Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Renesas Ethernet AVB device driver
   3 *
   4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
   5 * Copyright (C) 2015 Renesas Solutions Corp.
   6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
   7 *
   8 * Based on the SuperH Ethernet driver
   9 */
  10
  11#include <linux/cache.h>
  12#include <linux/clk.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/err.h>
  16#include <linux/etherdevice.h>
  17#include <linux/ethtool.h>
  18#include <linux/if_vlan.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/net_tstamp.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/of_mdio.h>
  27#include <linux/of_net.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/slab.h>
  30#include <linux/spinlock.h>
  31#include <linux/sys_soc.h>
  32
  33#include <asm/div64.h>
  34
  35#include "ravb.h"
  36
  37#define RAVB_DEF_MSG_ENABLE \
  38		(NETIF_MSG_LINK	  | \
  39		 NETIF_MSG_TIMER  | \
  40		 NETIF_MSG_RX_ERR | \
  41		 NETIF_MSG_TX_ERR)
  42
  43static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
  44	"ch0", /* RAVB_BE */
  45	"ch1", /* RAVB_NC */
  46};
  47
  48static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
  49	"ch18", /* RAVB_BE */
  50	"ch19", /* RAVB_NC */
  51};
  52
  53void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
  54		 u32 set)
  55{
  56	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
  57}
  58
  59int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
  60{
  61	int i;
  62
  63	for (i = 0; i < 10000; i++) {
  64		if ((ravb_read(ndev, reg) & mask) == value)
  65			return 0;
  66		udelay(10);
  67	}
  68	return -ETIMEDOUT;
  69}
  70
  71static int ravb_config(struct net_device *ndev)
  72{
  73	int error;
  74
  75	/* Set config mode */
  76	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
  77	/* Check if the operating mode is changed to the config mode */
  78	error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
  79	if (error)
  80		netdev_err(ndev, "failed to switch device to config mode\n");
  81
  82	return error;
  83}
  84
  85static void ravb_set_rate(struct net_device *ndev)
  86{
  87	struct ravb_private *priv = netdev_priv(ndev);
  88
  89	switch (priv->speed) {
  90	case 100:		/* 100BASE */
  91		ravb_write(ndev, GECMR_SPEED_100, GECMR);
  92		break;
  93	case 1000:		/* 1000BASE */
  94		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
  95		break;
  96	}
  97}
  98
  99static void ravb_set_buffer_align(struct sk_buff *skb)
 100{
 101	u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
 102
 103	if (reserve)
 104		skb_reserve(skb, RAVB_ALIGN - reserve);
 105}
 106
 107/* Get MAC address from the MAC address registers
 108 *
 109 * Ethernet AVB device doesn't have ROM for MAC address.
 110 * This function gets the MAC address that was used by a bootloader.
 111 */
 112static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
 113{
 114	if (!IS_ERR(mac)) {
 115		ether_addr_copy(ndev->dev_addr, mac);
 116	} else {
 117		u32 mahr = ravb_read(ndev, MAHR);
 118		u32 malr = ravb_read(ndev, MALR);
 119
 120		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
 121		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
 122		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
 123		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
 124		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
 125		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
 126	}
 127}
 128
 129static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
 130{
 131	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
 132						 mdiobb);
 133
 134	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
 135}
 136
 137/* MDC pin control */
 138static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
 139{
 140	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
 141}
 142
 143/* Data I/O pin control */
 144static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
 145{
 146	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
 147}
 148
 149/* Set data bit */
 150static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
 151{
 152	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
 153}
 154
 155/* Get data bit */
 156static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
 157{
 158	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
 159						 mdiobb);
 160
 161	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
 162}
 163
 164/* MDIO bus control struct */
 165static struct mdiobb_ops bb_ops = {
 166	.owner = THIS_MODULE,
 167	.set_mdc = ravb_set_mdc,
 168	.set_mdio_dir = ravb_set_mdio_dir,
 169	.set_mdio_data = ravb_set_mdio_data,
 170	.get_mdio_data = ravb_get_mdio_data,
 171};
 172
 173/* Free TX skb function for AVB-IP */
 174static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
 175{
 176	struct ravb_private *priv = netdev_priv(ndev);
 177	struct net_device_stats *stats = &priv->stats[q];
 178	int num_tx_desc = priv->num_tx_desc;
 179	struct ravb_tx_desc *desc;
 180	int free_num = 0;
 181	int entry;
 182	u32 size;
 183
 184	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
 185		bool txed;
 186
 187		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
 188					     num_tx_desc);
 189		desc = &priv->tx_ring[q][entry];
 190		txed = desc->die_dt == DT_FEMPTY;
 191		if (free_txed_only && !txed)
 192			break;
 193		/* Descriptor type must be checked before all other reads */
 194		dma_rmb();
 195		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
 196		/* Free the original skb. */
 197		if (priv->tx_skb[q][entry / num_tx_desc]) {
 198			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
 199					 size, DMA_TO_DEVICE);
 200			/* Last packet descriptor? */
 201			if (entry % num_tx_desc == num_tx_desc - 1) {
 202				entry /= num_tx_desc;
 203				dev_kfree_skb_any(priv->tx_skb[q][entry]);
 204				priv->tx_skb[q][entry] = NULL;
 205				if (txed)
 206					stats->tx_packets++;
 207			}
 208			free_num++;
 209		}
 210		if (txed)
 211			stats->tx_bytes += size;
 212		desc->die_dt = DT_EEMPTY;
 213	}
 214	return free_num;
 215}
 216
 217/* Free skb's and DMA buffers for Ethernet AVB */
 218static void ravb_ring_free(struct net_device *ndev, int q)
 219{
 220	struct ravb_private *priv = netdev_priv(ndev);
 221	int num_tx_desc = priv->num_tx_desc;
 222	int ring_size;
 223	int i;
 224
 225	if (priv->rx_ring[q]) {
 226		for (i = 0; i < priv->num_rx_ring[q]; i++) {
 227			struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
 228
 229			if (!dma_mapping_error(ndev->dev.parent,
 230					       le32_to_cpu(desc->dptr)))
 231				dma_unmap_single(ndev->dev.parent,
 232						 le32_to_cpu(desc->dptr),
 233						 RX_BUF_SZ,
 234						 DMA_FROM_DEVICE);
 235		}
 236		ring_size = sizeof(struct ravb_ex_rx_desc) *
 237			    (priv->num_rx_ring[q] + 1);
 238		dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
 239				  priv->rx_desc_dma[q]);
 240		priv->rx_ring[q] = NULL;
 241	}
 242
 243	if (priv->tx_ring[q]) {
 244		ravb_tx_free(ndev, q, false);
 245
 246		ring_size = sizeof(struct ravb_tx_desc) *
 247			    (priv->num_tx_ring[q] * num_tx_desc + 1);
 248		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
 249				  priv->tx_desc_dma[q]);
 250		priv->tx_ring[q] = NULL;
 251	}
 252
 253	/* Free RX skb ringbuffer */
 254	if (priv->rx_skb[q]) {
 255		for (i = 0; i < priv->num_rx_ring[q]; i++)
 256			dev_kfree_skb(priv->rx_skb[q][i]);
 257	}
 258	kfree(priv->rx_skb[q]);
 259	priv->rx_skb[q] = NULL;
 260
 261	/* Free aligned TX buffers */
 262	kfree(priv->tx_align[q]);
 263	priv->tx_align[q] = NULL;
 264
 265	/* Free TX skb ringbuffer.
 266	 * SKBs are freed by ravb_tx_free() call above.
 267	 */
 268	kfree(priv->tx_skb[q]);
 269	priv->tx_skb[q] = NULL;
 270}
 271
 272/* Format skb and descriptor buffer for Ethernet AVB */
 273static void ravb_ring_format(struct net_device *ndev, int q)
 274{
 275	struct ravb_private *priv = netdev_priv(ndev);
 276	int num_tx_desc = priv->num_tx_desc;
 277	struct ravb_ex_rx_desc *rx_desc;
 278	struct ravb_tx_desc *tx_desc;
 279	struct ravb_desc *desc;
 280	int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
 281	int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
 282			   num_tx_desc;
 283	dma_addr_t dma_addr;
 284	int i;
 285
 286	priv->cur_rx[q] = 0;
 287	priv->cur_tx[q] = 0;
 288	priv->dirty_rx[q] = 0;
 289	priv->dirty_tx[q] = 0;
 290
 291	memset(priv->rx_ring[q], 0, rx_ring_size);
 292	/* Build RX ring buffer */
 293	for (i = 0; i < priv->num_rx_ring[q]; i++) {
 294		/* RX descriptor */
 295		rx_desc = &priv->rx_ring[q][i];
 296		rx_desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
 297		dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
 298					  RX_BUF_SZ,
 299					  DMA_FROM_DEVICE);
 300		/* We just set the data size to 0 for a failed mapping which
 301		 * should prevent DMA from happening...
