Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Primary bucket allocation code
  4 *
  5 * Copyright 2012 Google, Inc.
  6 *
  7 * Allocation in bcache is done in terms of buckets:
  8 *
  9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
 10 * btree pointers - they must match for the pointer to be considered valid.
 11 *
 12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
 13 * bucket simply by incrementing its gen.
 14 *
 15 * The gens (along with the priorities; it's really the gens are important but
 16 * the code is named as if it's the priorities) are written in an arbitrary list
 17 * of buckets on disk, with a pointer to them in the journal header.
 18 *
 19 * When we invalidate a bucket, we have to write its new gen to disk and wait
 20 * for that write to complete before we use it - otherwise after a crash we
 21 * could have pointers that appeared to be good but pointed to data that had
 22 * been overwritten.
 23 *
 24 * Since the gens and priorities are all stored contiguously on disk, we can
 25 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
 26 * call prio_write(), and when prio_write() finishes we pull buckets off the
 27 * free_inc list and optionally discard them.
 28 *
 29 * free_inc isn't the only freelist - if it was, we'd often to sleep while
 30 * priorities and gens were being written before we could allocate. c->free is a
 31 * smaller freelist, and buckets on that list are always ready to be used.
 32 *
 33 * If we've got discards enabled, that happens when a bucket moves from the
 34 * free_inc list to the free list.
 35 *
 36 * There is another freelist, because sometimes we have buckets that we know
 37 * have nothing pointing into them - these we can reuse without waiting for
 38 * priorities to be rewritten. These come from freed btree nodes and buckets
 39 * that garbage collection discovered no longer had valid keys pointing into
 40 * them (because they were overwritten). That's the unused list - buckets on the
 41 * unused list move to the free list, optionally being discarded in the process.
 42 *
 43 * It's also important to ensure that gens don't wrap around - with respect to
 44 * either the oldest gen in the btree or the gen on disk. This is quite
 45 * difficult to do in practice, but we explicitly guard against it anyways - if
 46 * a bucket is in danger of wrapping around we simply skip invalidating it that
 47 * time around, and we garbage collect or rewrite the priorities sooner than we
 48 * would have otherwise.
 49 *
 50 * bch_bucket_alloc() allocates a single bucket from a specific cache.
 51 *
 52 * bch_bucket_alloc_set() allocates one or more buckets from different caches
 53 * out of a cache set.
 54 *
 55 * free_some_buckets() drives all the processes described above. It's called
 56 * from bch_bucket_alloc() and a few other places that need to make sure free
 57 * buckets are ready.
 58 *
 59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
 60 * invalidated, and then invalidate them and stick them on the free_inc list -
 61 * in either lru or fifo order.
 62 */
 63
 64#include "bcache.h"
 65#include "btree.h"
 66
 67#include <linux/blkdev.h>
 68#include <linux/kthread.h>
 69#include <linux/random.h>
 70#include <trace/events/bcache.h>
 71
 72#define MAX_OPEN_BUCKETS 128
 73
 74/* Bucket heap / gen */
 75
 76uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
 77{
 78	uint8_t ret = ++b->gen;
 79
 80	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
 81	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
 82
 83	return ret;
 84}
 85
 86void bch_rescale_priorities(struct cache_set *c, int sectors)
 87{
 88	struct cache *ca;
 89	struct bucket *b;
 90	unsigned long next = c->nbuckets * c->sb.bucket_size / 1024;
 91	unsigned int i;
 92	int r;
 93
 94	atomic_sub(sectors, &c->rescale);
 95
 96	do {
 97		r = atomic_read(&c->rescale);
 98
 99		if (r >= 0)
100			return;
101	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
102
103	mutex_lock(&c->bucket_lock);
104
105	c->min_prio = USHRT_MAX;
106
107	for_each_cache(ca, c, i)
108		for_each_bucket(b, ca)
109			if (b->prio &&
110			    b->prio != BTREE_PRIO &&
111			    !atomic_read(&b->pin)) {
112				b->prio--;
113				c->min_prio = min(c->min_prio, b->prio);
114			}
115
116	mutex_unlock(&c->bucket_lock);
117}
118
119/*
120 * Background allocation thread: scans for buckets to be invalidated,
121 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
122 * then optionally issues discard commands to the newly free buckets, then puts
123 * them on the various freelists.
