dest)
1200{
1201	struct btrfs_root *reloc_root = src->reloc_root;
1202	struct backref_cache *cache = &rc->backref_cache;
1203	struct backref_node *node = NULL;
1204	struct backref_node *new_node;
1205	struct backref_edge *edge;
1206	struct backref_edge *new_edge;
1207	struct rb_node *rb_node;
1208
1209	if (cache->last_trans > 0)
1210		update_backref_cache(trans, cache);
1211
1212	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1213	if (rb_node) {
1214		node = rb_entry(rb_node, struct backref_node, rb_node);
1215		if (node->detached)
1216			node = NULL;
1217		else
1218			BUG_ON(node->new_bytenr != reloc_root->node->start);
1219	}
1220
1221	if (!node) {
1222		rb_node = tree_search(&cache->rb_root,
1223				      reloc_root->commit_root->start);
1224		if (rb_node) {
1225			node = rb_entry(rb_node, struct backref_node,
1226					rb_node);
1227			BUG_ON(node->detached);
1228		}
1229	}
1230
1231	if (!node)
1232		return 0;
1233
1234	new_node = alloc_backref_node(cache);
1235	if (!new_node)
1236		return -ENOMEM;
1237
1238	new_node->bytenr = dest->node->start;
1239	new_node->level = node->level;
1240	new_node->lowest = node->lowest;
1241	new_node->checked = 1;
1242	new_node->root = dest;
1243
1244	if (!node->lowest) {
1245		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1246			new_edge = alloc_backref_edge(cache);
1247			if (!new_edge)
1248				goto fail;
1249
1250			new_edge->node[UPPER] = new_node;
1251			new_edge->node[LOWER] = edge->node[LOWER];
1252			list_add_tail(&new_edge->list[UPPER],
1253				      &new_node->lower);
1254		}
1255	} else {
1256		list_add_tail(&new_node->lower, &cache->leaves);
1257	}
1258
1259	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1260			      &new_node->rb_node);
1261	if (rb_node)
1262		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1263
1264	if (!new_node->lowest) {
1265		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1266			list_add_tail(&new_edge->list[LOWER],
1267				      &new_edge->node[LOWER]->upper);
1268		}
1269	}
1270	return 0;
1271fail:
1272	while (!list_empty(&new_node->lower)) {
1273		new_edge = list_entry(new_node->lower.next,
1274				      struct backref_edge, list[UPPER]);
1275		list_del(&new_edge->list[UPPER]);
1276		free_backref_edge(cache, new_edge);
1277	}
1278	free_backref_node(cache, new_node);
1279	return -ENOMEM;
1280}
1281
1282/*
1283 * helper to add 'address of tree root -> reloc tree' mapping
1284 */
1285static int __must_check __add_reloc_root(struct btrfs_root *root)
1286{
1287	struct btrfs_fs_info *fs_info = root->fs_info;
1288	struct rb_node *rb_node;
1289	struct mapping_node *node;
1290	struct reloc_control *rc = fs_info->reloc_ctl;
1291
1292	node = kmalloc(sizeof(*node), GFP_NOFS);
1293	if (!node)
1294		return -ENOMEM;
1295
1296	node->bytenr = root->node->start;
1297	node->data = root;
1298
1299	spin_lock(&rc->reloc_root_tree.lock);
1300	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1301			      node->bytenr, &node->rb_node);
1302	spin_unlock(&rc->reloc_root_tree.lock);
1303	if (rb_node) {
1304		btrfs_panic(fs_info, -EEXIST,
1305			    "Duplicate root found for start=%llu while inserting into relocation tree",
1306			    node->bytenr);
1307	}
1308
1309	list_add_tail(&root->root_list, &rc->reloc_roots);
1310	return 0;
1311}
1312
1313/*
1314 * helper to delete the 'address of tree root -> reloc tree'
1315 * mapping
1316 */
1317static void __del_reloc_root(struct btrfs_root *root)
1318{
1319	struct btrfs_fs_info *fs_info = root->fs_info;
1320	struct rb_node *rb_node;
1321	struct mapping_node *node = NULL;
1322	struct reloc_control *rc = fs_info->reloc_ctl;
1323
1324	spin_lock(&rc->reloc_root_tree.lock);
1325	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1326			      root->node->start);
1327	if (rb_node) {
1328		node = rb_entry(rb_node, struct mapping_node, rb_node);
1329		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1330	}
1331	spin_unlock(&rc->reloc_root_tree.lock);
1332
1333	if (!node)
1334		return;
1335	BUG_ON((struct btrfs_root *)node->data != root);
1336
1337	spin_lock(&fs_info->trans_lock);
1338	list_del_init(&root->root_list);
1339	spin_unlock(&fs_info->trans_lock);
1340	kfree(node);
1341}
1342
1343/*
1344 * helper to update the 'address of tree root -> reloc tree'
1345 * mapping
1346 */
1347static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1348{
1349	struct btrfs_fs_info *fs_info = root->fs_info;
1350	struct rb_node *rb_node;
1351	struct mapping_node *node = NULL;
1352	struct reloc_control *rc = fs_info->reloc_ctl;
1353
1354	spin_lock(&rc->reloc_root_tree.lock);
1355	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1356			      root->node->start);
1357	if (rb_node) {
1358		node = rb_entry(rb_node, struct mapping_node, rb_node);
1359		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1360	}
1361	spin_unlock(&rc->reloc_root_tree.lock);
1362
1363	if (!node)
1364		return 0;
1365	BUG_ON((struct btrfs_root *)node->data != root);
1366
1367	spin_lock(&rc->reloc_root_tree.lock);
1368	node->bytenr = new_bytenr;
1369	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1370			      node->bytenr, &node->rb_node);
1371	spin_unlock(&rc->reloc_root_tree.lock);
1372	if (rb_node)
1373		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1374	return 0;
1375}
1376
1377static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1378					struct btrfs_root *root, u64 objectid)
1379{
1380	struct btrfs_fs_info *fs_info = root->fs_info;
1381	struct btrfs_root *reloc_root;
1382	struct extent_buffer *eb;
1383	struct btrfs_root_item *root_item;
1384	struct btrfs_key root_key;
1385	int ret;
1386
1387	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1388	BUG_ON(!root_item);
1389
1390	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1391	root_key.type = BTRFS_ROOT_ITEM_KEY;
1392	root_key.offset = objectid;
1393
1394	if (root->root_key.objectid == objectid) {
1395		u64 commit_root_gen;
1396
1397		/* called by btrfs_init_reloc_root */
1398		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1399				      BTRFS_TREE_RELOC_OBJECTID);
1400		BUG_ON(ret);
1401		/*
1402		 * Set the last_snapshot field to the generation of the commit
1403		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1404		 * correctly (returns true) when the relocation root is created
1405		 * either inside the critical section of a transaction commit
1406		 * (through transaction.c:qgroup_account_snapshot()) and when
1407		 * it's created before the transaction commit is started.
1408		 */
1409		commit_root_gen = btrfs_header_generation(root->commit_root);
1410		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1411	} else {
1412		/*
1413		 * called by btrfs_reloc_post_snapshot_hook.
1414		 * the source tree is a reloc tree, all tree blocks
1415		 * modified after it was created have RELOC flag
1416		 * set in their headers. so it's OK to not update
1417		 * the 'last_snapshot'.
1418		 */
1419		ret = btrfs_copy_root(trans, root, root->node, &eb,
1420				      BTRFS_TREE_RELOC_OBJECTID);
1421		BUG_ON(ret);
1422	}
1423
1424	memcpy(root_item, &root->root_item, sizeof(*root_item));
1425	btrfs_set_root_bytenr(root_item, eb->start);
1426	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1427	btrfs_set_root_generation(root_item, trans->transid);
1428
1429	if (root->root_key.objectid == objectid) {
1430		btrfs_set_root_refs(root_item, 0);
1431		memset(&root_item->drop_progress, 0,
1432		       sizeof(struct btrfs_disk_key));
1433		root_item->drop_level = 0;
1434	}
1435
1436	btrfs_tree_unlock(eb);
1437	free_extent_buffer(eb);
1438
1439	ret = btrfs_insert_root(trans, fs_info->tree_root,
1440				&root_key, root_item);
1441	BUG_ON(ret);
1442	kfree(root_item);
1443
1444	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
 
1445	BUG_ON(IS_ERR(reloc_root));
1446	reloc_root->last_trans = trans->transid;
1447	return reloc_root;
1448}
1449
1450/*
1451 * create reloc tree for a given fs tree. reloc tree is just a
1452 * snapshot of the fs tree with special root objectid.
1453 */
1454int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1455			  struct btrfs_root *root)
1456{
1457	struct btrfs_fs_info *fs_info = root->fs_info;
1458	struct btrfs_root *reloc_root;
1459	struct reloc_control *rc = fs_info->reloc_ctl;
1460	struct btrfs_block_rsv *rsv;
1461	int clear_rsv = 0;
1462	int ret;
1463
1464	if (root->reloc_root) {
1465		reloc_root = root->reloc_root;
1466		reloc_root->last_trans = trans->transid;
1467		return 0;
1468	}
1469
1470	if (!rc || !rc->create_reloc_tree ||
1471	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1472		return 0;
1473
1474	if (!trans->reloc_reserved) {
1475		rsv = trans->block_rsv;
1476		trans->block_rsv = rc->block_rsv;
1477		clear_rsv = 1;
1478	}
1479	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1480	if (clear_rsv)
1481		trans->block_rsv = rsv;
1482
1483	ret = __add_reloc_root(reloc_root);
1484	BUG_ON(ret < 0);
1485	root->reloc_root = reloc_root;
1486	return 0;
1487}
1488
1489/*
1490 * update root item of reloc tree
1491 */
1492int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1493			    struct btrfs_root *root)
1494{
1495	struct btrfs_fs_info *fs_info = root->fs_info;
1496	struct btrfs_root *reloc_root;
1497	struct btrfs_root_item *root_item;
 
1498	int ret;
1499
1500	if (!root->reloc_root)
1501		goto out;
1502
1503	reloc_root = root->reloc_root;
1504	root_item = &reloc_root->root_item;
1505
1506	if (fs_info->reloc_ctl->merge_reloc_tree &&
1507	    btrfs_root_refs(root_item) == 0) {
1508		root->reloc_root = NULL;
1509		__del_reloc_root(reloc_root);
1510	}
1511
 
 
1512	if (reloc_root->commit_root != reloc_root->node) {
1513		btrfs_set_root_node(root_item, reloc_root->node);
1514		free_extent_buffer(reloc_root->commit_root);
1515		reloc_root->commit_root = btrfs_root_node(reloc_root);
1516	}
1517
1518	ret = btrfs_update_root(trans, fs_info->tree_root,
1519				&reloc_root->root_key, root_item);
1520	BUG_ON(ret);
1521
1522out:
1523	return 0;
1524}
1525
1526/*
1527 * helper to find first cached inode with inode number >= objectid
1528 * in a subvolume
1529 */
1530static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1531{
1532	struct rb_node *node;
1533	struct rb_node *prev;
1534	struct btrfs_inode *entry;
1535	struct inode *inode;
1536
1537	spin_lock(&root->inode_lock);
1538again:
1539	node = root->inode_tree.rb_node;
1540	prev = NULL;
1541	while (node) {
1542		prev = node;
1543		entry = rb_entry(node, struct btrfs_inode, rb_node);
1544
1545		if (objectid < btrfs_ino(entry))
1546			node = node->rb_left;
1547		else if (objectid > btrfs_ino(entry))
1548			node = node->rb_right;
1549		else
1550			break;
1551	}
1552	if (!node) {
1553		while (prev) {
1554			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1555			if (objectid <= btrfs_ino(entry)) {
1556				node = prev;
1557				break;
1558			}
1559			prev = rb_next(prev);
1560		}
1561	}
1562	while (node) {
1563		entry = rb_entry(node, struct btrfs_inode, rb_node);
1564		inode = igrab(&entry->vfs_inode);
1565		if (inode) {
1566			spin_unlock(&root->inode_lock);
1567			return inode;
1568		}
1569
1570		objectid = btrfs_ino(entry) + 1;
1571		if (cond_resched_lock(&root->inode_lock))
1572			goto again;
1573
1574		node = rb_next(node);
1575	}
1576	spin_unlock(&root->inode_lock);
1577	return NULL;
1578}
1579
1580static int in_block_group(u64 bytenr,
1581			  struct btrfs_block_group_cache *block_group)
1582{
1583	if (bytenr >= block_group->key.objectid &&
1584	    bytenr < block_group->key.objectid + block_group->key.offset)
1585		return 1;
1586	return 0;
1587}
1588
1589/*
1590 * get new location of data
1591 */
1592static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1593			    u64 bytenr, u64 num_bytes)
1594{
1595	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1596	struct btrfs_path *path;
1597	struct btrfs_file_extent_item *fi;
1598	struct extent_buffer *leaf;
1599	int ret;
1600
1601	path = btrfs_alloc_path();
1602	if (!path)
1603		return -ENOMEM;
1604
1605	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1606	ret = btrfs_lookup_file_extent(NULL, root, path,
1607			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1608	if (ret < 0)
1609		goto out;
1610	if (ret > 0) {
1611		ret = -ENOENT;
1612		goto out;
1613	}
1614
1615	leaf = path->nodes[0];
1616	fi = btrfs_item_ptr(leaf, path->slots[0],
1617			    struct btrfs_file_extent_item);
1618
1619	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1620	       btrfs_file_extent_compression(leaf, fi) ||
1621	       btrfs_file_extent_encryption(leaf, fi) ||
1622	       btrfs_file_extent_other_encoding(leaf, fi));
1623
1624	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1625		ret = -EINVAL;
1626		goto out;
1627	}
1628
1629	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1630	ret = 0;
1631out:
1632	btrfs_free_path(path);
1633	return ret;
1634}
1635
1636/*
1637 * update file extent items in the tree leaf to point to
1638 * the new locations.
1639 */
1640static noinline_for_stack
1641int replace_file_extents(struct btrfs_trans_handle *trans,
1642			 struct reloc_control *rc,
1643			 struct btrfs_root *root,
1644			 struct extent_buffer *leaf)
1645{
1646	struct btrfs_fs_info *fs_info = root->fs_info;
1647	struct btrfs_key key;
1648	struct btrfs_file_extent_item *fi;
1649	struct inode *inode = NULL;
1650	u64 parent;
1651	u64 bytenr;
1652	u64 new_bytenr = 0;
1653	u64 num_bytes;
1654	u64 end;
1655	u32 nritems;
1656	u32 i;
1657	int ret = 0;
1658	int first = 1;
1659	int dirty = 0;
1660
1661	if (rc->stage != UPDATE_DATA_PTRS)
1662		return 0;
1663
1664	/* reloc trees always use full backref */
1665	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1666		parent = leaf->start;
1667	else
1668		parent = 0;
1669
1670	nritems = btrfs_header_nritems(leaf);
1671	for (i = 0; i < nritems; i++) {
1672		cond_resched();
1673		btrfs_item_key_to_cpu(leaf, &key, i);
1674		if (key.type != BTRFS_EXTENT_DATA_KEY)
1675			continue;
1676		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1677		if (btrfs_file_extent_type(leaf, fi) ==
1678		    BTRFS_FILE_EXTENT_INLINE)
1679			continue;
1680		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1681		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1682		if (bytenr == 0)
1683			continue;
1684		if (!in_block_group(bytenr, rc->block_group))
1685			continue;
1686
1687		/*
1688		 * if we are modifying block in fs tree, wait for readpage
1689		 * to complete and drop the extent cache
1690		 */
1691		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1692			if (first) {
1693				inode = find_next_inode(root, key.objectid);
1694				first = 0;
1695			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1696				btrfs_add_delayed_iput(inode);
1697				inode = find_next_inode(root, key.objectid);
1698			}
1699			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1700				end = key.offset +
1701				      btrfs_file_extent_num_bytes(leaf, fi);
1702				WARN_ON(!IS_ALIGNED(key.offset,
1703						    fs_info->sectorsize));
1704				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1705				end--;
1706				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1707						      key.offset, end);
 
