Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 * Copyright (c) 2018 The Linux Foundation. All rights reserved.
6 */
7
8#include "hif.h"
9#include "ce.h"
10#include "debug.h"
11
12/*
13 * Support for Copy Engine hardware, which is mainly used for
14 * communication between Host and Target over a PCIe interconnect.
15 */
16
17/*
18 * A single CopyEngine (CE) comprises two "rings":
19 * a source ring
20 * a destination ring
21 *
22 * Each ring consists of a number of descriptors which specify
23 * an address, length, and meta-data.
24 *
25 * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
26 * controls one ring and the other side controls the other ring.
27 * The source side chooses when to initiate a transfer and it
28 * chooses what to send (buffer address, length). The destination
29 * side keeps a supply of "anonymous receive buffers" available and
30 * it handles incoming data as it arrives (when the destination
31 * receives an interrupt).
32 *
33 * The sender may send a simple buffer (address/length) or it may
34 * send a small list of buffers. When a small list is sent, hardware
35 * "gathers" these and they end up in a single destination buffer
36 * with a single interrupt.
37 *
38 * There are several "contexts" managed by this layer -- more, it
39 * may seem -- than should be needed. These are provided mainly for
40 * maximum flexibility and especially to facilitate a simpler HIF
41 * implementation. There are per-CopyEngine recv, send, and watermark
42 * contexts. These are supplied by the caller when a recv, send,
43 * or watermark handler is established and they are echoed back to
44 * the caller when the respective callbacks are invoked. There is
45 * also a per-transfer context supplied by the caller when a buffer
46 * (or sendlist) is sent and when a buffer is enqueued for recv.
47 * These per-transfer contexts are echoed back to the caller when
48 * the buffer is sent/received.
49 */
50
51static inline u32 shadow_sr_wr_ind_addr(struct ath10k *ar,
52 struct ath10k_ce_pipe *ce_state)
53{
54 u32 ce_id = ce_state->id;
55 u32 addr = 0;
56
57 switch (ce_id) {
58 case 0:
59 addr = 0x00032000;
60 break;
61 case 3:
62 addr = 0x0003200C;
63 break;
64 case 4:
65 addr = 0x00032010;
66 break;
67 case 5:
68 addr = 0x00032014;
69 break;
70 case 7:
71 addr = 0x0003201C;
72 break;
73 default:
74 ath10k_warn(ar, "invalid CE id: %d", ce_id);
75 break;
76 }
77 return addr;
78}
79
80static inline u32 shadow_dst_wr_ind_addr(struct ath10k *ar,
81 struct ath10k_ce_pipe *ce_state)
82{
83 u32 ce_id = ce_state->id;
84 u32 addr = 0;
85
86 switch (ce_id) {
87 case 1:
88 addr = 0x00032034;
89 break;
90 case 2:
91 addr = 0x00032038;
92 break;
93 case 5:
94 addr = 0x00032044;
95 break;
96 case 7:
97 addr = 0x0003204C;
98 break;
99 case 8:
100 addr = 0x00032050;
101 break;
102 case 9:
103 addr = 0x00032054;
104 break;
105 case 10:
106 addr = 0x00032058;
107 break;
108 case 11:
109 addr = 0x0003205C;
110 break;
111 default:
112 ath10k_warn(ar, "invalid CE id: %d", ce_id);
113 break;
114 }
115
116 return addr;
117}
118
119static inline unsigned int
120ath10k_set_ring_byte(unsigned int offset,
121 struct ath10k_hw_ce_regs_addr_map *addr_map)
122{
123 return ((offset << addr_map->lsb) & addr_map->mask);
124}
125
126static inline unsigned int
127ath10k_get_ring_byte(unsigned int offset,
128 struct ath10k_hw_ce_regs_addr_map *addr_map)
129{
130 return ((offset & addr_map->mask) >> (addr_map->lsb));
131}
132
133static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
134{
135 struct ath10k_ce *ce = ath10k_ce_priv(ar);
136
137 return ce->bus_ops->read32(ar, offset);
138}
139
140static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
141{
142 struct ath10k_ce *ce = ath10k_ce_priv(ar);
143
144 ce->bus_ops->write32(ar, offset, value);
145}
146
147static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
148 u32 ce_ctrl_addr,
149 unsigned int n)
150{
151 ath10k_ce_write32(ar, ce_ctrl_addr +
152 ar->hw_ce_regs->dst_wr_index_addr, n);
153}
154
155static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
156 u32 ce_ctrl_addr)
157{
158 return ath10k_ce_read32(ar, ce_ctrl_addr +
159 ar->hw_ce_regs->dst_wr_index_addr);
160}
161
162static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
163 u32 ce_ctrl_addr,
164 unsigned int n)
165{
166 ath10k_ce_write32(ar, ce_ctrl_addr +
167 ar->hw_ce_regs->sr_wr_index_addr, n);
168}
169
170static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
171 u32 ce_ctrl_addr)
172{
173 return ath10k_ce_read32(ar, ce_ctrl_addr +
174 ar->hw_ce_regs->sr_wr_index_addr);
175}
176
177static inline u32 ath10k_ce_src_ring_read_index_from_ddr(struct ath10k *ar,
178 u32 ce_id)
179{
180 struct ath10k_ce *ce = ath10k_ce_priv(ar);
181
182 return ce->vaddr_rri[ce_id] & CE_DDR_RRI_MASK;
183}
184
185static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
186 u32 ce_ctrl_addr)
187{
188 struct ath10k_ce *ce = ath10k_ce_priv(ar);
189 u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
190 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
191 u32 index;
192
193 if (ar->hw_params.rri_on_ddr &&
194 (ce_state->attr_flags & CE_ATTR_DIS_INTR))
195 index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_id);
196 else
197 index = ath10k_ce_read32(ar, ce_ctrl_addr +
198 ar->hw_ce_regs->current_srri_addr);
199
200 return index;
201}
202
203static inline void
204ath10k_ce_shadow_src_ring_write_index_set(struct ath10k *ar,
205 struct ath10k_ce_pipe *ce_state,
206 unsigned int value)
207{
208 ath10k_ce_write32(ar, shadow_sr_wr_ind_addr(ar, ce_state), value);
209}
210
211static inline void
212ath10k_ce_shadow_dest_ring_write_index_set(struct ath10k *ar,
213 struct ath10k_ce_pipe *ce_state,
214 unsigned int value)
215{
216 ath10k_ce_write32(ar, shadow_dst_wr_ind_addr(ar, ce_state), value);
217}
218
219static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
220 u32 ce_id,
221 u64 addr)
222{
223 struct ath10k_ce *ce = ath10k_ce_priv(ar);
224 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
225 u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
226 u32 addr_lo = lower_32_bits(addr);
227
228 ath10k_ce_write32(ar, ce_ctrl_addr +
229 ar->hw_ce_regs->sr_base_addr_lo, addr_lo);
230
231 if (ce_state->ops->ce_set_src_ring_base_addr_hi) {
232 ce_state->ops->ce_set_src_ring_base_addr_hi(ar, ce_ctrl_addr,
233 addr);
234 }
235}
236
237static void ath10k_ce_set_src_ring_base_addr_hi(struct ath10k *ar,
238 u32 ce_ctrl_addr,
239 u64 addr)
240{
241 u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
242
243 ath10k_ce_write32(ar, ce_ctrl_addr +
244 ar->hw_ce_regs->sr_base_addr_hi, addr_hi);
245}
246
247static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
248 u32 ce_ctrl_addr,
249 unsigned int n)
250{
251 ath10k_ce_write32(ar, ce_ctrl_addr +
252 ar->hw_ce_regs->sr_size_addr, n);
253}
254
255static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
256 u32 ce_ctrl_addr,
257 unsigned int n)
258{
259 struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
