Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2005-2011 Atheros Communications Inc.
   3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include "hif.h"
  19#include "pci.h"
  20#include "ce.h"
  21#include "debug.h"
  22
  23/*
  24 * Support for Copy Engine hardware, which is mainly used for
  25 * communication between Host and Target over a PCIe interconnect.
  26 */
  27
  28/*
  29 * A single CopyEngine (CE) comprises two "rings":
  30 *   a source ring
  31 *   a destination ring
  32 *
  33 * Each ring consists of a number of descriptors which specify
  34 * an address, length, and meta-data.
  35 *
  36 * Typically, one side of the PCIe interconnect (Host or Target)
  37 * controls one ring and the other side controls the other ring.
  38 * The source side chooses when to initiate a transfer and it
  39 * chooses what to send (buffer address, length). The destination
  40 * side keeps a supply of "anonymous receive buffers" available and
  41 * it handles incoming data as it arrives (when the destination
  42 * recieves an interrupt).
  43 *
  44 * The sender may send a simple buffer (address/length) or it may
  45 * send a small list of buffers.  When a small list is sent, hardware
  46 * "gathers" these and they end up in a single destination buffer
  47 * with a single interrupt.
  48 *
  49 * There are several "contexts" managed by this layer -- more, it
  50 * may seem -- than should be needed. These are provided mainly for
  51 * maximum flexibility and especially to facilitate a simpler HIF
  52 * implementation. There are per-CopyEngine recv, send, and watermark
  53 * contexts. These are supplied by the caller when a recv, send,
  54 * or watermark handler is established and they are echoed back to
  55 * the caller when the respective callbacks are invoked. There is
  56 * also a per-transfer context supplied by the caller when a buffer
  57 * (or sendlist) is sent and when a buffer is enqueued for recv.
  58 * These per-transfer contexts are echoed back to the caller when
  59 * the buffer is sent/received.
  60 */
  61
  62static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
  63						       u32 ce_ctrl_addr,
  64						       unsigned int n)
  65{
  66	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
  67}
  68
  69static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
  70						      u32 ce_ctrl_addr)
  71{
  72	return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
  73}
  74
  75static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
  76						      u32 ce_ctrl_addr,
  77						      unsigned int n)
  78{
  79	ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
  80}
  81
  82static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
  83						     u32 ce_ctrl_addr)
  84{
  85	return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
  86}
  87
  88static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
  89						    u32 ce_ctrl_addr)
  90{
  91	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
  92}
  93
  94static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
  95						    u32 ce_ctrl_addr,
  96						    unsigned int addr)
  97{
  98	ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
  99}
 100
 101static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
 102					       u32 ce_ctrl_addr,
 103					       unsigned int n)
 104{
 105	ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
 106}
 107
 108static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
 109					       u32 ce_ctrl_addr,
 110					       unsigned int n)
 111{
 112	u32 ctrl1_addr = ath10k_pci_read32((ar),
 113					   (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
 114
 115	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
 116			   (ctrl1_addr &  ~CE_CTRL1_DMAX_LENGTH_MASK) |
 117			   CE_CTRL1_DMAX_LENGTH_SET(n));
 118}
 119
 120static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
 121						    u32 ce_ctrl_addr,
 122						    unsigned int n)
 123{
 124	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
 125
 126	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
 127			   (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
 128			   CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
 129}
 130
 131static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
 132						     u32 ce_ctrl_addr,
 133						     unsigned int n)
 134{
 135	u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
 136
 137	ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
 138			   (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
 139			   CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
 140}
 141
 142static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
 143						     u32 ce_ctrl_addr)
 144{
 145	return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
 146}
 147
 148static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
 149						     u32 ce_ctrl_addr,
 150						     u32 addr)
 151{
 152	ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
 153}
 154
 155static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
 156						u32 ce_ctrl_addr,
 157						unsigned int n)
 158{
 159	ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
 160}
 161
 162static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
 163						   u32 ce_ctrl_addr,
 164						   unsigned int n)
 165{
 166	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
 167
