Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "extents.h"
14#include "request.h"
15#include "writeback.h"
16#include "features.h"
17
18#include <linux/blkdev.h>
19#include <linux/debugfs.h>
20#include <linux/genhd.h>
21#include <linux/idr.h>
22#include <linux/kthread.h>
23#include <linux/workqueue.h>
24#include <linux/module.h>
25#include <linux/random.h>
26#include <linux/reboot.h>
27#include <linux/sysfs.h>
28
29unsigned int bch_cutoff_writeback;
30unsigned int bch_cutoff_writeback_sync;
31
32static const char bcache_magic[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35};
36
37static const char invalid_uuid[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40};
41
42static struct kobject *bcache_kobj;
43struct mutex bch_register_lock;
44bool bcache_is_reboot;
45LIST_HEAD(bch_cache_sets);
46static LIST_HEAD(uncached_devices);
47
48static int bcache_major;
49static DEFINE_IDA(bcache_device_idx);
50static wait_queue_head_t unregister_wait;
51struct workqueue_struct *bcache_wq;
52struct workqueue_struct *bch_journal_wq;
53
54
55#define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
56/* limitation of partitions number on single bcache device */
57#define BCACHE_MINORS 128
58/* limitation of bcache devices number on single system */
59#define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
60
61/* Superblock */
62
63static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
64{
65 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
66
67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES &&
68 bch_has_feature_large_bucket(sb))
69 bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16;
70
71 return bucket_size;
72}
73
74static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
75 struct cache_sb_disk *s)
76{
77 const char *err;
78 unsigned int i;
79
80 sb->first_bucket= le16_to_cpu(s->first_bucket);
81 sb->nbuckets = le64_to_cpu(s->nbuckets);
82 sb->bucket_size = get_bucket_size(sb, s);
83
84 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
85 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
86
87 err = "Too many journal buckets";
88 if (sb->keys > SB_JOURNAL_BUCKETS)
89 goto err;
90
91 err = "Too many buckets";
92 if (sb->nbuckets > LONG_MAX)
93 goto err;
94
95 err = "Not enough buckets";
96 if (sb->nbuckets < 1 << 7)
97 goto err;
98
99 err = "Bad block size (not power of 2)";
100 if (!is_power_of_2(sb->block_size))
101 goto err;
102
103 err = "Bad block size (larger than page size)";
104 if (sb->block_size > PAGE_SECTORS)
105 goto err;
106
107 err = "Bad bucket size (not power of 2)";
108 if (!is_power_of_2(sb->bucket_size))
109 goto err;
110
111 err = "Bad bucket size (smaller than page size)";
112 if (sb->bucket_size < PAGE_SECTORS)
113 goto err;
114
115 err = "Invalid superblock: device too small";
116 if (get_capacity(bdev->bd_disk) <
117 sb->bucket_size * sb->nbuckets)
118 goto err;
119
120 err = "Bad UUID";
121 if (bch_is_zero(sb->set_uuid, 16))
122 goto err;
123
124 err = "Bad cache device number in set";
125 if (!sb->nr_in_set ||
126 sb->nr_in_set <= sb->nr_this_dev ||
127 sb->nr_in_set > MAX_CACHES_PER_SET)
128 goto err;
129
130 err = "Journal buckets not sequential";
131 for (i = 0; i < sb->keys; i++)
132 if (sb->d[i] != sb->first_bucket + i)
133 goto err;
134
135 err = "Too many journal buckets";
136 if (sb->first_bucket + sb->keys > sb->nbuckets)
137 goto err;
138
139 err = "Invalid superblock: first bucket comes before end of super";
140 if (sb->first_bucket * sb->bucket_size < 16)
141 goto err;
142
143 err = NULL;
144err:
145 return err;
146}
147
148
149static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
150 struct cache_sb_disk **res)
151{
152 const char *err;
153 struct cache_sb_disk *s;
154 struct page *page;
155 unsigned int i;
156
157 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
158 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
159 if (IS_ERR(page))
160 return "IO error";
161 s = page_address(page) + offset_in_page(SB_OFFSET);
162
163 sb->offset = le64_to_cpu(s->offset);
164 sb->version = le64_to_cpu(s->version);
165
166 memcpy(sb->magic, s->magic, 16);
167 memcpy(sb->uuid, s->uuid, 16);
168 memcpy(sb->set_uuid, s->set_uuid, 16);
169 memcpy(sb->label, s->label, SB_LABEL_SIZE);
170
171 sb->flags = le64_to_cpu(s->flags);
172 sb->seq = le64_to_cpu(s->seq);
173 sb->last_mount = le32_to_cpu(s->last_mount);
174 sb->keys = le16_to_cpu(s->keys);
175
176 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
177 sb->d[i] = le64_to_cpu(s->d[i]);
178
179 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
180 sb->version, sb->flags, sb->seq, sb->keys);
181
182 err = "Not a bcache superblock (bad offset)";
183 if (sb->offset != SB_SECTOR)
184 goto err;
185
186 err = "Not a bcache superblock (bad magic)";
187 if (memcmp(sb->magic, bcache_magic, 16))
188 goto err;
189
190 err = "Bad checksum";
191 if (s->csum != csum_set(s))
192 goto err;
193
194 err = "Bad UUID";
195 if (bch_is_zero(sb->uuid, 16))
196 goto err;
197
198 sb->block_size = le16_to_cpu(s->block_size);
199
200 err = "Superblock block size smaller than device block size";
201 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
202 goto err;
203
204 switch (sb->version) {
205 case BCACHE_SB_VERSION_BDEV:
206 sb->data_offset = BDEV_DATA_START_DEFAULT;
207 break;
208 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
209 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
210 sb->data_offset = le64_to_cpu(s->data_offset);
211
212 err = "Bad data offset";
213 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
214 goto err;
215
216 break;
217 case BCACHE_SB_VERSION_CDEV:
218 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
219 err = read_super_common(sb, bdev, s);
220 if (err)
221 goto err;
222 break;
223 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
224 /*
225 * Feature bits are needed in read_super_common(),
226 * convert them firstly.
227 */
228 sb->feature_compat = le64_to_cpu(s->feature_compat);
229 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
230 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
231 err = read_super_common(sb, bdev, s);
232 if (err)
233 goto err;
234 break;
235 default:
236 err = "Unsupported superblock version";
237 goto err;
238 }
239
240 sb->last_mount = (u32)ktime_get_real_seconds();
241 *res = s;
242 return NULL;
243err:
244 put_page(page);
245 return err;
246}
247
248static void write_bdev_super_endio(struct bio *bio)
249{
250 struct cached_dev *dc = bio->bi_private;
251
252 if (bio->bi_status)
253 bch_count_backing_io_errors(dc, bio);
254
255 closure_put(&dc->sb_write);
256}
257
258static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
259 struct bio *bio)
260{
261 unsigned int i;
262
263 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
264 bio->bi_iter.bi_sector = SB_SECTOR;
265 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
266 offset_in_page(out));
267
268 out->offset = cpu_to_le64(sb->offset);
269
270 memcpy(out->uuid, sb->uuid, 16);
271 memcpy(out->set_uuid, sb->set_uuid, 16);
272 memcpy(out->label, sb->label, SB_LABEL_SIZE);
273
274 out->flags = cpu_to_le64(sb->flags);
275 out->seq = cpu_to_le64(sb->seq);
276
277 out->last_mount = cpu_to_le32(sb->last_mount);
278 out->first_bucket = cpu_to_le16(sb->first_bucket);
279 out->keys = cpu_to_le16(sb->keys);
280
281 for (i = 0; i < sb->keys; i++)
282 out->d[i] = cpu_to_le64(sb->d[i]);
283
284 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
285 out->feature_compat = cpu_to_le64(sb->feature_compat);
286 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
287 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
288 }
289
290 out->version = cpu_to_le64(sb->version);
291 out->csum = csum_set(out);
292
293 pr_debug("ver %llu, flags %llu, seq %llu\n",
294 sb->version, sb->flags, sb->seq);
295
296 submit_bio(bio);
297}
298
299static void bch_write_bdev_super_unlock(struct closure *cl)
300{
301 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
302
303 up(&dc->sb_write_mutex);
304}
305
306void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
307{
308 struct closure *cl = &dc->sb_write;
309 struct bio *bio = &dc->sb_bio;
310
311 down(&dc->sb_write_mutex);
312 closure_init(cl, parent);
313
314 bio_init(bio, dc->sb_bv, 1);
315 bio_set_dev(bio, dc->bdev);
316 bio->bi_end_io = write_bdev_super_endio;
317 bio->bi_private = dc;
318
319 closure_get(cl);
320 /* I/O request sent to backing device */
321 __write_super(&dc->sb, dc->sb_disk, bio);
322
323 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
324}
325
326static void write_super_endio(struct bio *bio)
327{
328 struct cache *ca = bio->bi_private;
329
330 /* is_read = 0 */
331 bch_count_io_errors(ca, bio->bi_status, 0,
332 "writing superblock");
333 closure_put(&ca->set->sb_write);
334}
335
336static void bcache_write_super_unlock(struct closure *cl)
337{
338 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
339
340 up(&c->sb_write_mutex);
341}
342
343void bcache_write_super(struct cache_set *c)
344{
345 struct closure *cl = &c->sb_write;
346 struct cache *ca;
347 unsigned int i, version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
348
349 down(&c->sb_write_mutex);
350 closure_init(cl, &c->cl);
351
352 c->sb.seq++;
353
354 if (c->sb.version > version)
355 version = c->sb.version;
356
357 for_each_cache(ca, c, i) {
358 struct bio *bio = &ca->sb_bio;
359
360 ca->sb.version = version;
361 ca->sb.seq = c->sb.seq;
362 ca->sb.last_mount = c->sb.last_mount;
363
364 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
365
366 bio_init(bio, ca->sb_bv, 1);
367 bio_set_dev(bio, ca->bdev);
368 bio->bi_end_io = write_super_endio;
369 bio->bi_private = ca;
370
371 closure_get(cl);
372 __write_super(&ca->sb, ca->sb_disk, bio);
373 }
374
375 closure_return_with_destructor(cl, bcache_write_super_unlock);
376}
377
378/* UUID io */