1708				if (!ret)
1709					continue;
1710
1711				btrfs_drop_extent_cache(BTRFS_I(inode),
1712						key.offset,	end, 1);
1713				unlock_extent(&BTRFS_I(inode)->io_tree,
1714					      key.offset, end);
1715			}
1716		}
1717
1718		ret = get_new_location(rc->data_inode, &new_bytenr,
1719				       bytenr, num_bytes);
1720		if (ret) {
1721			/*
1722			 * Don't have to abort since we've not changed anything
1723			 * in the file extent yet.
1724			 */
1725			break;
1726		}
 
1727
1728		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1729		dirty = 1;
1730
1731		key.offset -= btrfs_file_extent_offset(leaf, fi);
1732		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1733					   num_bytes, parent,
1734					   btrfs_header_owner(leaf),
1735					   key.objectid, key.offset);
1736		if (ret) {
1737			btrfs_abort_transaction(trans, ret);
1738			break;
1739		}
1740
1741		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1742					parent, btrfs_header_owner(leaf),
1743					key.objectid, key.offset);
1744		if (ret) {
1745			btrfs_abort_transaction(trans, ret);
1746			break;
1747		}
1748	}
1749	if (dirty)
1750		btrfs_mark_buffer_dirty(leaf);
1751	if (inode)
1752		btrfs_add_delayed_iput(inode);
1753	return ret;
1754}
1755
1756static noinline_for_stack
1757int memcmp_node_keys(struct extent_buffer *eb, int slot,
1758		     struct btrfs_path *path, int level)
1759{
1760	struct btrfs_disk_key key1;
1761	struct btrfs_disk_key key2;
1762	btrfs_node_key(eb, &key1, slot);
1763	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1764	return memcmp(&key1, &key2, sizeof(key1));
1765}
1766
1767/*
1768 * try to replace tree blocks in fs tree with the new blocks
1769 * in reloc tree. tree blocks haven't been modified since the
1770 * reloc tree was create can be replaced.
1771 *
1772 * if a block was replaced, level of the block + 1 is returned.
1773 * if no block got replaced, 0 is returned. if there are other
1774 * errors, a negative error number is returned.
1775 */
1776static noinline_for_stack
1777int replace_path(struct btrfs_trans_handle *trans,
1778		 struct btrfs_root *dest, struct btrfs_root *src,
1779		 struct btrfs_path *path, struct btrfs_key *next_key,
1780		 int lowest_level, int max_level)
1781{
1782	struct btrfs_fs_info *fs_info = dest->fs_info;
1783	struct extent_buffer *eb;
1784	struct extent_buffer *parent;
1785	struct btrfs_key key;
1786	u64 old_bytenr;
1787	u64 new_bytenr;
1788	u64 old_ptr_gen;
1789	u64 new_ptr_gen;
1790	u64 last_snapshot;
1791	u32 blocksize;
1792	int cow = 0;
1793	int level;
1794	int ret;
1795	int slot;
1796
1797	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1798	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1799
1800	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1801again:
1802	slot = path->slots[lowest_level];
1803	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1804
1805	eb = btrfs_lock_root_node(dest);
1806	btrfs_set_lock_blocking(eb);
1807	level = btrfs_header_level(eb);
1808
1809	if (level < lowest_level) {
1810		btrfs_tree_unlock(eb);
1811		free_extent_buffer(eb);
1812		return 0;
1813	}
1814
1815	if (cow) {
1816		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1817		BUG_ON(ret);
1818	}
1819	btrfs_set_lock_blocking(eb);
1820
1821	if (next_key) {
1822		next_key->objectid = (u64)-1;
1823		next_key->type = (u8)-1;
1824		next_key->offset = (u64)-1;
1825	}
1826
1827	parent = eb;
1828	while (1) {
1829		struct btrfs_key first_key;
1830
1831		level = btrfs_header_level(parent);
1832		BUG_ON(level < lowest_level);
1833
1834		ret = btrfs_bin_search(parent, &key, level, &slot);
1835		if (ret && slot > 0)
1836			slot--;
1837
1838		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1839			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1840
1841		old_bytenr = btrfs_node_blockptr(parent, slot);
1842		blocksize = fs_info->nodesize;
1843		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1844		btrfs_node_key_to_cpu(parent, &first_key, slot);
1845
1846		if (level <= max_level) {
1847			eb = path->nodes[level];
1848			new_bytenr = btrfs_node_blockptr(eb,
1849							path->slots[level]);
1850			new_ptr_gen = btrfs_node_ptr_generation(eb,
1851							path->slots[level]);
1852		} else {
1853			new_bytenr = 0;
1854			new_ptr_gen = 0;
1855		}
1856
1857		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
 
1858			ret = level;
1859			break;
1860		}
1861
1862		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1863		    memcmp_node_keys(parent, slot, path, level)) {
1864			if (level <= lowest_level) {
1865				ret = 0;
1866				break;
1867			}
1868
1869			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1870					     level - 1, &first_key);
1871			if (IS_ERR(eb)) {
1872				ret = PTR_ERR(eb);
1873				break;
1874			} else if (!extent_buffer_uptodate(eb)) {
1875				ret = -EIO;
1876				free_extent_buffer(eb);
1877				break;
1878			}
1879			btrfs_tree_lock(eb);
1880			if (cow) {
1881				ret = btrfs_cow_block(trans, dest, eb, parent,
1882						      slot, &eb);
1883				BUG_ON(ret);
1884			}
1885			btrfs_set_lock_blocking(eb);
1886
1887			btrfs_tree_unlock(parent);
1888			free_extent_buffer(parent);
1889
1890			parent = eb;
1891			continue;
1892		}
1893
1894		if (!cow) {
1895			btrfs_tree_unlock(parent);
1896			free_extent_buffer(parent);
1897			cow = 1;
1898			goto again;
1899		}
1900
1901		btrfs_node_key_to_cpu(path->nodes[level], &key,
1902				      path->slots[level]);
1903		btrfs_release_path(path);
1904
1905		path->lowest_level = level;
1906		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1907		path->lowest_level = 0;
1908		BUG_ON(ret);
1909
1910		/*
1911		 * Info qgroup to trace both subtrees.
1912		 *
1913		 * We must trace both trees.
1914		 * 1) Tree reloc subtree
1915		 *    If not traced, we will leak data numbers
1916		 * 2) Fs subtree
1917		 *    If not traced, we will double count old data
1918		 *    and tree block numbers, if current trans doesn't free
1919		 *    data reloc tree inode.
1920		 */
1921		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1922				btrfs_header_generation(parent),
1923				btrfs_header_level(parent));
1924		if (ret < 0)
1925			break;
1926		ret = btrfs_qgroup_trace_subtree(trans, dest,
1927				path->nodes[level],
1928				btrfs_header_generation(path->nodes[level]),
1929				btrfs_header_level(path->nodes[level]));
1930		if (ret < 0)
1931			break;
1932
1933		/*
1934		 * swap blocks in fs tree and reloc tree.
1935		 */
1936		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1937		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1938		btrfs_mark_buffer_dirty(parent);
1939
1940		btrfs_set_node_blockptr(path->nodes[level],
1941					path->slots[level], old_bytenr);
1942		btrfs_set_node_ptr_generation(path->nodes[level],
1943					      path->slots[level], old_ptr_gen);
1944		btrfs_mark_buffer_dirty(path->nodes[level]);
1945
1946		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1947					blocksize, path->nodes[level]->start,
1948					src->root_key.objectid, level - 1, 0);
1949		BUG_ON(ret);
1950		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1951					blocksize, 0, dest->root_key.objectid,
1952					level - 1, 0);
1953		BUG_ON(ret);
1954
1955		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1956					path->nodes[level]->start,
1957					src->root_key.objectid, level - 1, 0);
1958		BUG_ON(ret);
1959
1960		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1961					0, dest->root_key.objectid, level - 1,
1962					0);
1963		BUG_ON(ret);
1964
1965		btrfs_unlock_up_safe(path, 0);
1966
1967		ret = level;
1968		break;
1969	}
1970	btrfs_tree_unlock(parent);
1971	free_extent_buffer(parent);
1972	return ret;
1973}
1974
1975/*
1976 * helper to find next relocated block in reloc tree
1977 */
1978static noinline_for_stack
1979int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1980		       int *level)
1981{
1982	struct extent_buffer *eb;
1983	int i;
1984	u64 last_snapshot;
1985	u32 nritems;
1986
1987	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1988
1989	for (i = 0; i < *level; i++) {
1990		free_extent_buffer(path->nodes[i]);
1991		path->nodes[i] = NULL;
1992	}
1993
1994	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1995		eb = path->nodes[i];
1996		nritems = btrfs_header_nritems(eb);
1997		while (path->slots[i] + 1 < nritems) {
1998			path->slots[i]++;
1999			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2000			    last_snapshot)
2001				continue;
2002
2003			*level = i;
2004			return 0;
2005		}
2006		free_extent_buffer(path->nodes[i]);
2007		path->nodes[i] = NULL;
2008	}
2009	return 1;
2010}
2011
2012/*
2013 * walk down reloc tree to find relocated block of lowest level
2014 */
2015static noinline_for_stack
2016int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2017			 int *level)
2018{
2019	struct btrfs_fs_info *fs_info = root->fs_info;
2020	struct extent_buffer *eb = NULL;
2021	int i;
2022	u64 bytenr;
2023	u64 ptr_gen = 0;
2024	u64 last_snapshot;
 