 302		 */
 303		if (dma_mapping_error(ndev->dev.parent, dma_addr))
 304			rx_desc->ds_cc = cpu_to_le16(0);
 305		rx_desc->dptr = cpu_to_le32(dma_addr);
 306		rx_desc->die_dt = DT_FEMPTY;
 307	}
 308	rx_desc = &priv->rx_ring[q][i];
 309	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
 310	rx_desc->die_dt = DT_LINKFIX; /* type */
 311
 312	memset(priv->tx_ring[q], 0, tx_ring_size);
 313	/* Build TX ring buffer */
 314	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
 315	     i++, tx_desc++) {
 316		tx_desc->die_dt = DT_EEMPTY;
 317		if (num_tx_desc > 1) {
 318			tx_desc++;
 319			tx_desc->die_dt = DT_EEMPTY;
 320		}
 321	}
 322	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
 323	tx_desc->die_dt = DT_LINKFIX; /* type */
 324
 325	/* RX descriptor base address for best effort */
 326	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
 327	desc->die_dt = DT_LINKFIX; /* type */
 328	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
 329
 330	/* TX descriptor base address for best effort */
 331	desc = &priv->desc_bat[q];
 332	desc->die_dt = DT_LINKFIX; /* type */
 333	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
 334}
 335
 336/* Init skb and descriptor buffer for Ethernet AVB */
 337static int ravb_ring_init(struct net_device *ndev, int q)
 338{
 339	struct ravb_private *priv = netdev_priv(ndev);
 340	int num_tx_desc = priv->num_tx_desc;
 341	struct sk_buff *skb;
 342	int ring_size;
 343	int i;
 344
 345	/* Allocate RX and TX skb rings */
 346	priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
 347				  sizeof(*priv->rx_skb[q]), GFP_KERNEL);
 348	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
 349				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
 350	if (!priv->rx_skb[q] || !priv->tx_skb[q])
 351		goto error;
 352
 353	for (i = 0; i < priv->num_rx_ring[q]; i++) {
 354		skb = netdev_alloc_skb(ndev, RX_BUF_SZ + RAVB_ALIGN - 1);
 355		if (!skb)
 356			goto error;
 357		ravb_set_buffer_align(skb);
 358		priv->rx_skb[q][i] = skb;
 359	}
 360
 361	if (num_tx_desc > 1) {
 362		/* Allocate rings for the aligned buffers */
 363		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
 364					    DPTR_ALIGN - 1, GFP_KERNEL);
 365		if (!priv->tx_align[q])
 366			goto error;
 367	}
 368
 369	/* Allocate all RX descriptors. */
 370	ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
 371	priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
 372					      &priv->rx_desc_dma[q],
 373					      GFP_KERNEL);
 374	if (!priv->rx_ring[q])
 375		goto error;
 376
 377	priv->dirty_rx[q] = 0;
 378
 379	/* Allocate all TX descriptors. */
 380	ring_size = sizeof(struct ravb_tx_desc) *
 381		    (priv->num_tx_ring[q] * num_tx_desc + 1);
 382	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
 383					      &priv->tx_desc_dma[q],
 384					      GFP_KERNEL);
 385	if (!priv->tx_ring[q])
 386		goto error;
 387
 388	return 0;
 389
 390error:
 391	ravb_ring_free(ndev, q);
 392
 393	return -ENOMEM;
 394}
 395
 396/* E-MAC init function */
 397static void ravb_emac_init(struct net_device *ndev)
 398{
 399	/* Receive frame limit set register */
 400	ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
 401
 402	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
 403	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
 404		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
 405		   ECMR_TE | ECMR_RE, ECMR);
 406
 407	ravb_set_rate(ndev);
 408
 409	/* Set MAC address */
 410	ravb_write(ndev,
 411		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
 412		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
 413	ravb_write(ndev,
 414		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
 415
 416	/* E-MAC status register clear */
 417	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
 418
 419	/* E-MAC interrupt enable register */
 420	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
 421}
 422
 423/* Device init function for Ethernet AVB */
 424static int ravb_dmac_init(struct net_device *ndev)
 425{
 426	struct ravb_private *priv = netdev_priv(ndev);
 427	int error;
 428
 429	/* Set CONFIG mode */
 430	error = ravb_config(ndev);
 431	if (error)
 432		return error;
 433
 434	error = ravb_ring_init(ndev, RAVB_BE);
 435	if (error)
 436		return error;
 437	error = ravb_ring_init(ndev, RAVB_NC);
 438	if (error) {
 439		ravb_ring_free(ndev, RAVB_BE);
 440		return error;
 441	}
 442
 443	/* Descriptor format */
 444	ravb_ring_format(ndev, RAVB_BE);
 445	ravb_ring_format(ndev, RAVB_NC);
 446
 447	/* Set AVB RX */
 448	ravb_write(ndev,
 449		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
 450
 451	/* Set FIFO size */
 452	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
 453
 454	/* Timestamp enable */
 455	ravb_write(ndev, TCCR_TFEN, TCCR);
 456
 457	/* Interrupt init: */
 458	if (priv->chip_id == RCAR_GEN3) {
 459		/* Clear DIL.DPLx */
 460		ravb_write(ndev, 0, DIL);
 461		/* Set queue specific interrupt */
 462		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
 463	}
 464	/* Frame receive */
 465	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
 466	/* Disable FIFO full warning */
 467	ravb_write(ndev, 0, RIC1);
 468	/* Receive FIFO full error, descriptor empty */
 469	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
 470	/* Frame transmitted, timestamp FIFO updated */
 471	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
 472
 473	/* Setting the control will start the AVB-DMAC process. */
 474	ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
 475
 476	return 0;
 477}
 478
 479static void ravb_get_tx_tstamp(struct net_device *ndev)
 480{
 481	struct ravb_private *priv = netdev_priv(ndev);
 482	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
 483	struct skb_shared_hwtstamps shhwtstamps;
 484	struct sk_buff *skb;
 485	struct timespec64 ts;
 486	u16 tag, tfa_tag;
 487	int count;
 488	u32 tfa2;
 489
 490	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
 491	while (count--) {
 492		tfa2 = ravb_read(ndev, TFA2);
 493		tfa_tag = (tfa2 & TFA2_TST) >> 16;
 494		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
 495		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
 496			    ravb_read(ndev, TFA1);
 497		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 498		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
 499		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
 500					 list) {
 501			skb = ts_skb->skb;
 502			tag = ts_skb->tag;
 503			list_del(&ts_skb->list);
 504			kfree(ts_skb);
 505			if (tag == tfa_tag) {
 506				skb_tstamp_tx(skb, &shhwtstamps);
 507				dev_consume_skb_any(skb);
 508				break;
 509			} else {
 510				dev_kfree_skb_any(skb);
 511			}
 512		}
 513		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
 514	}
 515}
 516
 517static void ravb_rx_csum(struct sk_buff *skb)
 518{
 519	u8 *hw_csum;
 520
 521	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
 522	 * appended to packet data
 523	 */
 524	if (unlikely(skb->len < sizeof(__sum16)))
 525		return;
 526	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
 527	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
 528	skb->ip_summed = CHECKSUM_COMPLETE;
 529	skb_trim(skb, skb->len - sizeof(__sum16));
 530}
 531
 532/* Packet receive function for Ethernet AVB */
 533static bool ravb_rx(struct net_device *ndev, int *quota, int q)
 534{
 535	struct ravb_private *priv = netdev_priv(ndev);
 536	int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
 537	int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
 538			priv->cur_rx[q];
 539	struct net_device_stats *stats = &priv->stats[q];
 540	struct ravb_ex_rx_desc *desc;
 541	struct sk_buff *skb;
 542	dma_addr_t dma_addr;
 543	struct timespec64 ts;
 544	u8  desc_status;
 545	u16 pkt_len;
 546	int limit;
 547
 548	boguscnt = min(boguscnt, *quota);
 549	limit = boguscnt;
 550	desc = &priv->rx_ring[q][entry];
 551	while (desc->die_dt != DT_FEMPTY) {
 552		/* Descriptor type must be checked before all other reads */
 553		dma_rmb();
 554		desc_status = desc->msc;
 555		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
 556
 557		if (--boguscnt < 0)
 558			break;
 559
 560		/* We use 0-byte descriptors to mark the DMA mapping errors */
 561		if (!pkt_len)
 562			continue;
 563
 564		if (desc_status & MSC_MC)
 565			stats->multicast++;
 566
 567		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
 568				   MSC_CEEF)) {
 569			stats->rx_errors++;
 570			if (desc_status & MSC_CRC)
 571				stats->rx_crc_errors++;
 572			if (desc_status & MSC_RFE)
 573				stats->rx_frame_errors++;
 574			if (desc_status & (MSC_RTLF | MSC_RTSF))
 575				stats->rx_length_errors++;
 576			if (desc_status & MSC_CEEF)
 577				stats->rx_missed_errors++;
 578		} else {
 579			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
 580
 581			skb = priv->rx_skb[q][entry];
 582			priv->rx_skb[q][entry] = NULL;
 583			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
 584					 RX_BUF_SZ,
 585					 DMA_FROM_DEVICE);
 586			get_ts &= (q == RAVB_NC) ?
 587					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
 588					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
 589			if (get_ts) {
 590				struct skb_shared_hwtstamps *shhwtstamps;
 591
 592				shhwtstamps = skb_hwtstamps(skb);
 593				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
 594				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
 595					     32) | le32_to_cpu(desc->ts_sl);
 596				ts.tv_nsec = le32_to_cpu(desc->ts_n);
 597				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
 598			}
 599
 600			skb_put(skb, pkt_len);
 601			skb->protocol = eth_type_trans(skb, ndev);
 602			if (ndev->features & NETIF_F_RXCSUM)
 603				ravb_rx_csum(skb);
 604			napi_gro_receive(&priv->napi[q], skb);
 605			stats->rx_packets++;
 606			stats->rx_bytes += pkt_len;
 607		}
 608
 609		entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
 610		desc = &priv->rx_ring[q][entry];
 611	}
 612
 613	/* Refill the RX ring buffers. */
 614	for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
 615		entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
 616		desc = &priv->rx_ring[q][entry];
 617		desc->ds_cc = cpu_to_le16(RX_BUF_SZ);
 618
 619		if (!priv->rx_skb[q][entry]) {
 620			skb = netdev_alloc_skb(ndev,
 621					       RX_BUF_SZ +
 622					       RAVB_ALIGN - 1);
 623			if (!skb)
 624				break;	/* Better luck next round. */
 625			ravb_set_buffer_align(skb);
 626			dma_addr = dma_map_single(ndev->dev.parent, skb->data,
 627						  le16_to_cpu(desc->ds_cc),
 628						  DMA_FROM_DEVICE);
 629			skb_checksum_none_assert(skb);
 630			/* We just set the data size to 0 for a failed mapping
 631			 * which should prevent DMA  from happening...
