Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * bcache setup/teardown code, and some metadata io - read a superblock and
   3 * figure out what to do with it.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "extents.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/blkdev.h>
  17#include <linux/buffer_head.h>
  18#include <linux/debugfs.h>
  19#include <linux/genhd.h>
  20#include <linux/idr.h>
  21#include <linux/kthread.h>
  22#include <linux/module.h>
  23#include <linux/random.h>
  24#include <linux/reboot.h>
  25#include <linux/sysfs.h>
  26
  27MODULE_LICENSE("GPL");
  28MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  29
  30static const char bcache_magic[] = {
  31	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  32	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  33};
  34
  35static const char invalid_uuid[] = {
  36	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  37	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  38};
  39
  40/* Default is -1; we skip past it for struct cached_dev's cache mode */
  41const char * const bch_cache_modes[] = {
  42	"default",
  43	"writethrough",
  44	"writeback",
  45	"writearound",
  46	"none",
  47	NULL
  48};
  49
  50static struct kobject *bcache_kobj;
  51struct mutex bch_register_lock;
  52LIST_HEAD(bch_cache_sets);
  53static LIST_HEAD(uncached_devices);
  54
  55static int bcache_major;
  56static DEFINE_IDA(bcache_minor);
  57static wait_queue_head_t unregister_wait;
  58struct workqueue_struct *bcache_wq;
  59
  60#define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
  61
  62static void bio_split_pool_free(struct bio_split_pool *p)
  63{
  64	if (p->bio_split_hook)
  65		mempool_destroy(p->bio_split_hook);
  66
  67	if (p->bio_split)
  68		bioset_free(p->bio_split);
  69}
  70
  71static int bio_split_pool_init(struct bio_split_pool *p)
  72{
  73	p->bio_split = bioset_create(4, 0);
  74	if (!p->bio_split)
  75		return -ENOMEM;
  76
  77	p->bio_split_hook = mempool_create_kmalloc_pool(4,
  78				sizeof(struct bio_split_hook));
  79	if (!p->bio_split_hook)
  80		return -ENOMEM;
  81
  82	return 0;
  83}
  84
  85/* Superblock */
  86
  87static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  88			      struct page **res)
  89{
  90	const char *err;
  91	struct cache_sb *s;
  92	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  93	unsigned i;
  94
  95	if (!bh)
  96		return "IO error";
  97
  98	s = (struct cache_sb *) bh->b_data;
  99
 100	sb->offset		= le64_to_cpu(s->offset);
 101	sb->version		= le64_to_cpu(s->version);
 102
 103	memcpy(sb->magic,	s->magic, 16);
 104	memcpy(sb->uuid,	s->uuid, 16);
 105	memcpy(sb->set_uuid,	s->set_uuid, 16);
 106	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
 107
 108	sb->flags		= le64_to_cpu(s->flags);
 109	sb->seq			= le64_to_cpu(s->seq);
 110	sb->last_mount		= le32_to_cpu(s->last_mount);
 111	sb->first_bucket	= le16_to_cpu(s->first_bucket);
 112	sb->keys		= le16_to_cpu(s->keys);
 113
 114	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
 115		sb->d[i] = le64_to_cpu(s->d[i]);
 116
 117	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
 118		 sb->version, sb->flags, sb->seq, sb->keys);
 119
 120	err = "Not a bcache superblock";
 121	if (sb->offset != SB_SECTOR)
 122		goto err;
 123
 124	if (memcmp(sb->magic, bcache_magic, 16))
 125		goto err;
 126
 127	err = "Too many journal buckets";
 128	if (sb->keys > SB_JOURNAL_BUCKETS)
 129		goto err;
 130
 131	err = "Bad checksum";
 132	if (s->csum != csum_set(s))
 133		goto err;
 134
 135	err = "Bad UUID";
 136	if (bch_is_zero(sb->uuid, 16))
 137		goto err;
 138
 139	sb->block_size	= le16_to_cpu(s->block_size);
 140
 141	err = "Superblock block size smaller than device block size";
 142	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 143		goto err;
 144
 145	switch (sb->version) {
 146	case BCACHE_SB_VERSION_BDEV:
 147		sb->data_offset	= BDEV_DATA_START_DEFAULT;
 148		break;
 149	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 150		sb->data_offset	= le64_to_cpu(s->data_offset);
 151
 152		err = "Bad data offset";
 153		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 154			goto err;
 155
 156		break;
 157	case BCACHE_SB_VERSION_CDEV:
 158	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 159		sb->nbuckets	= le64_to_cpu(s->nbuckets);
 160		sb->block_size	= le16_to_cpu(s->block_size);
 161		sb->bucket_size	= le16_to_cpu(s->bucket_size);
 162
 163		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
 164		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
 165
 166		err = "Too many buckets";
 167		if (sb->nbuckets > LONG_MAX)
 168			goto err;
 169
 170		err = "Not enough buckets";
 171		if (sb->nbuckets < 1 << 7)
 172			goto err;
 173
 174		err = "Bad block/bucket size";
 175		if (!is_power_of_2(sb->block_size) ||
 176		    sb->block_size > PAGE_SECTORS ||
 177		    !is_power_of_2(sb->bucket_size) ||
 178		    sb->bucket_size < PAGE_SECTORS)
 179			goto err;
 180
 181		err = "Invalid superblock: device too small";
 182		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
 183			goto err;
 184
 185		err = "Bad UUID";
 186		if (bch_is_zero(sb->set_uuid, 16))
 187			goto err;
 188
 189		err = "Bad cache device number in set";
 190		if (!sb->nr_in_set ||
 191		    sb->nr_in_set <= sb->nr_this_dev ||
 192		    sb->nr_in_set > MAX_CACHES_PER_SET)
 193			goto err;
 194
 195		err = "Journal buckets not sequential";
 196		for (i = 0; i < sb->keys; i++)
 197			if (sb->d[i] != sb->first_bucket + i)
 198				goto err;
 199
 200		err = "Too many journal buckets";
 201		if (sb->first_bucket + sb->keys > sb->nbuckets)
 202			goto err;
 203
 204		err = "Invalid superblock: first bucket comes before end of super";
 205		if (sb->first_bucket * sb->bucket_size < 16)
 206			goto err;
 207
 208		break;
 209	default:
 210		err = "Unsupported superblock version";
 211		goto err;
 212	}
 213
 214	sb->last_mount = get_seconds();
 215	err = NULL;
 216
 217	get_page(bh->b_page);
 218	*res = bh->b_page;
 219err:
 220	put_bh(bh);
 221	return err;
 222}
 223
 224static void write_bdev_super_endio(struct bio *bio, int error)
 225{
 226	struct cached_dev *dc = bio->bi_private;
 227	/* XXX: error checking */
 228
 229	closure_put(&dc->sb_write);
 230}
 231
 232static void __write_super(struct cache_sb *sb, struct bio *bio)
 233{
 234	struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
 235	unsigned i;
 236
 237	bio->bi_iter.bi_sector	= SB_SECTOR;
 238	bio->bi_rw		= REQ_SYNC|REQ_META;
 239	bio->bi_iter.bi_size	= SB_SIZE;
 240	bch_bio_map(bio, NULL);
 241
 242	out->offset		= cpu_to_le64(sb->offset);
 243	out->version		= cpu_to_le64(sb->version);
 244
 245	memcpy(out->uuid,	sb->uuid, 16);
 246	memcpy(out->set_uuid,	sb->set_uuid, 16);
 247	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
 248
 249	out->flags		= cpu_to_le64(sb->flags);
 250	out->seq		= cpu_to_le64(sb->seq);
 251
 252	out->last_mount		= cpu_to_le32(sb->last_mount);
 253	out->first_bucket	= cpu_to_le16(sb->first_bucket);
 254	out->keys		= cpu_to_le16(sb->keys);