260
261 u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
262 ctrl_regs->addr);
263
264 ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
265 (ctrl1_addr & ~(ctrl_regs->dmax->mask)) |
266 ath10k_set_ring_byte(n, ctrl_regs->dmax));
267}
268
269static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
270 u32 ce_ctrl_addr,
271 unsigned int n)
272{
273 struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
274
275 u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
276 ctrl_regs->addr);
277
278 ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
279 (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
280 ath10k_set_ring_byte(n, ctrl_regs->src_ring));
281}
282
283static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
284 u32 ce_ctrl_addr,
285 unsigned int n)
286{
287 struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
288
289 u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
290 ctrl_regs->addr);
291
292 ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
293 (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
294 ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
295}
296
297static inline
298 u32 ath10k_ce_dest_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id)
299{
300 struct ath10k_ce *ce = ath10k_ce_priv(ar);
301
302 return (ce->vaddr_rri[ce_id] >> CE_DDR_DRRI_SHIFT) &
303 CE_DDR_RRI_MASK;
304}
305
306static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
307 u32 ce_ctrl_addr)
308{
309 struct ath10k_ce *ce = ath10k_ce_priv(ar);
310 u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
311 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
312 u32 index;
313
314 if (ar->hw_params.rri_on_ddr &&
315 (ce_state->attr_flags & CE_ATTR_DIS_INTR))
316 index = ath10k_ce_dest_ring_read_index_from_ddr(ar, ce_id);
317 else
318 index = ath10k_ce_read32(ar, ce_ctrl_addr +
319 ar->hw_ce_regs->current_drri_addr);
320
321 return index;
322}
323
324static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
325 u32 ce_id,
326 u64 addr)
327{
328 struct ath10k_ce *ce = ath10k_ce_priv(ar);
329 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
330 u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
331 u32 addr_lo = lower_32_bits(addr);
332
333 ath10k_ce_write32(ar, ce_ctrl_addr +
334 ar->hw_ce_regs->dr_base_addr_lo, addr_lo);
335
336 if (ce_state->ops->ce_set_dest_ring_base_addr_hi) {
337 ce_state->ops->ce_set_dest_ring_base_addr_hi(ar, ce_ctrl_addr,
338 addr);
339 }
340}
341
342static void ath10k_ce_set_dest_ring_base_addr_hi(struct ath10k *ar,
343 u32 ce_ctrl_addr,
344 u64 addr)
345{
346 u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
347 u32 reg_value;
348
349 reg_value = ath10k_ce_read32(ar, ce_ctrl_addr +
350 ar->hw_ce_regs->dr_base_addr_hi);
351 reg_value &= ~CE_DESC_ADDR_HI_MASK;
352 reg_value |= addr_hi;
353 ath10k_ce_write32(ar, ce_ctrl_addr +
354 ar->hw_ce_regs->dr_base_addr_hi, reg_value);
355}
356
357static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
358 u32 ce_ctrl_addr,
359 unsigned int n)
360{
361 ath10k_ce_write32(ar, ce_ctrl_addr +
362 ar->hw_ce_regs->dr_size_addr, n);
363}
364
365static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
366 u32 ce_ctrl_addr,
367 unsigned int n)
368{
369 struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
370 u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
371
372 ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
373 (addr & ~(srcr_wm->wm_high->mask)) |
374 (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
375}
376
377static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
378 u32 ce_ctrl_addr,
379 unsigned int n)
380{
381 struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
382 u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
383
384 ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
385 (addr & ~(srcr_wm->wm_low->mask)) |
386 (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
387}
388
389static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
390 u32 ce_ctrl_addr,
391 unsigned int n)
392{
393 struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
394 u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
395
396 ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
397 (addr & ~(dstr_wm->wm_high->mask)) |
398 (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
399}
400
401static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
402 u32 ce_ctrl_addr,
403 unsigned int n)
404{
405 struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
406 u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
407
408 ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
409 (addr & ~(dstr_wm->wm_low->mask)) |
410 (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
411}
412
413static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
414 u32 ce_ctrl_addr)
415{
416 struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
417
418 u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
419 ar->hw_ce_regs->host_ie_addr);
420
421 ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
422 host_ie_addr | host_ie->copy_complete->mask);
423}
424
425static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
426 u32 ce_ctrl_addr)
427{
428 struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
429
430 u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
431 ar->hw_ce_regs->host_ie_addr);
432
433 ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
434 host_ie_addr & ~(host_ie->copy_complete->mask));
435}
436
437static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
438 u32 ce_ctrl_addr)
439{
440 struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
441
442 u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
443 ar->hw_ce_regs->host_ie_addr);
444
445 ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
446 host_ie_addr & ~(wm_regs->wm_mask));
447}
448
449static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
450 u32 ce_ctrl_addr)
451{
452 struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
453
454 u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
455 ar->hw_ce_regs->misc_ie_addr);
456
457 ath10k_ce_write32(ar,
458 ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
459 misc_ie_addr | misc_regs->err_mask);
460}
461
462static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
463 u32 ce_ctrl_addr)
464{
465 struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
466
467 u32 misc_ie_addr = ath10k_ce_read32(ar,
468 ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);
469
470 ath10k_ce_write32(ar,
471 ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
472 misc_ie_addr & ~(misc_regs->err_mask));
473}
474
475static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
476 u32 ce_ctrl_addr,
477 unsigned int mask)
478{
479 struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
480
481 ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
482}
483
484/*
485 * Guts of ath10k_ce_send.
486 * The caller takes responsibility for any needed locking.