 168	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
 169			   (addr & ~SRC_WATERMARK_HIGH_MASK) |
 170			   SRC_WATERMARK_HIGH_SET(n));
 171}
 172
 173static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
 174						  u32 ce_ctrl_addr,
 175						  unsigned int n)
 176{
 177	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
 178
 179	ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
 180			   (addr & ~SRC_WATERMARK_LOW_MASK) |
 181			   SRC_WATERMARK_LOW_SET(n));
 182}
 183
 184static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
 185						    u32 ce_ctrl_addr,
 186						    unsigned int n)
 187{
 188	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
 189
 190	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
 191			   (addr & ~DST_WATERMARK_HIGH_MASK) |
 192			   DST_WATERMARK_HIGH_SET(n));
 193}
 194
 195static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
 196						   u32 ce_ctrl_addr,
 197						   unsigned int n)
 198{
 199	u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
 200
 201	ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
 202			   (addr & ~DST_WATERMARK_LOW_MASK) |
 203			   DST_WATERMARK_LOW_SET(n));
 204}
 205
 206static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
 207							u32 ce_ctrl_addr)
 208{
 209	u32 host_ie_addr = ath10k_pci_read32(ar,
 210					     ce_ctrl_addr + HOST_IE_ADDRESS);
 211
 212	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
 213			   host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
 214}
 215
 216static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
 217							u32 ce_ctrl_addr)
 218{
 219	u32 host_ie_addr = ath10k_pci_read32(ar,
 220					     ce_ctrl_addr + HOST_IE_ADDRESS);
 221
 222	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
 223			   host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
 224}
 225
 226static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
 227						    u32 ce_ctrl_addr)
 228{
 229	u32 host_ie_addr = ath10k_pci_read32(ar,
 230					     ce_ctrl_addr + HOST_IE_ADDRESS);
 231
 232	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
 233			   host_ie_addr & ~CE_WATERMARK_MASK);
 234}
 235
 236static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
 237					       u32 ce_ctrl_addr)
 238{
 239	u32 misc_ie_addr = ath10k_pci_read32(ar,
 240					     ce_ctrl_addr + MISC_IE_ADDRESS);
 241
 242	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
 243			   misc_ie_addr | CE_ERROR_MASK);
 244}
 245
 246static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
 247						u32 ce_ctrl_addr)
 248{
 249	u32 misc_ie_addr = ath10k_pci_read32(ar,
 250					     ce_ctrl_addr + MISC_IE_ADDRESS);
 251
 252	ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
 253			   misc_ie_addr & ~CE_ERROR_MASK);
 254}
 255
 256static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
 257						     u32 ce_ctrl_addr,
 258						     unsigned int mask)
 259{
 260	ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
 261}
 262
 263/*
 264 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
 265 * ath10k_ce_sendlist_send.
 266 * The caller takes responsibility for any needed locking.
 267 */
 268int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
 269			  void *per_transfer_context,
 270			  u32 buffer,
 271			  unsigned int nbytes,
 272			  unsigned int transfer_id,
 273			  unsigned int flags)
 274{
 275	struct ath10k *ar = ce_state->ar;
 276	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
 277	struct ce_desc *desc, sdesc;
 278	unsigned int nentries_mask = src_ring->nentries_mask;
 279	unsigned int sw_index = src_ring->sw_index;
 280	unsigned int write_index = src_ring->write_index;
 281	u32 ctrl_addr = ce_state->ctrl_addr;
 282	u32 desc_flags = 0;
 283	int ret = 0;
 284
 285	if (nbytes > ce_state->src_sz_max)
 286		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
 287			    __func__, nbytes, ce_state->src_sz_max);
 288
 289	if (unlikely(CE_RING_DELTA(nentries_mask,
 290				   write_index, sw_index - 1) <= 0)) {
 291		ret = -ENOSR;
 292		goto exit;
 293	}
 294
 295	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
 296				   write_index);
 297
 298	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
 299
 300	if (flags & CE_SEND_FLAG_GATHER)
 301		desc_flags |= CE_DESC_FLAGS_GATHER;
 302	if (flags & CE_SEND_FLAG_BYTE_SWAP)
 303		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
 304
 305	sdesc.addr   = __cpu_to_le32(buffer);
 306	sdesc.nbytes = __cpu_to_le16(nbytes);
 307	sdesc.flags  = __cpu_to_le16(desc_flags);
 308
 309	*desc = sdesc;
 310
 311	src_ring->per_transfer_context[write_index] = per_transfer_context;
 312
 313	/* Update Source Ring Write Index */
 314	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 315
 316	/* WORKAROUND */
 317	if (!(flags & CE_SEND_FLAG_GATHER))
 318		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
 319
 320	src_ring->write_index = write_index;
 321exit:
 322	return ret;
 323}
 324
 325void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
 326{
 327	struct ath10k *ar = pipe->ar;
 328	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 329	struct ath10k_ce_ring *src_ring = pipe->src_ring;
 330	u32 ctrl_addr = pipe->ctrl_addr;
 331
 332	lockdep_assert_held(&ar_pci->ce_lock);
 333
 334	/*
 335	 * This function must be called only if there is an incomplete
 336	 * scatter-gather transfer (before index register is updated)
 337	 * that needs to be cleaned up.