 632			 */
 633			if (dma_mapping_error(ndev->dev.parent, dma_addr))
 634				desc->ds_cc = cpu_to_le16(0);
 635			desc->dptr = cpu_to_le32(dma_addr);
 636			priv->rx_skb[q][entry] = skb;
 637		}
 638		/* Descriptor type must be set after all the above writes */
 639		dma_wmb();
 640		desc->die_dt = DT_FEMPTY;
 641	}
 642
 643	*quota -= limit - (++boguscnt);
 644
 645	return boguscnt <= 0;
 646}
 647
 648static void ravb_rcv_snd_disable(struct net_device *ndev)
 649{
 650	/* Disable TX and RX */
 651	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
 652}
 653
 654static void ravb_rcv_snd_enable(struct net_device *ndev)
 655{
 656	/* Enable TX and RX */
 657	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
 658}
 659
 660/* function for waiting dma process finished */
 661static int ravb_stop_dma(struct net_device *ndev)
 662{
 663	int error;
 664
 665	/* Wait for stopping the hardware TX process */
 666	error = ravb_wait(ndev, TCCR,
 667			  TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
 668	if (error)
 669		return error;
 670
 671	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
 672			  0);
 673	if (error)
 674		return error;
 675
 676	/* Stop the E-MAC's RX/TX processes. */
 677	ravb_rcv_snd_disable(ndev);
 678
 679	/* Wait for stopping the RX DMA process */
 680	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
 681	if (error)
 682		return error;
 683
 684	/* Stop AVB-DMAC process */
 685	return ravb_config(ndev);
 686}
 687
 688/* E-MAC interrupt handler */
 689static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
 690{
 691	struct ravb_private *priv = netdev_priv(ndev);
 692	u32 ecsr, psr;
 693
 694	ecsr = ravb_read(ndev, ECSR);
 695	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
 696
 697	if (ecsr & ECSR_MPD)
 698		pm_wakeup_event(&priv->pdev->dev, 0);
 699	if (ecsr & ECSR_ICD)
 700		ndev->stats.tx_carrier_errors++;
 701	if (ecsr & ECSR_LCHNG) {
 702		/* Link changed */
 703		if (priv->no_avb_link)
 704			return;
 705		psr = ravb_read(ndev, PSR);
 706		if (priv->avb_link_active_low)
 707			psr ^= PSR_LMON;
 708		if (!(psr & PSR_LMON)) {
 709			/* DIsable RX and TX */
 710			ravb_rcv_snd_disable(ndev);
 711		} else {
 712			/* Enable RX and TX */
 713			ravb_rcv_snd_enable(ndev);
 714		}
 715	}
 716}
 717
 718static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
 719{
 720	struct net_device *ndev = dev_id;
 721	struct ravb_private *priv = netdev_priv(ndev);
 722
 723	spin_lock(&priv->lock);
 724	ravb_emac_interrupt_unlocked(ndev);
 725	spin_unlock(&priv->lock);
 726	return IRQ_HANDLED;
 727}
 728
 729/* Error interrupt handler */
 730static void ravb_error_interrupt(struct net_device *ndev)
 731{
 732	struct ravb_private *priv = netdev_priv(ndev);
 733	u32 eis, ris2;
 734
 735	eis = ravb_read(ndev, EIS);
 736	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
 737	if (eis & EIS_QFS) {
 738		ris2 = ravb_read(ndev, RIS2);
 739		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
 740			   RIS2);
 741
 742		/* Receive Descriptor Empty int */
 743		if (ris2 & RIS2_QFF0)
 744			priv->stats[RAVB_BE].rx_over_errors++;
 745
 746		    /* Receive Descriptor Empty int */
 747		if (ris2 & RIS2_QFF1)
 748			priv->stats[RAVB_NC].rx_over_errors++;
 749
 750		/* Receive FIFO Overflow int */
 751		if (ris2 & RIS2_RFFF)
 752			priv->rx_fifo_errors++;
 753	}
 754}
 755
 756static bool ravb_queue_interrupt(struct net_device *ndev, int q)
 757{
 758	struct ravb_private *priv = netdev_priv(ndev);
 759	u32 ris0 = ravb_read(ndev, RIS0);
 760	u32 ric0 = ravb_read(ndev, RIC0);
 761	u32 tis  = ravb_read(ndev, TIS);
 762	u32 tic  = ravb_read(ndev, TIC);
 763
 764	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
 765		if (napi_schedule_prep(&priv->napi[q])) {
 766			/* Mask RX and TX interrupts */
 767			if (priv->chip_id == RCAR_GEN2) {
 768				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
 769				ravb_write(ndev, tic & ~BIT(q), TIC);
 770			} else {
 771				ravb_write(ndev, BIT(q), RID0);
 772				ravb_write(ndev, BIT(q), TID);
 773			}
 774			__napi_schedule(&priv->napi[q]);
 775		} else {
 776			netdev_warn(ndev,
 777				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
 778				    ris0, ric0);
 779			netdev_warn(ndev,
 780				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
 781				    tis, tic);
 782		}
 783		return true;
 784	}
 785	return false;
 786}
 787
 788static bool ravb_timestamp_interrupt(struct net_device *ndev)
 789{
 790	u32 tis = ravb_read(ndev, TIS);
 791
 792	if (tis & TIS_TFUF) {
 793		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
 794		ravb_get_tx_tstamp(ndev);
 795		return true;
 796	}
 797	return false;
 798}
 799
 800static irqreturn_t ravb_interrupt(int irq, void *dev_id)
 801{
 802	struct net_device *ndev = dev_id;
 803	struct ravb_private *priv = netdev_priv(ndev);
 804	irqreturn_t result = IRQ_NONE;
 805	u32 iss;
 806
 807	spin_lock(&priv->lock);
 808	/* Get interrupt status */
 809	iss = ravb_read(ndev, ISS);
 810
 811	/* Received and transmitted interrupts */
 812	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
 813		int q;
 814
 815		/* Timestamp updated */
 816		if (ravb_timestamp_interrupt(ndev))
 817			result = IRQ_HANDLED;
 818
 819		/* Network control and best effort queue RX/TX */
 820		for (q = RAVB_NC; q >= RAVB_BE; q--) {
 821			if (ravb_queue_interrupt(ndev, q))
 822				result = IRQ_HANDLED;
 823		}
 824	}
 825
 826	/* E-MAC status summary */
 827	if (iss & ISS_MS) {
 828		ravb_emac_interrupt_unlocked(ndev);
 829		result = IRQ_HANDLED;
 830	}
 831
 832	/* Error status summary */
 833	if (iss & ISS_ES) {
 834		ravb_error_interrupt(ndev);
 835		result = IRQ_HANDLED;
 836	}
 837
 838	/* gPTP interrupt status summary */
 839	if (iss & ISS_CGIS) {
 840		ravb_ptp_interrupt(ndev);
 841		result = IRQ_HANDLED;
 842	}
 843
 844	spin_unlock(&priv->lock);
 845	return result;
 846}
 847
 848/* Timestamp/Error/gPTP interrupt handler */
 849static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
 850{
 851	struct net_device *ndev = dev_id;
 852	struct ravb_private *priv = netdev_priv(ndev);
 853	irqreturn_t result = IRQ_NONE;
 854	u32 iss;
 855
 856	spin_lock(&priv->lock);
 857	/* Get interrupt status */
 858	iss = ravb_read(ndev, ISS);
 859
 860	/* Timestamp updated */
 861	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
 862		result = IRQ_HANDLED;
 863
 864	/* Error status summary */
 865	if (iss & ISS_ES) {
 866		ravb_error_interrupt(ndev);
 867		result = IRQ_HANDLED;
 868	}
 869
 870	/* gPTP interrupt status summary */
 871	if (iss & ISS_CGIS) {
 872		ravb_ptp_interrupt(ndev);
 873		result = IRQ_HANDLED;
 874	}
 875
 876	spin_unlock(&priv->lock);
 877	return result;
 878}
 879
 880static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
 881{
 882	struct net_device *ndev = dev_id;
 883	struct ravb_private *priv = netdev_priv(ndev);
 884	irqreturn_t result = IRQ_NONE;
 885
 886	spin_lock(&priv->lock);
 887
 888	/* Network control/Best effort queue RX/TX */
 889	if (ravb_queue_interrupt(ndev, q))
 890		result = IRQ_HANDLED;
 891
 892	spin_unlock(&priv->lock);
 893	return result;
 894}
 895
 896static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
 897{
 898	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
 899}
 900
 901static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
 902{
 903	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
 904}
 905
 906static int ravb_poll(struct napi_struct *napi, int budget)
 907{
 908	struct net_device *ndev = napi->dev;
 909	struct ravb_private *priv = netdev_priv(ndev);
 910	unsigned long flags;
 911	int q = napi - priv->napi;
 912	int mask = BIT(q);
 913	int quota = budget;
 914	u32 ris0, tis;
 915
 916	for (;;) {
 917		tis = ravb_read(ndev, TIS);
 918		ris0 = ravb_read(ndev, RIS0);
 919		if (!((ris0 & mask) || (tis & mask)))
 920			break;
 921
 922		/* Processing RX Descriptor Ring */
 923		if (ris0 & mask) {
 924			/* Clear RX interrupt */
 925			ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
 926			if (ravb_rx(ndev, &quota, q))