487 */
488static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
489 void *per_transfer_context,
490 dma_addr_t buffer,
491 unsigned int nbytes,
492 unsigned int transfer_id,
493 unsigned int flags)
494{
495 struct ath10k *ar = ce_state->ar;
496 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
497 struct ce_desc *desc, sdesc;
498 unsigned int nentries_mask = src_ring->nentries_mask;
499 unsigned int sw_index = src_ring->sw_index;
500 unsigned int write_index = src_ring->write_index;
501 u32 ctrl_addr = ce_state->ctrl_addr;
502 u32 desc_flags = 0;
503 int ret = 0;
504
505 if (nbytes > ce_state->src_sz_max)
506 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
507 __func__, nbytes, ce_state->src_sz_max);
508
509 if (unlikely(CE_RING_DELTA(nentries_mask,
510 write_index, sw_index - 1) <= 0)) {
511 ret = -ENOSR;
512 goto exit;
513 }
514
515 desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
516 write_index);
517
518 desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
519
520 if (flags & CE_SEND_FLAG_GATHER)
521 desc_flags |= CE_DESC_FLAGS_GATHER;
522 if (flags & CE_SEND_FLAG_BYTE_SWAP)
523 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
524
525 sdesc.addr = __cpu_to_le32(buffer);
526 sdesc.nbytes = __cpu_to_le16(nbytes);
527 sdesc.flags = __cpu_to_le16(desc_flags);
528
529 *desc = sdesc;
530
531 src_ring->per_transfer_context[write_index] = per_transfer_context;
532
533 /* Update Source Ring Write Index */
534 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
535
536 /* WORKAROUND */
537 if (!(flags & CE_SEND_FLAG_GATHER))
538 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
539
540 src_ring->write_index = write_index;
541exit:
542 return ret;
543}
544
545static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
546 void *per_transfer_context,
547 dma_addr_t buffer,
548 unsigned int nbytes,
549 unsigned int transfer_id,
550 unsigned int flags)
551{
552 struct ath10k *ar = ce_state->ar;
553 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
554 struct ce_desc_64 *desc, sdesc;
555 unsigned int nentries_mask = src_ring->nentries_mask;
556 unsigned int sw_index;
557 unsigned int write_index = src_ring->write_index;
558 u32 ctrl_addr = ce_state->ctrl_addr;
559 __le32 *addr;
560 u32 desc_flags = 0;
561 int ret = 0;
562
563 if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
564 return -ESHUTDOWN;
565
566 if (nbytes > ce_state->src_sz_max)
567 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
568 __func__, nbytes, ce_state->src_sz_max);
569
570 if (ar->hw_params.rri_on_ddr)
571 sw_index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_state->id);
572 else
573 sw_index = src_ring->sw_index;
574
575 if (unlikely(CE_RING_DELTA(nentries_mask,
576 write_index, sw_index - 1) <= 0)) {
577 ret = -ENOSR;
578 goto exit;
579 }
580
581 desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
582 write_index);
583
584 desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
585
586 if (flags & CE_SEND_FLAG_GATHER)
587 desc_flags |= CE_DESC_FLAGS_GATHER;
588
589 if (flags & CE_SEND_FLAG_BYTE_SWAP)
590 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
591
592 addr = (__le32 *)&sdesc.addr;
593
594 flags |= upper_32_bits(buffer) & CE_DESC_ADDR_HI_MASK;
595 addr[0] = __cpu_to_le32(buffer);
596 addr[1] = __cpu_to_le32(flags);
597 if (flags & CE_SEND_FLAG_GATHER)
598 addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
599 else
600 addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));
601
602 sdesc.nbytes = __cpu_to_le16(nbytes);
603 sdesc.flags = __cpu_to_le16(desc_flags);
604
605 *desc = sdesc;
606
607 src_ring->per_transfer_context[write_index] = per_transfer_context;
608
609 /* Update Source Ring Write Index */
610 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
611
612 if (!(flags & CE_SEND_FLAG_GATHER)) {
613 if (ar->hw_params.shadow_reg_support)
614 ath10k_ce_shadow_src_ring_write_index_set(ar, ce_state,
615 write_index);
616 else
617 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr,
618 write_index);
619 }
620
621 src_ring->write_index = write_index;
622exit:
623 return ret;
624}
625
626int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
627 void *per_transfer_context,
628 dma_addr_t buffer,
629 unsigned int nbytes,
630 unsigned int transfer_id,
631 unsigned int flags)
632{
633 return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
634 buffer, nbytes, transfer_id, flags);
635}
636EXPORT_SYMBOL(ath10k_ce_send_nolock);
637
638void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
639{
640 struct ath10k *ar = pipe->ar;
641 struct ath10k_ce *ce = ath10k_ce_priv(ar);
642 struct ath10k_ce_ring *src_ring = pipe->src_ring;
643 u32 ctrl_addr = pipe->ctrl_addr;
644
645 lockdep_assert_held(&ce->ce_lock);
646
647 /*
648 * This function must be called only if there is an incomplete
649 * scatter-gather transfer (before index register is updated)
650 * that needs to be cleaned up.
651 */
652 if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
653 return;
654
655 if (WARN_ON_ONCE(src_ring->write_index ==
656 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
657 return;
658
659 src_ring->write_index--;
660 src_ring->write_index &= src_ring->nentries_mask;
661
662 src_ring->per_transfer_context[src_ring->write_index] = NULL;
663}
664EXPORT_SYMBOL(__ath10k_ce_send_revert);
665
666int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
667 void *per_transfer_context,
668 dma_addr_t buffer,
669 unsigned int nbytes,
670 unsigned int transfer_id,
671 unsigned int flags)
672{
673 struct ath10k *ar = ce_state->ar;
674 struct ath10k_ce *ce = ath10k_ce_priv(ar);
675 int ret;
676
677 spin_lock_bh(&ce->ce_lock);
678 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
679 buffer, nbytes, transfer_id, flags);
680 spin_unlock_bh(&ce->ce_lock);
681
682 return ret;
683}
684EXPORT_SYMBOL(ath10k_ce_send);
685
686int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
687{
688 struct ath10k *ar = pipe->ar;
689 struct ath10k_ce *ce = ath10k_ce_priv(ar);
690 int delta;
691
692 spin_lock_bh(&ce->ce_lock);
693 delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
694 pipe->src_ring->write_index,
695 pipe->src_ring->sw_index - 1);
696 spin_unlock_bh(&ce->ce_lock);
697
698 return delta;
699}
700EXPORT_SYMBOL(ath10k_ce_num_free_src_entries);
701
702int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
703{
704 struct ath10k *ar = pipe->ar;
705 struct ath10k_ce *ce = ath10k_ce_priv(ar);
706 struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
707 unsigned int nentries_mask = dest_ring->nentries_mask;
708 unsigned int write_index = dest_ring->write_index;
709 unsigned int sw_index = dest_ring->sw_index;
710
711 lockdep_assert_held(&ce->ce_lock);
712
713 return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
714}
715EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs);
716
717static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
718 dma_addr_t paddr)
719{
720 struct ath10k *ar = pipe->ar;
721 struct ath10k_ce *ce = ath10k_ce_priv(ar);
722 struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
723 unsigned int nentries_mask = dest_ring->nentries_mask;
724 unsigned int write_index = dest_ring->write_index;
725 unsigned int sw_index = dest_ring->sw_index;
726 struct ce_desc *base = dest_ring->base_addr_owner_space;
727 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
728 u32 ctrl_addr = pipe->ctrl_addr;
729
730 lockdep_assert_held(&ce->ce_lock);
731
732 if ((pipe->id != 5) &&
733 CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
734 return -ENOSPC;
735
736 desc->addr = __cpu_to_le32(paddr);
737 desc->nbytes = 0;
738
739 dest_ring->per_transfer_context[write_index] = ctx;
740 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
741 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
742 dest_ring->write_index = write_index;
743
744 return 0;
745}
746
747static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
748 void *ctx,
749 dma_addr_t paddr)
750{
751 struct ath10k *ar = pipe->ar;
752 struct ath10k_ce *ce = ath10k_ce_priv(ar);
753 struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
754 unsigned int nentries_mask = dest_ring->nentries_mask;
755 unsigned int write_index = dest_ring->write_index;
756 unsigned int sw_index = dest_ring->sw_index;
757 struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
758 struct ce_desc_64 *desc =
759 CE_DEST_RING_TO_DESC_64(base, write_index);
760 u32 ctrl_addr = pipe->ctrl_addr;
761
762 lockdep_assert_held(&ce->ce_lock);
763
764 if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
765 return -ENOSPC;
766
767 desc->addr = __cpu_to_le64(paddr);
768 desc->addr &= __cpu_to_le64(CE_DESC_ADDR_MASK);
769
770 desc->nbytes = 0;
771
772 dest_ring->per_transfer_context[write_index] = ctx;
773 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
774 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
775 dest_ring->write_index = write_index;
776
777 return 0;
778}
779
780void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
781{
782 struct ath10k *ar = pipe->ar;
783 struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
784 unsigned int nentries_mask = dest_ring->nentries_mask;
785 unsigned int write_index = dest_ring->write_index;
786 u32 ctrl_addr = pipe->ctrl_addr;
787 u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
788
789 /* Prevent CE ring stuck issue that will occur when ring is full.
790 * Make sure that write index is 1 less than read index.
791 */
792 if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index)
793 nentries -= 1;
794
795 write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
796 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
797 dest_ring->write_index = write_index;
798}
799EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx);
800
801int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
802 dma_addr_t paddr)
803{
804 struct ath10k *ar = pipe->ar;
805 struct ath10k_ce *ce = ath10k_ce_priv(ar);
806 int ret;
807
808 spin_lock_bh(&ce->ce_lock);
809 ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
810 spin_unlock_bh(&ce->ce_lock);
811
812 return ret;
813}
814EXPORT_SYMBOL(ath10k_ce_rx_post_buf);
815
816/*
817 * Guts of ath10k_ce_completed_recv_next.
818 * The caller takes responsibility for any necessary locking.