 255
 256	for (i = 0; i < sb->keys; i++)
 257		out->d[i] = cpu_to_le64(sb->d[i]);
 258
 259	out->csum = csum_set(out);
 260
 261	pr_debug("ver %llu, flags %llu, seq %llu",
 262		 sb->version, sb->flags, sb->seq);
 263
 264	submit_bio(REQ_WRITE, bio);
 265}
 266
 267static void bch_write_bdev_super_unlock(struct closure *cl)
 268{
 269	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 270
 271	up(&dc->sb_write_mutex);
 272}
 273
 274void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 275{
 276	struct closure *cl = &dc->sb_write;
 277	struct bio *bio = &dc->sb_bio;
 278
 279	down(&dc->sb_write_mutex);
 280	closure_init(cl, parent);
 281
 282	bio_reset(bio);
 283	bio->bi_bdev	= dc->bdev;
 284	bio->bi_end_io	= write_bdev_super_endio;
 285	bio->bi_private = dc;
 286
 287	closure_get(cl);
 288	__write_super(&dc->sb, bio);
 289
 290	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 291}
 292
 293static void write_super_endio(struct bio *bio, int error)
 294{
 295	struct cache *ca = bio->bi_private;
 296
 297	bch_count_io_errors(ca, error, "writing superblock");
 298	closure_put(&ca->set->sb_write);
 299}
 300
 301static void bcache_write_super_unlock(struct closure *cl)
 302{
 303	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 304
 305	up(&c->sb_write_mutex);
 306}
 307
 308void bcache_write_super(struct cache_set *c)
 309{
 310	struct closure *cl = &c->sb_write;
 311	struct cache *ca;
 312	unsigned i;
 313
 314	down(&c->sb_write_mutex);
 315	closure_init(cl, &c->cl);
 316
 317	c->sb.seq++;
 318
 319	for_each_cache(ca, c, i) {
 320		struct bio *bio = &ca->sb_bio;
 321
 322		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
 323		ca->sb.seq		= c->sb.seq;
 324		ca->sb.last_mount	= c->sb.last_mount;
 325
 326		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
 327
 328		bio_reset(bio);
 329		bio->bi_bdev	= ca->bdev;
 330		bio->bi_end_io	= write_super_endio;
 331		bio->bi_private = ca;
 332
 333		closure_get(cl);
 334		__write_super(&ca->sb, bio);
 335	}
 336
 337	closure_return_with_destructor(cl, bcache_write_super_unlock);
 338}
 339
 340/* UUID io */
 341
 342static void uuid_endio(struct bio *bio, int error)
 343{
 344	struct closure *cl = bio->bi_private;
 345	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 346
 347	cache_set_err_on(error, c, "accessing uuids");
 348	bch_bbio_free(bio, c);
 349	closure_put(cl);
 350}
 351
 352static void uuid_io_unlock(struct closure *cl)
 353{
 354	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 355
 356	up(&c->uuid_write_mutex);
 357}
 358
 359static void uuid_io(struct cache_set *c, unsigned long rw,
 360		    struct bkey *k, struct closure *parent)
 361{
 362	struct closure *cl = &c->uuid_write;
 363	struct uuid_entry *u;
 364	unsigned i;
 365	char buf[80];
 366
 367	BUG_ON(!parent);
 368	down(&c->uuid_write_mutex);
 369	closure_init(cl, parent);
 370
 371	for (i = 0; i < KEY_PTRS(k); i++) {
 372		struct bio *bio = bch_bbio_alloc(c);
 373
 374		bio->bi_rw	= REQ_SYNC|REQ_META|rw;
 375		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 376
 377		bio->bi_end_io	= uuid_endio;
 378		bio->bi_private = cl;
 379		bch_bio_map(bio, c->uuids);
 380
 381		bch_submit_bbio(bio, c, k, i);
 382
 383		if (!(rw & WRITE))
 384			break;
 385	}
 386
 387	bch_extent_to_text(buf, sizeof(buf), k);
 388	pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
 389
 390	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 391		if (!bch_is_zero(u->uuid, 16))
 392			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
 393				 u - c->uuids, u->uuid, u->label,
 394				 u->first_reg, u->last_reg, u->invalidated);
 395
 396	closure_return_with_destructor(cl, uuid_io_unlock);
 397}
 398
 399static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 400{
 401	struct bkey *k = &j->uuid_bucket;
 402
 403	if (__bch_btree_ptr_invalid(c, k))
 404		return "bad uuid pointer";
 405
 406	bkey_copy(&c->uuid_bucket, k);
 407	uuid_io(c, READ_SYNC, k, cl);
 408
 409	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 410		struct uuid_entry_v0	*u0 = (void *) c->uuids;
 411		struct uuid_entry	*u1 = (void *) c->uuids;
 412		int i;
 413
 414		closure_sync(cl);
 415
 416		/*
 417		 * Since the new uuid entry is bigger than the old, we have to
 418		 * convert starting at the highest memory address and work down
 419		 * in order to do it in place
 420		 */
 421
 422		for (i = c->nr_uuids - 1;
 423		     i >= 0;
 424		     --i) {
 425			memcpy(u1[i].uuid,	u0[i].uuid, 16);
 426			memcpy(u1[i].label,	u0[i].label, 32);
 427
 428			u1[i].first_reg		= u0[i].first_reg;
 429			u1[i].last_reg		= u0[i].last_reg;
 430			u1[i].invalidated	= u0[i].invalidated;
 431
 432			u1[i].flags	= 0;
 433			u1[i].sectors	= 0;
 434		}
 435	}
 436
 437	return NULL;
 438}
 439
 440static int __uuid_write(struct cache_set *c)
 441{
 442	BKEY_PADDED(key) k;
 443	struct closure cl;
 444	closure_init_stack(&cl);
 445
 446	lockdep_assert_held(&bch_register_lock);
 447
 448	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
 449		return 1;
 450
 451	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
 452	uuid_io(c, REQ_WRITE, &k.key, &cl);
 453	closure_sync(&cl);
 454
 455	bkey_copy(&c->uuid_bucket, &k.key);
 456	bkey_put(c, &k.key);
 457	return 0;
 458}
 459
 460int bch_uuid_write(struct cache_set *c)
 461{
 462	int ret = __uuid_write(c);
 463
 464	if (!ret)
 465		bch_journal_meta(c, NULL);
 466
 467	return ret;
 468}
 469
 470static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 471{
 472	struct uuid_entry *u;
 473
 474	for (u = c->uuids;
 475	     u < c->uuids + c->nr_uuids; u++)
 476		if (!memcmp(u->uuid, uuid, 16))
 477			return u;
 478
 479	return NULL;
 480}
 481
 482static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 483{
 484	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 485	return uuid_find(c, zero_uuid);
 486}
 487
 488/*
 489 * Bucket priorities/gens:
 490 *
 491 * For each bucket, we store on disk its
 492   * 8 bit gen
 493   * 16 bit priority
 494 *
 495 * See alloc.c for an explanation of the gen. The priority is used to implement
 496 * lru (and in the future other) cache replacement policies; for most purposes
 497 * it's just an opaque integer.
 498 *
 499 * The gens and the priorities don't have a whole lot to do with each other, and
 500 * it's actually the gens that must be written out at specific times - it's no
 501 * big deal if the priorities don't get written, if we lose them we just reuse
 502 * buckets in suboptimal order.
 503 *
 504 * On disk they're stored in a packed array, and in as many buckets are required
 505 * to fit them all. The buckets we use to store them form a list; the journal
 506 * header points to the first bucket, the first bucket points to the second
 507 * bucket, et cetera.
 508 *
 509 * This code is used by the allocation code; periodically (whenever it runs out
 510 * of buckets to allocate from) the allocation code will invalidate some
 511 * buckets, but it can't use those buckets until their new gens are safely on
 512 * disk.