2025	u32 nritems;
2026
2027	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2028
2029	for (i = *level; i > 0; i--) {
2030		struct btrfs_key first_key;
2031
2032		eb = path->nodes[i];
2033		nritems = btrfs_header_nritems(eb);
2034		while (path->slots[i] < nritems) {
2035			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2036			if (ptr_gen > last_snapshot)
2037				break;
2038			path->slots[i]++;
2039		}
2040		if (path->slots[i] >= nritems) {
2041			if (i == *level)
2042				break;
2043			*level = i + 1;
2044			return 0;
2045		}
2046		if (i == 1) {
2047			*level = i;
2048			return 0;
2049		}
2050
2051		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2052		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2053		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2054				     &first_key);
2055		if (IS_ERR(eb)) {
2056			return PTR_ERR(eb);
2057		} else if (!extent_buffer_uptodate(eb)) {
2058			free_extent_buffer(eb);
2059			return -EIO;
2060		}
2061		BUG_ON(btrfs_header_level(eb) != i - 1);
2062		path->nodes[i - 1] = eb;
2063		path->slots[i - 1] = 0;
2064	}
2065	return 1;
2066}
2067
2068/*
2069 * invalidate extent cache for file extents whose key in range of
2070 * [min_key, max_key)
2071 */
2072static int invalidate_extent_cache(struct btrfs_root *root,
2073				   struct btrfs_key *min_key,
2074				   struct btrfs_key *max_key)
2075{
2076	struct btrfs_fs_info *fs_info = root->fs_info;
2077	struct inode *inode = NULL;
2078	u64 objectid;
2079	u64 start, end;
2080	u64 ino;
2081
2082	objectid = min_key->objectid;
2083	while (1) {
2084		cond_resched();
2085		iput(inode);
2086
2087		if (objectid > max_key->objectid)
2088			break;
2089
2090		inode = find_next_inode(root, objectid);
2091		if (!inode)
2092			break;
2093		ino = btrfs_ino(BTRFS_I(inode));
2094
2095		if (ino > max_key->objectid) {
2096			iput(inode);
2097			break;
2098		}
2099
2100		objectid = ino + 1;
2101		if (!S_ISREG(inode->i_mode))
2102			continue;
2103
2104		if (unlikely(min_key->objectid == ino)) {
2105			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2106				continue;
2107			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2108				start = 0;
2109			else {
2110				start = min_key->offset;
2111				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2112			}
2113		} else {
2114			start = 0;
2115		}
2116
2117		if (unlikely(max_key->objectid == ino)) {
2118			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2119				continue;
2120			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2121				end = (u64)-1;
2122			} else {
2123				if (max_key->offset == 0)
2124					continue;
2125				end = max_key->offset;
2126				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2127				end--;
2128			}
2129		} else {
2130			end = (u64)-1;
2131		}
2132
2133		/* the lock_extent waits for readpage to complete */
2134		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2136		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2137	}
2138	return 0;
2139}
2140
2141static int find_next_key(struct btrfs_path *path, int level,
2142			 struct btrfs_key *key)
2143
2144{
2145	while (level < BTRFS_MAX_LEVEL) {
2146		if (!path->nodes[level])
2147			break;
2148		if (path->slots[level] + 1 <
2149		    btrfs_header_nritems(path->nodes[level])) {
2150			btrfs_node_key_to_cpu(path->nodes[level], key,
2151					      path->slots[level] + 1);
2152			return 0;
2153		}
2154		level++;
2155	}
2156	return 1;
2157}
2158
2159/*
2160 * merge the relocated tree blocks in reloc tree with corresponding
2161 * fs tree.
2162 */
2163static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2164					       struct btrfs_root *root)
2165{
2166	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2167	LIST_HEAD(inode_list);
2168	struct btrfs_key key;
2169	struct btrfs_key next_key;
2170	struct btrfs_trans_handle *trans = NULL;
2171	struct btrfs_root *reloc_root;
2172	struct btrfs_root_item *root_item;
2173	struct btrfs_path *path;
2174	struct extent_buffer *leaf;
 
2175	int level;
2176	int max_level;
2177	int replaced = 0;
2178	int ret;
2179	int err = 0;
2180	u32 min_reserved;
2181
2182	path = btrfs_alloc_path();
2183	if (!path)
2184		return -ENOMEM;
2185	path->reada = READA_FORWARD;
2186
2187	reloc_root = root->reloc_root;
2188	root_item = &reloc_root->root_item;
2189
2190	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2191		level = btrfs_root_level(root_item);
2192		extent_buffer_get(reloc_root->node);
2193		path->nodes[level] = reloc_root->node;
2194		path->slots[level] = 0;
2195	} else {
2196		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2197
2198		level = root_item->drop_level;
2199		BUG_ON(level == 0);
2200		path->lowest_level = level;
2201		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2202		path->lowest_level = 0;
2203		if (ret < 0) {
2204			btrfs_free_path(path);
2205			return ret;
2206		}
2207
2208		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2209				      path->slots[level]);
2210		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2211
2212		btrfs_unlock_up_safe(path, 0);
2213	}
2214
2215	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2216	memset(&next_key, 0, sizeof(next_key));
2217
2218	while (1) {
2219		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2220					     BTRFS_RESERVE_FLUSH_ALL);
 
 
 
 
2221		if (ret) {
2222			err = ret;
2223			goto out;
2224		}
2225		trans = btrfs_start_transaction(root, 0);
2226		if (IS_ERR(trans)) {
2227			err = PTR_ERR(trans);
2228			trans = NULL;
2229			goto out;
2230		}
2231		trans->block_rsv = rc->block_rsv;
2232
2233		replaced = 0;
2234		max_level = level;
2235
2236		ret = walk_down_reloc_tree(reloc_root, path, &level);
2237		if (ret < 0) {
2238			err = ret;
2239			goto out;
2240		}
2241		if (ret > 0)
2242			break;
2243
2244		if (!find_next_key(path, level, &key) &&
2245		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2246			ret = 0;
2247		} else {
2248			ret = replace_path(trans, root, reloc_root, path,
2249					   &next_key, level, max_level);
2250		}
2251		if (ret < 0) {
2252			err = ret;
2253			goto out;
2254		}
2255
2256		if (ret > 0) {
2257			level = ret;
2258			btrfs_node_key_to_cpu(path->nodes[level], &key,
2259					      path->slots[level]);
2260			replaced = 1;
2261		}
2262
2263		ret = walk_up_reloc_tree(reloc_root, path, &level);
2264		if (ret > 0)
2265			break;
2266
2267		BUG_ON(level == 0);
2268		/*
2269		 * save the merging progress in the drop_progress.
2270		 * this is OK since root refs == 1 in this case.
2271		 */
2272		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2273			       path->slots[level]);
2274		root_item->drop_level = level;
2275
2276		btrfs_end_transaction_throttle(trans);
2277		trans = NULL;
2278
2279		btrfs_btree_balance_dirty(fs_info);
2280
2281		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2282			invalidate_extent_cache(root, &key, &next_key);
2283	}
2284
2285	/*
2286	 * handle the case only one block in the fs tree need to be
2287	 * relocated and the block is tree root.
2288	 */
2289	leaf = btrfs_lock_root_node(root);
2290	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2291	btrfs_tree_unlock(leaf);
2292	free_extent_buffer(leaf);
2293	if (ret < 0)
2294		err = ret;
2295out:
2296	btrfs_free_path(path);
2297
2298	if (err == 0) {
2299		memset(&root_item->drop_progress, 0,
2300		       sizeof(root_item->drop_progress));
2301		root_item->drop_level = 0;
2302		btrfs_set_root_refs(root_item, 0);
2303		btrfs_update_reloc_root(trans, root);
2304	}
2305
2306	if (trans)
2307		btrfs_end_transaction_throttle(trans);
2308
2309	btrfs_btree_balance_dirty(fs_info);
2310
2311	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2312		invalidate_extent_cache(root, &key, &next_key);
2313
2314	return err;
2315}
2316
2317static noinline_for_stack
2318int prepare_to_merge(struct reloc_control *rc, int err)
2319{
2320	struct btrfs_root *root = rc->extent_root;
2321	struct btrfs_fs_info *fs_info = root->fs_info;
2322	struct btrfs_root *reloc_root;
2323	struct btrfs_trans_handle *trans;
2324	LIST_HEAD(reloc_roots);
2325	u64 num_bytes = 0;
2326	int ret;
2327
2328	mutex_lock(&fs_info->reloc_mutex);
2329	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2330	rc->merging_rsv_size += rc->nodes_relocated * 2;
2331	mutex_unlock(&fs_info->reloc_mutex);
2332
2333again:
2334	if (!err) {
2335		num_bytes = rc->merging_rsv_size;
2336		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2337					  BTRFS_RESERVE_FLUSH_ALL);
2338		if (ret)
2339			err = ret;
2340	}
2341
2342	trans = btrfs_join_transaction(rc->extent_root);
2343	if (IS_ERR(trans)) {
2344		if (!err)
2345			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2346						num_bytes);
2347		return PTR_ERR(trans);
2348	}
2349
2350	if (!err) {
2351		if (num_bytes != rc->merging_rsv_size) {
2352			btrfs_end_transaction(trans);
2353			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2354						num_bytes);
2355			goto again;
2356		}
2357	}
2358
2359	rc->merge_reloc_tree = 1;
2360
2361	while (!list_empty(&rc->reloc_roots)) {
2362		reloc_root = list_entry(rc->reloc_roots.next,
2363					struct btrfs_root, root_list);
2364		list_del_init(&reloc_root->root_list);
2365
2366		root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
2367		BUG_ON(IS_ERR(root));
2368		BUG_ON(root->reloc_root != reloc_root);
2369
2370		/*
2371		 * set reference count to 1, so btrfs_recover_relocation
2372		 * knows it should resumes merging
2373		 */
2374		if (!err)
2375			btrfs_set_root_refs(&reloc_root->root_item, 1);
2376		btrfs_update_reloc_root(trans, root);
2377
2378		list_add(&reloc_root->root_list, &reloc_roots);
2379	}
2380
2381	list_splice(&reloc_roots, &rc->reloc_roots);
2382
2383	if (!err)
2384		btrfs_commit_transaction(trans);
2385	else
2386		btrfs_end_transaction(trans);
2387	return err;
2388}
2389
2390static noinline_for_stack
2391void free_reloc_roots(struct list_head *list)
2392{
2393	struct btrfs_root *reloc_root;
2394
2395	while (!list_empty(list)) {
2396		reloc_root = list_entry(list->next, struct btrfs_root,
2397					root_list);
2398		__del_reloc_root(reloc_root);
2399		free_extent_buffer(reloc_root->node);
2400		free_extent_buffer(reloc_root->commit_root);
2401		reloc_root->node = NULL;
2402		reloc_root->commit_root = NULL;
2403	}
2404}
2405
2406static noinline_for_stack
2407void merge_reloc_roots(struct reloc_control *rc)
2408{
2409	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2410	struct btrfs_root *root;
2411	struct btrfs_root *reloc_root;
2412	LIST_HEAD(reloc_roots);
2413	int found = 0;
2414	int ret = 0;
2415again:
2416	root = rc->extent_root;
2417
2418	/*
2419	 * this serializes us with btrfs_record_root_in_transaction,
2420	 * we have to make sure nobody is in the middle of
2421	 * adding their roots to the list while we are
2422	 * doing this splice
2423	 */
2424	mutex_lock(&fs_info->reloc_mutex);
2425	list_splice_init(&rc->reloc_roots, &reloc_roots);
2426	mutex_unlock(&fs_info->reloc_mutex);
2427
2428	while (!list_empty(&reloc_roots)) {
2429		found = 1;
2430		reloc_root = list_entry(reloc_roots.next,
2431					struct btrfs_root, root_list);
2432
2433		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2434			root = read_fs_root(fs_info,
2435					    reloc_root->root_key.offset);
2436			BUG_ON(IS_ERR(root));
2437			BUG_ON(root->reloc_root != reloc_root);
2438
2439			ret = merge_reloc_root(rc, root);
2440			if (ret) {
2441				if (list_empty(&reloc_root->root_list))
2442					list_add_tail(&reloc_root->root_list,
2443						      &reloc_roots);
2444				goto out;
2445			}
2446		} else {
2447			list_del_init(&reloc_root->root_list);
2448		}
2449
2450		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2451		if (ret < 0) {
2452			if (list_empty(&reloc_root->root_list))
2453				list_add_tail(&reloc_root->root_list,
2454					      &reloc_roots);
2455			goto out;
2456		}
2457	}
2458
2459	if (found) {
2460		found = 0;
2461		goto again;
2462	}
2463out:
2464	if (ret) {
2465		btrfs_handle_fs_error(fs_info, ret, NULL);
2466		if (!list_empty(&reloc_roots))
2467			free_reloc_roots(&reloc_roots);
2468
2469		/* new reloc root may be added */
2470		mutex_lock(&fs_info->reloc_mutex);
2471		list_splice_init(&rc->reloc_roots, &reloc_roots);
2472		mutex_unlock(&fs_info->reloc_mutex);
2473		if (!list_empty(&reloc_roots))
2474			free_reloc_roots(&reloc_roots);
2475	}
2476
2477	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
 
2478}
2479
2480static void free_block_list(struct rb_root *blocks)
2481{
2482	struct tree_block *block;
2483	struct rb_node *rb_node;
2484	while ((rb_node = rb_first(blocks))) {
2485		block = rb_entry(rb_node, struct tree_block, rb_node);
2486		rb_erase(rb_node, blocks);
2487		kfree(block);
2488	}
2489}
2490
2491static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2492				      struct btrfs_root *reloc_root)
2493{
2494	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2495	struct btrfs_root *root;
2496
2497	if (reloc_root->last_trans == trans->transid)
2498		return 0;
2499
2500	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2501	BUG_ON(IS_ERR(root));
2502	BUG_ON(root->reloc_root != reloc_root);
2503
2504	return btrfs_record_root_in_trans(trans, root);
2505}
2506
2507static noinline_for_stack
2508struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2509				     struct reloc_control *rc,
2510				     struct backref_node *node,
2511				     struct backref_edge *edges[])
2512{
2513	struct backref_node *next;
2514	struct btrfs_root *root;
2515	int index = 0;
2516
2517	next = node;
2518	while (1) {
2519		cond_resched();
2520		next = walk_up_backref(next, edges, &index);
2521		root = next->root;
2522		BUG_ON(!root);
2523		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2524
2525		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2526			record_reloc_root_in_trans(trans, root);
2527			break;
2528		}
2529
2530		btrfs_record_root_in_trans(trans, root);
2531		root = root->reloc_root;
2532
2533		if (next->new_bytenr != root->node->start) {
2534			BUG_ON(next->new_bytenr);
2535			BUG_ON(!list_empty(&next->list));
2536			next->new_bytenr = root->node->start;
2537			next->root = root;
2538			list_add_tail(&next->list,
2539				      &rc->backref_cache.changed);
2540			__mark_block_processed(rc, next);
2541			break;
2542		}
2543
2544		WARN_ON(1);
2545		root = NULL;
2546		next = walk_down_backref(edges, &index);
2547		if (!next || next->level <= node->level)
2548			break;
2549	}
2550	if (!root)
2551		return NULL;
2552
 