819 */
820static int
821 _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
822 void **per_transfer_contextp,
823 unsigned int *nbytesp)
824{
825 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
826 unsigned int nentries_mask = dest_ring->nentries_mask;
827 unsigned int sw_index = dest_ring->sw_index;
828
829 struct ce_desc *base = dest_ring->base_addr_owner_space;
830 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
831 struct ce_desc sdesc;
832 u16 nbytes;
833
834 /* Copy in one go for performance reasons */
835 sdesc = *desc;
836
837 nbytes = __le16_to_cpu(sdesc.nbytes);
838 if (nbytes == 0) {
839 /*
840 * This closes a relatively unusual race where the Host
841 * sees the updated DRRI before the update to the
842 * corresponding descriptor has completed. We treat this
843 * as a descriptor that is not yet done.
844 */
845 return -EIO;
846 }
847
848 desc->nbytes = 0;
849
850 /* Return data from completed destination descriptor */
851 *nbytesp = nbytes;
852
853 if (per_transfer_contextp)
854 *per_transfer_contextp =
855 dest_ring->per_transfer_context[sw_index];
856
857 /* Copy engine 5 (HTT Rx) will reuse the same transfer context.
858 * So update transfer context all CEs except CE5.
859 */
860 if (ce_state->id != 5)
861 dest_ring->per_transfer_context[sw_index] = NULL;
862
863 /* Update sw_index */
864 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
865 dest_ring->sw_index = sw_index;
866
867 return 0;
868}
869
870static int
871_ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
872 void **per_transfer_contextp,
873 unsigned int *nbytesp)
874{
875 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
876 unsigned int nentries_mask = dest_ring->nentries_mask;
877 unsigned int sw_index = dest_ring->sw_index;
878 struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
879 struct ce_desc_64 *desc =
880 CE_DEST_RING_TO_DESC_64(base, sw_index);
881 struct ce_desc_64 sdesc;
882 u16 nbytes;
883
884 /* Copy in one go for performance reasons */
885 sdesc = *desc;
886
887 nbytes = __le16_to_cpu(sdesc.nbytes);
888 if (nbytes == 0) {
889 /* This closes a relatively unusual race where the Host
890 * sees the updated DRRI before the update to the
891 * corresponding descriptor has completed. We treat this
892 * as a descriptor that is not yet done.
893 */
894 return -EIO;
895 }
896
897 desc->nbytes = 0;
898
899 /* Return data from completed destination descriptor */
900 *nbytesp = nbytes;
901
902 if (per_transfer_contextp)
903 *per_transfer_contextp =
904 dest_ring->per_transfer_context[sw_index];
905
906 /* Copy engine 5 (HTT Rx) will reuse the same transfer context.
907 * So update transfer context all CEs except CE5.
908 */
909 if (ce_state->id != 5)
910 dest_ring->per_transfer_context[sw_index] = NULL;
911
912 /* Update sw_index */
913 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
914 dest_ring->sw_index = sw_index;
915
916 return 0;
917}
918
919int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
920 void **per_transfer_ctx,
921 unsigned int *nbytesp)
922{
923 return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
924 per_transfer_ctx,
925 nbytesp);
926}
927EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock);
928
929int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
930 void **per_transfer_contextp,
931 unsigned int *nbytesp)
932{
933 struct ath10k *ar = ce_state->ar;
934 struct ath10k_ce *ce = ath10k_ce_priv(ar);
935 int ret;
936
937 spin_lock_bh(&ce->ce_lock);
938 ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
939 per_transfer_contextp,
940 nbytesp);
941
942 spin_unlock_bh(&ce->ce_lock);
943
944 return ret;
945}
946EXPORT_SYMBOL(ath10k_ce_completed_recv_next);
947
948static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
949 void **per_transfer_contextp,
950 dma_addr_t *bufferp)
951{
952 struct ath10k_ce_ring *dest_ring;
953 unsigned int nentries_mask;
954 unsigned int sw_index;
955 unsigned int write_index;
956 int ret;
957 struct ath10k *ar;
958 struct ath10k_ce *ce;
959
960 dest_ring = ce_state->dest_ring;
961
962 if (!dest_ring)
963 return -EIO;
964
965 ar = ce_state->ar;
966 ce = ath10k_ce_priv(ar);
967
968 spin_lock_bh(&ce->ce_lock);
969
970 nentries_mask = dest_ring->nentries_mask;
971 sw_index = dest_ring->sw_index;
972 write_index = dest_ring->write_index;
973 if (write_index != sw_index) {
974 struct ce_desc *base = dest_ring->base_addr_owner_space;
975 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
976
977 /* Return data from completed destination descriptor */
978 *bufferp = __le32_to_cpu(desc->addr);
979
980 if (per_transfer_contextp)
981 *per_transfer_contextp =
982 dest_ring->per_transfer_context[sw_index];
983
984 /* sanity */
985 dest_ring->per_transfer_context[sw_index] = NULL;
986 desc->nbytes = 0;
987
988 /* Update sw_index */
989 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
990 dest_ring->sw_index = sw_index;
991 ret = 0;
992 } else {
993 ret = -EIO;
994 }
995
996 spin_unlock_bh(&ce->ce_lock);
997
998 return ret;
999}
1000
1001static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
1002 void **per_transfer_contextp,
1003 dma_addr_t *bufferp)
1004{
1005 struct ath10k_ce_ring *dest_ring;
1006 unsigned int nentries_mask;
1007 unsigned int sw_index;
1008 unsigned int write_index;
1009 int ret;
1010 struct ath10k *ar;
1011 struct ath10k_ce *ce;
1012
1013 dest_ring = ce_state->dest_ring;
1014
1015 if (!dest_ring)
1016 return -EIO;
1017
1018 ar = ce_state->ar;
1019 ce = ath10k_ce_priv(ar);
1020
1021 spin_lock_bh(&ce->ce_lock);
1022
1023 nentries_mask = dest_ring->nentries_mask;
1024 sw_index = dest_ring->sw_index;
1025 write_index = dest_ring->write_index;
1026 if (write_index != sw_index) {
1027 struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
1028 struct ce_desc_64 *desc =
1029 CE_DEST_RING_TO_DESC_64(base, sw_index);
1030
1031 /* Return data from completed destination descriptor */
1032 *bufferp = __le64_to_cpu(desc->addr);
1033
1034 if (per_transfer_contextp)
1035 *per_transfer_contextp =
1036 dest_ring->per_transfer_context[sw_index];
1037
1038 /* sanity */
1039 dest_ring->per_transfer_context[sw_index] = NULL;
1040 desc->nbytes = 0;
1041
1042 /* Update sw_index */
1043 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1044 dest_ring->sw_index = sw_index;
1045 ret = 0;
1046 } else {
1047 ret = -EIO;
1048 }
1049
1050 spin_unlock_bh(&ce->ce_lock);
1051
1052 return ret;
1053}
1054
1055int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
1056 void **per_transfer_contextp,
1057 dma_addr_t *bufferp)
1058{
1059 return ce_state->ops->ce_revoke_recv_next(ce_state,
1060 per_transfer_contextp,
1061 bufferp);
1062}
1063EXPORT_SYMBOL(ath10k_ce_revoke_recv_next);
1064
1065/*
1066 * Guts of ath10k_ce_completed_send_next.
1067 * The caller takes responsibility for any necessary locking.
1068 */
1069static int _ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1070 void **per_transfer_contextp)
1071{
1072 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1073 u32 ctrl_addr = ce_state->ctrl_addr;
1074 struct ath10k *ar = ce_state->ar;
1075 unsigned int nentries_mask = src_ring->nentries_mask;
1076 unsigned int sw_index = src_ring->sw_index;
1077 unsigned int read_index;
1078 struct ce_desc *desc;
1079
1080 if (src_ring->hw_index == sw_index) {
1081 /*
1082 * The SW completion index has caught up with the cached
1083 * version of the HW completion index.