 513 */
 514
 515static void prio_endio(struct bio *bio, int error)
 516{
 517	struct cache *ca = bio->bi_private;
 518
 519	cache_set_err_on(error, ca->set, "accessing priorities");
 520	bch_bbio_free(bio, ca->set);
 521	closure_put(&ca->prio);
 522}
 523
 524static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
 525{
 526	struct closure *cl = &ca->prio;
 527	struct bio *bio = bch_bbio_alloc(ca->set);
 528
 529	closure_init_stack(cl);
 530
 531	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
 532	bio->bi_bdev		= ca->bdev;
 533	bio->bi_rw		= REQ_SYNC|REQ_META|rw;
 534	bio->bi_iter.bi_size	= bucket_bytes(ca);
 535
 536	bio->bi_end_io	= prio_endio;
 537	bio->bi_private = ca;
 538	bch_bio_map(bio, ca->disk_buckets);
 539
 540	closure_bio_submit(bio, &ca->prio, ca);
 541	closure_sync(cl);
 542}
 543
 544void bch_prio_write(struct cache *ca)
 545{
 546	int i;
 547	struct bucket *b;
 548	struct closure cl;
 549
 550	closure_init_stack(&cl);
 551
 552	lockdep_assert_held(&ca->set->bucket_lock);
 553
 554	ca->disk_buckets->seq++;
 555
 556	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 557			&ca->meta_sectors_written);
 558
 559	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
 560	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
 561
 562	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 563		long bucket;
 564		struct prio_set *p = ca->disk_buckets;
 565		struct bucket_disk *d = p->data;
 566		struct bucket_disk *end = d + prios_per_bucket(ca);
 567
 568		for (b = ca->buckets + i * prios_per_bucket(ca);
 569		     b < ca->buckets + ca->sb.nbuckets && d < end;
 570		     b++, d++) {
 571			d->prio = cpu_to_le16(b->prio);
 572			d->gen = b->gen;
 573		}
 574
 575		p->next_bucket	= ca->prio_buckets[i + 1];
 576		p->magic	= pset_magic(&ca->sb);
 577		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
 578
 579		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
 580		BUG_ON(bucket == -1);
 581
 582		mutex_unlock(&ca->set->bucket_lock);
 583		prio_io(ca, bucket, REQ_WRITE);
 584		mutex_lock(&ca->set->bucket_lock);
 585
 586		ca->prio_buckets[i] = bucket;
 587		atomic_dec_bug(&ca->buckets[bucket].pin);
 588	}
 589
 590	mutex_unlock(&ca->set->bucket_lock);
 591
 592	bch_journal_meta(ca->set, &cl);
 593	closure_sync(&cl);
 594
 595	mutex_lock(&ca->set->bucket_lock);
 596
 597	/*
 598	 * Don't want the old priorities to get garbage collected until after we
 599	 * finish writing the new ones, and they're journalled
 600	 */
 601	for (i = 0; i < prio_buckets(ca); i++) {
 602		if (ca->prio_last_buckets[i])
 603			__bch_bucket_free(ca,
 604				&ca->buckets[ca->prio_last_buckets[i]]);
 605
 606		ca->prio_last_buckets[i] = ca->prio_buckets[i];
 607	}
 608}
 609
 610static void prio_read(struct cache *ca, uint64_t bucket)
 611{
 612	struct prio_set *p = ca->disk_buckets;
 613	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 614	struct bucket *b;
 615	unsigned bucket_nr = 0;
 616
 617	for (b = ca->buckets;
 618	     b < ca->buckets + ca->sb.nbuckets;
 619	     b++, d++) {
 620		if (d == end) {
 621			ca->prio_buckets[bucket_nr] = bucket;
 622			ca->prio_last_buckets[bucket_nr] = bucket;
 623			bucket_nr++;
 624
 625			prio_io(ca, bucket, READ_SYNC);
 626
 627			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
 628				pr_warn("bad csum reading priorities");
 629
 630			if (p->magic != pset_magic(&ca->sb))
 631				pr_warn("bad magic reading priorities");
 632
 633			bucket = p->next_bucket;
 634			d = p->data;
 635		}
 636
 637		b->prio = le16_to_cpu(d->prio);
 638		b->gen = b->last_gc = d->gen;
 639	}
 640}
 641
 642/* Bcache device */
 643
 644static int open_dev(struct block_device *b, fmode_t mode)
 645{
 646	struct bcache_device *d = b->bd_disk->private_data;
 647	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 648		return -ENXIO;
 649
 650	closure_get(&d->cl);
 651	return 0;
 652}
 653
 654static void release_dev(struct gendisk *b, fmode_t mode)
 655{
 656	struct bcache_device *d = b->private_data;
 657	closure_put(&d->cl);
 658}
 659
 660static int ioctl_dev(struct block_device *b, fmode_t mode,
 661		     unsigned int cmd, unsigned long arg)
 662{
 663	struct bcache_device *d = b->bd_disk->private_data;
 664	return d->ioctl(d, mode, cmd, arg);
 665}
 666
 667static const struct block_device_operations bcache_ops = {
 668	.open		= open_dev,
 669	.release	= release_dev,
 670	.ioctl		= ioctl_dev,
 671	.owner		= THIS_MODULE,
 672};
 673
 674void bcache_device_stop(struct bcache_device *d)
 675{
 676	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 677		closure_queue(&d->cl);
 678}
 679
 680static void bcache_device_unlink(struct bcache_device *d)
 681{
 682	lockdep_assert_held(&bch_register_lock);
 683
 684	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 685		unsigned i;
 686		struct cache *ca;
 687
 688		sysfs_remove_link(&d->c->kobj, d->name);
 689		sysfs_remove_link(&d->kobj, "cache");
 690
 691		for_each_cache(ca, d->c, i)
 692			bd_unlink_disk_holder(ca->bdev, d->disk);
 693	}
 694}
 695
 696static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 697			       const char *name)
 698{
 699	unsigned i;
 700	struct cache *ca;
 701
 702	for_each_cache(ca, d->c, i)
 703		bd_link_disk_holder(ca->bdev, d->disk);
 704
 705	snprintf(d->name, BCACHEDEVNAME_SIZE,
 706		 "%s%u", name, d->id);
 707
 708	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
 709	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
 710	     "Couldn't create device <-> cache set symlinks");
 711}
 712
 713static void bcache_device_detach(struct bcache_device *d)
 714{
 715	lockdep_assert_held(&bch_register_lock);
 716
 717	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 718		struct uuid_entry *u = d->c->uuids + d->id;
 719
 720		SET_UUID_FLASH_ONLY(u, 0);
 721		memcpy(u->uuid, invalid_uuid, 16);
 722		u->invalidated = cpu_to_le32(get_seconds());
 723		bch_uuid_write(d->c);
 724	}
 725
 726	bcache_device_unlink(d);
 727
 728	d->c->devices[d->id] = NULL;
 729	closure_put(&d->c->caching);
 730	d->c = NULL;
 731}
 732
 733static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 734				 unsigned id)
 735{
 736	BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
 737
 738	d->id = id;
 739	d->c = c;
 740	c->devices[id] = d;
 741
 742	closure_get(&c->caching);
 743}
 744
 745static void bcache_device_free(struct bcache_device *d)
 746{
 747	lockdep_assert_held(&bch_register_lock);
 748
 749	pr_info("%s stopped", d->disk->disk_name);
 750
 751	if (d->c)
 752		bcache_device_detach(d);
 753	if (d->disk && d->disk->flags & GENHD_FL_UP)
 754		del_gendisk(d->disk);
 755	if (d->disk && d->disk->queue)
 756		blk_cleanup_queue(d->disk->queue);
 757	if (d->disk) {
 758		ida_simple_remove(&bcache_minor, d->disk->first_minor);
 759		put_disk(d->disk);
 760	}
 761
 762	bio_split_pool_free(&d->bio_split_hook);
 763	if (d->bio_split)
 764		bioset_free(d->bio_split);
 765	if (is_vmalloc_addr(d->full_dirty_stripes))