379
380static void uuid_endio(struct bio *bio)
381{
382 struct closure *cl = bio->bi_private;
383 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
384
385 cache_set_err_on(bio->bi_status, c, "accessing uuids");
386 bch_bbio_free(bio, c);
387 closure_put(cl);
388}
389
390static void uuid_io_unlock(struct closure *cl)
391{
392 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
393
394 up(&c->uuid_write_mutex);
395}
396
397static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
398 struct bkey *k, struct closure *parent)
399{
400 struct closure *cl = &c->uuid_write;
401 struct uuid_entry *u;
402 unsigned int i;
403 char buf[80];
404
405 BUG_ON(!parent);
406 down(&c->uuid_write_mutex);
407 closure_init(cl, parent);
408
409 for (i = 0; i < KEY_PTRS(k); i++) {
410 struct bio *bio = bch_bbio_alloc(c);
411
412 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
413 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
414
415 bio->bi_end_io = uuid_endio;
416 bio->bi_private = cl;
417 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
418 bch_bio_map(bio, c->uuids);
419
420 bch_submit_bbio(bio, c, k, i);
421
422 if (op != REQ_OP_WRITE)
423 break;
424 }
425
426 bch_extent_to_text(buf, sizeof(buf), k);
427 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
428
429 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
430 if (!bch_is_zero(u->uuid, 16))
431 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
432 u - c->uuids, u->uuid, u->label,
433 u->first_reg, u->last_reg, u->invalidated);
434
435 closure_return_with_destructor(cl, uuid_io_unlock);
436}
437
438static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
439{
440 struct bkey *k = &j->uuid_bucket;
441
442 if (__bch_btree_ptr_invalid(c, k))
443 return "bad uuid pointer";
444
445 bkey_copy(&c->uuid_bucket, k);
446 uuid_io(c, REQ_OP_READ, 0, k, cl);
447
448 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
449 struct uuid_entry_v0 *u0 = (void *) c->uuids;
450 struct uuid_entry *u1 = (void *) c->uuids;
451 int i;
452
453 closure_sync(cl);
454
455 /*
456 * Since the new uuid entry is bigger than the old, we have to
457 * convert starting at the highest memory address and work down
458 * in order to do it in place
459 */
460
461 for (i = c->nr_uuids - 1;
462 i >= 0;
463 --i) {
464 memcpy(u1[i].uuid, u0[i].uuid, 16);
465 memcpy(u1[i].label, u0[i].label, 32);
466
467 u1[i].first_reg = u0[i].first_reg;
468 u1[i].last_reg = u0[i].last_reg;
469 u1[i].invalidated = u0[i].invalidated;
470
471 u1[i].flags = 0;
472 u1[i].sectors = 0;
473 }
474 }
475
476 return NULL;
477}
478
479static int __uuid_write(struct cache_set *c)
480{
481 BKEY_PADDED(key) k;
482 struct closure cl;
483 struct cache *ca;
484 unsigned int size;
485
486 closure_init_stack(&cl);
487 lockdep_assert_held(&bch_register_lock);
488
489 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
490 return 1;
491
492 size = meta_bucket_pages(&c->sb) * PAGE_SECTORS;
493 SET_KEY_SIZE(&k.key, size);
494 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
495 closure_sync(&cl);
496
497 /* Only one bucket used for uuid write */
498 ca = PTR_CACHE(c, &k.key, 0);
499 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
500
501 bkey_copy(&c->uuid_bucket, &k.key);
502 bkey_put(c, &k.key);
503 return 0;
504}
505
506int bch_uuid_write(struct cache_set *c)
507{
508 int ret = __uuid_write(c);
509
510 if (!ret)
511 bch_journal_meta(c, NULL);
512
513 return ret;
514}
515
516static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
517{
518 struct uuid_entry *u;
519
520 for (u = c->uuids;
521 u < c->uuids + c->nr_uuids; u++)
522 if (!memcmp(u->uuid, uuid, 16))
523 return u;
524
525 return NULL;
526}
527
528static struct uuid_entry *uuid_find_empty(struct cache_set *c)
529{
530 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
531
532 return uuid_find(c, zero_uuid);
533}
534
535/*
536 * Bucket priorities/gens:
537 *
538 * For each bucket, we store on disk its
539 * 8 bit gen
540 * 16 bit priority
541 *
542 * See alloc.c for an explanation of the gen. The priority is used to implement
543 * lru (and in the future other) cache replacement policies; for most purposes
544 * it's just an opaque integer.
545 *
546 * The gens and the priorities don't have a whole lot to do with each other, and
547 * it's actually the gens that must be written out at specific times - it's no
548 * big deal if the priorities don't get written, if we lose them we just reuse
549 * buckets in suboptimal order.
550 *
551 * On disk they're stored in a packed array, and in as many buckets are required
552 * to fit them all. The buckets we use to store them form a list; the journal
553 * header points to the first bucket, the first bucket points to the second
554 * bucket, et cetera.
555 *
556 * This code is used by the allocation code; periodically (whenever it runs out
557 * of buckets to allocate from) the allocation code will invalidate some
558 * buckets, but it can't use those buckets until their new gens are safely on
559 * disk.
560 */
561
562static void prio_endio(struct bio *bio)
563{
564 struct cache *ca = bio->bi_private;
565
566 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
567 bch_bbio_free(bio, ca->set);
568 closure_put(&ca->prio);
569}
570
571static void prio_io(struct cache *ca, uint64_t bucket, int op,
572 unsigned long op_flags)
573{
574 struct closure *cl = &ca->prio;
575 struct bio *bio = bch_bbio_alloc(ca->set);
576
577 closure_init_stack(cl);
578
579 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
580 bio_set_dev(bio, ca->bdev);
581 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
582
583 bio->bi_end_io = prio_endio;
584 bio->bi_private = ca;
585 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
586 bch_bio_map(bio, ca->disk_buckets);
587
588 closure_bio_submit(ca->set, bio, &ca->prio);
589 closure_sync(cl);
590}
591
592int bch_prio_write(struct cache *ca, bool wait)
593{
594 int i;
595 struct bucket *b;
596 struct closure cl;
597
598 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
599 fifo_used(&ca->free[RESERVE_PRIO]),
600 fifo_used(&ca->free[RESERVE_NONE]),
601 fifo_used(&ca->free_inc));
602
603 /*
604 * Pre-check if there are enough free buckets. In the non-blocking
605 * scenario it's better to fail early rather than starting to allocate
606 * buckets and do a cleanup later in case of failure.
607 */
608 if (!wait) {
609 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
610 fifo_used(&ca->free[RESERVE_NONE]);
611 if (prio_buckets(ca) > avail)
612 return -ENOMEM;
613 }
614
615 closure_init_stack(&cl);
616
617 lockdep_assert_held(&ca->set->bucket_lock);
618
619 ca->disk_buckets->seq++;
620
621 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
622 &ca->meta_sectors_written);
623
624 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
625 long bucket;
626 struct prio_set *p = ca->disk_buckets;
627 struct bucket_disk *d = p->data;
628 struct bucket_disk *end = d + prios_per_bucket(ca);
629
630 for (b = ca->buckets + i * prios_per_bucket(ca);
631 b < ca->buckets + ca->sb.nbuckets && d < end;
632 b++, d++) {
633 d->prio = cpu_to_le16(b->prio);
634 d->gen = b->gen;
635 }
636
637 p->next_bucket = ca->prio_buckets[i + 1];
638 p->magic = pset_magic(&ca->sb);
639 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
640
641 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
642 BUG_ON(bucket == -1);
643
644 mutex_unlock(&ca->set->bucket_lock);
645 prio_io(ca, bucket, REQ_OP_WRITE, 0);
646 mutex_lock(&ca->set->bucket_lock);
647
648 ca->prio_buckets[i] = bucket;
649 atomic_dec_bug(&ca->buckets[bucket].pin);
650 }
651
652 mutex_unlock(&ca->set->bucket_lock);
653
654 bch_journal_meta(ca->set, &cl);
655 closure_sync(&cl);
656
657 mutex_lock(&ca->set->bucket_lock);
658
659 /*
660 * Don't want the old priorities to get garbage collected until after we
661 * finish writing the new ones, and they're journalled
662 */
663 for (i = 0; i < prio_buckets(ca); i++) {
664 if (ca->prio_last_buckets[i])
665 __bch_bucket_free(ca,
666 &ca->buckets[ca->prio_last_buckets[i]]);
667
668 ca->prio_last_buckets[i] = ca->prio_buckets[i];
669 }
670 return 0;
671}
672
673static int prio_read(struct cache *ca, uint64_t bucket)
674{
675 struct prio_set *p = ca->disk_buckets;
676 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
677 struct bucket *b;
678 unsigned int bucket_nr = 0;
679 int ret = -EIO;
680
681 for (b = ca->buckets;
682 b < ca->buckets + ca->sb.nbuckets;
683 b++, d++) {
684 if (d == end) {
685 ca->prio_buckets[bucket_nr] = bucket;
686 ca->prio_last_buckets[bucket_nr] = bucket;
687 bucket_nr++;
688
689 prio_io(ca, bucket, REQ_OP_READ, 0);
690
691 if (p->csum !=
692 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
693 pr_warn("bad csum reading priorities\n");
694 goto out;
695 }
696
697 if (p->magic != pset_magic(&ca->sb)) {
698 pr_warn("bad magic reading priorities\n");
699 goto out;
700 }
701
702 bucket = p->next_bucket;
703 d = p->data;
704 }
705
706 b->prio = le16_to_cpu(d->prio);
707 b->gen = b->last_gc = d->gen;
708 }
709
710 ret = 0;
711out:
712 return ret;
713}
714
715/* Bcache device */
716
717static int open_dev(struct block_device *b, fmode_t mode)
718{
719 struct bcache_device *d = b->bd_disk->private_data;
720
721 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
722 return -ENXIO;
723
724 closure_get(&d->cl);
725 return 0;
726}
727
728static void release_dev(struct gendisk *b, fmode_t mode)
729{
730 struct bcache_device *d = b->private_data;
731
732 closure_put(&d->cl);
733}
734
735static int ioctl_dev(struct block_device *b, fmode_t mode,
736 unsigned int cmd, unsigned long arg)
737{
738 struct bcache_device *d = b->bd_disk->private_data;
739
740 return d->ioctl(d, mode, cmd, arg);
741}
742
743static const struct block_device_operations bcache_cached_ops = {
744 .submit_bio = cached_dev_submit_bio,