2553	next = node;
2554	/* setup backref node path for btrfs_reloc_cow_block */
2555	while (1) {
2556		rc->backref_cache.path[next->level] = next;
2557		if (--index < 0)
2558			break;
2559		next = edges[index]->node[UPPER];
2560	}
2561	return root;
2562}
2563
2564/*
2565 * select a tree root for relocation. return NULL if the block
2566 * is reference counted. we should use do_relocation() in this
2567 * case. return a tree root pointer if the block isn't reference
2568 * counted. return -ENOENT if the block is root of reloc tree.
2569 */
2570static noinline_for_stack
2571struct btrfs_root *select_one_root(struct backref_node *node)
 
2572{
2573	struct backref_node *next;
2574	struct btrfs_root *root;
2575	struct btrfs_root *fs_root = NULL;
2576	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2577	int index = 0;
2578
2579	next = node;
2580	while (1) {
2581		cond_resched();
2582		next = walk_up_backref(next, edges, &index);
2583		root = next->root;
2584		BUG_ON(!root);
2585
2586		/* no other choice for non-references counted tree */
2587		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2588			return root;
2589
2590		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2591			fs_root = root;
2592
2593		if (next != node)
2594			return NULL;
2595
2596		next = walk_down_backref(edges, &index);
2597		if (!next || next->level <= node->level)
2598			break;
2599	}
2600
2601	if (!fs_root)
2602		return ERR_PTR(-ENOENT);
2603	return fs_root;
2604}
2605
2606static noinline_for_stack
2607u64 calcu_metadata_size(struct reloc_control *rc,
2608			struct backref_node *node, int reserve)
2609{
2610	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2611	struct backref_node *next = node;
2612	struct backref_edge *edge;
2613	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2614	u64 num_bytes = 0;
2615	int index = 0;
2616
2617	BUG_ON(reserve && node->processed);
2618
2619	while (next) {
2620		cond_resched();
2621		while (1) {
2622			if (next->processed && (reserve || next != node))
2623				break;
2624
2625			num_bytes += fs_info->nodesize;
 
2626
2627			if (list_empty(&next->upper))
2628				break;
2629
2630			edge = list_entry(next->upper.next,
2631					  struct backref_edge, list[LOWER]);
2632			edges[index++] = edge;
2633			next = edge->node[UPPER];
2634		}
2635		next = walk_down_backref(edges, &index);
2636	}
2637	return num_bytes;
2638}
2639
2640static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2641				  struct reloc_control *rc,
2642				  struct backref_node *node)
2643{
2644	struct btrfs_root *root = rc->extent_root;
2645	struct btrfs_fs_info *fs_info = root->fs_info;
2646	u64 num_bytes;
2647	int ret;
2648	u64 tmp;
2649
2650	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2651
2652	trans->block_rsv = rc->block_rsv;
2653	rc->reserved_bytes += num_bytes;
2654
2655	/*
2656	 * We are under a transaction here so we can only do limited flushing.
2657	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2658	 * transaction and try to refill when we can flush all the things.
2659	 */
2660	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2661				BTRFS_RESERVE_FLUSH_LIMIT);
2662	if (ret) {
2663		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2664		while (tmp <= rc->reserved_bytes)
2665			tmp <<= 1;
2666		/*
2667		 * only one thread can access block_rsv at this point,
2668		 * so we don't need hold lock to protect block_rsv.
2669		 * we expand more reservation size here to allow enough
2670		 * space for relocation and we will return eailer in
2671		 * enospc case.
2672		 */
2673		rc->block_rsv->size = tmp + fs_info->nodesize *
2674				      RELOCATION_RESERVED_NODES;
2675		return -EAGAIN;
2676	}
2677
2678	return 0;
2679}
2680
 
 
 
 
 
 
 
2681/*
2682 * relocate a block tree, and then update pointers in upper level
2683 * blocks that reference the block to point to the new location.
2684 *
2685 * if called by link_to_upper, the block has already been relocated.
2686 * in that case this function just updates pointers.
2687 */
2688static int do_relocation(struct btrfs_trans_handle *trans,
2689			 struct reloc_control *rc,
2690			 struct backref_node *node,
2691			 struct btrfs_key *key,
2692			 struct btrfs_path *path, int lowest)
2693{
2694	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2695	struct backref_node *upper;
2696	struct backref_edge *edge;
2697	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2698	struct btrfs_root *root;
2699	struct extent_buffer *eb;
2700	u32 blocksize;
2701	u64 bytenr;
2702	u64 generation;
 
2703	int slot;
2704	int ret;
2705	int err = 0;
2706
2707	BUG_ON(lowest && node->eb);
2708
2709	path->lowest_level = node->level + 1;
2710	rc->backref_cache.path[node->level] = node;
2711	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2712		struct btrfs_key first_key;
2713
2714		cond_resched();
2715
2716		upper = edge->node[UPPER];
2717		root = select_reloc_root(trans, rc, upper, edges);
2718		BUG_ON(!root);
2719
2720		if (upper->eb && !upper->locked) {
2721			if (!lowest) {
2722				ret = btrfs_bin_search(upper->eb, key,
2723						       upper->level, &slot);
2724				BUG_ON(ret);
2725				bytenr = btrfs_node_blockptr(upper->eb, slot);
2726				if (node->eb->start == bytenr)
2727					goto next;
2728			}
2729			drop_node_buffer(upper);
2730		}
2731
2732		if (!upper->eb) {
2733			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2734			if (ret) {
2735				if (ret < 0)
2736					err = ret;
2737				else
2738					err = -ENOENT;
2739
2740				btrfs_release_path(path);
2741				break;
2742			}
 
2743
2744			if (!upper->eb) {
2745				upper->eb = path->nodes[upper->level];
2746				path->nodes[upper->level] = NULL;
2747			} else {
2748				BUG_ON(upper->eb != path->nodes[upper->level]);
2749			}
2750
2751			upper->locked = 1;
2752			path->locks[upper->level] = 0;
2753
2754			slot = path->slots[upper->level];
2755			btrfs_release_path(path);
2756		} else {
2757			ret = btrfs_bin_search(upper->eb, key, upper->level,
2758					       &slot);
2759			BUG_ON(ret);
2760		}
2761
2762		bytenr = btrfs_node_blockptr(upper->eb, slot);
2763		if (lowest) {
2764			if (bytenr != node->bytenr) {
2765				btrfs_err(root->fs_info,
2766		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2767					  bytenr, node->bytenr, slot,
2768					  upper->eb->start);
2769				err = -EIO;
2770				goto next;
2771			}
2772		} else {
2773			if (node->eb->start == bytenr)
2774				goto next;
2775		}
2776
2777		blocksize = root->fs_info->nodesize;
2778		generation = btrfs_node_ptr_generation(upper->eb, slot);
2779		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2780		eb = read_tree_block(fs_info, bytenr, generation,
2781				     upper->level - 1, &first_key);
2782		if (IS_ERR(eb)) {
2783			err = PTR_ERR(eb);
2784			goto next;
2785		} else if (!extent_buffer_uptodate(eb)) {
2786			free_extent_buffer(eb);
2787			err = -EIO;
2788			goto next;
2789		}
2790		btrfs_tree_lock(eb);
2791		btrfs_set_lock_blocking(eb);
2792
2793		if (!node->eb) {
2794			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2795					      slot, &eb);
2796			btrfs_tree_unlock(eb);
2797			free_extent_buffer(eb);
2798			if (ret < 0) {
2799				err = ret;
2800				goto next;
2801			}
2802			BUG_ON(node->eb != eb);
2803		} else {
2804			btrfs_set_node_blockptr(upper->eb, slot,
2805						node->eb->start);
2806			btrfs_set_node_ptr_generation(upper->eb, slot,
2807						      trans->transid);
2808			btrfs_mark_buffer_dirty(upper->eb);
2809
2810			ret = btrfs_inc_extent_ref(trans, root,
2811						node->eb->start, blocksize,
2812						upper->eb->start,
2813						btrfs_header_owner(upper->eb),
2814						node->level, 0);
2815			BUG_ON(ret);
2816
2817			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2818			BUG_ON(ret);
2819		}
2820next:
2821		if (!upper->pending)
2822			drop_node_buffer(upper);
2823		else
2824			unlock_node_buffer(upper);
2825		if (err)
2826			break;
2827	}
2828
2829	if (!err && node->pending) {
2830		drop_node_buffer(node);
2831		list_move_tail(&node->list, &rc->backref_cache.changed);
2832		node->pending = 0;
2833	}
2834
2835	path->lowest_level = 0;
2836	BUG_ON(err == -ENOSPC);
2837	return err;
2838}
2839
2840static int link_to_upper(struct btrfs_trans_handle *trans,
2841			 struct reloc_control *rc,
2842			 struct backref_node *node,
2843			 struct btrfs_path *path)
2844{
2845	struct btrfs_key key;
2846
2847	btrfs_node_key_to_cpu(node->eb, &key, 0);
2848	return do_relocation(trans, rc, node, &key, path, 0);
2849}
2850
2851static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2852				struct reloc_control *rc,
2853				struct btrfs_path *path, int err)
2854{
2855	LIST_HEAD(list);
2856	struct backref_cache *cache = &rc->backref_cache;
2857	struct backref_node *node;
2858	int level;
2859	int ret;
2860
2861	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2862		while (!list_empty(&cache->pending[level])) {
2863			node = list_entry(cache->pending[level].next,
2864					  struct backref_node, list);
2865			list_move_tail(&node->list, &list);
2866			BUG_ON(!node->pending);
2867
2868			if (!err) {
2869				ret = link_to_upper(trans, rc, node, path);
2870				if (ret < 0)
2871					err = ret;
2872			}
2873		}
2874		list_splice_init(&list, &cache->pending[level]);
2875	}
2876	return err;
2877}
2878
2879static void mark_block_processed(struct reloc_control *rc,
2880				 u64 bytenr, u32 blocksize)
2881{
2882	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2883			EXTENT_DIRTY);
2884}
2885
2886static void __mark_block_processed(struct reloc_control *rc,
2887				   struct backref_node *node)
2888{
2889	u32 blocksize;
2890	if (node->level == 0 ||
2891	    in_block_group(node->bytenr, rc->block_group)) {
2892		blocksize = rc->extent_root->fs_info->nodesize;
2893		mark_block_processed(rc, node->bytenr, blocksize);
2894	}
2895	node->processed = 1;
2896}
2897
2898/*
2899 * mark a block and all blocks directly/indirectly reference the block
2900 * as processed.
2901 */
2902static void update_processed_blocks(struct reloc_control *rc,
2903				    struct backref_node *node)
2904{
2905	struct backref_node *next = node;
2906	struct backref_edge *edge;
2907	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2908	int index = 0;
2909
2910	while (next) {
2911		cond_resched();
2912		while (1) {
2913			if (next->processed)
2914				break;
2915
2916			__mark_block_processed(rc, next);
2917
2918			if (list_empty(&next->upper))
2919				break;
2920
2921			edge = list_entry(next->upper.next,
2922					  struct backref_edge, list[LOWER]);
2923			edges[index++] = edge;
2924			next = edge->node[UPPER];
2925		}
2926		next = walk_down_backref(edges, &index);
2927	}
2928}
2929
2930static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2931{
2932	u32 blocksize = rc->extent_root->fs_info->nodesize;
2933
2934	if (test_range_bit(&rc->processed_blocks, bytenr,
2935			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2936		return 1;
2937	return 0;
2938}
2939
2940static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2941			      struct tree_block *block)
2942{
2943	struct extent_buffer *eb;
2944
2945	BUG_ON(block->key_ready);
2946	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2947			     block->level, NULL);
2948	if (IS_ERR(eb)) {
2949		return PTR_ERR(eb);
2950	} else if (!extent_buffer_uptodate(eb)) {
2951		free_extent_buffer(eb);
2952		return -EIO;
2953	}
2954	WARN_ON(btrfs_header_level(eb) != block->level);
2955	if (block->level == 0)
2956		btrfs_item_key_to_cpu(eb, &block->key, 0);
2957	else
2958		btrfs_node_key_to_cpu(eb, &block->key, 0);
2959	free_extent_buffer(eb);
2960	block->key_ready = 1;
2961	return 0;
2962}
2963
 
 
 
 
 
 
 
 
 
2964/*
2965 * helper function to relocate a tree block
2966 */
2967static int relocate_tree_block(struct btrfs_trans_handle *trans,
2968				struct reloc_control *rc,
2969				struct backref_node *node,
2970				struct btrfs_key *key,
2971				struct btrfs_path *path)
2972{
2973	struct btrfs_root *root;
 