124 */
125
126static inline bool can_inc_bucket_gen(struct bucket *b)
127{
128	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
129}
130
131bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
132{
133	BUG_ON(!ca->set->gc_mark_valid);
134
135	return (!GC_MARK(b) ||
136		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
137		!atomic_read(&b->pin) &&
138		can_inc_bucket_gen(b);
139}
140
141void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
142{
143	lockdep_assert_held(&ca->set->bucket_lock);
144	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
145
146	if (GC_SECTORS_USED(b))
147		trace_bcache_invalidate(ca, b - ca->buckets);
148
149	bch_inc_gen(ca, b);
150	b->prio = INITIAL_PRIO;
151	atomic_inc(&b->pin);
152}
153
154static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
155{
156	__bch_invalidate_one_bucket(ca, b);
157
158	fifo_push(&ca->free_inc, b - ca->buckets);
159}
160
161/*
162 * Determines what order we're going to reuse buckets, smallest bucket_prio()
163 * first: we also take into account the number of sectors of live data in that
164 * bucket, and in order for that multiply to make sense we have to scale bucket
165 *
166 * Thus, we scale the bucket priorities so that the bucket with the smallest
167 * prio is worth 1/8th of what INITIAL_PRIO is worth.
168 */
169
170#define bucket_prio(b)							\
171({									\
172	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
173									\
174	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
175})
176
177#define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
178#define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
179
180static void invalidate_buckets_lru(struct cache *ca)
181{
182	struct bucket *b;
183	ssize_t i;
184
185	ca->heap.used = 0;
186
187	for_each_bucket(b, ca) {
188		if (!bch_can_invalidate_bucket(ca, b))
189			continue;
190
191		if (!heap_full(&ca->heap))
192			heap_add(&ca->heap, b, bucket_max_cmp);
193		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
194			ca->heap.data[0] = b;
195			heap_sift(&ca->heap, 0, bucket_max_cmp);
196		}
197	}
198
199	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
200		heap_sift(&ca->heap, i, bucket_min_cmp);
201
202	while (!fifo_full(&ca->free_inc)) {
203		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
204			/*
205			 * We don't want to be calling invalidate_buckets()
206			 * multiple times when it can't do anything
207			 */
208			ca->invalidate_needs_gc = 1;
209			wake_up_gc(ca->set);
210			return;
211		}
212
213		bch_invalidate_one_bucket(ca, b);
214	}
215}
216
217static void invalidate_buckets_fifo(struct cache *ca)
218{
219	struct bucket *b;
220	size_t checked = 0;
221
222	while (!fifo_full(&ca->free_inc)) {
223		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
224		    ca->fifo_last_bucket >= ca->sb.nbuckets)
225			ca->fifo_last_bucket = ca->sb.first_bucket;
226
227		b = ca->buckets + ca->fifo_last_bucket++;
228
229		if (bch_can_invalidate_bucket(ca, b))
230			bch_invalidate_one_bucket(ca, b);
231
232		if (++checked >= ca->sb.nbuckets) {
233			ca->invalidate_needs_gc = 1;
234			wake_up_gc(ca->set);
235			return;
236		}
237	}
238}
239
240static void invalidate_buckets_random(struct cache *ca)
241{
242	struct bucket *b;
243	size_t checked = 0;
244
245	while (!fifo_full(&ca->free_inc)) {
246		size_t n;
247
248		get_random_bytes(&n, sizeof(n));
249
250		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