745 .open = open_dev,
746 .release = release_dev,
747 .ioctl = ioctl_dev,
748 .owner = THIS_MODULE,
749};
750
751static const struct block_device_operations bcache_flash_ops = {
752 .submit_bio = flash_dev_submit_bio,
753 .open = open_dev,
754 .release = release_dev,
755 .ioctl = ioctl_dev,
756 .owner = THIS_MODULE,
757};
758
759void bcache_device_stop(struct bcache_device *d)
760{
761 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
762 /*
763 * closure_fn set to
764 * - cached device: cached_dev_flush()
765 * - flash dev: flash_dev_flush()
766 */
767 closure_queue(&d->cl);
768}
769
770static void bcache_device_unlink(struct bcache_device *d)
771{
772 lockdep_assert_held(&bch_register_lock);
773
774 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
775 unsigned int i;
776 struct cache *ca;
777
778 sysfs_remove_link(&d->c->kobj, d->name);
779 sysfs_remove_link(&d->kobj, "cache");
780
781 for_each_cache(ca, d->c, i)
782 bd_unlink_disk_holder(ca->bdev, d->disk);
783 }
784}
785
786static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
787 const char *name)
788{
789 unsigned int i;
790 struct cache *ca;
791 int ret;
792
793 for_each_cache(ca, d->c, i)
794 bd_link_disk_holder(ca->bdev, d->disk);
795
796 snprintf(d->name, BCACHEDEVNAME_SIZE,
797 "%s%u", name, d->id);
798
799 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
800 if (ret < 0)
801 pr_err("Couldn't create device -> cache set symlink\n");
802
803 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
804 if (ret < 0)
805 pr_err("Couldn't create cache set -> device symlink\n");
806
807 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
808}
809
810static void bcache_device_detach(struct bcache_device *d)
811{
812 lockdep_assert_held(&bch_register_lock);
813
814 atomic_dec(&d->c->attached_dev_nr);
815
816 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
817 struct uuid_entry *u = d->c->uuids + d->id;
818
819 SET_UUID_FLASH_ONLY(u, 0);
820 memcpy(u->uuid, invalid_uuid, 16);
821 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
822 bch_uuid_write(d->c);
823 }
824
825 bcache_device_unlink(d);
826
827 d->c->devices[d->id] = NULL;
828 closure_put(&d->c->caching);
829 d->c = NULL;
830}
831
832static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
833 unsigned int id)
834{
835 d->id = id;
836 d->c = c;
837 c->devices[id] = d;
838
839 if (id >= c->devices_max_used)
840 c->devices_max_used = id + 1;
841
842 closure_get(&c->caching);
843}
844
845static inline int first_minor_to_idx(int first_minor)
846{
847 return (first_minor/BCACHE_MINORS);
848}
849
850static inline int idx_to_first_minor(int idx)
851{
852 return (idx * BCACHE_MINORS);
853}
854
855static void bcache_device_free(struct bcache_device *d)
856{
857 struct gendisk *disk = d->disk;
858
859 lockdep_assert_held(&bch_register_lock);
860
861 if (disk)
862 pr_info("%s stopped\n", disk->disk_name);
863 else
864 pr_err("bcache device (NULL gendisk) stopped\n");
865
866 if (d->c)
867 bcache_device_detach(d);
868
869 if (disk) {
870 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
871
872 if (disk_added)
873 del_gendisk(disk);
874
875 if (disk->queue)
876 blk_cleanup_queue(disk->queue);
877
878 ida_simple_remove(&bcache_device_idx,
879 first_minor_to_idx(disk->first_minor));
880 if (disk_added)
881 put_disk(disk);
882 }
883
884 bioset_exit(&d->bio_split);
885 kvfree(d->full_dirty_stripes);
886 kvfree(d->stripe_sectors_dirty);
887
888 closure_debug_destroy(&d->cl);
889}
890
891static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
892 sector_t sectors, struct block_device *cached_bdev,
893 const struct block_device_operations *ops)
894{
895 struct request_queue *q;
896 const size_t max_stripes = min_t(size_t, INT_MAX,
897 SIZE_MAX / sizeof(atomic_t));
898 uint64_t n;
899 int idx;
900
901 if (!d->stripe_size)
902 d->stripe_size = 1 << 31;
903
904 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
905 if (!n || n > max_stripes) {
906 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
907 n);
908 return -ENOMEM;
909 }
910 d->nr_stripes = n;
911
912 n = d->nr_stripes * sizeof(atomic_t);
913 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
914 if (!d->stripe_sectors_dirty)
915 return -ENOMEM;
916
917 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
918 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
919 if (!d->full_dirty_stripes)
920 return -ENOMEM;
921
922 idx = ida_simple_get(&bcache_device_idx, 0,
923 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
924 if (idx < 0)
925 return idx;
926
927 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
928 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
929 goto err;
930
931 d->disk = alloc_disk(BCACHE_MINORS);
932 if (!d->disk)
933 goto err;
934
935 set_capacity(d->disk, sectors);
936 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
937
938 d->disk->major = bcache_major;
939 d->disk->first_minor = idx_to_first_minor(idx);
940 d->disk->fops = ops;
941 d->disk->private_data = d;
942
943 q = blk_alloc_queue(NUMA_NO_NODE);
944 if (!q)
945 return -ENOMEM;
946
947 d->disk->queue = q;
948 q->limits.max_hw_sectors = UINT_MAX;
949 q->limits.max_sectors = UINT_MAX;
950 q->limits.max_segment_size = UINT_MAX;
951 q->limits.max_segments = BIO_MAX_PAGES;
952 blk_queue_max_discard_sectors(q, UINT_MAX);
953 q->limits.discard_granularity = 512;
954 q->limits.io_min = block_size;
955 q->limits.logical_block_size = block_size;
956 q->limits.physical_block_size = block_size;
957
958 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
959 /*
960 * This should only happen with BCACHE_SB_VERSION_BDEV.
961 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
962 */
963 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
964 d->disk->disk_name, q->limits.logical_block_size,
965 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
966
967 /* This also adjusts physical block size/min io size if needed */
968 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
969 }
970
971 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
972 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
973 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
974
975 blk_queue_write_cache(q, true, true);
976
977 return 0;
978
979err:
980 ida_simple_remove(&bcache_device_idx, idx);
981 return -ENOMEM;
982
983}
984
985/* Cached device */
986
987static void calc_cached_dev_sectors(struct cache_set *c)
988{
989 uint64_t sectors = 0;
990 struct cached_dev *dc;
991
992 list_for_each_entry(dc, &c->cached_devs, list)
993 sectors += bdev_sectors(dc->bdev);
994
995 c->cached_dev_sectors = sectors;
996}
997
998#define BACKING_DEV_OFFLINE_TIMEOUT 5
999static int cached_dev_status_update(void *arg)
1000{
1001 struct cached_dev *dc = arg;
1002 struct request_queue *q;
1003
1004 /*
1005 * If this delayed worker is stopping outside, directly quit here.
1006 * dc->io_disable might be set via sysfs interface, so check it
1007 * here too.
1008 */
1009 while (!kthread_should_stop() && !dc->io_disable) {
1010 q = bdev_get_queue(dc->bdev);
1011 if (blk_queue_dying(q))
1012 dc->offline_seconds++;
1013 else
1014 dc->offline_seconds = 0;
1015
1016 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1017 pr_err("%s: device offline for %d seconds\n",
1018 dc->backing_dev_name,
1019 BACKING_DEV_OFFLINE_TIMEOUT);
1020 pr_err("%s: disable I/O request due to backing device offline\n",
1021 dc->disk.name);
1022 dc->io_disable = true;
1023 /* let others know earlier that io_disable is true */
1024 smp_mb();
1025 bcache_device_stop(&dc->disk);
1026 break;
1027 }
1028 schedule_timeout_interruptible(HZ);
1029 }
1030
1031 wait_for_kthread_stop();
1032 return 0;
1033}
1034
1035
1036int bch_cached_dev_run(struct cached_dev *dc)
1037{
1038 struct bcache_device *d = &dc->disk;
1039 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1040 char *env[] = {
1041 "DRIVER=bcache",
1042 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1043 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1044 NULL,
1045 };
1046
1047 if (dc->io_disable) {
1048 pr_err("I/O disabled on cached dev %s\n",
1049 dc->backing_dev_name);
1050 kfree(env[1]);
1051 kfree(env[2]);
1052 kfree(buf);
1053 return -EIO;
1054 }
1055
1056 if (atomic_xchg(&dc->running, 1)) {
1057 kfree(env[1]);
1058 kfree(env[2]);
1059 kfree(buf);
1060 pr_info("cached dev %s is running already\n",
1061 dc->backing_dev_name);
1062 return -EBUSY;
1063 }
1064
1065 if (!d->c &&
1066 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1067 struct closure cl;
1068
1069 closure_init_stack(&cl);
1070
1071 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1072 bch_write_bdev_super(dc, &cl);
1073 closure_sync(&cl);
1074 }
1075
1076 add_disk(d->disk);
1077 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1078 /*
1079 * won't show up in the uevent file, use udevadm monitor -e instead
1080 * only class / kset properties are persistent
1081 */
1082 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1083 kfree(env[1]);
1084 kfree(env[2]);
1085 kfree(buf);
1086
1087 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1088 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1089 &d->kobj, "bcache")) {
1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1091 return -ENOMEM;
1092 }
1093
1094 dc->status_update_thread = kthread_run(cached_dev_status_update,
1095 dc, "bcache_status_update");
1096 if (IS_ERR(dc->status_update_thread)) {
1097 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1098 }
1099
1100 return 0;
1101}
1102
1103/*
1104 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1105 * work dc->writeback_rate_update is running. Wait until the routine
1106 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1107 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1108 * seconds, give up waiting here and continue to cancel it too.