 338	 */
 339	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
 340		return;
 341
 342	if (WARN_ON_ONCE(src_ring->write_index ==
 343			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
 344		return;
 345
 346	src_ring->write_index--;
 347	src_ring->write_index &= src_ring->nentries_mask;
 348
 349	src_ring->per_transfer_context[src_ring->write_index] = NULL;
 350}
 351
 352int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
 353		   void *per_transfer_context,
 354		   u32 buffer,
 355		   unsigned int nbytes,
 356		   unsigned int transfer_id,
 357		   unsigned int flags)
 358{
 359	struct ath10k *ar = ce_state->ar;
 360	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 361	int ret;
 362
 363	spin_lock_bh(&ar_pci->ce_lock);
 364	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
 365				    buffer, nbytes, transfer_id, flags);
 366	spin_unlock_bh(&ar_pci->ce_lock);
 367
 368	return ret;
 369}
 370
 371int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
 372{
 373	struct ath10k *ar = pipe->ar;
 374	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 375	int delta;
 376
 377	spin_lock_bh(&ar_pci->ce_lock);
 378	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
 379			      pipe->src_ring->write_index,
 380			      pipe->src_ring->sw_index - 1);
 381	spin_unlock_bh(&ar_pci->ce_lock);
 382
 383	return delta;
 384}
 385
 386int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
 387{
 388	struct ath10k *ar = pipe->ar;
 389	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 390	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 391	unsigned int nentries_mask = dest_ring->nentries_mask;
 392	unsigned int write_index = dest_ring->write_index;
 393	unsigned int sw_index = dest_ring->sw_index;
 394
 395	lockdep_assert_held(&ar_pci->ce_lock);
 396
 397	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
 398}
 399
 400int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
 401{
 402	struct ath10k *ar = pipe->ar;
 403	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 404	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 405	unsigned int nentries_mask = dest_ring->nentries_mask;
 406	unsigned int write_index = dest_ring->write_index;
 407	unsigned int sw_index = dest_ring->sw_index;
 408	struct ce_desc *base = dest_ring->base_addr_owner_space;
 409	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
 410	u32 ctrl_addr = pipe->ctrl_addr;
 411
 412	lockdep_assert_held(&ar_pci->ce_lock);
 413
 414	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
 415		return -ENOSPC;
 416
 417	desc->addr = __cpu_to_le32(paddr);
 418	desc->nbytes = 0;
 419
 420	dest_ring->per_transfer_context[write_index] = ctx;
 421	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 422	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
 423	dest_ring->write_index = write_index;
 424
 425	return 0;
 426}
 427
 428int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
 429{
 430	struct ath10k *ar = pipe->ar;
 431	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 432	int ret;
 433
 434	spin_lock_bh(&ar_pci->ce_lock);
 435	ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
 436	spin_unlock_bh(&ar_pci->ce_lock);
 437
 438	return ret;
 439}
 440
 441/*
 442 * Guts of ath10k_ce_completed_recv_next.
 443 * The caller takes responsibility for any necessary locking.