 927				goto out;
 928		}
 929		/* Processing TX Descriptor Ring */
 930		if (tis & mask) {
 931			spin_lock_irqsave(&priv->lock, flags);
 932			/* Clear TX interrupt */
 933			ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
 934			ravb_tx_free(ndev, q, true);
 935			netif_wake_subqueue(ndev, q);
 936			spin_unlock_irqrestore(&priv->lock, flags);
 937		}
 938	}
 939
 940	napi_complete(napi);
 941
 942	/* Re-enable RX/TX interrupts */
 943	spin_lock_irqsave(&priv->lock, flags);
 944	if (priv->chip_id == RCAR_GEN2) {
 945		ravb_modify(ndev, RIC0, mask, mask);
 946		ravb_modify(ndev, TIC,  mask, mask);
 947	} else {
 948		ravb_write(ndev, mask, RIE0);
 949		ravb_write(ndev, mask, TIE);
 950	}
 951	spin_unlock_irqrestore(&priv->lock, flags);
 952
 953	/* Receive error message handling */
 954	priv->rx_over_errors =  priv->stats[RAVB_BE].rx_over_errors;
 955	priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
 956	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
 957		ndev->stats.rx_over_errors = priv->rx_over_errors;
 958	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
 959		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
 960out:
 961	return budget - quota;
 962}
 963
 964/* PHY state control function */
 965static void ravb_adjust_link(struct net_device *ndev)
 966{
 967	struct ravb_private *priv = netdev_priv(ndev);
 968	struct phy_device *phydev = ndev->phydev;
 969	bool new_state = false;
 970	unsigned long flags;
 971
 972	spin_lock_irqsave(&priv->lock, flags);
 973
 974	/* Disable TX and RX right over here, if E-MAC change is ignored */
 975	if (priv->no_avb_link)
 976		ravb_rcv_snd_disable(ndev);
 977
 978	if (phydev->link) {
 979		if (phydev->speed != priv->speed) {
 980			new_state = true;
 981			priv->speed = phydev->speed;
 982			ravb_set_rate(ndev);
 983		}
 984		if (!priv->link) {
 985			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
 986			new_state = true;
 987			priv->link = phydev->link;
 988		}
 989	} else if (priv->link) {
 990		new_state = true;
 991		priv->link = 0;
 992		priv->speed = 0;
 993	}
 994
 995	/* Enable TX and RX right over here, if E-MAC change is ignored */
 996	if (priv->no_avb_link && phydev->link)
 997		ravb_rcv_snd_enable(ndev);
 998
 999	spin_unlock_irqrestore(&priv->lock, flags);
1000
1001	if (new_state && netif_msg_link(priv))
1002		phy_print_status(phydev);
1003}
1004
1005static const struct soc_device_attribute r8a7795es10[] = {
1006	{ .soc_id = "r8a7795", .revision = "ES1.0", },
1007	{ /* sentinel */ }
1008};
1009
1010/* PHY init function */
1011static int ravb_phy_init(struct net_device *ndev)
1012{
1013	struct device_node *np = ndev->dev.parent->of_node;
1014	struct ravb_private *priv = netdev_priv(ndev);
1015	struct phy_device *phydev;
1016	struct device_node *pn;
1017	phy_interface_t iface;
1018	int err;
1019
1020	priv->link = 0;
1021	priv->speed = 0;
1022
1023	/* Try connecting to PHY */
1024	pn = of_parse_phandle(np, "phy-handle", 0);
1025	if (!pn) {
1026		/* In the case of a fixed PHY, the DT node associated
1027		 * to the PHY is the Ethernet MAC DT node.
1028		 */
1029		if (of_phy_is_fixed_link(np)) {
1030			err = of_phy_register_fixed_link(np);
1031			if (err)
1032				return err;
1033		}
1034		pn = of_node_get(np);
1035	}
1036
1037	iface = priv->phy_interface;
1038	if (priv->chip_id != RCAR_GEN2 && phy_interface_mode_is_rgmii(iface)) {
1039		/* ravb_set_delay_mode() takes care of internal delay mode */
1040		iface = PHY_INTERFACE_MODE_RGMII;
1041	}
1042	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1043	of_node_put(pn);
1044	if (!phydev) {
1045		netdev_err(ndev, "failed to connect PHY\n");
1046		err = -ENOENT;
1047		goto err_deregister_fixed_link;
1048	}
1049
1050	/* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1051	 * at this time.
1052	 */
1053	if (soc_device_match(r8a7795es10)) {
1054		err = phy_set_max_speed(phydev, SPEED_100);
1055		if (err) {
1056			netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1057			goto err_phy_disconnect;
1058		}
1059
1060		netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1061	}
1062
1063	/* 10BASE, Pause and Asym Pause is not supported */
1064	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1065	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1066	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1067	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1068
1069	/* Half Duplex is not supported */
1070	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1071	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1072
1073	phy_attached_info(phydev);
1074
1075	return 0;
1076
1077err_phy_disconnect:
1078	phy_disconnect(phydev);
1079err_deregister_fixed_link:
1080	if (of_phy_is_fixed_link(np))
1081		of_phy_deregister_fixed_link(np);
1082
1083	return err;
1084}
1085
1086/* PHY control start function */
1087static int ravb_phy_start(struct net_device *ndev)
1088{
1089	int error;
1090
1091	error = ravb_phy_init(ndev);
1092	if (error)
1093		return error;
1094
1095	phy_start(ndev->phydev);
1096
1097	return 0;
1098}
1099
1100static u32 ravb_get_msglevel(struct net_device *ndev)
1101{
1102	struct ravb_private *priv = netdev_priv(ndev);
1103
1104	return priv->msg_enable;
1105}
1106
1107static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1108{
1109	struct ravb_private *priv = netdev_priv(ndev);
1110
1111	priv->msg_enable = value;
1112}
1113
1114static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1115	"rx_queue_0_current",
1116	"tx_queue_0_current",
1117	"rx_queue_0_dirty",
1118	"tx_queue_0_dirty",
1119	"rx_queue_0_packets",
1120	"tx_queue_0_packets",
1121	"rx_queue_0_bytes",
1122	"tx_queue_0_bytes",
1123	"rx_queue_0_mcast_packets",
1124	"rx_queue_0_errors",
1125	"rx_queue_0_crc_errors",
1126	"rx_queue_0_frame_errors",
1127	"rx_queue_0_length_errors",
1128	"rx_queue_0_missed_errors",
1129	"rx_queue_0_over_errors",
1130
1131	"rx_queue_1_current",
1132	"tx_queue_1_current",
1133	"rx_queue_1_dirty",
1134	"tx_queue_1_dirty",
1135	"rx_queue_1_packets",
1136	"tx_queue_1_packets",
1137	"rx_queue_1_bytes",
1138	"tx_queue_1_bytes",
1139	"rx_queue_1_mcast_packets",
1140	"rx_queue_1_errors",
1141	"rx_queue_1_crc_errors",
1142	"rx_queue_1_frame_errors",
1143	"rx_queue_1_length_errors",
1144	"rx_queue_1_missed_errors",
1145	"rx_queue_1_over_errors",
1146};
1147
1148#define RAVB_STATS_LEN	ARRAY_SIZE(ravb_gstrings_stats)
1149
1150static int ravb_get_sset_count(struct net_device *netdev, int sset)
1151{
1152	switch (sset) {
1153	case ETH_SS_STATS:
1154		return RAVB_STATS_LEN;
1155	default:
1156		return -EOPNOTSUPP;
1157	}
1158}
1159
1160static void ravb_get_ethtool_stats(struct net_device *ndev,
1161				   struct ethtool_stats *estats, u64 *data)
1162{
1163	struct ravb_private *priv = netdev_priv(ndev);
1164	int i = 0;
1165	int q;
1166
1167	/* Device-specific stats */
1168	for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1169		struct net_device_stats *stats = &priv->stats[q];
1170
1171		data[i++] = priv->cur_rx[q];
1172		data[i++] = priv->cur_tx[q];
1173		data[i++] = priv->dirty_rx[q];
1174		data[i++] = priv->dirty_tx[q];
1175		data[i++] = stats->rx_packets;
1176		data[i++] = stats->tx_packets;
1177		data[i++] = stats->rx_bytes;
1178		data[i++] = stats->tx_bytes;
1179		data[i++] = stats->multicast;
1180		data[i++] = stats->rx_errors;
1181		data[i++] = stats->rx_crc_errors;
1182		data[i++] = stats->rx_frame_errors;
1183		data[i++] = stats->rx_length_errors;
1184		data[i++] = stats->rx_missed_errors;
1185		data[i++] = stats->rx_over_errors;
1186	}
1187}
1188
1189static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1190{
1191	switch (stringset) {
1192	case ETH_SS_STATS:
1193		memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1194		break;
1195	}
1196}
1197
1198static void ravb_get_ringparam(struct net_device *ndev,
1199			       struct ethtool_ringparam *ring)
1200{
1201	struct ravb_private *priv = netdev_priv(ndev);
1202
1203	ring->rx_max_pending = BE_RX_RING_MAX;
1204	ring->tx_max_pending = BE_TX_RING_MAX;