1109 */
1110static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1111{
1112 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1113
1114 do {
1115 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1116 &dc->disk.flags))
1117 break;
1118 time_out--;
1119 schedule_timeout_interruptible(1);
1120 } while (time_out > 0);
1121
1122 if (time_out == 0)
1123 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1124
1125 cancel_delayed_work_sync(&dc->writeback_rate_update);
1126}
1127
1128static void cached_dev_detach_finish(struct work_struct *w)
1129{
1130 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1131 struct closure cl;
1132
1133 closure_init_stack(&cl);
1134
1135 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1136 BUG_ON(refcount_read(&dc->count));
1137
1138
1139 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1140 cancel_writeback_rate_update_dwork(dc);
1141
1142 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1143 kthread_stop(dc->writeback_thread);
1144 dc->writeback_thread = NULL;
1145 }
1146
1147 memset(&dc->sb.set_uuid, 0, 16);
1148 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1149
1150 bch_write_bdev_super(dc, &cl);
1151 closure_sync(&cl);
1152
1153 mutex_lock(&bch_register_lock);
1154
1155 calc_cached_dev_sectors(dc->disk.c);
1156 bcache_device_detach(&dc->disk);
1157 list_move(&dc->list, &uncached_devices);
1158
1159 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1160 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1161
1162 mutex_unlock(&bch_register_lock);
1163
1164 pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1165
1166 /* Drop ref we took in cached_dev_detach() */
1167 closure_put(&dc->disk.cl);
1168}
1169
1170void bch_cached_dev_detach(struct cached_dev *dc)
1171{
1172 lockdep_assert_held(&bch_register_lock);
1173
1174 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1175 return;
1176
1177 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1178 return;
1179
1180 /*
1181 * Block the device from being closed and freed until we're finished
1182 * detaching
1183 */
1184 closure_get(&dc->disk.cl);
1185
1186 bch_writeback_queue(dc);
1187
1188 cached_dev_put(dc);
1189}
1190
1191int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1192 uint8_t *set_uuid)
1193{
1194 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1195 struct uuid_entry *u;
1196 struct cached_dev *exist_dc, *t;
1197 int ret = 0;
1198
1199 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1200 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1201 return -ENOENT;
1202
1203 if (dc->disk.c) {
1204 pr_err("Can't attach %s: already attached\n",
1205 dc->backing_dev_name);
1206 return -EINVAL;
1207 }
1208
1209 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1210 pr_err("Can't attach %s: shutting down\n",
1211 dc->backing_dev_name);
1212 return -EINVAL;
1213 }
1214
1215 if (dc->sb.block_size < c->sb.block_size) {
1216 /* Will die */
1217 pr_err("Couldn't attach %s: block size less than set's block size\n",
1218 dc->backing_dev_name);
1219 return -EINVAL;
1220 }
1221
1222 /* Check whether already attached */
1223 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1224 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1225 pr_err("Tried to attach %s but duplicate UUID already attached\n",
1226 dc->backing_dev_name);
1227
1228 return -EINVAL;
1229 }
1230 }
1231
1232 u = uuid_find(c, dc->sb.uuid);
1233
1234 if (u &&
1235 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1236 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1237 memcpy(u->uuid, invalid_uuid, 16);
1238 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1239 u = NULL;
1240 }
1241
1242 if (!u) {
1243 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1244 pr_err("Couldn't find uuid for %s in set\n",
1245 dc->backing_dev_name);
1246 return -ENOENT;
1247 }
1248
1249 u = uuid_find_empty(c);
1250 if (!u) {
1251 pr_err("Not caching %s, no room for UUID\n",
1252 dc->backing_dev_name);
1253 return -EINVAL;
1254 }
1255 }
1256
1257 /*
1258 * Deadlocks since we're called via sysfs...
1259 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1260 */
1261
1262 if (bch_is_zero(u->uuid, 16)) {
1263 struct closure cl;
1264
1265 closure_init_stack(&cl);
1266
1267 memcpy(u->uuid, dc->sb.uuid, 16);
1268 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1269 u->first_reg = u->last_reg = rtime;
1270 bch_uuid_write(c);
1271
1272 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1273 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1274
1275 bch_write_bdev_super(dc, &cl);
1276 closure_sync(&cl);
1277 } else {
1278 u->last_reg = rtime;
1279 bch_uuid_write(c);
1280 }
1281
1282 bcache_device_attach(&dc->disk, c, u - c->uuids);
1283 list_move(&dc->list, &c->cached_devs);
1284 calc_cached_dev_sectors(c);
1285
1286 /*
1287 * dc->c must be set before dc->count != 0 - paired with the mb in
1288 * cached_dev_get()
1289 */
1290 smp_wmb();
1291 refcount_set(&dc->count, 1);
1292
1293 /* Block writeback thread, but spawn it */
1294 down_write(&dc->writeback_lock);
1295 if (bch_cached_dev_writeback_start(dc)) {
1296 up_write(&dc->writeback_lock);
1297 pr_err("Couldn't start writeback facilities for %s\n",
1298 dc->disk.disk->disk_name);
1299 return -ENOMEM;
1300 }
1301
1302 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1303 atomic_set(&dc->has_dirty, 1);
1304 bch_writeback_queue(dc);
1305 }
1306
1307 bch_sectors_dirty_init(&dc->disk);
1308
1309 ret = bch_cached_dev_run(dc);
1310 if (ret && (ret != -EBUSY)) {
1311 up_write(&dc->writeback_lock);
1312 /*
1313 * bch_register_lock is held, bcache_device_stop() is not
1314 * able to be directly called. The kthread and kworker
1315 * created previously in bch_cached_dev_writeback_start()
1316 * have to be stopped manually here.
1317 */
1318 kthread_stop(dc->writeback_thread);
1319 cancel_writeback_rate_update_dwork(dc);
1320 pr_err("Couldn't run cached device %s\n",
1321 dc->backing_dev_name);
1322 return ret;
1323 }
1324
1325 bcache_device_link(&dc->disk, c, "bdev");
1326 atomic_inc(&c->attached_dev_nr);
1327
1328 /* Allow the writeback thread to proceed */
1329 up_write(&dc->writeback_lock);
1330
1331 pr_info("Caching %s as %s on set %pU\n",
1332 dc->backing_dev_name,
1333 dc->disk.disk->disk_name,
1334 dc->disk.c->sb.set_uuid);
1335 return 0;
1336}
1337
1338/* when dc->disk.kobj released */
1339void bch_cached_dev_release(struct kobject *kobj)
1340{
1341 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1342 disk.kobj);
1343 kfree(dc);
1344 module_put(THIS_MODULE);
1345}
1346
1347static void cached_dev_free(struct closure *cl)
1348{
1349 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1350
1351 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1352 cancel_writeback_rate_update_dwork(dc);
1353
1354 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1355 kthread_stop(dc->writeback_thread);
1356 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1357 kthread_stop(dc->status_update_thread);
1358
1359 mutex_lock(&bch_register_lock);
1360
1361 if (atomic_read(&dc->running))
1362 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1363 bcache_device_free(&dc->disk);
1364 list_del(&dc->list);
1365
1366 mutex_unlock(&bch_register_lock);
1367
1368 if (dc->sb_disk)
1369 put_page(virt_to_page(dc->sb_disk));
1370
1371 if (!IS_ERR_OR_NULL(dc->bdev))
1372 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1373
1374 wake_up(&unregister_wait);
1375
1376 kobject_put(&dc->disk.kobj);
1377}
1378
1379static void cached_dev_flush(struct closure *cl)
1380{
1381 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1382 struct bcache_device *d = &dc->disk;
1383
1384 mutex_lock(&bch_register_lock);
1385 bcache_device_unlink(d);
1386 mutex_unlock(&bch_register_lock);
1387
1388 bch_cache_accounting_destroy(&dc->accounting);
1389 kobject_del(&d->kobj);
1390
1391 continue_at(cl, cached_dev_free, system_wq);
1392}
1393
1394static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1395{
1396 int ret;
1397 struct io *io;
1398 struct request_queue *q = bdev_get_queue(dc->bdev);
1399
1400 __module_get(THIS_MODULE);
1401 INIT_LIST_HEAD(&dc->list);
1402 closure_init(&dc->disk.cl, NULL);
1403 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1404 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1405 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1406 sema_init(&dc->sb_write_mutex, 1);
1407 INIT_LIST_HEAD(&dc->io_lru);
1408 spin_lock_init(&dc->io_lock);
1409 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1410
1411 dc->sequential_cutoff = 4 << 20;
1412
1413 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1414 list_add(&io->lru, &dc->io_lru);
1415 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1416 }
1417
1418 dc->disk.stripe_size = q->limits.io_opt >> 9;
1419
1420 if (dc->disk.stripe_size)
1421 dc->partial_stripes_expensive =
1422 q->limits.raid_partial_stripes_expensive;
1423
1424 ret = bcache_device_init(&dc->disk, block_size,
1425 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1426 dc->bdev, &bcache_cached_ops);
1427 if (ret)
1428 return ret;
1429
1430 dc->disk.disk->queue->backing_dev_info->ra_pages =
1431 max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1432 q->backing_dev_info->ra_pages);
1433
1434 atomic_set(&dc->io_errors, 0);
1435 dc->io_disable = false;
1436 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1437 /* default to auto */
1438 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1439
1440 bch_cached_dev_request_init(dc);
1441 bch_cached_dev_writeback_init(dc);
1442 return 0;
1443}
1444