 444 */
 445int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
 446					 void **per_transfer_contextp,
 447					 u32 *bufferp,
 448					 unsigned int *nbytesp,
 449					 unsigned int *transfer_idp,
 450					 unsigned int *flagsp)
 451{
 452	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
 453	unsigned int nentries_mask = dest_ring->nentries_mask;
 454	struct ath10k *ar = ce_state->ar;
 455	unsigned int sw_index = dest_ring->sw_index;
 456
 457	struct ce_desc *base = dest_ring->base_addr_owner_space;
 458	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
 459	struct ce_desc sdesc;
 460	u16 nbytes;
 461
 462	/* Copy in one go for performance reasons */
 463	sdesc = *desc;
 464
 465	nbytes = __le16_to_cpu(sdesc.nbytes);
 466	if (nbytes == 0) {
 467		/*
 468		 * This closes a relatively unusual race where the Host
 469		 * sees the updated DRRI before the update to the
 470		 * corresponding descriptor has completed. We treat this
 471		 * as a descriptor that is not yet done.
 472		 */
 473		return -EIO;
 474	}
 475
 476	desc->nbytes = 0;
 477
 478	/* Return data from completed destination descriptor */
 479	*bufferp = __le32_to_cpu(sdesc.addr);
 480	*nbytesp = nbytes;
 481	*transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
 482
 483	if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
 484		*flagsp = CE_RECV_FLAG_SWAPPED;
 485	else
 486		*flagsp = 0;
 487
 488	if (per_transfer_contextp)
 489		*per_transfer_contextp =
 490			dest_ring->per_transfer_context[sw_index];
 491
 492	/* sanity */
 493	dest_ring->per_transfer_context[sw_index] = NULL;
 494
 495	/* Update sw_index */
 496	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 497	dest_ring->sw_index = sw_index;
 498
 499	return 0;
 500}
 501
 502int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
 503				  void **per_transfer_contextp,
 504				  u32 *bufferp,
 505				  unsigned int *nbytesp,
 506				  unsigned int *transfer_idp,
 507				  unsigned int *flagsp)
 508{
 509	struct ath10k *ar = ce_state->ar;
 510	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 511	int ret;
 512
 513	spin_lock_bh(&ar_pci->ce_lock);
 514	ret = ath10k_ce_completed_recv_next_nolock(ce_state,
 515						   per_transfer_contextp,
 516						   bufferp, nbytesp,
 517						   transfer_idp, flagsp);
 518	spin_unlock_bh(&ar_pci->ce_lock);
 519
 520	return ret;
 521}
 522
 523int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
 524			       void **per_transfer_contextp,
 525			       u32 *bufferp)
 526{
 527	struct ath10k_ce_ring *dest_ring;
 528	unsigned int nentries_mask;
 529	unsigned int sw_index;
 530	unsigned int write_index;
 531	int ret;
 532	struct ath10k *ar;
 533	struct ath10k_pci *ar_pci;
 534
 535	dest_ring = ce_state->dest_ring;
 536
 537	if (!dest_ring)
 538		return -EIO;
 539
 540	ar = ce_state->ar;
 541	ar_pci = ath10k_pci_priv(ar);
 542
 543	spin_lock_bh(&ar_pci->ce_lock);
 544
 545	nentries_mask = dest_ring->nentries_mask;
 546	sw_index = dest_ring->sw_index;
 547	write_index = dest_ring->write_index;
 548	if (write_index != sw_index) {
 549		struct ce_desc *base = dest_ring->base_addr_owner_space;
 550		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
 551
 552		/* Return data from completed destination descriptor */
 553		*bufferp = __le32_to_cpu(desc->addr);
 554
 555		if (per_transfer_contextp)
 556			*per_transfer_contextp =
 557				dest_ring->per_transfer_context[sw_index];
 558
 559		/* sanity */
 560		dest_ring->per_transfer_context[sw_index] = NULL;
 561		desc->nbytes = 0;
 562
 563		/* Update sw_index */
 564		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 565		dest_ring->sw_index = sw_index;
 566		ret = 0;
 567	} else {
 568		ret = -EIO;
 569	}
 570
 571	spin_unlock_bh(&ar_pci->ce_lock);
 572
 573	return ret;
 574}
 575
 576/*
 577 * Guts of ath10k_ce_completed_send_next.