2974	int ret = 0;
2975
2976	if (!node)
2977		return 0;
2978
2979	BUG_ON(node->processed);
2980	root = select_one_root(node);
2981	if (root == ERR_PTR(-ENOENT)) {
2982		update_processed_blocks(rc, node);
2983		goto out;
2984	}
2985
2986	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987		ret = reserve_metadata_space(trans, rc, node);
2988		if (ret)
2989			goto out;
 
2990	}
2991
2992	if (root) {
2993		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2994			BUG_ON(node->new_bytenr);
2995			BUG_ON(!list_empty(&node->list));
2996			btrfs_record_root_in_trans(trans, root);
2997			root = root->reloc_root;
2998			node->new_bytenr = root->node->start;
2999			node->root = root;
3000			list_add_tail(&node->list, &rc->backref_cache.changed);
3001		} else {
3002			path->lowest_level = node->level;
3003			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3004			btrfs_release_path(path);
3005			if (ret > 0)
3006				ret = 0;
3007		}
3008		if (!ret)
3009			update_processed_blocks(rc, node);
3010	} else {
3011		ret = do_relocation(trans, rc, node, key, path, 1);
3012	}
3013out:
3014	if (ret || node->level == 0 || node->cowonly)
 
 
3015		remove_backref_node(&rc->backref_cache, node);
 
3016	return ret;
3017}
3018
3019/*
3020 * relocate a list of blocks
3021 */
3022static noinline_for_stack
3023int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3024			 struct reloc_control *rc, struct rb_root *blocks)
3025{
3026	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3027	struct backref_node *node;
3028	struct btrfs_path *path;
3029	struct tree_block *block;
3030	struct rb_node *rb_node;
3031	int ret;
3032	int err = 0;
3033
3034	path = btrfs_alloc_path();
3035	if (!path) {
3036		err = -ENOMEM;
3037		goto out_free_blocks;
3038	}
3039
3040	rb_node = rb_first(blocks);
3041	while (rb_node) {
3042		block = rb_entry(rb_node, struct tree_block, rb_node);
3043		if (!block->key_ready)
3044			readahead_tree_block(fs_info, block->bytenr);
3045		rb_node = rb_next(rb_node);
3046	}
3047
3048	rb_node = rb_first(blocks);
3049	while (rb_node) {
3050		block = rb_entry(rb_node, struct tree_block, rb_node);
3051		if (!block->key_ready) {
3052			err = get_tree_block_key(fs_info, block);
3053			if (err)
3054				goto out_free_path;
3055		}
3056		rb_node = rb_next(rb_node);
3057	}
3058
3059	rb_node = rb_first(blocks);
3060	while (rb_node) {
3061		block = rb_entry(rb_node, struct tree_block, rb_node);
3062
3063		node = build_backref_tree(rc, &block->key,
3064					  block->level, block->bytenr);
3065		if (IS_ERR(node)) {
3066			err = PTR_ERR(node);
3067			goto out;
3068		}
3069
3070		ret = relocate_tree_block(trans, rc, node, &block->key,
3071					  path);
3072		if (ret < 0) {
3073			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3074				err = ret;
3075			goto out;
3076		}
3077		rb_node = rb_next(rb_node);
3078	}
3079out:
 
3080	err = finish_pending_nodes(trans, rc, path, err);
3081
3082out_free_path:
3083	btrfs_free_path(path);
3084out_free_blocks:
3085	free_block_list(blocks);
3086	return err;
3087}
3088
3089static noinline_for_stack
3090int prealloc_file_extent_cluster(struct inode *inode,
3091				 struct file_extent_cluster *cluster)
3092{
3093	u64 alloc_hint = 0;
3094	u64 start;
3095	u64 end;
3096	u64 offset = BTRFS_I(inode)->index_cnt;
3097	u64 num_bytes;
3098	int nr = 0;
3099	int ret = 0;
3100	u64 prealloc_start = cluster->start - offset;
3101	u64 prealloc_end = cluster->end - offset;
3102	u64 cur_offset;
3103	struct extent_changeset *data_reserved = NULL;
3104
3105	BUG_ON(cluster->start != cluster->boundary[0]);
3106	inode_lock(inode);
3107
3108	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3109					  prealloc_end + 1 - prealloc_start);
3110	if (ret)
3111		goto out;
3112
3113	cur_offset = prealloc_start;
3114	while (nr < cluster->nr) {
3115		start = cluster->boundary[nr] - offset;
3116		if (nr + 1 < cluster->nr)
3117			end = cluster->boundary[nr + 1] - 1 - offset;
3118		else
3119			end = cluster->end - offset;
3120
3121		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3122		num_bytes = end + 1 - start;
3123		if (cur_offset < start)
3124			btrfs_free_reserved_data_space(inode, data_reserved,
3125					cur_offset, start - cur_offset);
3126		ret = btrfs_prealloc_file_range(inode, 0, start,
3127						num_bytes, num_bytes,
3128						end + 1, &alloc_hint);
3129		cur_offset = end + 1;
3130		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3131		if (ret)
3132			break;
3133		nr++;
3134	}
3135	if (cur_offset < prealloc_end)
3136		btrfs_free_reserved_data_space(inode, data_reserved,
3137				cur_offset, prealloc_end + 1 - cur_offset);
3138out:
3139	inode_unlock(inode);
3140	extent_changeset_free(data_reserved);
3141	return ret;
3142}
3143
3144static noinline_for_stack
3145int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3146			 u64 block_start)
3147{
3148	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3149	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3150	struct extent_map *em;
3151	int ret = 0;
3152
3153	em = alloc_extent_map();
3154	if (!em)
3155		return -ENOMEM;
3156
3157	em->start = start;
3158	em->len = end + 1 - start;
3159	em->block_len = em->len;
3160	em->block_start = block_start;
3161	em->bdev = fs_info->fs_devices->latest_bdev;
3162	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3163
3164	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3165	while (1) {
3166		write_lock(&em_tree->lock);
3167		ret = add_extent_mapping(em_tree, em, 0);
3168		write_unlock(&em_tree->lock);
3169		if (ret != -EEXIST) {
3170			free_extent_map(em);
3171			break;
3172		}
3173		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3174	}
3175	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3176	return ret;
3177}
3178
3179static int relocate_file_extent_cluster(struct inode *inode,
3180					struct file_extent_cluster *cluster)
3181{
3182	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3183	u64 page_start;
3184	u64 page_end;
3185	u64 offset = BTRFS_I(inode)->index_cnt;
3186	unsigned long index;
3187	unsigned long last_index;
3188	struct page *page;
3189	struct file_ra_state *ra;
3190	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3191	int nr = 0;
3192	int ret = 0;
3193
3194	if (!cluster->nr)
3195		return 0;
3196
3197	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3198	if (!ra)
3199		return -ENOMEM;
3200
3201	ret = prealloc_file_extent_cluster(inode, cluster);
3202	if (ret)
3203		goto out;
3204
3205	file_ra_state_init(ra, inode->i_mapping);
3206
3207	ret = setup_extent_mapping(inode, cluster->start - offset,
3208				   cluster->end - offset, cluster->start);
3209	if (ret)
3210		goto out;
3211
3212	index = (cluster->start - offset) >> PAGE_SHIFT;
3213	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3214	while (index <= last_index) {
3215		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3216				PAGE_SIZE);
3217		if (ret)
3218			goto out;
3219
3220		page = find_lock_page(inode->i_mapping, index);
3221		if (!page) {
3222			page_cache_sync_readahead(inode->i_mapping,
3223						  ra, NULL, index,
3224						  last_index + 1 - index);
3225			page = find_or_create_page(inode->i_mapping, index,
3226						   mask);
3227			if (!page) {
3228				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3229							PAGE_SIZE, true);
3230				ret = -ENOMEM;
3231				goto out;
3232			}
3233		}
3234
3235		if (PageReadahead(page)) {
3236			page_cache_async_readahead(inode->i_mapping,
3237						   ra, NULL, page, index,
3238						   last_index + 1 - index);
3239		}
3240
3241		if (!PageUptodate(page)) {
3242			btrfs_readpage(NULL, page);
3243			lock_page(page);
3244			if (!PageUptodate(page)) {
3245				unlock_page(page);
3246				put_page(page);
3247				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3248							PAGE_SIZE, true);
3249				btrfs_delalloc_release_extents(BTRFS_I(inode),
3250							       PAGE_SIZE, true);
3251				ret = -EIO;
3252				goto out;
3253			}
3254		}
3255
3256		page_start = page_offset(page);
3257		page_end = page_start + PAGE_SIZE - 1;
3258
3259		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
 
3260
3261		set_page_extent_mapped(page);
3262
3263		if (nr < cluster->nr &&
3264		    page_start + offset == cluster->boundary[nr]) {
3265			set_extent_bits(&BTRFS_I(inode)->io_tree,
3266					page_start, page_end,
3267					EXTENT_BOUNDARY);
3268			nr++;
3269		}
3270
3271		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3272						NULL, 0);
3273		if (ret) {
3274			unlock_page(page);
3275			put_page(page);
3276			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3277							 PAGE_SIZE, true);
3278			btrfs_delalloc_release_extents(BTRFS_I(inode),
3279			                               PAGE_SIZE, true);
3280
3281			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3282					  page_start, page_end,
3283					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3284			goto out;
3285
3286		}
3287		set_page_dirty(page);
3288
3289		unlock_extent(&BTRFS_I(inode)->io_tree,
3290			      page_start, page_end);
3291		unlock_page(page);
3292		put_page(page);
3293
3294		index++;
3295		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3296					       false);
3297		balance_dirty_pages_ratelimited(inode->i_mapping);
3298		btrfs_throttle(fs_info);
3299	}
3300	WARN_ON(nr != cluster->nr);
3301out:
3302	kfree(ra);
3303	return ret;
3304}
3305
3306static noinline_for_stack
3307int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3308			 struct file_extent_cluster *cluster)
3309{
3310	int ret;
3311
3312	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3313		ret = relocate_file_extent_cluster(inode, cluster);
3314		if (ret)
3315			return ret;
3316		cluster->nr = 0;
3317	}
3318
3319	if (!cluster->nr)
3320		cluster->start = extent_key->objectid;
3321	else
3322		BUG_ON(cluster->nr >= MAX_EXTENTS);
3323	cluster->end = extent_key->objectid + extent_key->offset - 1;
3324	cluster->boundary[cluster->nr] = extent_key->objectid;
3325	cluster->nr++;
3326
3327	if (cluster->nr >= MAX_EXTENTS) {
3328		ret = relocate_file_extent_cluster(inode, cluster);
3329		if (ret)
3330			return ret;
3331		cluster->nr = 0;
3332	}
3333	return 0;
3334}
3335
3336#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3337static int get_ref_objectid_v0(struct reloc_control *rc,
3338			       struct btrfs_path *path,
3339			       struct btrfs_key *extent_key,
3340			       u64 *ref_objectid, int *path_change)
3341{
3342	struct btrfs_key key;
3343	struct extent_buffer *leaf;
3344	struct btrfs_extent_ref_v0 *ref0;
3345	int ret;
3346	int slot;
3347
3348	leaf = path->nodes[0];
3349	slot = path->slots[0];
3350	while (1) {
3351		if (slot >= btrfs_header_nritems(leaf)) {
3352			ret = btrfs_next_leaf(rc->extent_root, path);
3353			if (ret < 0)
3354				return ret;
3355			BUG_ON(ret > 0);
3356			leaf = path->nodes[0];
3357			slot = path->slots[0];
3358			if (path_change)
3359				*path_change = 1;
3360		}
3361		btrfs_item_key_to_cpu(leaf, &key, slot);
3362		if (key.objectid != extent_key->objectid)
3363			return -ENOENT;
3364
3365		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3366			slot++;
3367			continue;
3368		}
3369		ref0 = btrfs_item_ptr(leaf, slot,
3370				struct btrfs_extent_ref_v0);
3371		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3372		break;
3373	}
3374	return 0;
3375}
3376#endif
3377
3378/*
3379 * helper to add a tree block to the list.
3380 * the major work is getting the generation and level of the block
3381 */
3382static int add_tree_block(struct reloc_control *rc,
3383			  struct btrfs_key *extent_key,
3384			  struct btrfs_path *path,
3385			  struct rb_root *blocks)
3386{
3387	struct extent_buffer *eb;
3388	struct btrfs_extent_item *ei;
3389	struct btrfs_tree_block_info *bi;
3390	struct tree_block *block;
3391	struct rb_node *rb_node;
3392	u32 item_size;
3393	int level = -1;
3394	u64 generation;
3395
3396	eb =  path->nodes[0];
3397	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3398
3399	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3400	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3401		ei = btrfs_item_ptr(eb, path->slots[0],
3402				struct btrfs_extent_item);
3403		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3404			bi = (struct btrfs_tree_block_info *)(ei + 1);
3405			level = btrfs_tree_block_level(eb, bi);
3406		} else {
3407			level = (int)extent_key->offset;
3408		}
3409		generation = btrfs_extent_generation(eb, ei);
 