1084 * Update the cached HW completion index to see whether
1085 * the SW has really caught up to the HW, or if the cached
1086 * value of the HW index has become stale.
1087 */
1088
1089 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1090 if (read_index == 0xffffffff)
1091 return -ENODEV;
1092
1093 read_index &= nentries_mask;
1094 src_ring->hw_index = read_index;
1095 }
1096
1097 if (ar->hw_params.rri_on_ddr)
1098 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1099 else
1100 read_index = src_ring->hw_index;
1101
1102 if (read_index == sw_index)
1103 return -EIO;
1104
1105 if (per_transfer_contextp)
1106 *per_transfer_contextp =
1107 src_ring->per_transfer_context[sw_index];
1108
1109 /* sanity */
1110 src_ring->per_transfer_context[sw_index] = NULL;
1111 desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
1112 sw_index);
1113 desc->nbytes = 0;
1114
1115 /* Update sw_index */
1116 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1117 src_ring->sw_index = sw_index;
1118
1119 return 0;
1120}
1121
1122static int _ath10k_ce_completed_send_next_nolock_64(struct ath10k_ce_pipe *ce_state,
1123 void **per_transfer_contextp)
1124{
1125 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1126 u32 ctrl_addr = ce_state->ctrl_addr;
1127 struct ath10k *ar = ce_state->ar;
1128 unsigned int nentries_mask = src_ring->nentries_mask;
1129 unsigned int sw_index = src_ring->sw_index;
1130 unsigned int read_index;
1131 struct ce_desc_64 *desc;
1132
1133 if (src_ring->hw_index == sw_index) {
1134 /*
1135 * The SW completion index has caught up with the cached
1136 * version of the HW completion index.
1137 * Update the cached HW completion index to see whether
1138 * the SW has really caught up to the HW, or if the cached
1139 * value of the HW index has become stale.
1140 */
1141
1142 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1143 if (read_index == 0xffffffff)
1144 return -ENODEV;
1145
1146 read_index &= nentries_mask;
1147 src_ring->hw_index = read_index;
1148 }
1149
1150 if (ar->hw_params.rri_on_ddr)
1151 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1152 else
1153 read_index = src_ring->hw_index;
1154
1155 if (read_index == sw_index)
1156 return -EIO;
1157
1158 if (per_transfer_contextp)
1159 *per_transfer_contextp =
1160 src_ring->per_transfer_context[sw_index];
1161
1162 /* sanity */
1163 src_ring->per_transfer_context[sw_index] = NULL;
1164 desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
1165 sw_index);
1166 desc->nbytes = 0;
1167
1168 /* Update sw_index */
1169 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1170 src_ring->sw_index = sw_index;
1171
1172 return 0;
1173}
1174
1175int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1176 void **per_transfer_contextp)
1177{
1178 return ce_state->ops->ce_completed_send_next_nolock(ce_state,
1179 per_transfer_contextp);
1180}
1181EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock);
1182
1183static void ath10k_ce_extract_desc_data(struct ath10k *ar,
1184 struct ath10k_ce_ring *src_ring,
1185 u32 sw_index,
1186 dma_addr_t *bufferp,
1187 u32 *nbytesp,
1188 u32 *transfer_idp)
1189{
1190 struct ce_desc *base = src_ring->base_addr_owner_space;
1191 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
1192
1193 /* Return data from completed source descriptor */
1194 *bufferp = __le32_to_cpu(desc->addr);
1195 *nbytesp = __le16_to_cpu(desc->nbytes);
1196 *transfer_idp = MS(__le16_to_cpu(desc->flags),
1197 CE_DESC_FLAGS_META_DATA);
1198}
1199
1200static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
1201 struct ath10k_ce_ring *src_ring,
1202 u32 sw_index,
1203 dma_addr_t *bufferp,
1204 u32 *nbytesp,
1205 u32 *transfer_idp)
1206{
1207 struct ce_desc_64 *base = src_ring->base_addr_owner_space;
1208 struct ce_desc_64 *desc =
1209 CE_SRC_RING_TO_DESC_64(base, sw_index);
1210
1211 /* Return data from completed source descriptor */
1212 *bufferp = __le64_to_cpu(desc->addr);
1213 *nbytesp = __le16_to_cpu(desc->nbytes);
1214 *transfer_idp = MS(__le16_to_cpu(desc->flags),
1215 CE_DESC_FLAGS_META_DATA);
1216}
1217
1218/* NB: Modeled after ath10k_ce_completed_send_next */
1219int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
1220 void **per_transfer_contextp,
1221 dma_addr_t *bufferp,
1222 unsigned int *nbytesp,
1223 unsigned int *transfer_idp)
1224{
1225 struct ath10k_ce_ring *src_ring;
1226 unsigned int nentries_mask;
1227 unsigned int sw_index;
1228 unsigned int write_index;
1229 int ret;
1230 struct ath10k *ar;
1231 struct ath10k_ce *ce;
1232
1233 src_ring = ce_state->src_ring;
1234
1235 if (!src_ring)
1236 return -EIO;
1237
1238 ar = ce_state->ar;
1239 ce = ath10k_ce_priv(ar);
1240
1241 spin_lock_bh(&ce->ce_lock);
1242
1243 nentries_mask = src_ring->nentries_mask;
1244 sw_index = src_ring->sw_index;
1245 write_index = src_ring->write_index;
1246
1247 if (write_index != sw_index) {
1248 ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
1249 bufferp, nbytesp,
1250 transfer_idp);
1251
1252 if (per_transfer_contextp)
1253 *per_transfer_contextp =
1254 src_ring->per_transfer_context[sw_index];
1255
1256 /* sanity */
1257 src_ring->per_transfer_context[sw_index] = NULL;
1258
1259 /* Update sw_index */
1260 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1261 src_ring->sw_index = sw_index;
1262 ret = 0;
1263 } else {
1264 ret = -EIO;
1265 }
1266
1267 spin_unlock_bh(&ce->ce_lock);
1268
1269 return ret;
1270}
1271EXPORT_SYMBOL(ath10k_ce_cancel_send_next);
1272
1273int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
1274 void **per_transfer_contextp)
1275{
1276 struct ath10k *ar = ce_state->ar;
1277 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1278 int ret;
1279
1280 spin_lock_bh(&ce->ce_lock);
1281 ret = ath10k_ce_completed_send_next_nolock(ce_state,
1282 per_transfer_contextp);
1283 spin_unlock_bh(&ce->ce_lock);
1284
1285 return ret;
1286}
1287EXPORT_SYMBOL(ath10k_ce_completed_send_next);
1288
1289/*
1290 * Guts of interrupt handler for per-engine interrupts on a particular CE.
1291 *
1292 * Invokes registered callbacks for recv_complete,
1293 * send_complete, and watermarks.
1294 */
1295void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
1296{
1297 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1298 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1299 struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
1300 u32 ctrl_addr = ce_state->ctrl_addr;
1301
1302 spin_lock_bh(&ce->ce_lock);
1303
1304 /* Clear the copy-complete interrupts that will be handled here. */
1305 ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
1306 wm_regs->cc_mask);
1307
1308 spin_unlock_bh(&ce->ce_lock);
1309
1310 if (ce_state->recv_cb)
1311 ce_state->recv_cb(ce_state);
1312
1313 if (ce_state->send_cb)
1314 ce_state->send_cb(ce_state);
1315
1316 spin_lock_bh(&ce->ce_lock);
1317
1318 /*
1319 * Misc CE interrupts are not being handled, but still need
1320 * to be cleared.
1321 */
1322 ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->wm_mask);
1323
1324 spin_unlock_bh(&ce->ce_lock);
1325}
1326EXPORT_SYMBOL(ath10k_ce_per_engine_service);
1327
1328/*
1329 * Handler for per-engine interrupts on ALL active CEs.