251		n += ca->sb.first_bucket;
252
253		b = ca->buckets + n;
254
255		if (bch_can_invalidate_bucket(ca, b))
256			bch_invalidate_one_bucket(ca, b);
257
258		if (++checked >= ca->sb.nbuckets / 2) {
259			ca->invalidate_needs_gc = 1;
260			wake_up_gc(ca->set);
261			return;
262		}
263	}
264}
265
266static void invalidate_buckets(struct cache *ca)
267{
268	BUG_ON(ca->invalidate_needs_gc);
269
270	switch (CACHE_REPLACEMENT(&ca->sb)) {
271	case CACHE_REPLACEMENT_LRU:
272		invalidate_buckets_lru(ca);
273		break;
274	case CACHE_REPLACEMENT_FIFO:
275		invalidate_buckets_fifo(ca);
276		break;
277	case CACHE_REPLACEMENT_RANDOM:
278		invalidate_buckets_random(ca);
279		break;
280	}
281}
282
283#define allocator_wait(ca, cond)					\
284do {									\
285	while (1) {							\
286		set_current_state(TASK_INTERRUPTIBLE);			\
287		if (cond)						\
288			break;						\
289									\
290		mutex_unlock(&(ca)->set->bucket_lock);			\
291		if (kthread_should_stop() ||				\
292		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
293			set_current_state(TASK_RUNNING);		\
294			goto out;					\
295		}							\
296									\
297		schedule();						\
298		mutex_lock(&(ca)->set->bucket_lock);			\
299	}								\
300	__set_current_state(TASK_RUNNING);				\
301} while (0)
302
303static int bch_allocator_push(struct cache *ca, long bucket)
304{
305	unsigned int i;
306
307	/* Prios/gens are actually the most important reserve */
308	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
309		return true;
310
311	for (i = 0; i < RESERVE_NR; i++)
312		if (fifo_push(&ca->free[i], bucket))
313			return true;
314
315	return false;
316}
317
318static int bch_allocator_thread(void *arg)
319{
320	struct cache *ca = arg;
321
322	mutex_lock(&ca->set->bucket_lock);
323
324	while (1) {
325		/*
326		 * First, we pull buckets off of the unused and free_inc lists,
327		 * possibly issue discards to them, then we add the bucket to
328		 * the free list:
329		 */
330		while (1) {
331			long bucket;
332
333			if (!fifo_pop(&ca->free_inc, bucket))
334				break;
335
336			if (ca->discard) {
337				mutex_unlock(&ca->set->bucket_lock);
338				blkdev_issue_discard(ca->bdev,
339					bucket_to_sector(ca->set, bucket),
340					ca->sb.bucket_size, GFP_KERNEL, 0);
341				mutex_lock(&ca->set->bucket_lock);
342			}
343
344			allocator_wait(ca, bch_allocator_push(ca, bucket));
345			wake_up(&ca->set->btree_cache_wait);
346			wake_up(&ca->set->bucket_wait);
347		}
348
349		/*
350		 * We've run out of free buckets, we need to find some buckets
351		 * we can invalidate. First, invalidate them in memory and add
352		 * them to the free_inc list:
353		 */
354
355retry_invalidate:
356		allocator_wait(ca, ca->set->gc_mark_valid &&
357			       !ca->invalidate_needs_gc);
358		invalidate_buckets(ca);
359
360		/*
361		 * Now, we write their new gens to disk so we can start writing
362		 * new stuff to them:
363		 */
364		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
365		if (CACHE_SYNC(&ca->set->sb)) {
366			/*
367			 * This could deadlock if an allocation with a btree
368			 * node locked ever blocked - having the btree node
369			 * locked would block garbage collection, but here we're
370			 * waiting on garbage collection before we invalidate
371			 * and free anything.
372			 *
373			 * But this should be safe since the btree code always
374			 * uses btree_check_reserve() before allocating now, and
375			 * if it fails it blocks without btree nodes locked.