1205	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1206	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1207}
1208
1209static int ravb_set_ringparam(struct net_device *ndev,
1210			      struct ethtool_ringparam *ring)
1211{
1212	struct ravb_private *priv = netdev_priv(ndev);
1213	int error;
1214
1215	if (ring->tx_pending > BE_TX_RING_MAX ||
1216	    ring->rx_pending > BE_RX_RING_MAX ||
1217	    ring->tx_pending < BE_TX_RING_MIN ||
1218	    ring->rx_pending < BE_RX_RING_MIN)
1219		return -EINVAL;
1220	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1221		return -EINVAL;
1222
1223	if (netif_running(ndev)) {
1224		netif_device_detach(ndev);
1225		/* Stop PTP Clock driver */
1226		if (priv->chip_id == RCAR_GEN2)
1227			ravb_ptp_stop(ndev);
1228		/* Wait for DMA stopping */
1229		error = ravb_stop_dma(ndev);
1230		if (error) {
1231			netdev_err(ndev,
1232				   "cannot set ringparam! Any AVB processes are still running?\n");
1233			return error;
1234		}
1235		synchronize_irq(ndev->irq);
1236
1237		/* Free all the skb's in the RX queue and the DMA buffers. */
1238		ravb_ring_free(ndev, RAVB_BE);
1239		ravb_ring_free(ndev, RAVB_NC);
1240	}
1241
1242	/* Set new parameters */
1243	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1244	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1245
1246	if (netif_running(ndev)) {
1247		error = ravb_dmac_init(ndev);
1248		if (error) {
1249			netdev_err(ndev,
1250				   "%s: ravb_dmac_init() failed, error %d\n",
1251				   __func__, error);
1252			return error;
1253		}
1254
1255		ravb_emac_init(ndev);
1256
1257		/* Initialise PTP Clock driver */
1258		if (priv->chip_id == RCAR_GEN2)
1259			ravb_ptp_init(ndev, priv->pdev);
1260
1261		netif_device_attach(ndev);
1262	}
1263
1264	return 0;
1265}
1266
1267static int ravb_get_ts_info(struct net_device *ndev,
1268			    struct ethtool_ts_info *info)
1269{
1270	struct ravb_private *priv = netdev_priv(ndev);
1271
1272	info->so_timestamping =
1273		SOF_TIMESTAMPING_TX_SOFTWARE |
1274		SOF_TIMESTAMPING_RX_SOFTWARE |
1275		SOF_TIMESTAMPING_SOFTWARE |
1276		SOF_TIMESTAMPING_TX_HARDWARE |
1277		SOF_TIMESTAMPING_RX_HARDWARE |
1278		SOF_TIMESTAMPING_RAW_HARDWARE;
1279	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1280	info->rx_filters =
1281		(1 << HWTSTAMP_FILTER_NONE) |
1282		(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1283		(1 << HWTSTAMP_FILTER_ALL);
1284	info->phc_index = ptp_clock_index(priv->ptp.clock);
1285
1286	return 0;
1287}
1288
1289static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1290{
1291	struct ravb_private *priv = netdev_priv(ndev);
1292
1293	wol->supported = WAKE_MAGIC;
1294	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1295}
1296
1297static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1298{
1299	struct ravb_private *priv = netdev_priv(ndev);
1300
1301	if (wol->wolopts & ~WAKE_MAGIC)
1302		return -EOPNOTSUPP;
1303
1304	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1305
1306	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1307
1308	return 0;
1309}
1310
1311static const struct ethtool_ops ravb_ethtool_ops = {
1312	.nway_reset		= phy_ethtool_nway_reset,
1313	.get_msglevel		= ravb_get_msglevel,
1314	.set_msglevel		= ravb_set_msglevel,
1315	.get_link		= ethtool_op_get_link,
1316	.get_strings		= ravb_get_strings,
1317	.get_ethtool_stats	= ravb_get_ethtool_stats,
1318	.get_sset_count		= ravb_get_sset_count,
1319	.get_ringparam		= ravb_get_ringparam,
1320	.set_ringparam		= ravb_set_ringparam,
1321	.get_ts_info		= ravb_get_ts_info,
1322	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1323	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1324	.get_wol		= ravb_get_wol,
1325	.set_wol		= ravb_set_wol,
1326};
1327
1328static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1329				struct net_device *ndev, struct device *dev,
1330				const char *ch)
1331{
1332	char *name;
1333	int error;
1334
1335	name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1336	if (!name)
1337		return -ENOMEM;
1338	error = request_irq(irq, handler, 0, name, ndev);
1339	if (error)
1340		netdev_err(ndev, "cannot request IRQ %s\n", name);
1341
1342	return error;
1343}
1344
1345/* Network device open function for Ethernet AVB */
1346static int ravb_open(struct net_device *ndev)
1347{
1348	struct ravb_private *priv = netdev_priv(ndev);
1349	struct platform_device *pdev = priv->pdev;
1350	struct device *dev = &pdev->dev;
1351	int error;
1352
1353	napi_enable(&priv->napi[RAVB_BE]);
1354	napi_enable(&priv->napi[RAVB_NC]);
1355
1356	if (priv->chip_id == RCAR_GEN2) {
1357		error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1358				    ndev->name, ndev);
1359		if (error) {
1360			netdev_err(ndev, "cannot request IRQ\n");
1361			goto out_napi_off;
1362		}
1363	} else {
1364		error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1365				      dev, "ch22:multi");
1366		if (error)
1367			goto out_napi_off;
1368		error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1369				      dev, "ch24:emac");
1370		if (error)
1371			goto out_free_irq;
1372		error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1373				      ndev, dev, "ch0:rx_be");
1374		if (error)
1375			goto out_free_irq_emac;
1376		error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1377				      ndev, dev, "ch18:tx_be");
1378		if (error)
1379			goto out_free_irq_be_rx;
1380		error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1381				      ndev, dev, "ch1:rx_nc");
1382		if (error)
1383			goto out_free_irq_be_tx;
1384		error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1385				      ndev, dev, "ch19:tx_nc");
1386		if (error)
1387			goto out_free_irq_nc_rx;
1388	}
1389
1390	/* Device init */
1391	error = ravb_dmac_init(ndev);
1392	if (error)
1393		goto out_free_irq_nc_tx;
1394	ravb_emac_init(ndev);
1395
1396	/* Initialise PTP Clock driver */
1397	if (priv->chip_id == RCAR_GEN2)
1398		ravb_ptp_init(ndev, priv->pdev);
1399
1400	netif_tx_start_all_queues(ndev);
1401
1402	/* PHY control start */
1403	error = ravb_phy_start(ndev);
1404	if (error)
1405		goto out_ptp_stop;
1406
1407	return 0;
1408
1409out_ptp_stop:
1410	/* Stop PTP Clock driver */
1411	if (priv->chip_id == RCAR_GEN2)
1412		ravb_ptp_stop(ndev);
1413out_free_irq_nc_tx:
1414	if (priv->chip_id == RCAR_GEN2)
1415		goto out_free_irq;
1416	free_irq(priv->tx_irqs[RAVB_NC], ndev);
1417out_free_irq_nc_rx:
1418	free_irq(priv->rx_irqs[RAVB_NC], ndev);
1419out_free_irq_be_tx:
1420	free_irq(priv->tx_irqs[RAVB_BE], ndev);
1421out_free_irq_be_rx:
1422	free_irq(priv->rx_irqs[RAVB_BE], ndev);
1423out_free_irq_emac:
1424	free_irq(priv->emac_irq, ndev);
1425out_free_irq:
1426	free_irq(ndev->irq, ndev);
1427out_napi_off:
1428	napi_disable(&priv->napi[RAVB_NC]);
1429	napi_disable(&priv->napi[RAVB_BE]);
1430	return error;
1431}
1432
1433/* Timeout function for Ethernet AVB */
1434static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1435{
1436	struct ravb_private *priv = netdev_priv(ndev);
1437
1438	netif_err(priv, tx_err, ndev,
1439		  "transmit timed out, status %08x, resetting...\n",
1440		  ravb_read(ndev, ISS));
1441
1442	/* tx_errors count up */
1443	ndev->stats.tx_errors++;
1444
1445	schedule_work(&priv->work);
1446}
1447
1448static void ravb_tx_timeout_work(struct work_struct *work)
1449{
1450	struct ravb_private *priv = container_of(work, struct ravb_private,
1451						 work);
1452	struct net_device *ndev = priv->ndev;
1453	int error;
1454
1455	netif_tx_stop_all_queues(ndev);
1456
1457	/* Stop PTP Clock driver */
1458	if (priv->chip_id == RCAR_GEN2)
1459		ravb_ptp_stop(ndev);
1460
1461	/* Wait for DMA stopping */
1462	if (ravb_stop_dma(ndev)) {
1463		/* If ravb_stop_dma() fails, the hardware is still operating
1464		 * for TX and/or RX. So, this should not call the following
1465		 * functions because ravb_dmac_init() is possible to fail too.
1466		 * Also, this should not retry ravb_stop_dma() again and again
1467		 * here because it's possible to wait forever. So, this just
1468		 * re-enables the TX and RX and skip the following
1469		 * re-initialization procedure.