 766		vfree(d->full_dirty_stripes);
 767	else
 768		kfree(d->full_dirty_stripes);
 769	if (is_vmalloc_addr(d->stripe_sectors_dirty))
 770		vfree(d->stripe_sectors_dirty);
 771	else
 772		kfree(d->stripe_sectors_dirty);
 773
 774	closure_debug_destroy(&d->cl);
 775}
 776
 777static int bcache_device_init(struct bcache_device *d, unsigned block_size,
 778			      sector_t sectors)
 779{
 780	struct request_queue *q;
 781	size_t n;
 782	int minor;
 783
 784	if (!d->stripe_size)
 785		d->stripe_size = 1 << 31;
 786
 787	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 788
 789	if (!d->nr_stripes ||
 790	    d->nr_stripes > INT_MAX ||
 791	    d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
 792		pr_err("nr_stripes too large");
 793		return -ENOMEM;
 794	}
 795
 796	n = d->nr_stripes * sizeof(atomic_t);
 797	d->stripe_sectors_dirty = n < PAGE_SIZE << 6
 798		? kzalloc(n, GFP_KERNEL)
 799		: vzalloc(n);
 800	if (!d->stripe_sectors_dirty)
 801		return -ENOMEM;
 802
 803	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 804	d->full_dirty_stripes = n < PAGE_SIZE << 6
 805		? kzalloc(n, GFP_KERNEL)
 806		: vzalloc(n);
 807	if (!d->full_dirty_stripes)
 808		return -ENOMEM;
 809
 810	minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
 811	if (minor < 0)
 812		return minor;
 813
 814	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
 815	    bio_split_pool_init(&d->bio_split_hook) ||
 816	    !(d->disk = alloc_disk(1))) {
 817		ida_simple_remove(&bcache_minor, minor);
 818		return -ENOMEM;
 819	}
 820
 821	set_capacity(d->disk, sectors);
 822	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
 823
 824	d->disk->major		= bcache_major;
 825	d->disk->first_minor	= minor;
 826	d->disk->fops		= &bcache_ops;
 827	d->disk->private_data	= d;
 828
 829	q = blk_alloc_queue(GFP_KERNEL);
 830	if (!q)
 831		return -ENOMEM;
 832
 833	blk_queue_make_request(q, NULL);
 834	d->disk->queue			= q;
 835	q->queuedata			= d;
 836	q->backing_dev_info.congested_data = d;
 837	q->limits.max_hw_sectors	= UINT_MAX;
 838	q->limits.max_sectors		= UINT_MAX;
 839	q->limits.max_segment_size	= UINT_MAX;
 840	q->limits.max_segments		= BIO_MAX_PAGES;
 841	q->limits.max_discard_sectors	= UINT_MAX;
 842	q->limits.discard_granularity	= 512;
 843	q->limits.io_min		= block_size;
 844	q->limits.logical_block_size	= block_size;
 845	q->limits.physical_block_size	= block_size;
 846	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
 847	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
 848
 849	blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
 850
 851	return 0;
 852}
 853
 854/* Cached device */
 855
 856static void calc_cached_dev_sectors(struct cache_set *c)
 857{
 858	uint64_t sectors = 0;
 859	struct cached_dev *dc;
 860
 861	list_for_each_entry(dc, &c->cached_devs, list)
 862		sectors += bdev_sectors(dc->bdev);
 863
 864	c->cached_dev_sectors = sectors;
 865}
 866
 867void bch_cached_dev_run(struct cached_dev *dc)
 868{
 869	struct bcache_device *d = &dc->disk;
 870	char buf[SB_LABEL_SIZE + 1];
 871	char *env[] = {
 872		"DRIVER=bcache",
 873		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
 874		NULL,
 875		NULL,
 876	};
 877
 878	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
 879	buf[SB_LABEL_SIZE] = '\0';
 880	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
 881
 882	if (atomic_xchg(&dc->running, 1))
 883		return;
 884
 885	if (!d->c &&
 886	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
 887		struct closure cl;
 888		closure_init_stack(&cl);
 889
 890		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
 891		bch_write_bdev_super(dc, &cl);
 892		closure_sync(&cl);
 893	}
 894
 895	add_disk(d->disk);
 896	bd_link_disk_holder(dc->bdev, dc->disk.disk);
 897	/* won't show up in the uevent file, use udevadm monitor -e instead
 898	 * only class / kset properties are persistent */
 899	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
 900	kfree(env[1]);
 901	kfree(env[2]);
 902
 903	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
 904	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
 905		pr_debug("error creating sysfs link");
 906}
 907
 908static void cached_dev_detach_finish(struct work_struct *w)
 909{
 910	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
 911	char buf[BDEVNAME_SIZE];
 912	struct closure cl;
 913	closure_init_stack(&cl);
 914
 915	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
 916	BUG_ON(atomic_read(&dc->count));
 917
 918	mutex_lock(&bch_register_lock);
 919
 920	memset(&dc->sb.set_uuid, 0, 16);
 921	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
 922
 923	bch_write_bdev_super(dc, &cl);
 924	closure_sync(&cl);
 925
 926	bcache_device_detach(&dc->disk);
 927	list_move(&dc->list, &uncached_devices);
 928
 929	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
 930
 931	mutex_unlock(&bch_register_lock);
 932
 933	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
 934
 935	/* Drop ref we took in cached_dev_detach() */
 936	closure_put(&dc->disk.cl);
 937}
 938
 939void bch_cached_dev_detach(struct cached_dev *dc)
 940{
 941	lockdep_assert_held(&bch_register_lock);
 942
 943	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
 944		return;
 945
 946	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
 947		return;
 948
 949	/*
 950	 * Block the device from being closed and freed until we're finished
 951	 * detaching
 952	 */
 953	closure_get(&dc->disk.cl);
 954
 955	bch_writeback_queue(dc);
 956	cached_dev_put(dc);
 957}
 958
 959int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
 960{
 961	uint32_t rtime = cpu_to_le32(get_seconds());
 962	struct uuid_entry *u;
 963	char buf[BDEVNAME_SIZE];
 964
 965	bdevname(dc->bdev, buf);
 966
 967	if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
 968		return -ENOENT;
 969
 970	if (dc->disk.c) {
 971		pr_err("Can't attach %s: already attached", buf);
 972		return -EINVAL;
 973	}
 974
 975	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
 976		pr_err("Can't attach %s: shutting down", buf);
 977		return -EINVAL;
 978	}
 979
 980	if (dc->sb.block_size < c->sb.block_size) {
 981		/* Will die */
 982		pr_err("Couldn't attach %s: block size less than set's block size",
 983		       buf);
 984		return -EINVAL;
 985	}
 986
 987	u = uuid_find(c, dc->sb.uuid);
 988
 989	if (u &&
 990	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
 991	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
 992		memcpy(u->uuid, invalid_uuid, 16);
 993		u->invalidated = cpu_to_le32(get_seconds());
 994		u = NULL;
 995	}
 996
 997	if (!u) {
 998		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
 999			pr_err("Couldn't find uuid for %s in set", buf);
1000			return -ENOENT;
1001		}
1002
1003		u = uuid_find_empty(c);
1004		if (!u) {
1005			pr_err("Not caching %s, no room for UUID", buf);
1006			return -EINVAL;
1007		}
1008	}
1009
1010	/* Deadlocks since we're called via sysfs...