1445/* Cached device - bcache superblock */
1446
1447static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1448 struct block_device *bdev,
1449 struct cached_dev *dc)
1450{
1451 const char *err = "cannot allocate memory";
1452 struct cache_set *c;
1453 int ret = -ENOMEM;
1454
1455 bdevname(bdev, dc->backing_dev_name);
1456 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1457 dc->bdev = bdev;
1458 dc->bdev->bd_holder = dc;
1459 dc->sb_disk = sb_disk;
1460
1461 if (cached_dev_init(dc, sb->block_size << 9))
1462 goto err;
1463
1464 err = "error creating kobject";
1465 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1466 "bcache"))
1467 goto err;
1468 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1469 goto err;
1470
1471 pr_info("registered backing device %s\n", dc->backing_dev_name);
1472
1473 list_add(&dc->list, &uncached_devices);
1474 /* attach to a matched cache set if it exists */
1475 list_for_each_entry(c, &bch_cache_sets, list)
1476 bch_cached_dev_attach(dc, c, NULL);
1477
1478 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1479 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1480 err = "failed to run cached device";
1481 ret = bch_cached_dev_run(dc);
1482 if (ret)
1483 goto err;
1484 }
1485
1486 return 0;
1487err:
1488 pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1489 bcache_device_stop(&dc->disk);
1490 return ret;
1491}
1492
1493/* Flash only volumes */
1494
1495/* When d->kobj released */
1496void bch_flash_dev_release(struct kobject *kobj)
1497{
1498 struct bcache_device *d = container_of(kobj, struct bcache_device,
1499 kobj);
1500 kfree(d);
1501}
1502
1503static void flash_dev_free(struct closure *cl)
1504{
1505 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1506
1507 mutex_lock(&bch_register_lock);
1508 atomic_long_sub(bcache_dev_sectors_dirty(d),
1509 &d->c->flash_dev_dirty_sectors);
1510 bcache_device_free(d);
1511 mutex_unlock(&bch_register_lock);
1512 kobject_put(&d->kobj);
1513}
1514
1515static void flash_dev_flush(struct closure *cl)
1516{
1517 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1518
1519 mutex_lock(&bch_register_lock);
1520 bcache_device_unlink(d);
1521 mutex_unlock(&bch_register_lock);
1522 kobject_del(&d->kobj);
1523 continue_at(cl, flash_dev_free, system_wq);
1524}
1525
1526static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1527{
1528 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1529 GFP_KERNEL);
1530 if (!d)
1531 return -ENOMEM;
1532
1533 closure_init(&d->cl, NULL);
1534 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1535
1536 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1537
1538 if (bcache_device_init(d, block_bytes(c), u->sectors,
1539 NULL, &bcache_flash_ops))
1540 goto err;
1541
1542 bcache_device_attach(d, c, u - c->uuids);
1543 bch_sectors_dirty_init(d);
1544 bch_flash_dev_request_init(d);
1545 add_disk(d->disk);
1546
1547 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1548 goto err;
1549
1550 bcache_device_link(d, c, "volume");
1551
1552 return 0;
1553err:
1554 kobject_put(&d->kobj);
1555 return -ENOMEM;
1556}
1557
1558static int flash_devs_run(struct cache_set *c)
1559{
1560 int ret = 0;
1561 struct uuid_entry *u;
1562
1563 for (u = c->uuids;
1564 u < c->uuids + c->nr_uuids && !ret;
1565 u++)
1566 if (UUID_FLASH_ONLY(u))
1567 ret = flash_dev_run(c, u);
1568
1569 return ret;
1570}
1571
1572int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1573{
1574 struct uuid_entry *u;
1575
1576 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1577 return -EINTR;
1578
1579 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1580 return -EPERM;
1581
1582 u = uuid_find_empty(c);
1583 if (!u) {
1584 pr_err("Can't create volume, no room for UUID\n");
1585 return -EINVAL;
1586 }
1587
1588 get_random_bytes(u->uuid, 16);
1589 memset(u->label, 0, 32);
1590 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1591
1592 SET_UUID_FLASH_ONLY(u, 1);
1593 u->sectors = size >> 9;
1594
1595 bch_uuid_write(c);
1596
1597 return flash_dev_run(c, u);
1598}
1599
1600bool bch_cached_dev_error(struct cached_dev *dc)
1601{
1602 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1603 return false;
1604
1605 dc->io_disable = true;
1606 /* make others know io_disable is true earlier */
1607 smp_mb();
1608
1609 pr_err("stop %s: too many IO errors on backing device %s\n",
1610 dc->disk.disk->disk_name, dc->backing_dev_name);
1611
1612 bcache_device_stop(&dc->disk);
1613 return true;
1614}
1615
1616/* Cache set */
1617
1618__printf(2, 3)
1619bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1620{
1621 struct va_format vaf;
1622 va_list args;
1623
1624 if (c->on_error != ON_ERROR_PANIC &&
1625 test_bit(CACHE_SET_STOPPING, &c->flags))
1626 return false;
1627
1628 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1629 pr_info("CACHE_SET_IO_DISABLE already set\n");
1630
1631 /*
1632 * XXX: we can be called from atomic context
1633 * acquire_console_sem();
1634 */
1635
1636 va_start(args, fmt);
1637
1638 vaf.fmt = fmt;
1639 vaf.va = &args;
1640
1641 pr_err("error on %pU: %pV, disabling caching\n",
1642 c->sb.set_uuid, &vaf);
1643
1644 va_end(args);
1645
1646 if (c->on_error == ON_ERROR_PANIC)
1647 panic("panic forced after error\n");
1648
1649 bch_cache_set_unregister(c);
1650 return true;
1651}
1652
1653/* When c->kobj released */
1654void bch_cache_set_release(struct kobject *kobj)
1655{
1656 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1657
1658 kfree(c);
1659 module_put(THIS_MODULE);
1660}
1661
1662static void cache_set_free(struct closure *cl)
1663{
1664 struct cache_set *c = container_of(cl, struct cache_set, cl);
1665 struct cache *ca;
1666 unsigned int i;
1667
1668 debugfs_remove(c->debug);
1669
1670 bch_open_buckets_free(c);
1671 bch_btree_cache_free(c);
1672 bch_journal_free(c);
1673
1674 mutex_lock(&bch_register_lock);
1675 for_each_cache(ca, c, i)
1676 if (ca) {
1677 ca->set = NULL;
1678 c->cache[ca->sb.nr_this_dev] = NULL;
1679 kobject_put(&ca->kobj);
1680 }
1681
1682 bch_bset_sort_state_free(&c->sort);
1683 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->sb)));
1684
1685 if (c->moving_gc_wq)
1686 destroy_workqueue(c->moving_gc_wq);
1687 bioset_exit(&c->bio_split);
1688 mempool_exit(&c->fill_iter);
1689 mempool_exit(&c->bio_meta);
1690 mempool_exit(&c->search);
1691 kfree(c->devices);
1692
1693 list_del(&c->list);
1694 mutex_unlock(&bch_register_lock);
1695
1696 pr_info("Cache set %pU unregistered\n", c->sb.set_uuid);
1697 wake_up(&unregister_wait);
1698
1699 closure_debug_destroy(&c->cl);
1700 kobject_put(&c->kobj);
1701}
1702
1703static void cache_set_flush(struct closure *cl)
1704{
1705 struct cache_set *c = container_of(cl, struct cache_set, caching);
1706 struct cache *ca;
1707 struct btree *b;
1708 unsigned int i;
1709
1710 bch_cache_accounting_destroy(&c->accounting);
1711
1712 kobject_put(&c->internal);
1713 kobject_del(&c->kobj);
1714
1715 if (!IS_ERR_OR_NULL(c->gc_thread))
1716 kthread_stop(c->gc_thread);
1717
1718 if (!IS_ERR_OR_NULL(c->root))
1719 list_add(&c->root->list, &c->btree_cache);
1720
1721 /*
1722 * Avoid flushing cached nodes if cache set is retiring
1723 * due to too many I/O errors detected.
1724 */
1725 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1726 list_for_each_entry(b, &c->btree_cache, list) {
1727 mutex_lock(&b->write_lock);
1728 if (btree_node_dirty(b))
1729 __bch_btree_node_write(b, NULL);
1730 mutex_unlock(&b->write_lock);
1731 }
1732
1733 for_each_cache(ca, c, i)
1734 if (ca->alloc_thread)
1735 kthread_stop(ca->alloc_thread);
1736
1737 if (c->journal.cur) {
1738 cancel_delayed_work_sync(&c->journal.work);
1739 /* flush last journal entry if needed */
1740 c->journal.work.work.func(&c->journal.work.work);
1741 }
1742
1743 closure_return(cl);
1744}
1745
1746/*
1747 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1748 * cache set is unregistering due to too many I/O errors. In this condition,
1749 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1750 * value and whether the broken cache has dirty data:
1751 *
1752 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1753 * BCH_CACHED_STOP_AUTO 0 NO
1754 * BCH_CACHED_STOP_AUTO 1 YES
1755 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1756 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1757 *
1758 * The expected behavior is, if stop_when_cache_set_failed is configured to
1759 * "auto" via sysfs interface, the bcache device will not be stopped if the
1760 * backing device is clean on the broken cache device.
1761 */
1762static void conditional_stop_bcache_device(struct cache_set *c,
1763 struct bcache_device *d,
1764 struct cached_dev *dc)
1765{
1766 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1767 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1768 d->disk->disk_name, c->sb.set_uuid);
1769 bcache_device_stop(d);
1770 } else if (atomic_read(&dc->has_dirty)) {
1771 /*
1772 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1773 * and dc->has_dirty == 1
1774 */
1775 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1776 d->disk->disk_name);
1777 /*
1778 * There might be a small time gap that cache set is
1779 * released but bcache device is not. Inside this time
1780 * gap, regular I/O requests will directly go into
1781 * backing device as no cache set attached to. This
1782 * behavior may also introduce potential inconsistence
1783 * data in writeback mode while cache is dirty.
1784 * Therefore before calling bcache_device_stop() due
1785 * to a broken cache device, dc->io_disable should be
1786 * explicitly set to true.