 578 * The caller takes responsibility for any necessary locking.
 579 */
 580int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
 581					 void **per_transfer_contextp)
 582{
 583	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
 584	u32 ctrl_addr = ce_state->ctrl_addr;
 585	struct ath10k *ar = ce_state->ar;
 586	unsigned int nentries_mask = src_ring->nentries_mask;
 587	unsigned int sw_index = src_ring->sw_index;
 588	unsigned int read_index;
 589
 590	if (src_ring->hw_index == sw_index) {
 591		/*
 592		 * The SW completion index has caught up with the cached
 593		 * version of the HW completion index.
 594		 * Update the cached HW completion index to see whether
 595		 * the SW has really caught up to the HW, or if the cached
 596		 * value of the HW index has become stale.
 597		 */
 598
 599		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
 600		if (read_index == 0xffffffff)
 601			return -ENODEV;
 602
 603		read_index &= nentries_mask;
 604		src_ring->hw_index = read_index;
 605	}
 606
 607	read_index = src_ring->hw_index;
 608
 609	if (read_index == sw_index)
 610		return -EIO;
 611
 612	if (per_transfer_contextp)
 613		*per_transfer_contextp =
 614			src_ring->per_transfer_context[sw_index];
 615
 616	/* sanity */
 617	src_ring->per_transfer_context[sw_index] = NULL;
 618
 619	/* Update sw_index */
 620	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 621	src_ring->sw_index = sw_index;
 622
 623	return 0;
 624}
 625
 626/* NB: Modeled after ath10k_ce_completed_send_next */
 627int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
 628			       void **per_transfer_contextp,
 629			       u32 *bufferp,
 630			       unsigned int *nbytesp,
 631			       unsigned int *transfer_idp)
 632{
 633	struct ath10k_ce_ring *src_ring;
 634	unsigned int nentries_mask;
 635	unsigned int sw_index;
 636	unsigned int write_index;
 637	int ret;
 638	struct ath10k *ar;
 639	struct ath10k_pci *ar_pci;
 640
 641	src_ring = ce_state->src_ring;
 642
 643	if (!src_ring)
 644		return -EIO;
 645
 646	ar = ce_state->ar;
 647	ar_pci = ath10k_pci_priv(ar);
 648
 649	spin_lock_bh(&ar_pci->ce_lock);
 650
 651	nentries_mask = src_ring->nentries_mask;
 652	sw_index = src_ring->sw_index;
 653	write_index = src_ring->write_index;
 654
 655	if (write_index != sw_index) {
 656		struct ce_desc *base = src_ring->base_addr_owner_space;
 657		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
 658
 659		/* Return data from completed source descriptor */
 660		*bufferp = __le32_to_cpu(desc->addr);
 661		*nbytesp = __le16_to_cpu(desc->nbytes);
 662		*transfer_idp = MS(__le16_to_cpu(desc->flags),
 663						CE_DESC_FLAGS_META_DATA);
 664
 665		if (per_transfer_contextp)
 666			*per_transfer_contextp =
 667				src_ring->per_transfer_context[sw_index];
 668
 669		/* sanity */
 670		src_ring->per_transfer_context[sw_index] = NULL;
 671
 672		/* Update sw_index */
 673		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 674		src_ring->sw_index = sw_index;
 675		ret = 0;
 676	} else {
 677		ret = -EIO;
 678	}
 679
 680	spin_unlock_bh(&ar_pci->ce_lock);
 681
 682	return ret;
 683}
 684
 685int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
 686				  void **per_transfer_contextp)
 687{
 688	struct ath10k *ar = ce_state->ar;
 689	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 690	int ret;
 691
 692	spin_lock_bh(&ar_pci->ce_lock);
 693	ret = ath10k_ce_completed_send_next_nolock(ce_state,
 694						   per_transfer_contextp);
 695	spin_unlock_bh(&ar_pci->ce_lock);
 696
 697	return ret;
 698}
 699
 700/*
 701 * Guts of interrupt handler for per-engine interrupts on a particular CE.
 702 *
 703 * Invokes registered callbacks for recv_complete,
 704 * send_complete, and watermarks.