1330 * This is used in cases where the system is sharing a
1331 * single interrput for all CEs
1332 */
1333
1334void ath10k_ce_per_engine_service_any(struct ath10k *ar)
1335{
1336 int ce_id;
1337 u32 intr_summary;
1338
1339 intr_summary = ath10k_ce_interrupt_summary(ar);
1340
1341 for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
1342 if (intr_summary & (1 << ce_id))
1343 intr_summary &= ~(1 << ce_id);
1344 else
1345 /* no intr pending on this CE */
1346 continue;
1347
1348 ath10k_ce_per_engine_service(ar, ce_id);
1349 }
1350}
1351EXPORT_SYMBOL(ath10k_ce_per_engine_service_any);
1352
1353/*
1354 * Adjust interrupts for the copy complete handler.
1355 * If it's needed for either send or recv, then unmask
1356 * this interrupt; otherwise, mask it.
1357 *
1358 * Called with ce_lock held.
1359 */
1360static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
1361{
1362 u32 ctrl_addr = ce_state->ctrl_addr;
1363 struct ath10k *ar = ce_state->ar;
1364 bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
1365
1366 if ((!disable_copy_compl_intr) &&
1367 (ce_state->send_cb || ce_state->recv_cb))
1368 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
1369 else
1370 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1371
1372 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1373}
1374
1375int ath10k_ce_disable_interrupts(struct ath10k *ar)
1376{
1377 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1378 struct ath10k_ce_pipe *ce_state;
1379 u32 ctrl_addr;
1380 int ce_id;
1381
1382 for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
1383 ce_state = &ce->ce_states[ce_id];
1384 if (ce_state->attr_flags & CE_ATTR_POLL)
1385 continue;
1386
1387 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1388
1389 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1390 ath10k_ce_error_intr_disable(ar, ctrl_addr);
1391 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1392 }
1393
1394 return 0;
1395}
1396EXPORT_SYMBOL(ath10k_ce_disable_interrupts);
1397
1398void ath10k_ce_enable_interrupts(struct ath10k *ar)
1399{
1400 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1401 int ce_id;
1402 struct ath10k_ce_pipe *ce_state;
1403
1404 /* Enable interrupts for copy engine that
1405 * are not using polling mode.
1406 */
1407 for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
1408 ce_state = &ce->ce_states[ce_id];
1409 if (ce_state->attr_flags & CE_ATTR_POLL)
1410 continue;
1411
1412 ath10k_ce_per_engine_handler_adjust(ce_state);
1413 }
1414}
1415EXPORT_SYMBOL(ath10k_ce_enable_interrupts);
1416
1417static int ath10k_ce_init_src_ring(struct ath10k *ar,
1418 unsigned int ce_id,
1419 const struct ce_attr *attr)
1420{
1421 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1422 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1423 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1424 u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1425
1426 nentries = roundup_pow_of_two(attr->src_nentries);
1427
1428 if (ar->hw_params.target_64bit)
1429 memset(src_ring->base_addr_owner_space, 0,
1430 nentries * sizeof(struct ce_desc_64));
1431 else
1432 memset(src_ring->base_addr_owner_space, 0,
1433 nentries * sizeof(struct ce_desc));
1434
1435 src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1436 src_ring->sw_index &= src_ring->nentries_mask;
1437 src_ring->hw_index = src_ring->sw_index;
1438
1439 src_ring->write_index =
1440 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
1441 src_ring->write_index &= src_ring->nentries_mask;
1442
1443 ath10k_ce_src_ring_base_addr_set(ar, ce_id,
1444 src_ring->base_addr_ce_space);
1445 ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
1446 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
1447 ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
1448 ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
1449 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
1450
1451 ath10k_dbg(ar, ATH10K_DBG_BOOT,
1452 "boot init ce src ring id %d entries %d base_addr %pK\n",
1453 ce_id, nentries, src_ring->base_addr_owner_space);
1454
1455 return 0;
1456}
1457
1458static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1459 unsigned int ce_id,
1460 const struct ce_attr *attr)
1461{
1462 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1463 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1464 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
1465 u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1466
1467 nentries = roundup_pow_of_two(attr->dest_nentries);
1468
1469 if (ar->hw_params.target_64bit)
1470 memset(dest_ring->base_addr_owner_space, 0,
1471 nentries * sizeof(struct ce_desc_64));
1472 else
1473 memset(dest_ring->base_addr_owner_space, 0,
1474 nentries * sizeof(struct ce_desc));
1475
1476 dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1477 dest_ring->sw_index &= dest_ring->nentries_mask;
1478 dest_ring->write_index =
1479 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1480 dest_ring->write_index &= dest_ring->nentries_mask;
1481
1482 ath10k_ce_dest_ring_base_addr_set(ar, ce_id,
1483 dest_ring->base_addr_ce_space);
1484 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1485 ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1486 ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1487 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1488
1489 ath10k_dbg(ar, ATH10K_DBG_BOOT,
1490 "boot ce dest ring id %d entries %d base_addr %pK\n",
1491 ce_id, nentries, dest_ring->base_addr_owner_space);
1492
1493 return 0;
1494}
1495
1496static int ath10k_ce_alloc_shadow_base(struct ath10k *ar,
1497 struct ath10k_ce_ring *src_ring,
1498 u32 nentries)
1499{
1500 src_ring->shadow_base_unaligned = kcalloc(nentries,
1501 sizeof(struct ce_desc_64),
1502 GFP_KERNEL);
1503 if (!src_ring->shadow_base_unaligned)
1504 return -ENOMEM;
1505
1506 src_ring->shadow_base = (struct ce_desc_64 *)
1507 PTR_ALIGN(src_ring->shadow_base_unaligned,
1508 CE_DESC_RING_ALIGN);
1509 return 0;
1510}
1511
1512static struct ath10k_ce_ring *
1513ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
1514 const struct ce_attr *attr)
1515{