1787 */
1788 dc->io_disable = true;
1789 /* make others know io_disable is true earlier */
1790 smp_mb();
1791 bcache_device_stop(d);
1792 } else {
1793 /*
1794 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1795 * and dc->has_dirty == 0
1796 */
1797 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1798 d->disk->disk_name);
1799 }
1800}
1801
1802static void __cache_set_unregister(struct closure *cl)
1803{
1804 struct cache_set *c = container_of(cl, struct cache_set, caching);
1805 struct cached_dev *dc;
1806 struct bcache_device *d;
1807 size_t i;
1808
1809 mutex_lock(&bch_register_lock);
1810
1811 for (i = 0; i < c->devices_max_used; i++) {
1812 d = c->devices[i];
1813 if (!d)
1814 continue;
1815
1816 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1817 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1818 dc = container_of(d, struct cached_dev, disk);
1819 bch_cached_dev_detach(dc);
1820 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1821 conditional_stop_bcache_device(c, d, dc);
1822 } else {
1823 bcache_device_stop(d);
1824 }
1825 }
1826
1827 mutex_unlock(&bch_register_lock);
1828
1829 continue_at(cl, cache_set_flush, system_wq);
1830}
1831
1832void bch_cache_set_stop(struct cache_set *c)
1833{
1834 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1835 /* closure_fn set to __cache_set_unregister() */
1836 closure_queue(&c->caching);
1837}
1838
1839void bch_cache_set_unregister(struct cache_set *c)
1840{
1841 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1842 bch_cache_set_stop(c);
1843}
1844
1845#define alloc_bucket_pages(gfp, c) \
1846 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(bucket_pages(c))))
1847
1848#define alloc_meta_bucket_pages(gfp, sb) \
1849 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1850
1851struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1852{
1853 int iter_size;
1854 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1855
1856 if (!c)
1857 return NULL;
1858
1859 __module_get(THIS_MODULE);
1860 closure_init(&c->cl, NULL);
1861 set_closure_fn(&c->cl, cache_set_free, system_wq);
1862
1863 closure_init(&c->caching, &c->cl);
1864 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1865
1866 /* Maybe create continue_at_noreturn() and use it here? */
1867 closure_set_stopped(&c->cl);
1868 closure_put(&c->cl);
1869
1870 kobject_init(&c->kobj, &bch_cache_set_ktype);
1871 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1872
1873 bch_cache_accounting_init(&c->accounting, &c->cl);
1874
1875 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1876 c->sb.block_size = sb->block_size;
1877 c->sb.bucket_size = sb->bucket_size;
1878 c->sb.nr_in_set = sb->nr_in_set;
1879 c->sb.last_mount = sb->last_mount;
1880 c->sb.version = sb->version;
1881 if (c->sb.version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
1882 c->sb.feature_compat = sb->feature_compat;
1883 c->sb.feature_ro_compat = sb->feature_ro_compat;
1884 c->sb.feature_incompat = sb->feature_incompat;
1885 }
1886
1887 c->bucket_bits = ilog2(sb->bucket_size);
1888 c->block_bits = ilog2(sb->block_size);
1889 c->nr_uuids = meta_bucket_bytes(&c->sb) / sizeof(struct uuid_entry);
1890 c->devices_max_used = 0;
1891 atomic_set(&c->attached_dev_nr, 0);
1892 c->btree_pages = meta_bucket_pages(&c->sb);
1893 if (c->btree_pages > BTREE_MAX_PAGES)
1894 c->btree_pages = max_t(int, c->btree_pages / 4,
1895 BTREE_MAX_PAGES);
1896
1897 sema_init(&c->sb_write_mutex, 1);
1898 mutex_init(&c->bucket_lock);
1899 init_waitqueue_head(&c->btree_cache_wait);
1900 spin_lock_init(&c->btree_cannibalize_lock);
1901 init_waitqueue_head(&c->bucket_wait);
1902 init_waitqueue_head(&c->gc_wait);
1903 sema_init(&c->uuid_write_mutex, 1);
1904
1905 spin_lock_init(&c->btree_gc_time.lock);
1906 spin_lock_init(&c->btree_split_time.lock);
1907 spin_lock_init(&c->btree_read_time.lock);
1908
1909 bch_moving_init_cache_set(c);
1910
1911 INIT_LIST_HEAD(&c->list);
1912 INIT_LIST_HEAD(&c->cached_devs);
1913 INIT_LIST_HEAD(&c->btree_cache);
1914 INIT_LIST_HEAD(&c->btree_cache_freeable);
1915 INIT_LIST_HEAD(&c->btree_cache_freed);
1916 INIT_LIST_HEAD(&c->data_buckets);
1917
1918 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1919 sizeof(struct btree_iter_set);
1920
1921 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1922 if (!c->devices)
1923 goto err;
1924
1925 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1926 goto err;
1927
1928 if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1929 sizeof(struct bbio) +
1930 sizeof(struct bio_vec) * meta_bucket_pages(&c->sb)))
1931 goto err;
1932
1933 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1934 goto err;
1935
1936 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1937 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1938 goto err;
1939
1940 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, &c->sb);
1941 if (!c->uuids)
1942 goto err;
1943
1944 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1945 if (!c->moving_gc_wq)
1946 goto err;
1947
1948 if (bch_journal_alloc(c))
1949 goto err;
1950
1951 if (bch_btree_cache_alloc(c))
1952 goto err;
1953
1954 if (bch_open_buckets_alloc(c))
1955 goto err;
1956
1957 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1958 goto err;
1959
1960 c->congested_read_threshold_us = 2000;
1961 c->congested_write_threshold_us = 20000;
1962 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1963 c->idle_max_writeback_rate_enabled = 1;
1964 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1965
1966 return c;
1967err:
1968 bch_cache_set_unregister(c);
1969 return NULL;
1970}
1971
1972static int run_cache_set(struct cache_set *c)
1973{
1974 const char *err = "cannot allocate memory";
1975 struct cached_dev *dc, *t;
1976 struct cache *ca;
1977 struct closure cl;
1978 unsigned int i;
1979 LIST_HEAD(journal);
1980 struct journal_replay *l;
1981
1982 closure_init_stack(&cl);
1983
1984 for_each_cache(ca, c, i)
1985 c->nbuckets += ca->sb.nbuckets;
1986 set_gc_sectors(c);
1987
1988 if (CACHE_SYNC(&c->sb)) {
1989 struct bkey *k;
1990 struct jset *j;
1991
1992 err = "cannot allocate memory for journal";
1993 if (bch_journal_read(c, &journal))
1994 goto err;
1995
1996 pr_debug("btree_journal_read() done\n");
1997
1998 err = "no journal entries found";
1999 if (list_empty(&journal))
2000 goto err;
2001
2002 j = &list_entry(journal.prev, struct journal_replay, list)->j;
2003
2004 err = "IO error reading priorities";
2005 for_each_cache(ca, c, i) {
2006 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2007 goto err;
2008 }
2009
2010 /*
2011 * If prio_read() fails it'll call cache_set_error and we'll
2012 * tear everything down right away, but if we perhaps checked
2013 * sooner we could avoid journal replay.
2014 */
2015
2016 k = &j->btree_root;
2017
2018 err = "bad btree root";
2019 if (__bch_btree_ptr_invalid(c, k))
2020 goto err;
2021
2022 err = "error reading btree root";
2023 c->root = bch_btree_node_get(c, NULL, k,
2024 j->btree_level,
2025 true, NULL);
2026 if (IS_ERR_OR_NULL(c->root))
2027 goto err;
2028
2029 list_del_init(&c->root->list);
2030 rw_unlock(true, c->root);
2031
2032 err = uuid_read(c, j, &cl);
2033 if (err)
2034 goto err;
2035
2036 err = "error in recovery";
2037 if (bch_btree_check(c))
2038 goto err;
2039
2040 bch_journal_mark(c, &journal);
2041 bch_initial_gc_finish(c);
2042 pr_debug("btree_check() done\n");
2043
2044 /*
2045 * bcache_journal_next() can't happen sooner, or
2046 * btree_gc_finish() will give spurious errors about last_gc >
2047 * gc_gen - this is a hack but oh well.
2048 */
2049 bch_journal_next(&c->journal);
2050
2051 err = "error starting allocator thread";
2052 for_each_cache(ca, c, i)
2053 if (bch_cache_allocator_start(ca))
2054 goto err;
2055
2056 /*
2057 * First place it's safe to allocate: btree_check() and
2058 * btree_gc_finish() have to run before we have buckets to
2059 * allocate, and bch_bucket_alloc_set() might cause a journal
2060 * entry to be written so bcache_journal_next() has to be called
2061 * first.
2062 *
2063 * If the uuids were in the old format we have to rewrite them
2064 * before the next journal entry is written:
2065 */
2066 if (j->version < BCACHE_JSET_VERSION_UUID)
2067 __uuid_write(c);
2068
2069 err = "bcache: replay journal failed";
2070 if (bch_journal_replay(c, &journal))
2071 goto err;
2072 } else {
2073 pr_notice("invalidating existing data\n");
2074
2075 for_each_cache(ca, c, i) {
2076 unsigned int j;
2077
2078 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2079 2, SB_JOURNAL_BUCKETS);
2080
2081 for (j = 0; j < ca->sb.keys; j++)
2082 ca->sb.d[j] = ca->sb.first_bucket + j;
2083 }
2084
2085 bch_initial_gc_finish(c);
2086
2087 err = "error starting allocator thread";
2088 for_each_cache(ca, c, i)
2089 if (bch_cache_allocator_start(ca))
2090 goto err;
2091
2092 mutex_lock(&c->bucket_lock);
2093 for_each_cache(ca, c, i)
2094 bch_prio_write(ca, true);
2095 mutex_unlock(&c->bucket_lock);
2096
2097 err = "cannot allocate new UUID bucket";
2098 if (__uuid_write(c))
2099 goto err;
2100
2101 err = "cannot allocate new btree root";
2102 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2103 if (IS_ERR_OR_NULL(c->root))
2104 goto err;
2105
2106 mutex_lock(&c->root->write_lock);
2107 bkey_copy_key(&c->root->key, &MAX_KEY);
2108 bch_btree_node_write(c->root, &cl);
2109 mutex_unlock(&c->root->write_lock);
2110
2111 bch_btree_set_root(c->root);
2112 rw_unlock(true, c->root);
2113
2114 /*
2115 * We don't want to write the first journal entry until
2116 * everything is set up - fortunately journal entries won't be
2117 * written until the SET_CACHE_SYNC() here:
2118 */
2119 SET_CACHE_SYNC(&c->sb, true);
2120
2121 bch_journal_next(&c->journal);
2122 bch_journal_meta(c, &cl);
2123 }
2124
2125 err = "error starting gc thread";
2126 if (bch_gc_thread_start(c))
2127 goto err;
2128
2129 closure_sync(&cl);
2130 c->sb.last_mount = (u32)ktime_get_real_seconds();
2131 bcache_write_super(c);
2132
2133 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2134 bch_cached_dev_attach(dc, c, NULL);
2135
2136 flash_devs_run(c);
2137
2138 set_bit(CACHE_SET_RUNNING, &c->flags);
2139 return 0;
2140err:
2141 while (!list_empty(&journal)) {
2142 l = list_first_entry(&journal, struct journal_replay, list);
2143 list_del(&l->list);
2144 kfree(l);
2145 }
2146
2147 closure_sync(&cl);
2148
2149 bch_cache_set_error(c, "%s", err);
2150
2151 return -EIO;
2152}
2153
2154static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2155{
2156 return ca->sb.block_size == c->sb.block_size &&
2157 ca->sb.bucket_size == c->sb.bucket_size &&
2158 ca->sb.nr_in_set == c->sb.nr_in_set;
2159}
2160
2161static const char *register_cache_set(struct cache *ca)
2162{
2163 char buf[12];
2164 const char *err = "cannot allocate memory";
2165 struct cache_set *c;
2166
2167 list_for_each_entry(c, &bch_cache_sets, list)
2168 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2169 if (c->cache[ca->sb.nr_this_dev])
2170 return "duplicate cache set member";
2171
2172 if (!can_attach_cache(ca, c))
2173 return "cache sb does not match set";
2174
2175 if (!CACHE_SYNC(&ca->sb))
2176 SET_CACHE_SYNC(&c->sb, false);
2177
2178 goto found;
2179 }
2180
2181 c = bch_cache_set_alloc(&ca->sb);
2182 if (!c)
2183 return err;
2184
2185 err = "error creating kobject";
2186 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2187 kobject_add(&c->internal, &c->kobj, "internal"))
2188 goto err;
2189
2190 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2191 goto err;
2192
2193 bch_debug_init_cache_set(c);
2194
2195 list_add(&c->list, &bch_cache_sets);
2196found:
2197 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2198 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2199 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2200 goto err;
2201
2202 /*
2203 * A special case is both ca->sb.seq and c->sb.seq are 0,
2204 * such condition happens on a new created cache device whose
2205 * super block is never flushed yet. In this case c->sb.version
2206 * and other members should be updated too, otherwise we will
2207 * have a mistaken super block version in cache set.