 705 */
 706void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
 707{
 708	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 709	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
 710	u32 ctrl_addr = ce_state->ctrl_addr;
 711
 712	spin_lock_bh(&ar_pci->ce_lock);
 713
 714	/* Clear the copy-complete interrupts that will be handled here. */
 715	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
 716					  HOST_IS_COPY_COMPLETE_MASK);
 717
 718	spin_unlock_bh(&ar_pci->ce_lock);
 719
 720	if (ce_state->recv_cb)
 721		ce_state->recv_cb(ce_state);
 722
 723	if (ce_state->send_cb)
 724		ce_state->send_cb(ce_state);
 725
 726	spin_lock_bh(&ar_pci->ce_lock);
 727
 728	/*
 729	 * Misc CE interrupts are not being handled, but still need
 730	 * to be cleared.
 731	 */
 732	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
 733
 734	spin_unlock_bh(&ar_pci->ce_lock);
 735}
 736
 737/*
 738 * Handler for per-engine interrupts on ALL active CEs.
 739 * This is used in cases where the system is sharing a
 740 * single interrput for all CEs
 741 */
 742
 743void ath10k_ce_per_engine_service_any(struct ath10k *ar)
 744{
 745	int ce_id;
 746	u32 intr_summary;
 747
 748	intr_summary = CE_INTERRUPT_SUMMARY(ar);
 749
 750	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
 751		if (intr_summary & (1 << ce_id))
 752			intr_summary &= ~(1 << ce_id);
 753		else
 754			/* no intr pending on this CE */
 755			continue;
 756
 757		ath10k_ce_per_engine_service(ar, ce_id);
 758	}
 759}
 760
 761/*
 762 * Adjust interrupts for the copy complete handler.
 763 * If it's needed for either send or recv, then unmask
 764 * this interrupt; otherwise, mask it.
 765 *
 766 * Called with ce_lock held.
 767 */
 768static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
 769{
 770	u32 ctrl_addr = ce_state->ctrl_addr;
 771	struct ath10k *ar = ce_state->ar;
 772	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
 773
 774	if ((!disable_copy_compl_intr) &&
 775	    (ce_state->send_cb || ce_state->recv_cb))
 776		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
 777	else
 778		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
 779
 780	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
 781}
 782
 783int ath10k_ce_disable_interrupts(struct ath10k *ar)
 784{
 785	int ce_id;
 786
 787	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
 788		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
 789
 790		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
 791		ath10k_ce_error_intr_disable(ar, ctrl_addr);
 792		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
 793	}
 794
 795	return 0;
 796}
 797
 798void ath10k_ce_enable_interrupts(struct ath10k *ar)
 799{
 800	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 801	int ce_id;
 802
 803	/* Skip the last copy engine, CE7 the diagnostic window, as that
 804	 * uses polling and isn't initialized for interrupts.
 805	 */
 806	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
 807		ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
 808}
 809
 810static int ath10k_ce_init_src_ring(struct ath10k *ar,
 811				   unsigned int ce_id,
 812				   const struct ce_attr *attr)
 813{
 814	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 815	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
 816	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
 817	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
 818
 819	nentries = roundup_pow_of_two(attr->src_nentries);
 820
 821	memset(src_ring->base_addr_owner_space, 0,
 822	       nentries * sizeof(struct ce_desc));
 823
 824	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
 825	src_ring->sw_index &= src_ring->nentries_mask;
 826	src_ring->hw_index = src_ring->sw_index;
 827
 828	src_ring->write_index =
 829		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
 830	src_ring->write_index &= src_ring->nentries_mask;
 831
 832	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
 833					 src_ring->base_addr_ce_space);
 834	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
 835	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
 836	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
 837	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
 838	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
 839
 840	ath10k_dbg(ar, ATH10K_DBG_BOOT,
 841		   "boot init ce src ring id %d entries %d base_addr %p\n",
 842		   ce_id, nentries, src_ring->base_addr_owner_space);