1470		 */
1471		ravb_rcv_snd_enable(ndev);
1472		goto out;
1473	}
1474
1475	ravb_ring_free(ndev, RAVB_BE);
1476	ravb_ring_free(ndev, RAVB_NC);
1477
1478	/* Device init */
1479	error = ravb_dmac_init(ndev);
1480	if (error) {
1481		/* If ravb_dmac_init() fails, descriptors are freed. So, this
1482		 * should return here to avoid re-enabling the TX and RX in
1483		 * ravb_emac_init().
1484		 */
1485		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
1486			   __func__, error);
1487		return;
1488	}
1489	ravb_emac_init(ndev);
1490
1491out:
1492	/* Initialise PTP Clock driver */
1493	if (priv->chip_id == RCAR_GEN2)
1494		ravb_ptp_init(ndev, priv->pdev);
1495
1496	netif_tx_start_all_queues(ndev);
1497}
1498
1499/* Packet transmit function for Ethernet AVB */
1500static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1501{
1502	struct ravb_private *priv = netdev_priv(ndev);
1503	int num_tx_desc = priv->num_tx_desc;
1504	u16 q = skb_get_queue_mapping(skb);
1505	struct ravb_tstamp_skb *ts_skb;
1506	struct ravb_tx_desc *desc;
1507	unsigned long flags;
1508	u32 dma_addr;
1509	void *buffer;
1510	u32 entry;
1511	u32 len;
1512
1513	spin_lock_irqsave(&priv->lock, flags);
1514	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1515	    num_tx_desc) {
1516		netif_err(priv, tx_queued, ndev,
1517			  "still transmitting with the full ring!\n");
1518		netif_stop_subqueue(ndev, q);
1519		spin_unlock_irqrestore(&priv->lock, flags);
1520		return NETDEV_TX_BUSY;
1521	}
1522
1523	if (skb_put_padto(skb, ETH_ZLEN))
1524		goto exit;
1525
1526	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1527	priv->tx_skb[q][entry / num_tx_desc] = skb;
1528
1529	if (num_tx_desc > 1) {
1530		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1531			 entry / num_tx_desc * DPTR_ALIGN;
1532		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1533
1534		/* Zero length DMA descriptors are problematic as they seem
1535		 * to terminate DMA transfers. Avoid them by simply using a
1536		 * length of DPTR_ALIGN (4) when skb data is aligned to
1537		 * DPTR_ALIGN.
1538		 *
1539		 * As skb is guaranteed to have at least ETH_ZLEN (60)
1540		 * bytes of data by the call to skb_put_padto() above this
1541		 * is safe with respect to both the length of the first DMA
1542		 * descriptor (len) overflowing the available data and the
1543		 * length of the second DMA descriptor (skb->len - len)
1544		 * being negative.
1545		 */
1546		if (len == 0)
1547			len = DPTR_ALIGN;
1548
1549		memcpy(buffer, skb->data, len);
1550		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1551					  DMA_TO_DEVICE);
1552		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1553			goto drop;
1554
1555		desc = &priv->tx_ring[q][entry];
1556		desc->ds_tagl = cpu_to_le16(len);
1557		desc->dptr = cpu_to_le32(dma_addr);
1558
1559		buffer = skb->data + len;
1560		len = skb->len - len;
1561		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1562					  DMA_TO_DEVICE);
1563		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1564			goto unmap;
1565
1566		desc++;
1567	} else {
1568		desc = &priv->tx_ring[q][entry];
1569		len = skb->len;
1570		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1571					  DMA_TO_DEVICE);
1572		if (dma_mapping_error(ndev->dev.parent, dma_addr))
1573			goto drop;
1574	}
1575	desc->ds_tagl = cpu_to_le16(len);
1576	desc->dptr = cpu_to_le32(dma_addr);
1577
1578	/* TX timestamp required */
1579	if (q == RAVB_NC) {
1580		ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1581		if (!ts_skb) {
1582			if (num_tx_desc > 1) {
1583				desc--;
1584				dma_unmap_single(ndev->dev.parent, dma_addr,
1585						 len, DMA_TO_DEVICE);
1586			}
1587			goto unmap;
1588		}
1589		ts_skb->skb = skb_get(skb);
1590		ts_skb->tag = priv->ts_skb_tag++;
1591		priv->ts_skb_tag &= 0x3ff;
1592		list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1593
1594		/* TAG and timestamp required flag */
1595		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1596		desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1597		desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1598	}
1599
1600	skb_tx_timestamp(skb);
1601	/* Descriptor type must be set after all the above writes */
1602	dma_wmb();
1603	if (num_tx_desc > 1) {
1604		desc->die_dt = DT_FEND;
1605		desc--;
1606		desc->die_dt = DT_FSTART;
1607	} else {
1608		desc->die_dt = DT_FSINGLE;
1609	}
1610	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1611
1612	priv->cur_tx[q] += num_tx_desc;
1613	if (priv->cur_tx[q] - priv->dirty_tx[q] >
1614	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1615	    !ravb_tx_free(ndev, q, true))
1616		netif_stop_subqueue(ndev, q);
1617
1618exit:
1619	spin_unlock_irqrestore(&priv->lock, flags);
1620	return NETDEV_TX_OK;
1621
1622unmap:
1623	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1624			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1625drop:
1626	dev_kfree_skb_any(skb);
1627	priv->tx_skb[q][entry / num_tx_desc] = NULL;
1628	goto exit;
1629}
1630
1631static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1632			     struct net_device *sb_dev)
1633{
1634	/* If skb needs TX timestamp, it is handled in network control queue */
1635	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1636							       RAVB_BE;
1637
1638}
1639
1640static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1641{
1642	struct ravb_private *priv = netdev_priv(ndev);
1643	struct net_device_stats *nstats, *stats0, *stats1;
1644
1645	nstats = &ndev->stats;
1646	stats0 = &priv->stats[RAVB_BE];
1647	stats1 = &priv->stats[RAVB_NC];
1648
1649	if (priv->chip_id == RCAR_GEN3) {
1650		nstats->tx_dropped += ravb_read(ndev, TROCR);
1651		ravb_write(ndev, 0, TROCR);	/* (write clear) */
1652	}
1653
1654	nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1655	nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1656	nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1657	nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1658	nstats->multicast = stats0->multicast + stats1->multicast;
1659	nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1660	nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1661	nstats->rx_frame_errors =
1662		stats0->rx_frame_errors + stats1->rx_frame_errors;
1663	nstats->rx_length_errors =
1664		stats0->rx_length_errors + stats1->rx_length_errors;
1665	nstats->rx_missed_errors =
1666		stats0->rx_missed_errors + stats1->rx_missed_errors;
1667	nstats->rx_over_errors =
1668		stats0->rx_over_errors + stats1->rx_over_errors;
1669
1670	return nstats;
1671}
1672
1673/* Update promiscuous bit */
1674static void ravb_set_rx_mode(struct net_device *ndev)
1675{
1676	struct ravb_private *priv = netdev_priv(ndev);
1677	unsigned long flags;
1678
1679	spin_lock_irqsave(&priv->lock, flags);
1680	ravb_modify(ndev, ECMR, ECMR_PRM,
1681		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1682	spin_unlock_irqrestore(&priv->lock, flags);
1683}
1684
1685/* Device close function for Ethernet AVB */
1686static int ravb_close(struct net_device *ndev)
1687{
1688	struct device_node *np = ndev->dev.parent->of_node;
1689	struct ravb_private *priv = netdev_priv(ndev);
1690	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1691
1692	netif_tx_stop_all_queues(ndev);
1693
1694	/* Disable interrupts by clearing the interrupt masks. */
1695	ravb_write(ndev, 0, RIC0);
1696	ravb_write(ndev, 0, RIC2);
1697	ravb_write(ndev, 0, TIC);
1698
1699	/* Stop PTP Clock driver */
1700	if (priv->chip_id == RCAR_GEN2)
1701		ravb_ptp_stop(ndev);
1702
1703	/* Set the config mode to stop the AVB-DMAC's processes */
1704	if (ravb_stop_dma(ndev) < 0)
1705		netdev_err(ndev,
1706			   "device will be stopped after h/w processes are done.\n");
1707
1708	/* Clear the timestamp list */
1709	list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1710		list_del(&ts_skb->list);
1711		kfree_skb(ts_skb->skb);
1712		kfree(ts_skb);
1713	}
1714
1715	/* PHY disconnect */
1716	if (ndev->phydev) {
1717		phy_stop(ndev->phydev);
1718		phy_disconnect(ndev->phydev);
1719		if (of_phy_is_fixed_link(np))
1720			of_phy_deregister_fixed_link(np);
1721	}
1722
1723	if (priv->chip_id != RCAR_GEN2) {
1724		free_irq(priv->tx_irqs[RAVB_NC], ndev);
1725		free_irq(priv->rx_irqs[RAVB_NC], ndev);
1726		free_irq(priv->tx_irqs[RAVB_BE], ndev);
1727		free_irq(priv->rx_irqs[RAVB_BE], ndev);
1728		free_irq(priv->emac_irq, ndev);
1729	}
1730	free_irq(ndev->irq, ndev);
1731
1732	napi_disable(&priv->napi[RAVB_NC]);
1733	napi_disable(&priv->napi[RAVB_BE]);
1734
1735	/* Free all the skb's in the RX queue and the DMA buffers. */
1736	ravb_ring_free(ndev, RAVB_BE);
1737	ravb_ring_free(ndev, RAVB_NC);
1738
1739	return 0;
1740}
1741
1742static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1743{
1744	struct ravb_private *priv = netdev_priv(ndev);
1745	struct hwtstamp_config config;
1746
1747	config.flags = 0;
1748	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1749						HWTSTAMP_TX_OFF;