2208 */
2209 if (ca->sb.seq > c->sb.seq || c->sb.seq == 0) {
2210 c->sb.version = ca->sb.version;
2211 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2212 c->sb.flags = ca->sb.flags;
2213 c->sb.seq = ca->sb.seq;
2214 pr_debug("set version = %llu\n", c->sb.version);
2215 }
2216
2217 kobject_get(&ca->kobj);
2218 ca->set = c;
2219 ca->set->cache[ca->sb.nr_this_dev] = ca;
2220 c->cache_by_alloc[c->caches_loaded++] = ca;
2221
2222 if (c->caches_loaded == c->sb.nr_in_set) {
2223 err = "failed to run cache set";
2224 if (run_cache_set(c) < 0)
2225 goto err;
2226 }
2227
2228 return NULL;
2229err:
2230 bch_cache_set_unregister(c);
2231 return err;
2232}
2233
2234/* Cache device */
2235
2236/* When ca->kobj released */
2237void bch_cache_release(struct kobject *kobj)
2238{
2239 struct cache *ca = container_of(kobj, struct cache, kobj);
2240 unsigned int i;
2241
2242 if (ca->set) {
2243 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2244 ca->set->cache[ca->sb.nr_this_dev] = NULL;
2245 }
2246
2247 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2248 kfree(ca->prio_buckets);
2249 vfree(ca->buckets);
2250
2251 free_heap(&ca->heap);
2252 free_fifo(&ca->free_inc);
2253
2254 for (i = 0; i < RESERVE_NR; i++)
2255 free_fifo(&ca->free[i]);
2256
2257 if (ca->sb_disk)
2258 put_page(virt_to_page(ca->sb_disk));
2259
2260 if (!IS_ERR_OR_NULL(ca->bdev))
2261 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2262
2263 kfree(ca);
2264 module_put(THIS_MODULE);
2265}
2266
2267static int cache_alloc(struct cache *ca)
2268{
2269 size_t free;
2270 size_t btree_buckets;
2271 struct bucket *b;
2272 int ret = -ENOMEM;
2273 const char *err = NULL;
2274
2275 __module_get(THIS_MODULE);
2276 kobject_init(&ca->kobj, &bch_cache_ktype);
2277
2278 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2279
2280 /*
2281 * when ca->sb.njournal_buckets is not zero, journal exists,
2282 * and in bch_journal_replay(), tree node may split,
2283 * so bucket of RESERVE_BTREE type is needed,
2284 * the worst situation is all journal buckets are valid journal,
2285 * and all the keys need to replay,
2286 * so the number of RESERVE_BTREE type buckets should be as much
2287 * as journal buckets
2288 */
2289 btree_buckets = ca->sb.njournal_buckets ?: 8;
2290 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2291 if (!free) {
2292 ret = -EPERM;
2293 err = "ca->sb.nbuckets is too small";
2294 goto err_free;
2295 }
2296
2297 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2298 GFP_KERNEL)) {
2299 err = "ca->free[RESERVE_BTREE] alloc failed";
2300 goto err_btree_alloc;
2301 }
2302
2303 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2304 GFP_KERNEL)) {
2305 err = "ca->free[RESERVE_PRIO] alloc failed";
2306 goto err_prio_alloc;
2307 }
2308
2309 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2310 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2311 goto err_movinggc_alloc;
2312 }
2313
2314 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2315 err = "ca->free[RESERVE_NONE] alloc failed";
2316 goto err_none_alloc;
2317 }
2318
2319 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2320 err = "ca->free_inc alloc failed";
2321 goto err_free_inc_alloc;
2322 }
2323
2324 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2325 err = "ca->heap alloc failed";
2326 goto err_heap_alloc;
2327 }
2328
2329 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2330 ca->sb.nbuckets));
2331 if (!ca->buckets) {
2332 err = "ca->buckets alloc failed";
2333 goto err_buckets_alloc;
2334 }
2335
2336 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2337 prio_buckets(ca), 2),
2338 GFP_KERNEL);
2339 if (!ca->prio_buckets) {
2340 err = "ca->prio_buckets alloc failed";
2341 goto err_prio_buckets_alloc;
2342 }
2343
2344 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2345 if (!ca->disk_buckets) {
2346 err = "ca->disk_buckets alloc failed";
2347 goto err_disk_buckets_alloc;
2348 }
2349
2350 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2351
2352 for_each_bucket(b, ca)
2353 atomic_set(&b->pin, 0);
2354 return 0;
2355
2356err_disk_buckets_alloc:
2357 kfree(ca->prio_buckets);
2358err_prio_buckets_alloc:
2359 vfree(ca->buckets);
2360err_buckets_alloc:
2361 free_heap(&ca->heap);
2362err_heap_alloc:
2363 free_fifo(&ca->free_inc);
2364err_free_inc_alloc:
2365 free_fifo(&ca->free[RESERVE_NONE]);
2366err_none_alloc:
2367 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2368err_movinggc_alloc:
2369 free_fifo(&ca->free[RESERVE_PRIO]);
2370err_prio_alloc:
2371 free_fifo(&ca->free[RESERVE_BTREE]);
2372err_btree_alloc:
2373err_free:
2374 module_put(THIS_MODULE);
2375 if (err)
2376 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2377 return ret;
2378}
2379
2380static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2381 struct block_device *bdev, struct cache *ca)
2382{
2383 const char *err = NULL; /* must be set for any error case */
2384 int ret = 0;
2385
2386 bdevname(bdev, ca->cache_dev_name);
2387 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2388 ca->bdev = bdev;
2389 ca->bdev->bd_holder = ca;
2390 ca->sb_disk = sb_disk;
2391
2392 if (blk_queue_discard(bdev_get_queue(bdev)))
2393 ca->discard = CACHE_DISCARD(&ca->sb);
2394
2395 ret = cache_alloc(ca);
2396 if (ret != 0) {
2397 /*
2398 * If we failed here, it means ca->kobj is not initialized yet,
2399 * kobject_put() won't be called and there is no chance to
2400 * call blkdev_put() to bdev in bch_cache_release(). So we
2401 * explicitly call blkdev_put() here.
2402 */
2403 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2404 if (ret == -ENOMEM)
2405 err = "cache_alloc(): -ENOMEM";
2406 else if (ret == -EPERM)
2407 err = "cache_alloc(): cache device is too small";
2408 else
2409 err = "cache_alloc(): unknown error";
2410 goto err;
2411 }
2412
2413 if (kobject_add(&ca->kobj,
2414 &part_to_dev(bdev->bd_part)->kobj,
2415 "bcache")) {
2416 err = "error calling kobject_add";
2417 ret = -ENOMEM;
2418 goto out;
2419 }
2420
2421 mutex_lock(&bch_register_lock);
2422 err = register_cache_set(ca);
2423 mutex_unlock(&bch_register_lock);
2424
2425 if (err) {
2426 ret = -ENODEV;
2427 goto out;
2428 }
2429
2430 pr_info("registered cache device %s\n", ca->cache_dev_name);
2431
2432out:
2433 kobject_put(&ca->kobj);
2434
2435err:
2436 if (err)
2437 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2438
2439 return ret;
2440}
2441
2442/* Global interfaces/init */
2443
2444static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2445 const char *buffer, size_t size);
2446static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2447 struct kobj_attribute *attr,
2448 const char *buffer, size_t size);
2449
2450kobj_attribute_write(register, register_bcache);
2451kobj_attribute_write(register_quiet, register_bcache);
2452kobj_attribute_write(register_async, register_bcache);
2453kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2454
2455static bool bch_is_open_backing(struct block_device *bdev)
2456{
2457 struct cache_set *c, *tc;
2458 struct cached_dev *dc, *t;
2459
2460 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2461 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2462 if (dc->bdev == bdev)
2463 return true;
2464 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2465 if (dc->bdev == bdev)
2466 return true;
2467 return false;
2468}
2469
2470static bool bch_is_open_cache(struct block_device *bdev)
2471{
2472 struct cache_set *c, *tc;
2473 struct cache *ca;
2474 unsigned int i;
2475
2476 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2477 for_each_cache(ca, c, i)
2478 if (ca->bdev == bdev)
2479 return true;
2480 return false;
2481}
2482
2483static bool bch_is_open(struct block_device *bdev)
2484{
2485 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2486}
2487
2488struct async_reg_args {
2489 struct delayed_work reg_work;
2490 char *path;
2491 struct cache_sb *sb;
2492 struct cache_sb_disk *sb_disk;
2493 struct block_device *bdev;
2494};
2495
2496static void register_bdev_worker(struct work_struct *work)
2497{
2498 int fail = false;
2499 struct async_reg_args *args =
2500 container_of(work, struct async_reg_args, reg_work.work);
2501 struct cached_dev *dc;
2502
2503 dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2504 if (!dc) {
2505 fail = true;
2506 put_page(virt_to_page(args->sb_disk));
2507 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2508 goto out;
2509 }
2510
2511 mutex_lock(&bch_register_lock);
2512 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2513 fail = true;
2514 mutex_unlock(&bch_register_lock);
2515
2516out:
2517 if (fail)
2518 pr_info("error %s: fail to register backing device\n",
2519 args->path);
2520 kfree(args->sb);
2521 kfree(args->path);
2522 kfree(args);
2523 module_put(THIS_MODULE);
2524}
2525
2526static void register_cache_worker(struct work_struct *work)
2527{
2528 int fail = false;
2529 struct async_reg_args *args =
2530 container_of(work, struct async_reg_args, reg_work.work);
2531 struct cache *ca;
2532
2533 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2534 if (!ca) {
2535 fail = true;
2536 put_page(virt_to_page(args->sb_disk));
2537 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2538 goto out;
2539 }
2540
2541 /* blkdev_put() will be called in bch_cache_release() */
2542 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2543 fail = true;
2544
2545out:
2546 if (fail)
2547 pr_info("error %s: fail to register cache device\n",
2548 args->path);
2549 kfree(args->sb);
2550 kfree(args->path);
2551 kfree(args);
2552 module_put(THIS_MODULE);
2553}
2554
2555static void register_device_aync(struct async_reg_args *args)
2556{
2557 if (SB_IS_BDEV(args->sb))
2558 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2559 else
2560 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2561
2562 /* 10 jiffies is enough for a delay */
2563 queue_delayed_work(system_wq, &args->reg_work, 10);
2564}
2565
2566static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2567 const char *buffer, size_t size)
2568{
2569 const char *err;
2570 char *path = NULL;
2571 struct cache_sb *sb;
2572 struct cache_sb_disk *sb_disk;
2573 struct block_device *bdev;