 843
 844	return 0;
 845}
 846
 847static int ath10k_ce_init_dest_ring(struct ath10k *ar,
 848				    unsigned int ce_id,
 849				    const struct ce_attr *attr)
 850{
 851	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 852	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
 853	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
 854	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
 855
 856	nentries = roundup_pow_of_two(attr->dest_nentries);
 857
 858	memset(dest_ring->base_addr_owner_space, 0,
 859	       nentries * sizeof(struct ce_desc));
 860
 861	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
 862	dest_ring->sw_index &= dest_ring->nentries_mask;
 863	dest_ring->write_index =
 864		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
 865	dest_ring->write_index &= dest_ring->nentries_mask;
 866
 867	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
 868					  dest_ring->base_addr_ce_space);
 869	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
 870	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
 871	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
 872	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
 873
 874	ath10k_dbg(ar, ATH10K_DBG_BOOT,
 875		   "boot ce dest ring id %d entries %d base_addr %p\n",
 876		   ce_id, nentries, dest_ring->base_addr_owner_space);
 877
 878	return 0;
 879}
 880
 881static struct ath10k_ce_ring *
 882ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
 883			 const struct ce_attr *attr)
 884{
 885	struct ath10k_ce_ring *src_ring;
 886	u32 nentries = attr->src_nentries;
 887	dma_addr_t base_addr;
 888
 889	nentries = roundup_pow_of_two(nentries);
 890
 891	src_ring = kzalloc(sizeof(*src_ring) +
 892			   (nentries *
 893			    sizeof(*src_ring->per_transfer_context)),
 894			   GFP_KERNEL);
 895	if (src_ring == NULL)
 896		return ERR_PTR(-ENOMEM);
 897
 898	src_ring->nentries = nentries;
 899	src_ring->nentries_mask = nentries - 1;
 900
 901	/*
 902	 * Legacy platforms that do not support cache
 903	 * coherent DMA are unsupported
 904	 */
 905	src_ring->base_addr_owner_space_unaligned =
 906		dma_alloc_coherent(ar->dev,
 907				   (nentries * sizeof(struct ce_desc) +
 908				    CE_DESC_RING_ALIGN),
 909				   &base_addr, GFP_KERNEL);
 910	if (!src_ring->base_addr_owner_space_unaligned) {
 911		kfree(src_ring);
 912		return ERR_PTR(-ENOMEM);
 913	}
 914
 915	src_ring->base_addr_ce_space_unaligned = base_addr;
 916
 917	src_ring->base_addr_owner_space = PTR_ALIGN(
 918			src_ring->base_addr_owner_space_unaligned,
 919			CE_DESC_RING_ALIGN);
 920	src_ring->base_addr_ce_space = ALIGN(
 921			src_ring->base_addr_ce_space_unaligned,
 922			CE_DESC_RING_ALIGN);
 923
 924	return src_ring;
 925}
 926
 927static struct ath10k_ce_ring *
 928ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
 929			  const struct ce_attr *attr)
 930{
 931	struct ath10k_ce_ring *dest_ring;
 932	u32 nentries;
 933	dma_addr_t base_addr;
 934
 935	nentries = roundup_pow_of_two(attr->dest_nentries);
 936
 937	dest_ring = kzalloc(sizeof(*dest_ring) +
 938			    (nentries *
 939			     sizeof(*dest_ring->per_transfer_context)),
 940			    GFP_KERNEL);
 941	if (dest_ring == NULL)
 942		return ERR_PTR(-ENOMEM);
 943
 944	dest_ring->nentries = nentries;
 945	dest_ring->nentries_mask = nentries - 1;
 946
 947	/*
 948	 * Legacy platforms that do not support cache
 949	 * coherent DMA are unsupported
 950	 */
 951	dest_ring->base_addr_owner_space_unaligned =
 952		dma_alloc_coherent(ar->dev,
 953				   (nentries * sizeof(struct ce_desc) +
 954				    CE_DESC_RING_ALIGN),
 955				   &base_addr, GFP_KERNEL);
 956	if (!dest_ring->base_addr_owner_space_unaligned) {
 957		kfree(dest_ring);
 958		return ERR_PTR(-ENOMEM);
 959	}
 960
 961	dest_ring->base_addr_ce_space_unaligned = base_addr;
 962
 963	/*
 964	 * Correctly initialize memory to 0 to prevent garbage
 965	 * data crashing system when download firmware
 966	 */
 967	memset(dest_ring->base_addr_owner_space_unaligned, 0,
 968	       nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
 969
 970	dest_ring->base_addr_owner_space = PTR_ALIGN(
 971			dest_ring->base_addr_owner_space_unaligned,
 972			CE_DESC_RING_ALIGN);
 973	dest_ring->base_addr_ce_space = ALIGN(
 974			dest_ring->base_addr_ce_space_unaligned,
 975			CE_DESC_RING_ALIGN);
 976
 977	return dest_ring;
 978}
 979
 980/*
 981 * Initialize a Copy Engine based on caller-supplied attributes.