1516 struct ath10k_ce_ring *src_ring;
1517 u32 nentries = attr->src_nentries;
1518 dma_addr_t base_addr;
1519 int ret;
1520
1521 nentries = roundup_pow_of_two(nentries);
1522
1523 src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1524 nentries), GFP_KERNEL);
1525 if (src_ring == NULL)
1526 return ERR_PTR(-ENOMEM);
1527
1528 src_ring->nentries = nentries;
1529 src_ring->nentries_mask = nentries - 1;
1530
1531 /*
1532 * Legacy platforms that do not support cache
1533 * coherent DMA are unsupported
1534 */
1535 src_ring->base_addr_owner_space_unaligned =
1536 dma_alloc_coherent(ar->dev,
1537 (nentries * sizeof(struct ce_desc) +
1538 CE_DESC_RING_ALIGN),
1539 &base_addr, GFP_KERNEL);
1540 if (!src_ring->base_addr_owner_space_unaligned) {
1541 kfree(src_ring);
1542 return ERR_PTR(-ENOMEM);
1543 }
1544
1545 src_ring->base_addr_ce_space_unaligned = base_addr;
1546
1547 src_ring->base_addr_owner_space =
1548 PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1549 CE_DESC_RING_ALIGN);
1550 src_ring->base_addr_ce_space =
1551 ALIGN(src_ring->base_addr_ce_space_unaligned,
1552 CE_DESC_RING_ALIGN);
1553
1554 if (ar->hw_params.shadow_reg_support) {
1555 ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1556 if (ret) {
1557 dma_free_coherent(ar->dev,
1558 (nentries * sizeof(struct ce_desc_64) +
1559 CE_DESC_RING_ALIGN),
1560 src_ring->base_addr_owner_space_unaligned,
1561 base_addr);
1562 kfree(src_ring);
1563 return ERR_PTR(ret);
1564 }
1565 }
1566
1567 return src_ring;
1568}
1569
1570static struct ath10k_ce_ring *
1571ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
1572 const struct ce_attr *attr)
1573{
1574 struct ath10k_ce_ring *src_ring;
1575 u32 nentries = attr->src_nentries;
1576 dma_addr_t base_addr;
1577 int ret;
1578
1579 nentries = roundup_pow_of_two(nentries);
1580
1581 src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1582 nentries), GFP_KERNEL);
1583 if (!src_ring)
1584 return ERR_PTR(-ENOMEM);
1585
1586 src_ring->nentries = nentries;
1587 src_ring->nentries_mask = nentries - 1;
1588
1589 /* Legacy platforms that do not support cache
1590 * coherent DMA are unsupported
1591 */
1592 src_ring->base_addr_owner_space_unaligned =
1593 dma_alloc_coherent(ar->dev,
1594 (nentries * sizeof(struct ce_desc_64) +
1595 CE_DESC_RING_ALIGN),
1596 &base_addr, GFP_KERNEL);
1597 if (!src_ring->base_addr_owner_space_unaligned) {
1598 kfree(src_ring);
1599 return ERR_PTR(-ENOMEM);
1600 }
1601
1602 src_ring->base_addr_ce_space_unaligned = base_addr;
1603
1604 src_ring->base_addr_owner_space =
1605 PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1606 CE_DESC_RING_ALIGN);
1607 src_ring->base_addr_ce_space =
1608 ALIGN(src_ring->base_addr_ce_space_unaligned,
1609 CE_DESC_RING_ALIGN);
1610
1611 if (ar->hw_params.shadow_reg_support) {
1612 ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1613 if (ret) {
1614 dma_free_coherent(ar->dev,
1615 (nentries * sizeof(struct ce_desc_64) +
1616 CE_DESC_RING_ALIGN),
1617 src_ring->base_addr_owner_space_unaligned,
1618 base_addr);
1619 kfree(src_ring);
1620 return ERR_PTR(ret);
1621 }
1622 }
1623
1624 return src_ring;
1625}
1626
1627static struct ath10k_ce_ring *
1628ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1629 const struct ce_attr *attr)
1630{
1631 struct ath10k_ce_ring *dest_ring;
1632 u32 nentries;
1633 dma_addr_t base_addr;
1634
1635 nentries = roundup_pow_of_two(attr->dest_nentries);
1636
1637 dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1638 nentries), GFP_KERNEL);
1639 if (dest_ring == NULL)
1640 return ERR_PTR(-ENOMEM);
1641
1642 dest_ring->nentries = nentries;
1643 dest_ring->nentries_mask = nentries - 1;
1644
1645 /*
1646 * Legacy platforms that do not support cache
1647 * coherent DMA are unsupported
1648 */
1649 dest_ring->base_addr_owner_space_unaligned =
1650 dma_alloc_coherent(ar->dev,
1651 (nentries * sizeof(struct ce_desc) +
1652 CE_DESC_RING_ALIGN),
1653 &base_addr, GFP_KERNEL);
1654 if (!dest_ring->base_addr_owner_space_unaligned) {
1655 kfree(dest_ring);
1656 return ERR_PTR(-ENOMEM);
1657 }
1658
1659 dest_ring->base_addr_ce_space_unaligned = base_addr;
1660
1661 dest_ring->base_addr_owner_space =
1662 PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1663 CE_DESC_RING_ALIGN);
1664 dest_ring->base_addr_ce_space =
1665 ALIGN(dest_ring->base_addr_ce_space_unaligned,
1666 CE_DESC_RING_ALIGN);
1667
1668 return dest_ring;
1669}
1670
1671static struct ath10k_ce_ring *
1672ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
1673 const struct ce_attr *attr)
1674{
1675 struct ath10k_ce_ring *dest_ring;
1676 u32 nentries;
1677 dma_addr_t base_addr;
1678
1679 nentries = roundup_pow_of_two(attr->dest_nentries);
1680
1681 dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1682 nentries), GFP_KERNEL);
1683 if (!dest_ring)
1684 return ERR_PTR(-ENOMEM);
1685
1686 dest_ring->nentries = nentries;
1687 dest_ring->nentries_mask = nentries - 1;
1688
1689 /* Legacy platforms that do not support cache
1690 * coherent DMA are unsupported
1691 */
1692 dest_ring->base_addr_owner_space_unaligned =
1693 dma_alloc_coherent(ar->dev,
1694 (nentries * sizeof(struct ce_desc_64) +
1695 CE_DESC_RING_ALIGN),
1696 &base_addr, GFP_KERNEL);
1697 if (!dest_ring->base_addr_owner_space_unaligned) {
1698 kfree(dest_ring);
1699 return ERR_PTR(-ENOMEM);
1700 }
1701
1702 dest_ring->base_addr_ce_space_unaligned = base_addr;
1703
1704 /* Correctly initialize memory to 0 to prevent garbage
1705 * data crashing system when download firmware
1706 */
1707 dest_ring->base_addr_owner_space =
1708 PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1709 CE_DESC_RING_ALIGN);
1710 dest_ring->base_addr_ce_space =
1711 ALIGN(dest_ring->base_addr_ce_space_unaligned,
1712 CE_DESC_RING_ALIGN);
1713
1714 return dest_ring;
1715}
1716
1717/*
1718 * Initialize a Copy Engine based on caller-supplied attributes.
1719 * This may be called once to initialize both source and destination
1720 * rings or it may be called twice for separate source and destination
1721 * initialization. It may be that only one side or the other is
1722 * initialized by software/firmware.