2574 ssize_t ret;
2575
2576 ret = -EBUSY;
2577 err = "failed to reference bcache module";
2578 if (!try_module_get(THIS_MODULE))
2579 goto out;
2580
2581 /* For latest state of bcache_is_reboot */
2582 smp_mb();
2583 err = "bcache is in reboot";
2584 if (bcache_is_reboot)
2585 goto out_module_put;
2586
2587 ret = -ENOMEM;
2588 err = "cannot allocate memory";
2589 path = kstrndup(buffer, size, GFP_KERNEL);
2590 if (!path)
2591 goto out_module_put;
2592
2593 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2594 if (!sb)
2595 goto out_free_path;
2596
2597 ret = -EINVAL;
2598 err = "failed to open device";
2599 bdev = blkdev_get_by_path(strim(path),
2600 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2601 sb);
2602 if (IS_ERR(bdev)) {
2603 if (bdev == ERR_PTR(-EBUSY)) {
2604 bdev = lookup_bdev(strim(path));
2605 mutex_lock(&bch_register_lock);
2606 if (!IS_ERR(bdev) && bch_is_open(bdev))
2607 err = "device already registered";
2608 else
2609 err = "device busy";
2610 mutex_unlock(&bch_register_lock);
2611 if (!IS_ERR(bdev))
2612 bdput(bdev);
2613 if (attr == &ksysfs_register_quiet)
2614 goto done;
2615 }
2616 goto out_free_sb;
2617 }
2618
2619 err = "failed to set blocksize";
2620 if (set_blocksize(bdev, 4096))
2621 goto out_blkdev_put;
2622
2623 err = read_super(sb, bdev, &sb_disk);
2624 if (err)
2625 goto out_blkdev_put;
2626
2627 err = "failed to register device";
2628 if (attr == &ksysfs_register_async) {
2629 /* register in asynchronous way */
2630 struct async_reg_args *args =
2631 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2632
2633 if (!args) {
2634 ret = -ENOMEM;
2635 err = "cannot allocate memory";
2636 goto out_put_sb_page;
2637 }
2638
2639 args->path = path;
2640 args->sb = sb;
2641 args->sb_disk = sb_disk;
2642 args->bdev = bdev;
2643 register_device_aync(args);
2644 /* No wait and returns to user space */
2645 goto async_done;
2646 }
2647
2648 if (SB_IS_BDEV(sb)) {
2649 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2650
2651 if (!dc)
2652 goto out_put_sb_page;
2653
2654 mutex_lock(&bch_register_lock);
2655 ret = register_bdev(sb, sb_disk, bdev, dc);
2656 mutex_unlock(&bch_register_lock);
2657 /* blkdev_put() will be called in cached_dev_free() */
2658 if (ret < 0)
2659 goto out_free_sb;
2660 } else {
2661 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2662
2663 if (!ca)
2664 goto out_put_sb_page;
2665
2666 /* blkdev_put() will be called in bch_cache_release() */
2667 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2668 goto out_free_sb;
2669 }
2670
2671done:
2672 kfree(sb);
2673 kfree(path);
2674 module_put(THIS_MODULE);
2675async_done:
2676 return size;
2677
2678out_put_sb_page:
2679 put_page(virt_to_page(sb_disk));
2680out_blkdev_put:
2681 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2682out_free_sb:
2683 kfree(sb);
2684out_free_path:
2685 kfree(path);
2686 path = NULL;
2687out_module_put:
2688 module_put(THIS_MODULE);
2689out:
2690 pr_info("error %s: %s\n", path?path:"", err);
2691 return ret;
2692}
2693
2694
2695struct pdev {
2696 struct list_head list;
2697 struct cached_dev *dc;
2698};
2699
2700static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2701 struct kobj_attribute *attr,
2702 const char *buffer,
2703 size_t size)
2704{
2705 LIST_HEAD(pending_devs);
2706 ssize_t ret = size;
2707 struct cached_dev *dc, *tdc;
2708 struct pdev *pdev, *tpdev;
2709 struct cache_set *c, *tc;
2710
2711 mutex_lock(&bch_register_lock);
2712 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2713 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2714 if (!pdev)
2715 break;
2716 pdev->dc = dc;
2717 list_add(&pdev->list, &pending_devs);
2718 }
2719
2720 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2721 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2722 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2723 char *set_uuid = c->sb.uuid;
2724
2725 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2726 list_del(&pdev->list);
2727 kfree(pdev);
2728 break;
2729 }
2730 }
2731 }
2732 mutex_unlock(&bch_register_lock);
2733
2734 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2735 pr_info("delete pdev %p\n", pdev);
2736 list_del(&pdev->list);
2737 bcache_device_stop(&pdev->dc->disk);
2738 kfree(pdev);
2739 }
2740
2741 return ret;
2742}
2743
2744static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2745{
2746 if (bcache_is_reboot)
2747 return NOTIFY_DONE;
2748
2749 if (code == SYS_DOWN ||
2750 code == SYS_HALT ||
2751 code == SYS_POWER_OFF) {
2752 DEFINE_WAIT(wait);
2753 unsigned long start = jiffies;
2754 bool stopped = false;
2755
2756 struct cache_set *c, *tc;
2757 struct cached_dev *dc, *tdc;
2758
2759 mutex_lock(&bch_register_lock);
2760
2761 if (bcache_is_reboot)
2762 goto out;
2763
2764 /* New registration is rejected since now */
2765 bcache_is_reboot = true;
2766 /*
2767 * Make registering caller (if there is) on other CPU
2768 * core know bcache_is_reboot set to true earlier
2769 */
2770 smp_mb();
2771
2772 if (list_empty(&bch_cache_sets) &&
2773 list_empty(&uncached_devices))
2774 goto out;
2775
2776 mutex_unlock(&bch_register_lock);
2777
2778 pr_info("Stopping all devices:\n");
2779
2780 /*
2781 * The reason bch_register_lock is not held to call
2782 * bch_cache_set_stop() and bcache_device_stop() is to
2783 * avoid potential deadlock during reboot, because cache
2784 * set or bcache device stopping process will acqurie
2785 * bch_register_lock too.
2786 *
2787 * We are safe here because bcache_is_reboot sets to
2788 * true already, register_bcache() will reject new
2789 * registration now. bcache_is_reboot also makes sure
2790 * bcache_reboot() won't be re-entered on by other thread,
2791 * so there is no race in following list iteration by
2792 * list_for_each_entry_safe().
2793 */
2794 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2795 bch_cache_set_stop(c);
2796
2797 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2798 bcache_device_stop(&dc->disk);
2799
2800
2801 /*
2802 * Give an early chance for other kthreads and
2803 * kworkers to stop themselves
2804 */
2805 schedule();
2806
2807 /* What's a condition variable? */
2808 while (1) {
2809 long timeout = start + 10 * HZ - jiffies;
2810
2811 mutex_lock(&bch_register_lock);
2812 stopped = list_empty(&bch_cache_sets) &&
2813 list_empty(&uncached_devices);
2814
2815 if (timeout < 0 || stopped)
2816 break;
2817
2818 prepare_to_wait(&unregister_wait, &wait,
2819 TASK_UNINTERRUPTIBLE);
2820
2821 mutex_unlock(&bch_register_lock);
2822 schedule_timeout(timeout);
2823 }
2824
2825 finish_wait(&unregister_wait, &wait);
2826
2827 if (stopped)
2828 pr_info("All devices stopped\n");
2829 else
2830 pr_notice("Timeout waiting for devices to be closed\n");
2831out:
2832 mutex_unlock(&bch_register_lock);
2833 }
2834
2835 return NOTIFY_DONE;
2836}
2837
2838static struct notifier_block reboot = {
2839 .notifier_call = bcache_reboot,
2840 .priority = INT_MAX, /* before any real devices */
2841};
2842
2843static void bcache_exit(void)
2844{
2845 bch_debug_exit();
2846 bch_request_exit();
2847 if (bcache_kobj)
2848 kobject_put(bcache_kobj);
2849 if (bcache_wq)
2850 destroy_workqueue(bcache_wq);
2851 if (bch_journal_wq)
2852 destroy_workqueue(bch_journal_wq);
2853
2854 if (bcache_major)
2855 unregister_blkdev(bcache_major, "bcache");
2856 unregister_reboot_notifier(&reboot);
2857 mutex_destroy(&bch_register_lock);
2858}
2859
2860/* Check and fixup module parameters */
2861static void check_module_parameters(void)
2862{
2863 if (bch_cutoff_writeback_sync == 0)
2864 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2865 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2866 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2867 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2868 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2869 }
2870
2871 if (bch_cutoff_writeback == 0)
2872 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2873 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2874 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2875 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2876 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2877 }
2878
2879 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2880 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2881 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2882 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2883 }
2884}
2885
2886static int __init bcache_init(void)
2887{
2888 static const struct attribute *files[] = {
2889 &ksysfs_register.attr,
2890 &ksysfs_register_quiet.attr,
2891#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2892 &ksysfs_register_async.attr,
2893#endif
2894 &ksysfs_pendings_cleanup.attr,
2895 NULL
2896 };
2897
2898 check_module_parameters();
2899
2900 mutex_init(&bch_register_lock);
2901 init_waitqueue_head(&unregister_wait);
2902 register_reboot_notifier(&reboot);
2903
2904 bcache_major = register_blkdev(0, "bcache");
2905 if (bcache_major < 0) {
2906 unregister_reboot_notifier(&reboot);
2907 mutex_destroy(&bch_register_lock);
2908 return bcache_major;
2909 }
2910
2911 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2912 if (!bcache_wq)
2913 goto err;
2914
2915 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2916 if (!bch_journal_wq)
2917 goto err;
2918
2919 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2920 if (!bcache_kobj)
2921 goto err;
2922
2923 if (bch_request_init() ||
2924 sysfs_create_files(bcache_kobj, files))
2925 goto err;
2926
2927 bch_debug_init();
2928 closure_debug_init();
2929
2930 bcache_is_reboot = false;
2931
2932 return 0;
2933err:
2934 bcache_exit();
2935 return -ENOMEM;
2936}
2937
2938/*
2939 * Module hooks
2940 */
2941module_exit(bcache_exit);
2942module_init(bcache_init);
2943
2944module_param(bch_cutoff_writeback, uint, 0);
2945MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2946
2947module_param(bch_cutoff_writeback_sync, uint, 0);
2948MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2949
2950MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2951MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2952MODULE_LICENSE("GPL");