 982 * This may be called once to initialize both source and destination
 983 * rings or it may be called twice for separate source and destination
 984 * initialization. It may be that only one side or the other is
 985 * initialized by software/firmware.
 986 */
 987int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
 988			const struct ce_attr *attr)
 989{
 990	int ret;
 991
 992	if (attr->src_nentries) {
 993		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
 994		if (ret) {
 995			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
 996				   ce_id, ret);
 997			return ret;
 998		}
 999	}
1000
1001	if (attr->dest_nentries) {
1002		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1003		if (ret) {
1004			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1005				   ce_id, ret);
1006			return ret;
1007		}
1008	}
1009
1010	return 0;
1011}
1012
1013static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1014{
1015	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1016
1017	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1018	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1019	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1020	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1021}
1022
1023static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1024{
1025	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1026
1027	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1028	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1029	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1030}
1031
1032void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1033{
1034	ath10k_ce_deinit_src_ring(ar, ce_id);
1035	ath10k_ce_deinit_dest_ring(ar, ce_id);
1036}
1037
1038int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1039			 const struct ce_attr *attr)
1040{
1041	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1042	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1043	int ret;
1044
1045	/*
1046	 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1047	 * additional TX locking checks.
1048	 *
1049	 * For the lack of a better place do the check here.
1050	 */
1051	BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1052		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1053	BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1054		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1055	BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
1056		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1057
1058	ce_state->ar = ar;
1059	ce_state->id = ce_id;
1060	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1061	ce_state->attr_flags = attr->flags;
1062	ce_state->src_sz_max = attr->src_sz_max;
1063
1064	if (attr->src_nentries)
1065		ce_state->send_cb = attr->send_cb;
1066
1067	if (attr->dest_nentries)
1068		ce_state->recv_cb = attr->recv_cb;
1069
1070	if (attr->src_nentries) {
1071		ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1072		if (IS_ERR(ce_state->src_ring)) {
1073			ret = PTR_ERR(ce_state->src_ring);
1074			ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1075				   ce_id, ret);
1076			ce_state->src_ring = NULL;
1077			return ret;
1078		}
1079	}
1080
1081	if (attr->dest_nentries) {
1082		ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1083								attr);
1084		if (IS_ERR(ce_state->dest_ring)) {
1085			ret = PTR_ERR(ce_state->dest_ring);
1086			ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1087				   ce_id, ret);
1088			ce_state->dest_ring = NULL;
1089			return ret;
1090		}
1091	}
1092
1093	return 0;
1094}
1095
1096void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1097{
1098	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1099	struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1100
1101	if (ce_state->src_ring) {
1102		dma_free_coherent(ar->dev,
1103				  (ce_state->src_ring->nentries *
1104				   sizeof(struct ce_desc) +
1105				   CE_DESC_RING_ALIGN),
1106				  ce_state->src_ring->base_addr_owner_space,
1107				  ce_state->src_ring->base_addr_ce_space);
1108		kfree(ce_state->src_ring);
1109	}
1110
1111	if (ce_state->dest_ring) {
1112		dma_free_coherent(ar->dev,
1113				  (ce_state->dest_ring->nentries *
1114				   sizeof(struct ce_desc) +
1115				   CE_DESC_RING_ALIGN),
1116				  ce_state->dest_ring->base_addr_owner_space,
1117				  ce_state->dest_ring->base_addr_ce_space);
1118		kfree(ce_state->dest_ring);
1119	}
1120
1121	ce_state->src_ring = NULL;
1122	ce_state->dest_ring = NULL;
1123}