376			 */
377			if (!fifo_full(&ca->free_inc))
378				goto retry_invalidate;
379
380			if (bch_prio_write(ca, false) < 0) {
381				ca->invalidate_needs_gc = 1;
382				wake_up_gc(ca->set);
383			}
384		}
385	}
386out:
387	wait_for_kthread_stop();
388	return 0;
389}
390
391/* Allocation */
392
393long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
394{
395	DEFINE_WAIT(w);
396	struct bucket *b;
397	long r;
398
399
400	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
401	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
402		return -1;
403
404	/* fastpath */
405	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
406	    fifo_pop(&ca->free[reserve], r))
407		goto out;
408
409	if (!wait) {
410		trace_bcache_alloc_fail(ca, reserve);
411		return -1;
412	}
413
414	do {
415		prepare_to_wait(&ca->set->bucket_wait, &w,
416				TASK_UNINTERRUPTIBLE);
417
418		mutex_unlock(&ca->set->bucket_lock);
419		schedule();
420		mutex_lock(&ca->set->bucket_lock);
421	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
422		 !fifo_pop(&ca->free[reserve], r));
423
424	finish_wait(&ca->set->bucket_wait, &w);
425out:
426	if (ca->alloc_thread)
427		wake_up_process(ca->alloc_thread);
428
429	trace_bcache_alloc(ca, reserve);
430
431	if (expensive_debug_checks(ca->set)) {
432		size_t iter;
433		long i;
434		unsigned int j;
435
436		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
437			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
438
439		for (j = 0; j < RESERVE_NR; j++)
440			fifo_for_each(i, &ca->free[j], iter)
441				BUG_ON(i == r);
442		fifo_for_each(i, &ca->free_inc, iter)
443			BUG_ON(i == r);
444	}
445
446	b = ca->buckets + r;
447
448	BUG_ON(atomic_read(&b->pin) != 1);
449
450	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
451
452	if (reserve <= RESERVE_PRIO) {
453		SET_GC_MARK(b, GC_MARK_METADATA);
454		SET_GC_MOVE(b, 0);
455		b->prio = BTREE_PRIO;
456	} else {
457		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
458		SET_GC_MOVE(b, 0);
459		b->prio = INITIAL_PRIO;
460	}
461
462	if (ca->set->avail_nbuckets > 0) {
463		ca->set->avail_nbuckets--;
464		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
465	}
466
467	return r;
468}
469
470void __bch_bucket_free(struct cache *ca, struct bucket *b)
471{
472	SET_GC_MARK(b, 0);
473	SET_GC_SECTORS_USED(b, 0);
474
475	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
476		ca->set->avail_nbuckets++;
477		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
478	}
479}
480
481void bch_bucket_free(struct cache_set *c, struct bkey *k)
482{
483	unsigned int i;
484
485	for (i = 0; i < KEY_PTRS(k); i++)
486		__bch_bucket_free(PTR_CACHE(c, k, i),
487				  PTR_BUCKET(c, k, i));
488}
489
490int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
491			   struct bkey *k, int n, bool wait)
492{
493	int i;
494
495	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
496	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
497		return -1;
498
499	lockdep_assert_held(&c->bucket_lock);
500	BUG_ON(!n || n > c->caches_loaded || n > MAX_CACHES_PER_SET);
501
502	bkey_init(k);
503
504	/* sort by free space/prio of oldest data in caches */
505
506	for (i = 0; i < n; i++) {
507		struct cache *ca = c->cache_by_alloc[i];
508		long b = bch_bucket_alloc(ca, reserve, wait);
509
510		if (b == -1)
511			goto err;
512
513		k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
514				bucket_to_sector(c, b),
515				ca->sb.nr_this_dev);
516
517		SET_KEY_PTRS(k, i + 1);
518	}
519
520	return 0;
521err:
522	bch_bucket_free(c, k);
523	bkey_put(c, k);
524	return -1;
525}
526
527int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
528			 struct bkey *k, int n, bool wait)
529{
530	int ret;
531
532	mutex_lock(&c->bucket_lock);
533	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
534	mutex_unlock(&c->bucket_lock);
535	return ret;
536}
537
538/* Sector allocator */
539
540struct open_bucket {
541	struct list_head	list;
542	unsigned int		last_write_point;
543	unsigned int		sectors_free;
544	BKEY_PADDED(key);
545};
546
547/*
548 * We keep multiple buckets open for writes, and try to segregate different
549 * write streams for better cache utilization: first we try to segregate flash
550 * only volume write streams from cached devices, secondly we look for a bucket
551 * where the last write to it was sequential with the current write, and
552 * failing that we look for a bucket that was last used by the same task.