3410	} else {
3411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3412		u64 ref_owner;
3413		int ret;
3414
3415		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3416		ret = get_ref_objectid_v0(rc, path, extent_key,
3417					  &ref_owner, NULL);
3418		if (ret < 0)
3419			return ret;
3420		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3421		level = (int)ref_owner;
3422		/* FIXME: get real generation */
3423		generation = 0;
3424#else
3425		BUG();
3426#endif
3427	}
3428
3429	btrfs_release_path(path);
3430
3431	BUG_ON(level == -1);
3432
3433	block = kmalloc(sizeof(*block), GFP_NOFS);
3434	if (!block)
3435		return -ENOMEM;
3436
3437	block->bytenr = extent_key->objectid;
3438	block->key.objectid = rc->extent_root->fs_info->nodesize;
3439	block->key.offset = generation;
3440	block->level = level;
3441	block->key_ready = 0;
3442
3443	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3444	if (rb_node)
3445		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3446
3447	return 0;
3448}
3449
3450/*
3451 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3452 */
3453static int __add_tree_block(struct reloc_control *rc,
3454			    u64 bytenr, u32 blocksize,
3455			    struct rb_root *blocks)
3456{
3457	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3458	struct btrfs_path *path;
3459	struct btrfs_key key;
3460	int ret;
3461	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3462
3463	if (tree_block_processed(bytenr, rc))
3464		return 0;
3465
3466	if (tree_search(blocks, bytenr))
3467		return 0;
3468
3469	path = btrfs_alloc_path();
3470	if (!path)
3471		return -ENOMEM;
3472again:
3473	key.objectid = bytenr;
3474	if (skinny) {
3475		key.type = BTRFS_METADATA_ITEM_KEY;
3476		key.offset = (u64)-1;
3477	} else {
3478		key.type = BTRFS_EXTENT_ITEM_KEY;
3479		key.offset = blocksize;
3480	}
3481
3482	path->search_commit_root = 1;
3483	path->skip_locking = 1;
3484	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3485	if (ret < 0)
3486		goto out;
 
3487
3488	if (ret > 0 && skinny) {
3489		if (path->slots[0]) {
3490			path->slots[0]--;
3491			btrfs_item_key_to_cpu(path->nodes[0], &key,
3492					      path->slots[0]);
3493			if (key.objectid == bytenr &&
3494			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3495			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3496			      key.offset == blocksize)))
3497				ret = 0;
3498		}
3499
3500		if (ret) {
3501			skinny = false;
3502			btrfs_release_path(path);
3503			goto again;
3504		}
3505	}
3506	if (ret) {
3507		ASSERT(ret == 1);
3508		btrfs_print_leaf(path->nodes[0]);
3509		btrfs_err(fs_info,
3510	     "tree block extent item (%llu) is not found in extent tree",
3511		     bytenr);
3512		WARN_ON(1);
3513		ret = -EINVAL;
3514		goto out;
3515	}
3516
3517	ret = add_tree_block(rc, &key, path, blocks);
3518out:
3519	btrfs_free_path(path);
3520	return ret;
3521}
3522
3523/*
3524 * helper to check if the block use full backrefs for pointers in it
3525 */
3526static int block_use_full_backref(struct reloc_control *rc,
3527				  struct extent_buffer *eb)
3528{
3529	u64 flags;
3530	int ret;
3531
3532	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3533	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3534		return 1;
3535
3536	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3537				       eb->start, btrfs_header_level(eb), 1,
3538				       NULL, &flags);
3539	BUG_ON(ret);
3540
3541	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3542		ret = 1;
3543	else
3544		ret = 0;
3545	return ret;
3546}
3547
3548static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3549				    struct btrfs_block_group_cache *block_group,
3550				    struct inode *inode,
3551				    u64 ino)
3552{
3553	struct btrfs_key key;
 
3554	struct btrfs_root *root = fs_info->tree_root;
3555	struct btrfs_trans_handle *trans;
 
3556	int ret = 0;
3557
3558	if (inode)
3559		goto truncate;
3560
3561	key.objectid = ino;
3562	key.type = BTRFS_INODE_ITEM_KEY;
3563	key.offset = 0;
3564
3565	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3566	if (IS_ERR(inode) || is_bad_inode(inode)) {
3567		if (!IS_ERR(inode))
3568			iput(inode);
3569		return -ENOENT;
3570	}
3571
3572truncate:
3573	ret = btrfs_check_trunc_cache_free_space(fs_info,
3574						 &fs_info->global_block_rsv);
3575	if (ret)
3576		goto out;
 
3577
3578	trans = btrfs_join_transaction(root);
3579	if (IS_ERR(trans)) {
 
3580		ret = PTR_ERR(trans);
3581		goto out;
3582	}
3583
3584	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3585
3586	btrfs_end_transaction(trans);
3587	btrfs_btree_balance_dirty(fs_info);
 
 
3588out:
3589	iput(inode);
3590	return ret;
3591}
3592
3593/*
3594 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3595 * this function scans fs tree to find blocks reference the data extent
3596 */
3597static int find_data_references(struct reloc_control *rc,
3598				struct btrfs_key *extent_key,
3599				struct extent_buffer *leaf,
3600				struct btrfs_extent_data_ref *ref,
3601				struct rb_root *blocks)
3602{
3603	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3604	struct btrfs_path *path;
3605	struct tree_block *block;
3606	struct btrfs_root *root;
3607	struct btrfs_file_extent_item *fi;
3608	struct rb_node *rb_node;
3609	struct btrfs_key key;
3610	u64 ref_root;
3611	u64 ref_objectid;
3612	u64 ref_offset;
3613	u32 ref_count;
3614	u32 nritems;
3615	int err = 0;
3616	int added = 0;
3617	int counted;
3618	int ret;
3619
3620	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3621	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3622	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3623	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3624
3625	/*
3626	 * This is an extent belonging to the free space cache, lets just delete
3627	 * it and redo the search.
3628	 */
3629	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3630		ret = delete_block_group_cache(fs_info, rc->block_group,
3631					       NULL, ref_objectid);
3632		if (ret != -ENOENT)
3633			return ret;
3634		ret = 0;
3635	}
3636
3637	path = btrfs_alloc_path();
3638	if (!path)
3639		return -ENOMEM;
3640	path->reada = READA_FORWARD;
3641
3642	root = read_fs_root(fs_info, ref_root);
3643	if (IS_ERR(root)) {
3644		err = PTR_ERR(root);
3645		goto out;
3646	}
3647
3648	key.objectid = ref_objectid;
 
3649	key.type = BTRFS_EXTENT_DATA_KEY;
3650	if (ref_offset > ((u64)-1 << 32))
3651		key.offset = 0;
3652	else
3653		key.offset = ref_offset;
3654
3655	path->search_commit_root = 1;
3656	path->skip_locking = 1;
3657	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3658	if (ret < 0) {
3659		err = ret;
3660		goto out;
3661	}
3662
3663	leaf = path->nodes[0];
3664	nritems = btrfs_header_nritems(leaf);
3665	/*
3666	 * the references in tree blocks that use full backrefs
3667	 * are not counted in
3668	 */
3669	if (block_use_full_backref(rc, leaf))
3670		counted = 0;
3671	else
3672		counted = 1;
3673	rb_node = tree_search(blocks, leaf->start);
3674	if (rb_node) {
3675		if (counted)
3676			added = 1;
3677		else
3678			path->slots[0] = nritems;
3679	}
3680
3681	while (ref_count > 0) {
3682		while (path->slots[0] >= nritems) {
3683			ret = btrfs_next_leaf(root, path);
3684			if (ret < 0) {
3685				err = ret;
3686				goto out;
3687			}
3688			if (WARN_ON(ret > 0))
 
3689				goto out;
 
3690
3691			leaf = path->nodes[0];
3692			nritems = btrfs_header_nritems(leaf);
3693			added = 0;
3694
3695			if (block_use_full_backref(rc, leaf))
3696				counted = 0;
3697			else
3698				counted = 1;
3699			rb_node = tree_search(blocks, leaf->start);
3700			if (rb_node) {
3701				if (counted)
3702					added = 1;
3703				else
3704					path->slots[0] = nritems;
3705			}
3706		}
3707
3708		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3709		if (WARN_ON(key.objectid != ref_objectid ||
3710		    key.type != BTRFS_EXTENT_DATA_KEY))
 
3711			break;
 
3712
3713		fi = btrfs_item_ptr(leaf, path->slots[0],
3714				    struct btrfs_file_extent_item);
3715
3716		if (btrfs_file_extent_type(leaf, fi) ==
3717		    BTRFS_FILE_EXTENT_INLINE)
3718			goto next;
3719
3720		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3721		    extent_key->objectid)
3722			goto next;
3723
3724		key.offset -= btrfs_file_extent_offset(leaf, fi);
3725		if (key.offset != ref_offset)
3726			goto next;
3727
3728		if (counted)
3729			ref_count--;
3730		if (added)
3731			goto next;
3732
3733		if (!tree_block_processed(leaf->start, rc)) {
3734			block = kmalloc(sizeof(*block), GFP_NOFS);
3735			if (!block) {
3736				err = -ENOMEM;
3737				break;
3738			}
3739			block->bytenr = leaf->start;
3740			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3741			block->level = 0;
3742			block->key_ready = 1;
3743			rb_node = tree_insert(blocks, block->bytenr,
3744					      &block->rb_node);
3745			if (rb_node)
3746				backref_tree_panic(rb_node, -EEXIST,
3747						   block->bytenr);
3748		}
3749		if (counted)
3750			added = 1;
3751		else
3752			path->slots[0] = nritems;
3753next:
3754		path->slots[0]++;
3755
3756	}
3757out:
3758	btrfs_free_path(path);
3759	return err;
3760}
3761
3762/*
3763 * helper to find all tree blocks that reference a given data extent
3764 */
3765static noinline_for_stack
3766int add_data_references(struct reloc_control *rc,
3767			struct btrfs_key *extent_key,
3768			struct btrfs_path *path,
3769			struct rb_root *blocks)
3770{
3771	struct btrfs_key key;
3772	struct extent_buffer *eb;
3773	struct btrfs_extent_data_ref *dref;
3774	struct btrfs_extent_inline_ref *iref;
3775	unsigned long ptr;
3776	unsigned long end;
3777	u32 blocksize = rc->extent_root->fs_info->nodesize;
3778	int ret = 0;
3779	int err = 0;
3780
3781	eb = path->nodes[0];
3782	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3783	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3784#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3785	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3786		ptr = end;
3787	else
3788#endif
3789		ptr += sizeof(struct btrfs_extent_item);
3790
3791	while (ptr < end) {
3792		iref = (struct btrfs_extent_inline_ref *)ptr;
3793		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3794							BTRFS_REF_TYPE_DATA);
3795		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3796			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3797			ret = __add_tree_block(rc, key.offset, blocksize,
3798					       blocks);
3799		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3800			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3801			ret = find_data_references(rc, extent_key,
3802						   eb, dref, blocks);
3803		} else {
3804			ret = -EINVAL;
3805			btrfs_err(rc->extent_root->fs_info,
3806		     "extent %llu slot %d has an invalid inline ref type",
3807			     eb->start, path->slots[0]);
3808		}
3809		if (ret) {
3810			err = ret;
3811			goto out;
3812		}
3813		ptr += btrfs_extent_inline_ref_size(key.type);
3814	}
3815	WARN_ON(ptr > end);
3816
3817	while (1) {
3818		cond_resched();
3819		eb = path->nodes[0];
3820		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3821			ret = btrfs_next_leaf(rc->extent_root, path);
3822			if (ret < 0) {
3823				err = ret;
3824				break;
3825			}
3826			if (ret > 0)
3827				break;
3828			eb = path->nodes[0];
3829		}
3830
3831		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3832		if (key.objectid != extent_key->objectid)
3833			break;
3834
3835#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3836		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3837		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3838#else
3839		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3840		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3841#endif
3842			ret = __add_tree_block(rc, key.offset, blocksize,
3843					       blocks);
3844		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3845			dref = btrfs_item_ptr(eb, path->slots[0],
3846					      struct btrfs_extent_data_ref);
3847			ret = find_data_references(rc, extent_key,
3848						   eb, dref, blocks);
3849		} else {
3850			ret = 0;
3851		}
3852		if (ret) {
3853			err = ret;
3854			break;
3855		}
3856		path->slots[0]++;
3857	}
3858out:
3859	btrfs_release_path(path);
3860	if (err)
3861		free_block_list(blocks);
3862	return err;
3863}
3864
3865/*
3866 * helper to find next unprocessed extent
3867 */
3868static noinline_for_stack
3869int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3870		     struct btrfs_key *extent_key)
3871{
3872	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3873	struct btrfs_key key;
3874	struct extent_buffer *leaf;
3875	u64 start, end, last;
3876	int ret;
3877
3878	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3879	while (1) {
3880		cond_resched();
3881		if (rc->search_start >= last) {
3882			ret = 1;
3883			break;
3884		}
3885
3886		key.objectid = rc->search_start;
3887		key.type = BTRFS_EXTENT_ITEM_KEY;
3888		key.offset = 0;
3889
3890		path->search_commit_root = 1;
3891		path->skip_locking = 1;
3892		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3893					0, 0);
3894		if (ret < 0)
3895			break;
3896next:
3897		leaf = path->nodes[0];
3898		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3899			ret = btrfs_next_leaf(rc->extent_root, path);
3900			if (ret != 0)
3901				break;
3902			leaf = path->nodes[0];
3903		}
3904
3905		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3906		if (key.objectid >= last) {
3907			ret = 1;
3908			break;
3909		}
3910
3911		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3912		    key.type != BTRFS_METADATA_ITEM_KEY) {
3913			path->slots[0]++;
3914			goto next;
3915		}
3916
3917		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3918		    key.objectid + key.offset <= rc->search_start) {
3919			path->slots[0]++;
3920			goto next;
3921		}
3922
3923		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3924		    key.objectid + fs_info->nodesize <=
3925		    rc->search_start) {
3926			path->slots[0]++;
3927			goto next;
3928		}
3929
3930		ret = find_first_extent_bit(&rc->processed_blocks,
3931					    key.objectid, &start, &end,
3932					    EXTENT_DIRTY, NULL);
3933
3934		if (ret == 0 && start <= key.objectid) {
3935			btrfs_release_path(path);
3936			rc->search_start = end + 1;
3937		} else {
3938			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3939				rc->search_start = key.objectid + key.offset;
3940			else
3941				rc->search_start = key.objectid +
3942					fs_info->nodesize;
3943			memcpy(extent_key, &key, sizeof(key));
3944			return 0;
3945		}
3946	}
3947	btrfs_release_path(path);
3948	return ret;
3949}
3950
3951static void set_reloc_control(struct reloc_control *rc)
3952{
3953	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3954
3955	mutex_lock(&fs_info->reloc_mutex);
3956	fs_info->reloc_ctl = rc;
3957	mutex_unlock(&fs_info->reloc_mutex);
3958}
3959
3960static void unset_reloc_control(struct reloc_control *rc)
3961{
3962	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3963
3964	mutex_lock(&fs_info->reloc_mutex);
3965	fs_info->reloc_ctl = NULL;
3966	mutex_unlock(&fs_info->reloc_mutex);
3967}
3968
3969static int check_extent_flags(u64 flags)
3970{
3971	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3972	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3973		return 1;
3974	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3975	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3976		return 1;
3977	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3978	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3979		return 1;
3980	return 0;
3981}
3982
3983static noinline_for_stack
3984int prepare_to_relocate(struct reloc_control *rc)
3985{
3986	struct btrfs_trans_handle *trans;
3987	int ret;
3988
3989	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3990					      BTRFS_BLOCK_RSV_TEMP);
3991	if (!rc->block_rsv)
3992		return -ENOMEM;
3993
 