1011	sysfs_remove_file(&dc->kobj, &sysfs_attach);
1012	 */
1013
1014	if (bch_is_zero(u->uuid, 16)) {
1015		struct closure cl;
1016		closure_init_stack(&cl);
1017
1018		memcpy(u->uuid, dc->sb.uuid, 16);
1019		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1020		u->first_reg = u->last_reg = rtime;
1021		bch_uuid_write(c);
1022
1023		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1024		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1025
1026		bch_write_bdev_super(dc, &cl);
1027		closure_sync(&cl);
1028	} else {
1029		u->last_reg = rtime;
1030		bch_uuid_write(c);
1031	}
1032
1033	bcache_device_attach(&dc->disk, c, u - c->uuids);
1034	list_move(&dc->list, &c->cached_devs);
1035	calc_cached_dev_sectors(c);
1036
1037	smp_wmb();
1038	/*
1039	 * dc->c must be set before dc->count != 0 - paired with the mb in
1040	 * cached_dev_get()
1041	 */
1042	atomic_set(&dc->count, 1);
1043
1044	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1045		bch_sectors_dirty_init(dc);
1046		atomic_set(&dc->has_dirty, 1);
1047		atomic_inc(&dc->count);
1048		bch_writeback_queue(dc);
1049	}
1050
1051	bch_cached_dev_run(dc);
1052	bcache_device_link(&dc->disk, c, "bdev");
1053
1054	pr_info("Caching %s as %s on set %pU",
1055		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1056		dc->disk.c->sb.set_uuid);
1057	return 0;
1058}
1059
1060void bch_cached_dev_release(struct kobject *kobj)
1061{
1062	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1063					     disk.kobj);
1064	kfree(dc);
1065	module_put(THIS_MODULE);
1066}
1067
1068static void cached_dev_free(struct closure *cl)
1069{
1070	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1071
1072	cancel_delayed_work_sync(&dc->writeback_rate_update);
1073	kthread_stop(dc->writeback_thread);
1074
1075	mutex_lock(&bch_register_lock);
1076
1077	if (atomic_read(&dc->running))
1078		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1079	bcache_device_free(&dc->disk);
1080	list_del(&dc->list);
1081
1082	mutex_unlock(&bch_register_lock);
1083
1084	if (!IS_ERR_OR_NULL(dc->bdev)) {
1085		if (dc->bdev->bd_disk)
1086			blk_sync_queue(bdev_get_queue(dc->bdev));
1087
1088		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1089	}
1090
1091	wake_up(&unregister_wait);
1092
1093	kobject_put(&dc->disk.kobj);
1094}
1095
1096static void cached_dev_flush(struct closure *cl)
1097{
1098	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1099	struct bcache_device *d = &dc->disk;
1100
1101	mutex_lock(&bch_register_lock);
1102	bcache_device_unlink(d);
1103	mutex_unlock(&bch_register_lock);
1104
1105	bch_cache_accounting_destroy(&dc->accounting);
1106	kobject_del(&d->kobj);
1107
1108	continue_at(cl, cached_dev_free, system_wq);
1109}
1110
1111static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1112{
1113	int ret;
1114	struct io *io;
1115	struct request_queue *q = bdev_get_queue(dc->bdev);
1116
1117	__module_get(THIS_MODULE);
1118	INIT_LIST_HEAD(&dc->list);
1119	closure_init(&dc->disk.cl, NULL);
1120	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1121	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1122	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1123	sema_init(&dc->sb_write_mutex, 1);
1124	INIT_LIST_HEAD(&dc->io_lru);
1125	spin_lock_init(&dc->io_lock);
1126	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1127
1128	dc->sequential_cutoff		= 4 << 20;
1129
1130	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1131		list_add(&io->lru, &dc->io_lru);
1132		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1133	}
1134
1135	dc->disk.stripe_size = q->limits.io_opt >> 9;
1136
1137	if (dc->disk.stripe_size)
1138		dc->partial_stripes_expensive =
1139			q->limits.raid_partial_stripes_expensive;
1140
1141	ret = bcache_device_init(&dc->disk, block_size,
1142			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1143	if (ret)
1144		return ret;
1145
1146	set_capacity(dc->disk.disk,
1147		     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1148
1149	dc->disk.disk->queue->backing_dev_info.ra_pages =
1150		max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1151		    q->backing_dev_info.ra_pages);
1152
1153	bch_cached_dev_request_init(dc);
1154	bch_cached_dev_writeback_init(dc);
1155	return 0;
1156}
1157
1158/* Cached device - bcache superblock */
1159
1160static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1161				 struct block_device *bdev,
1162				 struct cached_dev *dc)
1163{
1164	char name[BDEVNAME_SIZE];
1165	const char *err = "cannot allocate memory";
1166	struct cache_set *c;
1167
1168	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1169	dc->bdev = bdev;
1170	dc->bdev->bd_holder = dc;
1171
1172	bio_init(&dc->sb_bio);
1173	dc->sb_bio.bi_max_vecs	= 1;
1174	dc->sb_bio.bi_io_vec	= dc->sb_bio.bi_inline_vecs;
1175	dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1176	get_page(sb_page);
1177
1178	if (cached_dev_init(dc, sb->block_size << 9))
1179		goto err;
1180
1181	err = "error creating kobject";
1182	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1183			"bcache"))
1184		goto err;
1185	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1186		goto err;
1187
1188	pr_info("registered backing device %s", bdevname(bdev, name));
1189
1190	list_add(&dc->list, &uncached_devices);
1191	list_for_each_entry(c, &bch_cache_sets, list)
1192		bch_cached_dev_attach(dc, c);
1193
1194	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1195	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1196		bch_cached_dev_run(dc);
1197
1198	return;
1199err:
1200	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1201	bcache_device_stop(&dc->disk);
1202}
1203
1204/* Flash only volumes */
1205
1206void bch_flash_dev_release(struct kobject *kobj)
1207{
1208	struct bcache_device *d = container_of(kobj, struct bcache_device,
1209					       kobj);
1210	kfree(d);
1211}
1212
1213static void flash_dev_free(struct closure *cl)
1214{
1215	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1216	bcache_device_free(d);
1217	kobject_put(&d->kobj);
1218}
1219
1220static void flash_dev_flush(struct closure *cl)
1221{
1222	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1223
1224	bcache_device_unlink(d);
1225	kobject_del(&d->kobj);
1226	continue_at(cl, flash_dev_free, system_wq);
1227}
1228
1229static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1230{
1231	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1232					  GFP_KERNEL);
1233	if (!d)
1234		return -ENOMEM;
1235
1236	closure_init(&d->cl, NULL);
1237	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1238
1239	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1240
1241	if (bcache_device_init(d, block_bytes(c), u->sectors))
1242		goto err;
1243
1244	bcache_device_attach(d, c, u - c->uuids);
1245	bch_flash_dev_request_init(d);
1246	add_disk(d->disk);
1247
1248	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1249		goto err;
1250
1251	bcache_device_link(d, c, "volume");
1252
1253	return 0;
1254err:
1255	kobject_put(&d->kobj);
1256	return -ENOMEM;
1257}
1258
1259static int flash_devs_run(struct cache_set *c)
1260{
1261	int ret = 0;
1262	struct uuid_entry *u;
1263
1264	for (u = c->uuids;
1265	     u < c->uuids + c->nr_uuids && !ret;
1266	     u++)
1267		if (UUID_FLASH_ONLY(u))
1268			ret = flash_dev_run(c, u);
1269
1270	return ret;
1271}
1272
1273int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1274{
1275	struct uuid_entry *u;
1276
1277	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1278		return -EINTR;
1279
1280	u = uuid_find_empty(c);
1281	if (!u) {
1282		pr_err("Can't create volume, no room for UUID");
1283		return -EINVAL;
1284	}
1285
1286	get_random_bytes(u->uuid, 16);
1287	memset(u->label, 0, 32);
1288	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1289
1290	SET_UUID_FLASH_ONLY(u, 1);
1291	u->sectors = size >> 9;
1292
1293	bch_uuid_write(c);
1294
1295	return flash_dev_run(c, u);
1296}
1297
1298/* Cache set */
1299
1300__printf(2, 3)
1301bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1302{
1303	va_list args;
1304