1750	if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1751		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1752	else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1753		config.rx_filter = HWTSTAMP_FILTER_ALL;
1754	else
1755		config.rx_filter = HWTSTAMP_FILTER_NONE;
1756
1757	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1758		-EFAULT : 0;
1759}
1760
1761/* Control hardware time stamping */
1762static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1763{
1764	struct ravb_private *priv = netdev_priv(ndev);
1765	struct hwtstamp_config config;
1766	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1767	u32 tstamp_tx_ctrl;
1768
1769	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1770		return -EFAULT;
1771
1772	/* Reserved for future extensions */
1773	if (config.flags)
1774		return -EINVAL;
1775
1776	switch (config.tx_type) {
1777	case HWTSTAMP_TX_OFF:
1778		tstamp_tx_ctrl = 0;
1779		break;
1780	case HWTSTAMP_TX_ON:
1781		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1782		break;
1783	default:
1784		return -ERANGE;
1785	}
1786
1787	switch (config.rx_filter) {
1788	case HWTSTAMP_FILTER_NONE:
1789		tstamp_rx_ctrl = 0;
1790		break;
1791	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1792		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1793		break;
1794	default:
1795		config.rx_filter = HWTSTAMP_FILTER_ALL;
1796		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1797	}
1798
1799	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1800	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1801
1802	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1803		-EFAULT : 0;
1804}
1805
1806/* ioctl to device function */
1807static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1808{
1809	struct phy_device *phydev = ndev->phydev;
1810
1811	if (!netif_running(ndev))
1812		return -EINVAL;
1813
1814	if (!phydev)
1815		return -ENODEV;
1816
1817	switch (cmd) {
1818	case SIOCGHWTSTAMP:
1819		return ravb_hwtstamp_get(ndev, req);
1820	case SIOCSHWTSTAMP:
1821		return ravb_hwtstamp_set(ndev, req);
1822	}
1823
1824	return phy_mii_ioctl(phydev, req, cmd);
1825}
1826
1827static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1828{
1829	struct ravb_private *priv = netdev_priv(ndev);
1830
1831	ndev->mtu = new_mtu;
1832
1833	if (netif_running(ndev)) {
1834		synchronize_irq(priv->emac_irq);
1835		ravb_emac_init(ndev);
1836	}
1837
1838	netdev_update_features(ndev);
1839
1840	return 0;
1841}
1842
1843static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1844{
1845	struct ravb_private *priv = netdev_priv(ndev);
1846	unsigned long flags;
1847
1848	spin_lock_irqsave(&priv->lock, flags);
1849
1850	/* Disable TX and RX */
1851	ravb_rcv_snd_disable(ndev);
1852
1853	/* Modify RX Checksum setting */
1854	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1855
1856	/* Enable TX and RX */
1857	ravb_rcv_snd_enable(ndev);
1858
1859	spin_unlock_irqrestore(&priv->lock, flags);
1860}
1861
1862static int ravb_set_features(struct net_device *ndev,
1863			     netdev_features_t features)
1864{
1865	netdev_features_t changed = ndev->features ^ features;
1866
1867	if (changed & NETIF_F_RXCSUM)
1868		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1869
1870	ndev->features = features;
1871
1872	return 0;
1873}
1874
1875static const struct net_device_ops ravb_netdev_ops = {
1876	.ndo_open		= ravb_open,
1877	.ndo_stop		= ravb_close,
1878	.ndo_start_xmit		= ravb_start_xmit,
1879	.ndo_select_queue	= ravb_select_queue,
1880	.ndo_get_stats		= ravb_get_stats,
1881	.ndo_set_rx_mode	= ravb_set_rx_mode,
1882	.ndo_tx_timeout		= ravb_tx_timeout,
1883	.ndo_do_ioctl		= ravb_do_ioctl,
1884	.ndo_change_mtu		= ravb_change_mtu,
1885	.ndo_validate_addr	= eth_validate_addr,
1886	.ndo_set_mac_address	= eth_mac_addr,
1887	.ndo_set_features	= ravb_set_features,
1888};
1889
1890/* MDIO bus init function */
1891static int ravb_mdio_init(struct ravb_private *priv)
1892{
1893	struct platform_device *pdev = priv->pdev;
1894	struct device *dev = &pdev->dev;
1895	int error;
1896
1897	/* Bitbang init */
1898	priv->mdiobb.ops = &bb_ops;
1899
1900	/* MII controller setting */
1901	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1902	if (!priv->mii_bus)
1903		return -ENOMEM;
1904
1905	/* Hook up MII support for ethtool */
1906	priv->mii_bus->name = "ravb_mii";
1907	priv->mii_bus->parent = dev;
1908	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1909		 pdev->name, pdev->id);
1910
1911	/* Register MDIO bus */
1912	error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1913	if (error)
1914		goto out_free_bus;
1915
1916	return 0;
1917
1918out_free_bus:
1919	free_mdio_bitbang(priv->mii_bus);
1920	return error;
1921}
1922
1923/* MDIO bus release function */
1924static int ravb_mdio_release(struct ravb_private *priv)
1925{
1926	/* Unregister mdio bus */
1927	mdiobus_unregister(priv->mii_bus);
1928
1929	/* Free bitbang info */
1930	free_mdio_bitbang(priv->mii_bus);
1931
1932	return 0;
1933}
1934
1935static const struct of_device_id ravb_match_table[] = {
1936	{ .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1937	{ .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1938	{ .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1939	{ .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1940	{ .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1941	{ }
1942};
1943MODULE_DEVICE_TABLE(of, ravb_match_table);
1944
1945static int ravb_set_gti(struct net_device *ndev)
1946{
1947	struct ravb_private *priv = netdev_priv(ndev);
1948	struct device *dev = ndev->dev.parent;
1949	unsigned long rate;
1950	uint64_t inc;
1951
1952	rate = clk_get_rate(priv->clk);
1953	if (!rate)
1954		return -EINVAL;
1955
1956	inc = 1000000000ULL << 20;
1957	do_div(inc, rate);
1958
1959	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1960		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1961			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1962		return -EINVAL;
1963	}
1964
1965	ravb_write(ndev, inc, GTI);
1966
1967	return 0;
1968}
1969
1970static void ravb_set_config_mode(struct net_device *ndev)
1971{
1972	struct ravb_private *priv = netdev_priv(ndev);
1973
1974	if (priv->chip_id == RCAR_GEN2) {
1975		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1976		/* Set CSEL value */
1977		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1978	} else {
1979		ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1980			    CCC_GAC | CCC_CSEL_HPB);
1981	}
1982}
1983
1984static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1985	{ .soc_id = "r8a774c0" },
1986	{ .soc_id = "r8a77990" },
1987	{ .soc_id = "r8a77995" },
1988	{ /* sentinel */ }
1989};
1990
1991/* Set tx and rx clock internal delay modes */
1992static void ravb_set_delay_mode(struct net_device *ndev)
1993{
1994	struct ravb_private *priv = netdev_priv(ndev);
1995	int set = 0;
1996
1997	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1998	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1999		set |= APSR_DM_RDM;
2000
2001	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
2002	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
2003		if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
2004			  "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
2005			  phy_modes(priv->phy_interface)))
2006			set |= APSR_DM_TDM;
2007	}
2008
2009	ravb_modify(ndev, APSR, APSR_DM, set);
2010}
2011
2012static int ravb_probe(struct platform_device *pdev)
2013{
2014	struct device_node *np = pdev->dev.of_node;
2015	struct ravb_private *priv;
2016	enum ravb_chip_id chip_id;
2017	struct net_device *ndev;
2018	int error, irq, q;
2019	struct resource *res;
2020	int i;
2021
2022	if (!np) {
2023		dev_err(&pdev->dev,
2024			"this driver is required to be instantiated from device tree\n");
2025		return -EINVAL;
2026	}
2027
2028	/* Get base address */
2029	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2030	if (!res) {
2031		dev_err(&pdev->dev, "invalid resource\n");
2032		return -EINVAL;
2033	}
2034
2035	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2036				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2037	if (!ndev)
2038		return -ENOMEM;
2039
2040	ndev->features = NETIF_F_RXCSUM;
2041	ndev->hw_features = NETIF_F_RXCSUM;
2042
2043	pm_runtime_enable(&pdev->dev);
2044	pm_runtime_get_sync(&pdev->dev);
2045
2046	/* The Ether-specific entries in the device structure. */
2047	ndev->base_addr = res->start;
2048
2049	chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2050
2051	if (chip_id == RCAR_GEN3)
2052		irq = platform_get_irq_byname(pdev, "ch22");
2053	else
2054		irq = platform_get_irq(pdev, 0);
2055	if (irq < 0) {
2056		error = irq;
2057		goto out_release;
2058	}
2059	ndev->irq = irq;
2060
2061	SET_NETDEV_DEV(ndev, &pdev->dev);
2062
2063	priv = netdev_priv(ndev);
2064	priv->ndev = ndev;
2065	priv->pdev = pdev;
2066	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2067	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2068	priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2069	priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2070	priv->addr = devm_ioremap_resource(&pdev->dev, res);