 
 
 
 
 
 
 
 
 
 
 
 
3994	memset(&rc->cluster, 0, sizeof(rc->cluster));
3995	rc->search_start = rc->block_group->key.objectid;
3996	rc->extents_found = 0;
3997	rc->nodes_relocated = 0;
3998	rc->merging_rsv_size = 0;
3999	rc->reserved_bytes = 0;
4000	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
4001			      RELOCATION_RESERVED_NODES;
4002	ret = btrfs_block_rsv_refill(rc->extent_root,
4003				     rc->block_rsv, rc->block_rsv->size,
4004				     BTRFS_RESERVE_FLUSH_ALL);
4005	if (ret)
4006		return ret;
4007
4008	rc->create_reloc_tree = 1;
4009	set_reloc_control(rc);
4010
4011	trans = btrfs_join_transaction(rc->extent_root);
4012	if (IS_ERR(trans)) {
4013		unset_reloc_control(rc);
4014		/*
4015		 * extent tree is not a ref_cow tree and has no reloc_root to
4016		 * cleanup.  And callers are responsible to free the above
4017		 * block rsv.
4018		 */
4019		return PTR_ERR(trans);
4020	}
4021	btrfs_commit_transaction(trans);
4022	return 0;
4023}
4024
4025static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4026{
4027	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4028	struct rb_root blocks = RB_ROOT;
4029	struct btrfs_key key;
4030	struct btrfs_trans_handle *trans = NULL;
4031	struct btrfs_path *path;
4032	struct btrfs_extent_item *ei;
 
4033	u64 flags;
4034	u32 item_size;
4035	int ret;
4036	int err = 0;
4037	int progress = 0;
4038
4039	path = btrfs_alloc_path();
4040	if (!path)
4041		return -ENOMEM;
4042	path->reada = READA_FORWARD;
4043
4044	ret = prepare_to_relocate(rc);
4045	if (ret) {
4046		err = ret;
4047		goto out_free;
4048	}
4049
4050	while (1) {
4051		rc->reserved_bytes = 0;
4052		ret = btrfs_block_rsv_refill(rc->extent_root,
4053					rc->block_rsv, rc->block_rsv->size,
4054					BTRFS_RESERVE_FLUSH_ALL);
4055		if (ret) {
4056			err = ret;
4057			break;
4058		}
4059		progress++;
4060		trans = btrfs_start_transaction(rc->extent_root, 0);
4061		if (IS_ERR(trans)) {
4062			err = PTR_ERR(trans);
4063			trans = NULL;
4064			break;
4065		}
4066restart:
4067		if (update_backref_cache(trans, &rc->backref_cache)) {
4068			btrfs_end_transaction(trans);
4069			continue;
4070		}
4071
4072		ret = find_next_extent(rc, path, &key);
4073		if (ret < 0)
4074			err = ret;
4075		if (ret != 0)
4076			break;
4077
4078		rc->extents_found++;
4079
4080		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4081				    struct btrfs_extent_item);
4082		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4083		if (item_size >= sizeof(*ei)) {
4084			flags = btrfs_extent_flags(path->nodes[0], ei);
4085			ret = check_extent_flags(flags);
4086			BUG_ON(ret);
4087
4088		} else {
4089#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4090			u64 ref_owner;
4091			int path_change = 0;
4092
4093			BUG_ON(item_size !=
4094			       sizeof(struct btrfs_extent_item_v0));
4095			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4096						  &path_change);
4097			if (ret < 0) {
4098				err = ret;
4099				break;
4100			}
4101			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4102				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4103			else
4104				flags = BTRFS_EXTENT_FLAG_DATA;
4105
4106			if (path_change) {
4107				btrfs_release_path(path);
4108
4109				path->search_commit_root = 1;
4110				path->skip_locking = 1;
4111				ret = btrfs_search_slot(NULL, rc->extent_root,
4112							&key, path, 0, 0);
4113				if (ret < 0) {
4114					err = ret;
4115					break;
4116				}
4117				BUG_ON(ret > 0);
4118			}
4119#else
4120			BUG();
4121#endif
4122		}
4123
4124		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4125			ret = add_tree_block(rc, &key, path, &blocks);
4126		} else if (rc->stage == UPDATE_DATA_PTRS &&
4127			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4128			ret = add_data_references(rc, &key, path, &blocks);
4129		} else {
4130			btrfs_release_path(path);
4131			ret = 0;
4132		}
4133		if (ret < 0) {
4134			err = ret;
4135			break;
4136		}
4137
4138		if (!RB_EMPTY_ROOT(&blocks)) {
4139			ret = relocate_tree_blocks(trans, rc, &blocks);
4140			if (ret < 0) {
4141				/*
4142				 * if we fail to relocate tree blocks, force to update
4143				 * backref cache when committing transaction.
4144				 */
4145				rc->backref_cache.last_trans = trans->transid - 1;
4146
4147				if (ret != -EAGAIN) {
4148					err = ret;
4149					break;
4150				}
4151				rc->extents_found--;
4152				rc->search_start = key.objectid;
4153			}
4154		}
4155
4156		btrfs_end_transaction_throttle(trans);
4157		btrfs_btree_balance_dirty(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4158		trans = NULL;
4159
4160		if (rc->stage == MOVE_DATA_EXTENTS &&
4161		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4162			rc->found_file_extent = 1;
4163			ret = relocate_data_extent(rc->data_inode,
4164						   &key, &rc->cluster);
4165			if (ret < 0) {
4166				err = ret;
4167				break;
4168			}
4169		}
4170	}
4171	if (trans && progress && err == -ENOSPC) {
4172		ret = btrfs_force_chunk_alloc(trans, fs_info,
4173					      rc->block_group->flags);
4174		if (ret == 1) {
4175			err = 0;
4176			progress = 0;
4177			goto restart;
4178		}
4179	}
4180
4181	btrfs_release_path(path);
4182	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
4183
4184	if (trans) {
4185		btrfs_end_transaction_throttle(trans);
4186		btrfs_btree_balance_dirty(fs_info);
 
4187	}
4188
4189	if (!err) {
4190		ret = relocate_file_extent_cluster(rc->data_inode,
4191						   &rc->cluster);
4192		if (ret < 0)
4193			err = ret;
4194	}
4195
4196	rc->create_reloc_tree = 0;
4197	set_reloc_control(rc);
4198
4199	backref_cache_cleanup(&rc->backref_cache);
4200	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4201
4202	err = prepare_to_merge(rc, err);
4203
4204	merge_reloc_roots(rc);
4205
4206	rc->merge_reloc_tree = 0;
4207	unset_reloc_control(rc);
4208	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4209
4210	/* get rid of pinned extents */
4211	trans = btrfs_join_transaction(rc->extent_root);
4212	if (IS_ERR(trans)) {
4213		err = PTR_ERR(trans);
4214		goto out_free;
4215	}
4216	btrfs_commit_transaction(trans);
4217out_free:
4218	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4219	btrfs_free_path(path);
4220	return err;
4221}
4222
4223static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4224				 struct btrfs_root *root, u64 objectid)
4225{
4226	struct btrfs_path *path;
4227	struct btrfs_inode_item *item;
4228	struct extent_buffer *leaf;
4229	int ret;
4230
4231	path = btrfs_alloc_path();
4232	if (!path)
4233		return -ENOMEM;
4234
4235	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4236	if (ret)
4237		goto out;
4238
4239	leaf = path->nodes[0];
4240	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4241	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4242	btrfs_set_inode_generation(leaf, item, 1);
4243	btrfs_set_inode_size(leaf, item, 0);
4244	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4245	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4246					  BTRFS_INODE_PREALLOC);
4247	btrfs_mark_buffer_dirty(leaf);
 
4248out:
4249	btrfs_free_path(path);
4250	return ret;
4251}
4252
4253/*
4254 * helper to create inode for data relocation.
4255 * the inode is in data relocation tree and its link count is 0
4256 */
4257static noinline_for_stack
4258struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4259				 struct btrfs_block_group_cache *group)
4260{
4261	struct inode *inode = NULL;
4262	struct btrfs_trans_handle *trans;
4263	struct btrfs_root *root;
4264	struct btrfs_key key;
4265	u64 objectid;
 
4266	int err = 0;
4267
4268	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4269	if (IS_ERR(root))
4270		return ERR_CAST(root);
4271
4272	trans = btrfs_start_transaction(root, 6);
4273	if (IS_ERR(trans))
4274		return ERR_CAST(trans);
4275
4276	err = btrfs_find_free_objectid(root, &objectid);
4277	if (err)
4278		goto out;
4279
4280	err = __insert_orphan_inode(trans, root, objectid);
4281	BUG_ON(err);
4282
4283	key.objectid = objectid;
4284	key.type = BTRFS_INODE_ITEM_KEY;
4285	key.offset = 0;
4286	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4287	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4288	BTRFS_I(inode)->index_cnt = group->key.objectid;
4289
4290	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4291out:
4292	btrfs_end_transaction(trans);
4293	btrfs_btree_balance_dirty(fs_info);
 
4294	if (err) {
4295		if (inode)
4296			iput(inode);
4297		inode = ERR_PTR(err);
4298	}
4299	return inode;
4300}
4301
4302static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4303{
4304	struct reloc_control *rc;
4305
4306	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4307	if (!rc)
4308		return NULL;
4309
4310	INIT_LIST_HEAD(&rc->reloc_roots);
4311	backref_cache_init(&rc->backref_cache);
4312	mapping_tree_init(&rc->reloc_root_tree);
4313	extent_io_tree_init(&rc->processed_blocks, NULL);
4314	return rc;
4315}
4316
4317/*
4318 * Print the block group being relocated
4319 */
4320static void describe_relocation(struct btrfs_fs_info *fs_info,
4321				struct btrfs_block_group_cache *block_group)
4322{
4323	char buf[128];		/* prefixed by a '|' that'll be dropped */
4324	u64 flags = block_group->flags;
4325
4326	/* Shouldn't happen */
4327	if (!flags) {
4328		strcpy(buf, "|NONE");
4329	} else {
4330		char *bp = buf;
4331
4332#define DESCRIBE_FLAG(f, d) \
4333		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4334			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4335			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4336		}
4337		DESCRIBE_FLAG(DATA,     "data");
4338		DESCRIBE_FLAG(SYSTEM,   "system");
4339		DESCRIBE_FLAG(METADATA, "metadata");
4340		DESCRIBE_FLAG(RAID0,    "raid0");
4341		DESCRIBE_FLAG(RAID1,    "raid1");
4342		DESCRIBE_FLAG(DUP,      "dup");
4343		DESCRIBE_FLAG(RAID10,   "raid10");
4344		DESCRIBE_FLAG(RAID5,    "raid5");
4345		DESCRIBE_FLAG(RAID6,    "raid6");
4346		if (flags)
4347			snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4348#undef DESCRIBE_FLAG
4349	}
4350
4351	btrfs_info(fs_info,
4352		   "relocating block group %llu flags %s",
4353		   block_group->key.objectid, buf + 1);
4354}
4355
4356/*
4357 * function to relocate all extents in a block group.
4358 */
4359int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4360{
4361	struct btrfs_root *extent_root = fs_info->extent_root;
4362	struct reloc_control *rc;
4363	struct inode *inode;
4364	struct btrfs_path *path;
4365	int ret;
4366	int rw = 0;
4367	int err = 0;
4368
4369	rc = alloc_reloc_control(fs_info);
4370	if (!rc)
4371		return -ENOMEM;
4372
4373	rc->extent_root = extent_root;
4374
4375	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4376	BUG_ON(!rc->block_group);
4377
4378	ret = btrfs_inc_block_group_ro(fs_info, rc->block_group);
4379	if (ret) {
4380		err = ret;
4381		goto out;
 