1723 */
1724int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1725 const struct ce_attr *attr)
1726{
1727 int ret;
1728
1729 if (attr->src_nentries) {
1730 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1731 if (ret) {
1732 ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1733 ce_id, ret);
1734 return ret;
1735 }
1736 }
1737
1738 if (attr->dest_nentries) {
1739 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1740 if (ret) {
1741 ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1742 ce_id, ret);
1743 return ret;
1744 }
1745 }
1746
1747 return 0;
1748}
1749EXPORT_SYMBOL(ath10k_ce_init_pipe);
1750
1751static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1752{
1753 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1754
1755 ath10k_ce_src_ring_base_addr_set(ar, ce_id, 0);
1756 ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1757 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1758 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1759}
1760
1761static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1762{
1763 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1764
1765 ath10k_ce_dest_ring_base_addr_set(ar, ce_id, 0);
1766 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1767 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1768}
1769
1770void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1771{
1772 ath10k_ce_deinit_src_ring(ar, ce_id);
1773 ath10k_ce_deinit_dest_ring(ar, ce_id);
1774}
1775EXPORT_SYMBOL(ath10k_ce_deinit_pipe);
1776
1777static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1778{
1779 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1780 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1781
1782 if (ce_state->src_ring) {
1783 if (ar->hw_params.shadow_reg_support)
1784 kfree(ce_state->src_ring->shadow_base_unaligned);
1785 dma_free_coherent(ar->dev,
1786 (ce_state->src_ring->nentries *
1787 sizeof(struct ce_desc) +
1788 CE_DESC_RING_ALIGN),
1789 ce_state->src_ring->base_addr_owner_space,
1790 ce_state->src_ring->base_addr_ce_space);
1791 kfree(ce_state->src_ring);
1792 }
1793
1794 if (ce_state->dest_ring) {
1795 dma_free_coherent(ar->dev,
1796 (ce_state->dest_ring->nentries *
1797 sizeof(struct ce_desc) +
1798 CE_DESC_RING_ALIGN),
1799 ce_state->dest_ring->base_addr_owner_space,
1800 ce_state->dest_ring->base_addr_ce_space);
1801 kfree(ce_state->dest_ring);
1802 }
1803
1804 ce_state->src_ring = NULL;
1805 ce_state->dest_ring = NULL;
1806}
1807
1808static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
1809{
1810 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1811 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1812
1813 if (ce_state->src_ring) {
1814 if (ar->hw_params.shadow_reg_support)
1815 kfree(ce_state->src_ring->shadow_base_unaligned);
1816 dma_free_coherent(ar->dev,
1817 (ce_state->src_ring->nentries *
1818 sizeof(struct ce_desc_64) +
1819 CE_DESC_RING_ALIGN),
1820 ce_state->src_ring->base_addr_owner_space,
1821 ce_state->src_ring->base_addr_ce_space);
1822 kfree(ce_state->src_ring);
1823 }
1824
1825 if (ce_state->dest_ring) {
1826 dma_free_coherent(ar->dev,
1827 (ce_state->dest_ring->nentries *
1828 sizeof(struct ce_desc_64) +
1829 CE_DESC_RING_ALIGN),
1830 ce_state->dest_ring->base_addr_owner_space,
1831 ce_state->dest_ring->base_addr_ce_space);
1832 kfree(ce_state->dest_ring);
1833 }
1834
1835 ce_state->src_ring = NULL;
1836 ce_state->dest_ring = NULL;
1837}
1838
1839void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1840{
1841 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1842 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1843
1844 ce_state->ops->ce_free_pipe(ar, ce_id);
1845}
1846EXPORT_SYMBOL(ath10k_ce_free_pipe);
1847
1848void ath10k_ce_dump_registers(struct ath10k *ar,
1849 struct ath10k_fw_crash_data *crash_data)
1850{
1851 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1852 struct ath10k_ce_crash_data ce_data;
1853 u32 addr, id;
1854
1855 lockdep_assert_held(&ar->dump_mutex);
1856
1857 ath10k_err(ar, "Copy Engine register dump:\n");
1858
1859 spin_lock_bh(&ce->ce_lock);
1860 for (id = 0; id < CE_COUNT; id++) {
1861 addr = ath10k_ce_base_address(ar, id);
1862 ce_data.base_addr = cpu_to_le32(addr);
1863
1864 ce_data.src_wr_idx =
1865 cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1866 ce_data.src_r_idx =
1867 cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1868 ce_data.dst_wr_idx =
1869 cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1870 ce_data.dst_r_idx =
1871 cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1872
1873 if (crash_data)
1874 crash_data->ce_crash_data[id] = ce_data;
1875
1876 ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1877 le32_to_cpu(ce_data.base_addr),
1878 le32_to_cpu(ce_data.src_wr_idx),
1879 le32_to_cpu(ce_data.src_r_idx),
1880 le32_to_cpu(ce_data.dst_wr_idx),
1881 le32_to_cpu(ce_data.dst_r_idx));
1882 }
1883
1884 spin_unlock_bh(&ce->ce_lock);
1885}
1886EXPORT_SYMBOL(ath10k_ce_dump_registers);
1887
1888static const struct ath10k_ce_ops ce_ops = {
1889 .ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
1890 .ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
1891 .ce_rx_post_buf = __ath10k_ce_rx_post_buf,
1892 .ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
1893 .ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
1894 .ce_extract_desc_data = ath10k_ce_extract_desc_data,
1895 .ce_free_pipe = _ath10k_ce_free_pipe,
1896 .ce_send_nolock = _ath10k_ce_send_nolock,
1897 .ce_set_src_ring_base_addr_hi = NULL,
1898 .ce_set_dest_ring_base_addr_hi = NULL,
1899 .ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock,
1900};
1901
1902static const struct ath10k_ce_ops ce_64_ops = {
1903 .ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
1904 .ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
1905 .ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
1906 .ce_completed_recv_next_nolock =
1907 _ath10k_ce_completed_recv_next_nolock_64,
1908 .ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
1909 .ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
1910 .ce_free_pipe = _ath10k_ce_free_pipe_64,
1911 .ce_send_nolock = _ath10k_ce_send_nolock_64,
1912 .ce_set_src_ring_base_addr_hi = ath10k_ce_set_src_ring_base_addr_hi,
1913 .ce_set_dest_ring_base_addr_hi = ath10k_ce_set_dest_ring_base_addr_hi,
1914 .ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock_64,
1915};
1916
1917static void ath10k_ce_set_ops(struct ath10k *ar,
1918 struct ath10k_ce_pipe *ce_state)
1919{
1920 switch (ar->hw_rev) {
1921 case ATH10K_HW_WCN3990:
1922 ce_state->ops = &ce_64_ops;
1923 break;
1924 default:
1925 ce_state->ops = &ce_ops;
1926 break;
1927 }
1928}
1929
1930int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1931 const struct ce_attr *attr)
1932{
1933 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1934 struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1935 int ret;
1936
1937 ath10k_ce_set_ops(ar, ce_state);
1938 /* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1939 * additional TX locking checks.
1940 *
1941 * For the lack of a better place do the check here.
1942 */
1943 BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1944 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1945 BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
1946 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1947 BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1948 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1949
1950 ce_state->ar = ar;
1951 ce_state->id = ce_id;
1952 ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1953 ce_state->attr_flags = attr->flags;
1954 ce_state->src_sz_max = attr->src_sz_max;
1955
1956 if (attr->src_nentries)
1957 ce_state->send_cb = attr->send_cb;
1958
1959 if (attr->dest_nentries)
1960 ce_state->recv_cb = attr->recv_cb;
1961
1962 if (attr->src_nentries) {
1963 ce_state->src_ring =
1964 ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
1965 if (IS_ERR(ce_state->src_ring)) {
1966 ret = PTR_ERR(ce_state->src_ring);
1967 ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
1968 ce_id, ret);
1969 ce_state->src_ring = NULL;
1970 return ret;
1971 }
1972 }
1973
1974 if (attr->dest_nentries) {
1975 ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
1976 ce_id,
1977 attr);
1978 if (IS_ERR(ce_state->dest_ring)) {
1979 ret = PTR_ERR(ce_state->dest_ring);
1980 ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
1981 ce_id, ret);
1982 ce_state->dest_ring = NULL;
1983 return ret;
1984 }
1985 }
1986
1987 return 0;
1988}
1989EXPORT_SYMBOL(ath10k_ce_alloc_pipe);
1990
1991void ath10k_ce_alloc_rri(struct ath10k *ar)
1992{
1993 int i;
1994 u32 value;
1995 u32 ctrl1_regs;
1996 u32 ce_base_addr;
1997 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1998
1999 ce->vaddr_rri = dma_alloc_coherent(ar->dev,
2000 (CE_COUNT * sizeof(u32)),
2001 &ce->paddr_rri, GFP_KERNEL);
2002
2003 if (!ce->vaddr_rri)
2004 return;
2005
2006 ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_low,
2007 lower_32_bits(ce->paddr_rri));
2008 ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_high,
2009 (upper_32_bits(ce->paddr_rri) &
2010 CE_DESC_ADDR_HI_MASK));
2011
2012 for (i = 0; i < CE_COUNT; i++) {
2013 ctrl1_regs = ar->hw_ce_regs->ctrl1_regs->addr;
2014 ce_base_addr = ath10k_ce_base_address(ar, i);
2015 value = ath10k_ce_read32(ar, ce_base_addr + ctrl1_regs);
2016 value |= ar->hw_ce_regs->upd->mask;
2017 ath10k_ce_write32(ar, ce_base_addr + ctrl1_regs, value);
2018 }
2019}
2020EXPORT_SYMBOL(ath10k_ce_alloc_rri);
2021
2022void ath10k_ce_free_rri(struct ath10k *ar)
2023{
2024 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2025
2026 dma_free_coherent(ar->dev, (CE_COUNT * sizeof(u32)),
2027 ce->vaddr_rri,
2028 ce->paddr_rri);
2029}
2030EXPORT_SYMBOL(ath10k_ce_free_rri);