2071	if (IS_ERR(priv->addr)) {
2072		error = PTR_ERR(priv->addr);
2073		goto out_release;
2074	}
2075
2076	spin_lock_init(&priv->lock);
2077	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2078
2079	error = of_get_phy_mode(np, &priv->phy_interface);
2080	if (error && error != -ENODEV)
2081		goto out_release;
2082
2083	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2084	priv->avb_link_active_low =
2085		of_property_read_bool(np, "renesas,ether-link-active-low");
2086
2087	if (chip_id == RCAR_GEN3) {
2088		irq = platform_get_irq_byname(pdev, "ch24");
2089		if (irq < 0) {
2090			error = irq;
2091			goto out_release;
2092		}
2093		priv->emac_irq = irq;
2094		for (i = 0; i < NUM_RX_QUEUE; i++) {
2095			irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2096			if (irq < 0) {
2097				error = irq;
2098				goto out_release;
2099			}
2100			priv->rx_irqs[i] = irq;
2101		}
2102		for (i = 0; i < NUM_TX_QUEUE; i++) {
2103			irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2104			if (irq < 0) {
2105				error = irq;
2106				goto out_release;
2107			}
2108			priv->tx_irqs[i] = irq;
2109		}
2110	}
2111
2112	priv->chip_id = chip_id;
2113
2114	priv->clk = devm_clk_get(&pdev->dev, NULL);
2115	if (IS_ERR(priv->clk)) {
2116		error = PTR_ERR(priv->clk);
2117		goto out_release;
2118	}
2119
2120	ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2121	ndev->min_mtu = ETH_MIN_MTU;
2122
2123	priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2124		NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2125
2126	/* Set function */
2127	ndev->netdev_ops = &ravb_netdev_ops;
2128	ndev->ethtool_ops = &ravb_ethtool_ops;
2129
2130	/* Set AVB config mode */
2131	ravb_set_config_mode(ndev);
2132
2133	/* Set GTI value */
2134	error = ravb_set_gti(ndev);
2135	if (error)
2136		goto out_release;
2137
2138	/* Request GTI loading */
2139	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2140
2141	if (priv->chip_id != RCAR_GEN2)
2142		ravb_set_delay_mode(ndev);
2143
2144	/* Allocate descriptor base address table */
2145	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2146	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2147					    &priv->desc_bat_dma, GFP_KERNEL);
2148	if (!priv->desc_bat) {
2149		dev_err(&pdev->dev,
2150			"Cannot allocate desc base address table (size %d bytes)\n",
2151			priv->desc_bat_size);
2152		error = -ENOMEM;
2153		goto out_release;
2154	}
2155	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2156		priv->desc_bat[q].die_dt = DT_EOS;
2157	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2158
2159	/* Initialise HW timestamp list */
2160	INIT_LIST_HEAD(&priv->ts_skb_list);
2161
2162	/* Initialise PTP Clock driver */
2163	if (chip_id != RCAR_GEN2)
2164		ravb_ptp_init(ndev, pdev);
2165
2166	/* Debug message level */
2167	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2168
2169	/* Read and set MAC address */
2170	ravb_read_mac_address(ndev, of_get_mac_address(np));
2171	if (!is_valid_ether_addr(ndev->dev_addr)) {
2172		dev_warn(&pdev->dev,
2173			 "no valid MAC address supplied, using a random one\n");
2174		eth_hw_addr_random(ndev);
2175	}
2176
2177	/* MDIO bus init */
2178	error = ravb_mdio_init(priv);
2179	if (error) {
2180		dev_err(&pdev->dev, "failed to initialize MDIO\n");
2181		goto out_dma_free;
2182	}
2183
2184	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2185	netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2186
2187	/* Network device register */
2188	error = register_netdev(ndev);
2189	if (error)
2190		goto out_napi_del;
2191
2192	device_set_wakeup_capable(&pdev->dev, 1);
2193
2194	/* Print device information */
2195	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2196		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2197
2198	platform_set_drvdata(pdev, ndev);
2199
2200	return 0;
2201
2202out_napi_del:
2203	netif_napi_del(&priv->napi[RAVB_NC]);
2204	netif_napi_del(&priv->napi[RAVB_BE]);
2205	ravb_mdio_release(priv);
2206out_dma_free:
2207	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2208			  priv->desc_bat_dma);
2209
2210	/* Stop PTP Clock driver */
2211	if (chip_id != RCAR_GEN2)
2212		ravb_ptp_stop(ndev);
2213out_release:
2214	free_netdev(ndev);
2215
2216	pm_runtime_put(&pdev->dev);
2217	pm_runtime_disable(&pdev->dev);
2218	return error;
2219}
2220
2221static int ravb_remove(struct platform_device *pdev)
2222{
2223	struct net_device *ndev = platform_get_drvdata(pdev);
2224	struct ravb_private *priv = netdev_priv(ndev);
2225
2226	/* Stop PTP Clock driver */
2227	if (priv->chip_id != RCAR_GEN2)
2228		ravb_ptp_stop(ndev);
2229
2230	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2231			  priv->desc_bat_dma);
2232	/* Set reset mode */
2233	ravb_write(ndev, CCC_OPC_RESET, CCC);
2234	pm_runtime_put_sync(&pdev->dev);
2235	unregister_netdev(ndev);
2236	netif_napi_del(&priv->napi[RAVB_NC]);
2237	netif_napi_del(&priv->napi[RAVB_BE]);
2238	ravb_mdio_release(priv);
2239	pm_runtime_disable(&pdev->dev);
2240	free_netdev(ndev);
2241	platform_set_drvdata(pdev, NULL);
2242
2243	return 0;
2244}
2245
2246static int ravb_wol_setup(struct net_device *ndev)
2247{
2248	struct ravb_private *priv = netdev_priv(ndev);
2249
2250	/* Disable interrupts by clearing the interrupt masks. */
2251	ravb_write(ndev, 0, RIC0);
2252	ravb_write(ndev, 0, RIC2);
2253	ravb_write(ndev, 0, TIC);
2254
2255	/* Only allow ECI interrupts */
2256	synchronize_irq(priv->emac_irq);
2257	napi_disable(&priv->napi[RAVB_NC]);
2258	napi_disable(&priv->napi[RAVB_BE]);
2259	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2260
2261	/* Enable MagicPacket */
2262	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2263
2264	return enable_irq_wake(priv->emac_irq);
2265}
2266
2267static int ravb_wol_restore(struct net_device *ndev)
2268{
2269	struct ravb_private *priv = netdev_priv(ndev);
2270	int ret;
2271
2272	napi_enable(&priv->napi[RAVB_NC]);
2273	napi_enable(&priv->napi[RAVB_BE]);
2274
2275	/* Disable MagicPacket */
2276	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2277
2278	ret = ravb_close(ndev);
2279	if (ret < 0)
2280		return ret;
2281
2282	return disable_irq_wake(priv->emac_irq);
2283}
2284
2285static int __maybe_unused ravb_suspend(struct device *dev)
2286{
2287	struct net_device *ndev = dev_get_drvdata(dev);
2288	struct ravb_private *priv = netdev_priv(ndev);
2289	int ret;
2290
2291	if (!netif_running(ndev))
2292		return 0;
2293
2294	netif_device_detach(ndev);
2295
2296	if (priv->wol_enabled)
2297		ret = ravb_wol_setup(ndev);
2298	else
2299		ret = ravb_close(ndev);
2300
2301	return ret;
2302}
2303
2304static int __maybe_unused ravb_resume(struct device *dev)
2305{
2306	struct net_device *ndev = dev_get_drvdata(dev);
2307	struct ravb_private *priv = netdev_priv(ndev);
2308	int ret = 0;
2309
2310	/* If WoL is enabled set reset mode to rearm the WoL logic */
2311	if (priv->wol_enabled)
2312		ravb_write(ndev, CCC_OPC_RESET, CCC);
2313
2314	/* All register have been reset to default values.
2315	 * Restore all registers which where setup at probe time and
2316	 * reopen device if it was running before system suspended.
2317	 */
2318
2319	/* Set AVB config mode */
2320	ravb_set_config_mode(ndev);
2321
2322	/* Set GTI value */
2323	ret = ravb_set_gti(ndev);
2324	if (ret)
2325		return ret;
2326
2327	/* Request GTI loading */
2328	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2329
2330	if (priv->chip_id != RCAR_GEN2)
2331		ravb_set_delay_mode(ndev);
2332
2333	/* Restore descriptor base address table */
2334	ravb_write(ndev, priv->desc_bat_dma, DBAT);
2335
2336	if (netif_running(ndev)) {
2337		if (priv->wol_enabled) {
2338			ret = ravb_wol_restore(ndev);
2339			if (ret)
2340				return ret;
2341		}
2342		ret = ravb_open(ndev);
2343		if (ret < 0)
2344			return ret;
2345		netif_device_attach(ndev);
2346	}
2347
2348	return ret;
2349}
2350
2351static int __maybe_unused ravb_runtime_nop(struct device *dev)
2352{
2353	/* Runtime PM callback shared between ->runtime_suspend()
2354	 * and ->runtime_resume(). Simply returns success.
2355	 *
2356	 * This driver re-initializes all registers after
2357	 * pm_runtime_get_sync() anyway so there is no need
2358	 * to save and restore registers here.
2359	 */
2360	return 0;
2361}
2362
2363static const struct dev_pm_ops ravb_dev_pm_ops = {
2364	SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2365	SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2366};
2367
2368static struct platform_driver ravb_driver = {
2369	.probe		= ravb_probe,
2370	.remove		= ravb_remove,
2371	.driver = {
2372		.name	= "ravb",
2373		.pm	= &ravb_dev_pm_ops,
2374		.of_match_table = ravb_match_table,
2375	},
2376};
2377
2378module_platform_driver(ravb_driver);
2379
2380MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2381MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2382MODULE_LICENSE("GPL v2");