1305	if (c->on_error != ON_ERROR_PANIC &&
1306	    test_bit(CACHE_SET_STOPPING, &c->flags))
1307		return false;
1308
1309	/* XXX: we can be called from atomic context
1310	acquire_console_sem();
1311	*/
1312
1313	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1314
1315	va_start(args, fmt);
1316	vprintk(fmt, args);
1317	va_end(args);
1318
1319	printk(", disabling caching\n");
1320
1321	if (c->on_error == ON_ERROR_PANIC)
1322		panic("panic forced after error\n");
1323
1324	bch_cache_set_unregister(c);
1325	return true;
1326}
1327
1328void bch_cache_set_release(struct kobject *kobj)
1329{
1330	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1331	kfree(c);
1332	module_put(THIS_MODULE);
1333}
1334
1335static void cache_set_free(struct closure *cl)
1336{
1337	struct cache_set *c = container_of(cl, struct cache_set, cl);
1338	struct cache *ca;
1339	unsigned i;
1340
1341	if (!IS_ERR_OR_NULL(c->debug))
1342		debugfs_remove(c->debug);
1343
1344	bch_open_buckets_free(c);
1345	bch_btree_cache_free(c);
1346	bch_journal_free(c);
1347
1348	for_each_cache(ca, c, i)
1349		if (ca)
1350			kobject_put(&ca->kobj);
1351
1352	bch_bset_sort_state_free(&c->sort);
1353	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1354
1355	if (c->moving_gc_wq)
1356		destroy_workqueue(c->moving_gc_wq);
1357	if (c->bio_split)
1358		bioset_free(c->bio_split);
1359	if (c->fill_iter)
1360		mempool_destroy(c->fill_iter);
1361	if (c->bio_meta)
1362		mempool_destroy(c->bio_meta);
1363	if (c->search)
1364		mempool_destroy(c->search);
1365	kfree(c->devices);
1366
1367	mutex_lock(&bch_register_lock);
1368	list_del(&c->list);
1369	mutex_unlock(&bch_register_lock);
1370
1371	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1372	wake_up(&unregister_wait);
1373
1374	closure_debug_destroy(&c->cl);
1375	kobject_put(&c->kobj);
1376}
1377
1378static void cache_set_flush(struct closure *cl)
1379{
1380	struct cache_set *c = container_of(cl, struct cache_set, caching);
1381	struct cache *ca;
1382	struct btree *b;
1383	unsigned i;
1384
1385	bch_cache_accounting_destroy(&c->accounting);
1386
1387	kobject_put(&c->internal);
1388	kobject_del(&c->kobj);
1389
1390	if (c->gc_thread)
1391		kthread_stop(c->gc_thread);
1392
1393	if (!IS_ERR_OR_NULL(c->root))
1394		list_add(&c->root->list, &c->btree_cache);
1395
1396	/* Should skip this if we're unregistering because of an error */
1397	list_for_each_entry(b, &c->btree_cache, list) {
1398		mutex_lock(&b->write_lock);
1399		if (btree_node_dirty(b))
1400			__bch_btree_node_write(b, NULL);
1401		mutex_unlock(&b->write_lock);
1402	}
1403
1404	for_each_cache(ca, c, i)
1405		if (ca->alloc_thread)
1406			kthread_stop(ca->alloc_thread);
1407
1408	cancel_delayed_work_sync(&c->journal.work);
1409	/* flush last journal entry if needed */
1410	c->journal.work.work.func(&c->journal.work.work);
1411
1412	closure_return(cl);
1413}
1414
1415static void __cache_set_unregister(struct closure *cl)
1416{
1417	struct cache_set *c = container_of(cl, struct cache_set, caching);
1418	struct cached_dev *dc;
1419	size_t i;
1420
1421	mutex_lock(&bch_register_lock);
1422
1423	for (i = 0; i < c->nr_uuids; i++)
1424		if (c->devices[i]) {
1425			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1426			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1427				dc = container_of(c->devices[i],
1428						  struct cached_dev, disk);
1429				bch_cached_dev_detach(dc);
1430			} else {
1431				bcache_device_stop(c->devices[i]);
1432			}
1433		}
1434
1435	mutex_unlock(&bch_register_lock);
1436
1437	continue_at(cl, cache_set_flush, system_wq);
1438}
1439
1440void bch_cache_set_stop(struct cache_set *c)
1441{
1442	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1443		closure_queue(&c->caching);
1444}
1445
1446void bch_cache_set_unregister(struct cache_set *c)
1447{
1448	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1449	bch_cache_set_stop(c);
1450}
1451
1452#define alloc_bucket_pages(gfp, c)			\
1453	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1454
1455struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1456{
1457	int iter_size;
1458	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1459	if (!c)
1460		return NULL;
1461
1462	__module_get(THIS_MODULE);
1463	closure_init(&c->cl, NULL);
1464	set_closure_fn(&c->cl, cache_set_free, system_wq);
1465
1466	closure_init(&c->caching, &c->cl);
1467	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1468
1469	/* Maybe create continue_at_noreturn() and use it here? */
1470	closure_set_stopped(&c->cl);
1471	closure_put(&c->cl);
1472
1473	kobject_init(&c->kobj, &bch_cache_set_ktype);
1474	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1475
1476	bch_cache_accounting_init(&c->accounting, &c->cl);
1477
1478	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1479	c->sb.block_size	= sb->block_size;
1480	c->sb.bucket_size	= sb->bucket_size;
1481	c->sb.nr_in_set		= sb->nr_in_set;
1482	c->sb.last_mount	= sb->last_mount;
1483	c->bucket_bits		= ilog2(sb->bucket_size);
1484	c->block_bits		= ilog2(sb->block_size);
1485	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1486
1487	c->btree_pages		= bucket_pages(c);
1488	if (c->btree_pages > BTREE_MAX_PAGES)
1489		c->btree_pages = max_t(int, c->btree_pages / 4,
1490				       BTREE_MAX_PAGES);
1491
1492	sema_init(&c->sb_write_mutex, 1);
1493	mutex_init(&c->bucket_lock);
1494	init_waitqueue_head(&c->btree_cache_wait);
1495	init_waitqueue_head(&c->bucket_wait);
1496	sema_init(&c->uuid_write_mutex, 1);
1497
1498	spin_lock_init(&c->btree_gc_time.lock);
1499	spin_lock_init(&c->btree_split_time.lock);
1500	spin_lock_init(&c->btree_read_time.lock);
1501
1502	bch_moving_init_cache_set(c);
1503
1504	INIT_LIST_HEAD(&c->list);
1505	INIT_LIST_HEAD(&c->cached_devs);
1506	INIT_LIST_HEAD(&c->btree_cache);
1507	INIT_LIST_HEAD(&c->btree_cache_freeable);
1508	INIT_LIST_HEAD(&c->btree_cache_freed);
1509	INIT_LIST_HEAD(&c->data_buckets);
1510
1511	c->search = mempool_create_slab_pool(32, bch_search_cache);
1512	if (!c->search)
1513		goto err;
1514
1515	iter_size = (sb->bucket_size / sb->block_size + 1) *
1516		sizeof(struct btree_iter_set);
1517
1518	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1519	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1520				sizeof(struct bbio) + sizeof(struct bio_vec) *
1521				bucket_pages(c))) ||
1522	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1523	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1524	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1525	    !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1526	    bch_journal_alloc(c) ||
1527	    bch_btree_cache_alloc(c) ||
1528	    bch_open_buckets_alloc(c) ||
1529	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1530		goto err;
1531
1532	c->congested_read_threshold_us	= 2000;
1533	c->congested_write_threshold_us	= 20000;
1534	c->error_limit	= 8 << IO_ERROR_SHIFT;
1535
1536	return c;
1537err:
1538	bch_cache_set_unregister(c);
1539	return NULL;
1540}
1541
1542static void run_cache_set(struct cache_set *c)
1543{
1544	const char *err = "cannot allocate memory";
1545	struct cached_dev *dc, *t;
1546	struct cache *ca;
1547	struct closure cl;
1548	unsigned i;
1549
1550	closure_init_stack(&cl);
1551
1552	for_each_cache(ca, c, i)
1553		c->nbuckets += ca->sb.nbuckets;
1554
1555	if (CACHE_SYNC(&c->sb)) {
1556		LIST_HEAD(journal);
1557		struct bkey *k;
1558		struct jset *j;
1559
1560		err = "cannot allocate memory for journal";
1561		if (bch_journal_read(c, &journal))
1562			goto err;
1563
1564		pr_debug("btree_journal_read() done");
1565
1566		err = "no journal entries found";
1567		if (list_empty(&journal))
1568			goto err;
1569
1570		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1571
1572		err = "IO error reading priorities";
1573		for_each_cache(ca, c, i)
1574			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1575
1576		/*
1577		 * If prio_read() fails it'll call cache_set_error and we'll
1578		 * tear everything down right away, but if we perhaps checked
1579		 * sooner we could avoid journal replay.