 
 
4382	}
4383	rw = 1;
4384
4385	path = btrfs_alloc_path();
4386	if (!path) {
4387		err = -ENOMEM;
4388		goto out;
4389	}
4390
4391	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
 
4392	btrfs_free_path(path);
4393
4394	if (!IS_ERR(inode))
4395		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4396	else
4397		ret = PTR_ERR(inode);
4398
4399	if (ret && ret != -ENOENT) {
4400		err = ret;
4401		goto out;
4402	}
4403
4404	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4405	if (IS_ERR(rc->data_inode)) {
4406		err = PTR_ERR(rc->data_inode);
4407		rc->data_inode = NULL;
4408		goto out;
4409	}
4410
4411	describe_relocation(fs_info, rc->block_group);
 
 
4412
4413	btrfs_wait_block_group_reservations(rc->block_group);
4414	btrfs_wait_nocow_writers(rc->block_group);
4415	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4416				 rc->block_group->key.objectid,
4417				 rc->block_group->key.offset);
4418
4419	while (1) {
4420		mutex_lock(&fs_info->cleaner_mutex);
 
 
4421		ret = relocate_block_group(rc);
 
4422		mutex_unlock(&fs_info->cleaner_mutex);
4423		if (ret < 0) {
4424			err = ret;
4425			goto out;
4426		}
4427
4428		if (rc->extents_found == 0)
4429			break;
4430
4431		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
 
4432
4433		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4434			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4435						       (u64)-1);
4436			if (ret) {
4437				err = ret;
4438				goto out;
4439			}
4440			invalidate_mapping_pages(rc->data_inode->i_mapping,
4441						 0, -1);
4442			rc->stage = UPDATE_DATA_PTRS;
4443		}
4444	}
4445
 
 
 
 
 
4446	WARN_ON(rc->block_group->pinned > 0);
4447	WARN_ON(rc->block_group->reserved > 0);
4448	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4449out:
4450	if (err && rw)
4451		btrfs_dec_block_group_ro(rc->block_group);
4452	iput(rc->data_inode);
4453	btrfs_put_block_group(rc->block_group);
4454	kfree(rc);
4455	return err;
4456}
4457
4458static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4459{
4460	struct btrfs_fs_info *fs_info = root->fs_info;
4461	struct btrfs_trans_handle *trans;
4462	int ret, err;
4463
4464	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4465	if (IS_ERR(trans))
4466		return PTR_ERR(trans);
4467
4468	memset(&root->root_item.drop_progress, 0,
4469		sizeof(root->root_item.drop_progress));
4470	root->root_item.drop_level = 0;
4471	btrfs_set_root_refs(&root->root_item, 0);
4472	ret = btrfs_update_root(trans, fs_info->tree_root,
4473				&root->root_key, &root->root_item);
 
4474
4475	err = btrfs_end_transaction(trans);
4476	if (err)
4477		return err;
4478	return ret;
4479}
4480
4481/*
4482 * recover relocation interrupted by system crash.
4483 *
4484 * this function resumes merging reloc trees with corresponding fs trees.
4485 * this is important for keeping the sharing of tree blocks
4486 */
4487int btrfs_recover_relocation(struct btrfs_root *root)
4488{
4489	struct btrfs_fs_info *fs_info = root->fs_info;
4490	LIST_HEAD(reloc_roots);
4491	struct btrfs_key key;
4492	struct btrfs_root *fs_root;
4493	struct btrfs_root *reloc_root;
4494	struct btrfs_path *path;
4495	struct extent_buffer *leaf;
4496	struct reloc_control *rc = NULL;
4497	struct btrfs_trans_handle *trans;
4498	int ret;
4499	int err = 0;
4500
4501	path = btrfs_alloc_path();
4502	if (!path)
4503		return -ENOMEM;
4504	path->reada = READA_BACK;
4505
4506	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4507	key.type = BTRFS_ROOT_ITEM_KEY;
4508	key.offset = (u64)-1;
4509
4510	while (1) {
4511		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4512					path, 0, 0);
4513		if (ret < 0) {
4514			err = ret;
4515			goto out;
4516		}
4517		if (ret > 0) {
4518			if (path->slots[0] == 0)
4519				break;
4520			path->slots[0]--;
4521		}
4522		leaf = path->nodes[0];
4523		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4524		btrfs_release_path(path);
4525
4526		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4527		    key.type != BTRFS_ROOT_ITEM_KEY)
4528			break;
4529
4530		reloc_root = btrfs_read_fs_root(root, &key);
4531		if (IS_ERR(reloc_root)) {
4532			err = PTR_ERR(reloc_root);
4533			goto out;
4534		}
4535
4536		list_add(&reloc_root->root_list, &reloc_roots);
4537
4538		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4539			fs_root = read_fs_root(fs_info,
4540					       reloc_root->root_key.offset);
4541			if (IS_ERR(fs_root)) {
4542				ret = PTR_ERR(fs_root);
4543				if (ret != -ENOENT) {
4544					err = ret;
4545					goto out;
4546				}
4547				ret = mark_garbage_root(reloc_root);
4548				if (ret < 0) {
4549					err = ret;
4550					goto out;
4551				}
4552			}
4553		}
4554
4555		if (key.offset == 0)
4556			break;
4557
4558		key.offset--;
4559	}
4560	btrfs_release_path(path);
4561
4562	if (list_empty(&reloc_roots))
4563		goto out;
4564
4565	rc = alloc_reloc_control(fs_info);
4566	if (!rc) {
4567		err = -ENOMEM;
4568		goto out;
4569	}
4570
4571	rc->extent_root = fs_info->extent_root;
4572
4573	set_reloc_control(rc);
4574
4575	trans = btrfs_join_transaction(rc->extent_root);
4576	if (IS_ERR(trans)) {
4577		unset_reloc_control(rc);
4578		err = PTR_ERR(trans);
4579		goto out_free;
4580	}
4581
4582	rc->merge_reloc_tree = 1;
4583
4584	while (!list_empty(&reloc_roots)) {
4585		reloc_root = list_entry(reloc_roots.next,
4586					struct btrfs_root, root_list);
4587		list_del(&reloc_root->root_list);
4588
4589		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4590			list_add_tail(&reloc_root->root_list,
4591				      &rc->reloc_roots);
4592			continue;
4593		}
4594
4595		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4596		if (IS_ERR(fs_root)) {
4597			err = PTR_ERR(fs_root);
4598			goto out_free;
4599		}
4600
4601		err = __add_reloc_root(reloc_root);
4602		BUG_ON(err < 0); /* -ENOMEM or logic error */
4603		fs_root->reloc_root = reloc_root;
4604	}
4605
4606	err = btrfs_commit_transaction(trans);
4607	if (err)
4608		goto out_free;
4609
4610	merge_reloc_roots(rc);
4611
4612	unset_reloc_control(rc);
4613
4614	trans = btrfs_join_transaction(rc->extent_root);
4615	if (IS_ERR(trans)) {
4616		err = PTR_ERR(trans);
4617		goto out_free;
4618	}
4619	err = btrfs_commit_transaction(trans);
4620out_free:
4621	kfree(rc);
4622out:
4623	if (!list_empty(&reloc_roots))
4624		free_reloc_roots(&reloc_roots);
4625
 
 
 
 
 
4626	btrfs_free_path(path);
4627
4628	if (err == 0) {
4629		/* cleanup orphan inode in data relocation tree */
4630		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
 
4631		if (IS_ERR(fs_root))
4632			err = PTR_ERR(fs_root);
4633		else
4634			err = btrfs_orphan_cleanup(fs_root);
4635	}
4636	return err;
4637}
4638
4639/*
4640 * helper to add ordered checksum for data relocation.
4641 *
4642 * cloning checksum properly handles the nodatasum extents.
4643 * it also saves CPU time to re-calculate the checksum.
4644 */
4645int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4646{
4647	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4648	struct btrfs_ordered_sum *sums;
 
4649	struct btrfs_ordered_extent *ordered;
 
 
4650	int ret;
4651	u64 disk_bytenr;
4652	u64 new_bytenr;
4653	LIST_HEAD(list);
4654
4655	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4656	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4657
4658	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4659	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4660				       disk_bytenr + len - 1, &list, 0);
4661	if (ret)
4662		goto out;
4663
4664	while (!list_empty(&list)) {
4665		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4666		list_del_init(&sums->list);
4667
4668		/*
4669		 * We need to offset the new_bytenr based on where the csum is.
4670		 * We need to do this because we will read in entire prealloc
4671		 * extents but we may have written to say the middle of the
4672		 * prealloc extent, so we need to make sure the csum goes with
4673		 * the right disk offset.
4674		 *
4675		 * We can do this because the data reloc inode refers strictly
4676		 * to the on disk bytes, so we don't have to worry about
4677		 * disk_len vs real len like with real inodes since it's all
4678		 * disk length.
4679		 */
4680		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4681		sums->bytenr = new_bytenr;
4682
4683		btrfs_add_ordered_sum(inode, ordered, sums);
4684	}
4685out:
4686	btrfs_put_ordered_extent(ordered);
4687	return ret;
4688}
4689
4690int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4691			  struct btrfs_root *root, struct extent_buffer *buf,
4692			  struct extent_buffer *cow)
4693{
4694	struct btrfs_fs_info *fs_info = root->fs_info;
4695	struct reloc_control *rc;
4696	struct backref_node *node;
4697	int first_cow = 0;
4698	int level;
4699	int ret = 0;
4700
4701	rc = fs_info->reloc_ctl;
4702	if (!rc)
4703		return 0;
4704
4705	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4706	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4707
4708	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4709		if (buf == root->node)
4710			__update_reloc_root(root, cow->start);
4711	}
4712
4713	level = btrfs_header_level(buf);
4714	if (btrfs_header_generation(buf) <=
4715	    btrfs_root_last_snapshot(&root->root_item))
4716		first_cow = 1;
4717
4718	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4719	    rc->create_reloc_tree) {
4720		WARN_ON(!first_cow && level == 0);
4721
4722		node = rc->backref_cache.path[level];
4723		BUG_ON(node->bytenr != buf->start &&
4724		       node->new_bytenr != buf->start);
4725
4726		drop_node_buffer(node);
4727		extent_buffer_get(cow);
4728		node->eb = cow;
4729		node->new_bytenr = cow->start;
4730
4731		if (!node->pending) {
4732			list_move_tail(&node->list,
4733				       &rc->backref_cache.pending[level]);
4734			node->pending = 1;
4735		}
4736
4737		if (first_cow)
4738			__mark_block_processed(rc, node);
4739
4740		if (first_cow && level > 0)
4741			rc->nodes_relocated += buf->len;
4742	}
4743
4744	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4745		ret = replace_file_extents(trans, rc, root, cow);
4746	return ret;
 
4747}
4748
4749/*
4750 * called before creating snapshot. it calculates metadata reservation
4751 * required for relocating tree blocks in the snapshot
4752 */
4753void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
4754			      u64 *bytes_to_reserve)
4755{
4756	struct btrfs_root *root;
4757	struct reloc_control *rc;
4758
4759	root = pending->root;
4760	if (!root->reloc_root)
4761		return;
4762
4763	rc = root->fs_info->reloc_ctl;
4764	if (!rc->merge_reloc_tree)
4765		return;
4766
4767	root = root->reloc_root;
4768	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4769	/*
4770	 * relocation is in the stage of merging trees. the space
4771	 * used by merging a reloc tree is twice the size of
4772	 * relocated tree nodes in the worst case. half for cowing
4773	 * the reloc tree, half for cowing the fs tree. the space
4774	 * used by cowing the reloc tree will be freed after the
4775	 * tree is dropped. if we create snapshot, cowing the fs
4776	 * tree may use more space than it frees. so we need
4777	 * reserve extra space.
4778	 */
4779	*bytes_to_reserve += rc->nodes_relocated;
4780}
4781
4782/*
4783 * called after snapshot is created. migrate block reservation
4784 * and create reloc root for the newly created snapshot
4785 */
4786int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4787			       struct btrfs_pending_snapshot *pending)
4788{
4789	struct btrfs_root *root = pending->root;
4790	struct btrfs_root *reloc_root;
4791	struct btrfs_root *new_root;
4792	struct reloc_control *rc;
4793	int ret;
4794
4795	if (!root->reloc_root)
4796		return 0;
4797
4798	rc = root->fs_info->reloc_ctl;
4799	rc->merging_rsv_size += rc->nodes_relocated;
4800
4801	if (rc->merge_reloc_tree) {
4802		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4803					      rc->block_rsv,
4804					      rc->nodes_relocated, 1);
4805		if (ret)
4806			return ret;
4807	}
4808
4809	new_root = pending->snap;
4810	reloc_root = create_reloc_root(trans, root->reloc_root,
4811				       new_root->root_key.objectid);
4812	if (IS_ERR(reloc_root))
4813		return PTR_ERR(reloc_root);
4814
4815	ret = __add_reloc_root(reloc_root);
4816	BUG_ON(ret < 0);
4817	new_root->reloc_root = reloc_root;
4818
4819	if (rc->create_reloc_tree)
4820		ret = clone_backref_node(trans, rc, root, reloc_root);
4821	return ret;
 
4822}