1580		 */
1581
1582		k = &j->btree_root;
1583
1584		err = "bad btree root";
1585		if (__bch_btree_ptr_invalid(c, k))
1586			goto err;
1587
1588		err = "error reading btree root";
1589		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true);
1590		if (IS_ERR_OR_NULL(c->root))
1591			goto err;
1592
1593		list_del_init(&c->root->list);
1594		rw_unlock(true, c->root);
1595
1596		err = uuid_read(c, j, &cl);
1597		if (err)
1598			goto err;
1599
1600		err = "error in recovery";
1601		if (bch_btree_check(c))
1602			goto err;
1603
1604		bch_journal_mark(c, &journal);
1605		bch_initial_gc_finish(c);
1606		pr_debug("btree_check() done");
1607
1608		/*
1609		 * bcache_journal_next() can't happen sooner, or
1610		 * btree_gc_finish() will give spurious errors about last_gc >
1611		 * gc_gen - this is a hack but oh well.
1612		 */
1613		bch_journal_next(&c->journal);
1614
1615		err = "error starting allocator thread";
1616		for_each_cache(ca, c, i)
1617			if (bch_cache_allocator_start(ca))
1618				goto err;
1619
1620		/*
1621		 * First place it's safe to allocate: btree_check() and
1622		 * btree_gc_finish() have to run before we have buckets to
1623		 * allocate, and bch_bucket_alloc_set() might cause a journal
1624		 * entry to be written so bcache_journal_next() has to be called
1625		 * first.
1626		 *
1627		 * If the uuids were in the old format we have to rewrite them
1628		 * before the next journal entry is written:
1629		 */
1630		if (j->version < BCACHE_JSET_VERSION_UUID)
1631			__uuid_write(c);
1632
1633		bch_journal_replay(c, &journal);
1634	} else {
1635		pr_notice("invalidating existing data");
1636
1637		for_each_cache(ca, c, i) {
1638			unsigned j;
1639
1640			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1641					      2, SB_JOURNAL_BUCKETS);
1642
1643			for (j = 0; j < ca->sb.keys; j++)
1644				ca->sb.d[j] = ca->sb.first_bucket + j;
1645		}
1646
1647		bch_initial_gc_finish(c);
1648
1649		err = "error starting allocator thread";
1650		for_each_cache(ca, c, i)
1651			if (bch_cache_allocator_start(ca))
1652				goto err;
1653
1654		mutex_lock(&c->bucket_lock);
1655		for_each_cache(ca, c, i)
1656			bch_prio_write(ca);
1657		mutex_unlock(&c->bucket_lock);
1658
1659		err = "cannot allocate new UUID bucket";
1660		if (__uuid_write(c))
1661			goto err;
1662
1663		err = "cannot allocate new btree root";
1664		c->root = bch_btree_node_alloc(c, NULL, 0);
1665		if (IS_ERR_OR_NULL(c->root))
1666			goto err;
1667
1668		mutex_lock(&c->root->write_lock);
1669		bkey_copy_key(&c->root->key, &MAX_KEY);
1670		bch_btree_node_write(c->root, &cl);
1671		mutex_unlock(&c->root->write_lock);
1672
1673		bch_btree_set_root(c->root);
1674		rw_unlock(true, c->root);
1675
1676		/*
1677		 * We don't want to write the first journal entry until
1678		 * everything is set up - fortunately journal entries won't be
1679		 * written until the SET_CACHE_SYNC() here:
1680		 */
1681		SET_CACHE_SYNC(&c->sb, true);
1682
1683		bch_journal_next(&c->journal);
1684		bch_journal_meta(c, &cl);
1685	}
1686
1687	err = "error starting gc thread";
1688	if (bch_gc_thread_start(c))
1689		goto err;
1690
1691	closure_sync(&cl);
1692	c->sb.last_mount = get_seconds();
1693	bcache_write_super(c);
1694
1695	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1696		bch_cached_dev_attach(dc, c);
1697
1698	flash_devs_run(c);
1699
1700	return;
1701err:
1702	closure_sync(&cl);
1703	/* XXX: test this, it's broken */
1704	bch_cache_set_error(c, "%s", err);
1705}
1706
1707static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1708{
1709	return ca->sb.block_size	== c->sb.block_size &&
1710		ca->sb.bucket_size	== c->sb.bucket_size &&
1711		ca->sb.nr_in_set	== c->sb.nr_in_set;
1712}
1713
1714static const char *register_cache_set(struct cache *ca)
1715{
1716	char buf[12];
1717	const char *err = "cannot allocate memory";
1718	struct cache_set *c;
1719
1720	list_for_each_entry(c, &bch_cache_sets, list)
1721		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1722			if (c->cache[ca->sb.nr_this_dev])
1723				return "duplicate cache set member";
1724
1725			if (!can_attach_cache(ca, c))
1726				return "cache sb does not match set";
1727
1728			if (!CACHE_SYNC(&ca->sb))
1729				SET_CACHE_SYNC(&c->sb, false);
1730
1731			goto found;
1732		}
1733
1734	c = bch_cache_set_alloc(&ca->sb);
1735	if (!c)
1736		return err;
1737
1738	err = "error creating kobject";
1739	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1740	    kobject_add(&c->internal, &c->kobj, "internal"))
1741		goto err;
1742
1743	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1744		goto err;
1745
1746	bch_debug_init_cache_set(c);
1747
1748	list_add(&c->list, &bch_cache_sets);
1749found:
1750	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1751	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1752	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1753		goto err;
1754
1755	if (ca->sb.seq > c->sb.seq) {
1756		c->sb.version		= ca->sb.version;
1757		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1758		c->sb.flags             = ca->sb.flags;
1759		c->sb.seq		= ca->sb.seq;
1760		pr_debug("set version = %llu", c->sb.version);
1761	}
1762
1763	ca->set = c;
1764	ca->set->cache[ca->sb.nr_this_dev] = ca;
1765	c->cache_by_alloc[c->caches_loaded++] = ca;
1766
1767	if (c->caches_loaded == c->sb.nr_in_set)
1768		run_cache_set(c);
1769
1770	return NULL;
1771err:
1772	bch_cache_set_unregister(c);
1773	return err;
1774}
1775
1776/* Cache device */
1777
1778void bch_cache_release(struct kobject *kobj)
1779{
1780	struct cache *ca = container_of(kobj, struct cache, kobj);
1781	unsigned i;
1782
1783	if (ca->set)
1784		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1785
1786	bio_split_pool_free(&ca->bio_split_hook);
1787
1788	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1789	kfree(ca->prio_buckets);
1790	vfree(ca->buckets);
1791
1792	free_heap(&ca->heap);
1793	free_fifo(&ca->free_inc);
1794
1795	for (i = 0; i < RESERVE_NR; i++)
1796		free_fifo(&ca->free[i]);
1797
1798	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1799		put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1800
1801	if (!IS_ERR_OR_NULL(ca->bdev)) {
1802		blk_sync_queue(bdev_get_queue(ca->bdev));
1803		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1804	}
1805
1806	kfree(ca);
1807	module_put(THIS_MODULE);
1808}
1809
1810static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1811{
1812	size_t free;
1813	struct bucket *b;
1814
1815	__module_get(THIS_MODULE);
1816	kobject_init(&ca->kobj, &bch_cache_ktype);
1817
1818	bio_init(&ca->journal.bio);
1819	ca->journal.bio.bi_max_vecs = 8;
1820	ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1821
1822	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1823
1824	if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1825	    !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1826	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1827	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1828	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1829	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1830	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1831					  ca->sb.nbuckets)) ||
1832	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1833					  2, GFP_KERNEL)) ||
1834	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)) ||
1835	    bio_split_pool_init(&ca->bio_split_hook))
1836		return -ENOMEM;
1837
1838	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1839
1840	for_each_bucket(b, ca)
1841		atomic_set(&b->pin, 0);
1842
1843	return 0;
1844}
1845
1846static void register_cache(struct cache_sb *sb, struct page *sb_page,
1847				  struct block_device *bdev, struct cache *ca)
1848{
1849	char name[BDEVNAME_SIZE];
1850	const char *err = "cannot allocate memory";
1851
1852	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1853	ca->bdev = bdev;
1854	ca->bdev->bd_holder = ca;
1855
1856	bio_init(&ca->sb_bio);
1857	ca->sb_bio.bi_max_vecs	= 1;
1858	ca->sb_bio.bi_io_vec	= ca->sb_bio.bi_inline_vecs;
1859	ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1860	get_page(sb_page);
1861
1862	if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1863		ca->discard = CACHE_DISCARD(&ca->sb);
1864
1865	if (cache_alloc(sb, ca) != 0)
1866		goto err;
1867
1868	err = "error creating kobject";
1869	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1870		goto err;
1871
1872	mutex_lock(&bch_register_lock);
1873	err = register_cache_set(ca);
1874	mutex_unlock(&bch_register_lock);
1875
1876	if (err)
1877		goto err;
1878
1879	pr_info("registered cache device %s", bdevname(bdev, name));
1880	return;
1881err:
1882	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1883	kobject_put(&ca->kobj);
1884}
1885
1886/* Global interfaces/init */
1887
1888static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1889			       const char *, size_t);
1890
1891kobj_attribute_write(register,		register_bcache);
1892kobj_attribute_write(register_quiet,	register_bcache);
1893
1894static bool bch_is_open_backing(struct block_device *bdev) {
1895	struct cache_set *c, *tc;
1896	struct cached_dev *dc, *t;
1897
1898	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1899		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1900			if (dc->bdev == bdev)
1901				return true;
1902	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1903		if (dc->bdev == bdev)
1904			return true;
1905	return false;
1906}
1907
1908static bool bch_is_open_cache(struct block_device *bdev) {
1909	struct cache_set *c, *tc;
1910	struct cache *ca;
1911	unsigned i;
1912
1913	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1914		for_each_cache(ca, c, i)
1915			if (ca->bdev == bdev)
1916				return true;
1917	return false;
1918}
1919
1920static bool bch_is_open(struct block_device *bdev) {
1921	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1922}
1923
1924static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1925			       const char *buffer, size_t size)
1926{
1927	ssize_t ret = size;
1928	const char *err = "cannot allocate memory";
1929	char *path = NULL;
1930	struct cache_sb *sb = NULL;
1931	struct block_device *bdev = NULL;
1932	struct page *sb_page = NULL;
1933
1934	if (!try_module_get(THIS_MODULE))
1935		return -EBUSY;
1936
1937	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1938	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1939		goto err;
1940
1941	err = "failed to open device";
1942	bdev = blkdev_get_by_path(strim(path),
1943				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1944				  sb);
1945	if (IS_ERR(bdev)) {
1946		if (bdev == ERR_PTR(-EBUSY)) {
1947			bdev = lookup_bdev(strim(path));
1948			if (!IS_ERR(bdev) && bch_is_open(bdev))
1949				err = "device already registered";
1950			else
1951				err = "device busy";
1952		}
1953		goto err;
1954	}
1955
1956	err = "failed to set blocksize";
1957	if (set_blocksize(bdev, 4096))
1958		goto err_close;
1959
1960	err = read_super(sb, bdev, &sb_page);
1961	if (err)
1962		goto err_close;
1963
1964	if (SB_IS_BDEV(sb)) {
1965		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1966		if (!dc)
1967			goto err_close;
1968
1969		mutex_lock(&bch_register_lock);
1970		register_bdev(sb, sb_page, bdev, dc);
1971		mutex_unlock(&bch_register_lock);
1972	} else {
1973		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1974		if (!ca)
1975			goto err_close;
1976
1977		register_cache(sb, sb_page, bdev, ca);
1978	}
1979out:
1980	if (sb_page)
1981		put_page(sb_page);
1982	kfree(sb);
1983	kfree(path);
1984	module_put(THIS_MODULE);
1985	return ret;
1986
1987err_close:
1988	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1989err:
1990	if (attr != &ksysfs_register_quiet)
1991		pr_info("error opening %s: %s", path, err);
1992	ret = -EINVAL;
1993	goto out;
1994}
1995
1996static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1997{
1998	if (code == SYS_DOWN ||
1999	    code == SYS_HALT ||
2000	    code == SYS_POWER_OFF) {
2001		DEFINE_WAIT(wait);
2002		unsigned long start = jiffies;
2003		bool stopped = false;
2004
2005		struct cache_set *c, *tc;
2006		struct cached_dev *dc, *tdc;
2007
2008		mutex_lock(&bch_register_lock);
2009
2010		if (list_empty(&bch_cache_sets) &&
2011		    list_empty(&uncached_devices))
2012			goto out;
2013
2014		pr_info("Stopping all devices:");
2015
2016		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2017			bch_cache_set_stop(c);
2018
2019		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2020			bcache_device_stop(&dc->disk);
2021
2022		/* What's a condition variable? */
2023		while (1) {
2024			long timeout = start + 2 * HZ - jiffies;
2025
2026			stopped = list_empty(&bch_cache_sets) &&
2027				list_empty(&uncached_devices);
2028
2029			if (timeout < 0 || stopped)
2030				break;
2031
2032			prepare_to_wait(&unregister_wait, &wait,
2033					TASK_UNINTERRUPTIBLE);
2034
2035			mutex_unlock(&bch_register_lock);
2036			schedule_timeout(timeout);
2037			mutex_lock(&bch_register_lock);
2038		}
2039
2040		finish_wait(&unregister_wait, &wait);
2041
2042		if (stopped)
2043			pr_info("All devices stopped");
2044		else
2045			pr_notice("Timeout waiting for devices to be closed");
2046out:
2047		mutex_unlock(&bch_register_lock);
2048	}
2049
2050	return NOTIFY_DONE;
2051}
2052
2053static struct notifier_block reboot = {
2054	.notifier_call	= bcache_reboot,
2055	.priority	= INT_MAX, /* before any real devices */
2056};
2057
2058static void bcache_exit(void)
2059{
2060	bch_debug_exit();
2061	bch_request_exit();
2062	if (bcache_kobj)
2063		kobject_put(bcache_kobj);
2064	if (bcache_wq)
2065		destroy_workqueue(bcache_wq);
2066	if (bcache_major)
2067		unregister_blkdev(bcache_major, "bcache");
2068	unregister_reboot_notifier(&reboot);
2069}
2070
2071static int __init bcache_init(void)
2072{
2073	static const struct attribute *files[] = {
2074		&ksysfs_register.attr,
2075		&ksysfs_register_quiet.attr,
2076		NULL
2077	};
2078
2079	mutex_init(&bch_register_lock);
2080	init_waitqueue_head(&unregister_wait);
2081	register_reboot_notifier(&reboot);
2082	closure_debug_init();
2083
2084	bcache_major = register_blkdev(0, "bcache");
2085	if (bcache_major < 0)
2086		return bcache_major;
2087
2088	if (!(bcache_wq = create_workqueue("bcache")) ||
2089	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2090	    sysfs_create_files(bcache_kobj, files) ||
2091	    bch_request_init() ||
2092	    bch_debug_init(bcache_kobj))
2093		goto err;
2094
2095	return 0;
2096err:
2097	bcache_exit();
2098	return -ENOMEM;
2099}
2100
2101module_exit(bcache_exit);
2102module_init(bcache_init);