553 *
554 * The ideas is if you've got multiple tasks pulling data into the cache at the
555 * same time, you'll get better cache utilization if you try to segregate their
556 * data and preserve locality.
557 *
558 * For example, dirty sectors of flash only volume is not reclaimable, if their
559 * dirty sectors mixed with dirty sectors of cached device, such buckets will
560 * be marked as dirty and won't be reclaimed, though the dirty data of cached
561 * device have been written back to backend device.
562 *
563 * And say you've starting Firefox at the same time you're copying a
564 * bunch of files. Firefox will likely end up being fairly hot and stay in the
565 * cache awhile, but the data you copied might not be; if you wrote all that
566 * data to the same buckets it'd get invalidated at the same time.
567 *
568 * Both of those tasks will be doing fairly random IO so we can't rely on
569 * detecting sequential IO to segregate their data, but going off of the task
570 * should be a sane heuristic.
571 */
572static struct open_bucket *pick_data_bucket(struct cache_set *c,
573					    const struct bkey *search,
574					    unsigned int write_point,
575					    struct bkey *alloc)
576{
577	struct open_bucket *ret, *ret_task = NULL;
578
579	list_for_each_entry_reverse(ret, &c->data_buckets, list)
580		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
581		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
582			continue;
583		else if (!bkey_cmp(&ret->key, search))
584			goto found;
585		else if (ret->last_write_point == write_point)
586			ret_task = ret;
587
588	ret = ret_task ?: list_first_entry(&c->data_buckets,
589					   struct open_bucket, list);
590found:
591	if (!ret->sectors_free && KEY_PTRS(alloc)) {
592		ret->sectors_free = c->sb.bucket_size;
593		bkey_copy(&ret->key, alloc);
594		bkey_init(alloc);
595	}
596
597	if (!ret->sectors_free)
598		ret = NULL;
599
600	return ret;
601}
602
603/*
604 * Allocates some space in the cache to write to, and k to point to the newly
605 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
606 * end of the newly allocated space).
607 *
608 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
609 * sectors were actually allocated.
610 *
611 * If s->writeback is true, will not fail.
612 */
613bool bch_alloc_sectors(struct cache_set *c,
614		       struct bkey *k,
615		       unsigned int sectors,
616		       unsigned int write_point,
617		       unsigned int write_prio,
618		       bool wait)
619{
620	struct open_bucket *b;
621	BKEY_PADDED(key) alloc;
622	unsigned int i;
623
624	/*
625	 * We might have to allocate a new bucket, which we can't do with a
626	 * spinlock held. So if we have to allocate, we drop the lock, allocate
627	 * and then retry. KEY_PTRS() indicates whether alloc points to
628	 * allocated bucket(s).
629	 */
630
631	bkey_init(&alloc.key);
632	spin_lock(&c->data_bucket_lock);
633
634	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
635		unsigned int watermark = write_prio
636			? RESERVE_MOVINGGC
637			: RESERVE_NONE;
638
639		spin_unlock(&c->data_bucket_lock);
640
641		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
642			return false;
643
644		spin_lock(&c->data_bucket_lock);
645	}
646
647	/*
648	 * If we had to allocate, we might race and not need to allocate the
649	 * second time we call pick_data_bucket(). If we allocated a bucket but
650	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
651	 */
652	if (KEY_PTRS(&alloc.key))
653		bkey_put(c, &alloc.key);
654
655	for (i = 0; i < KEY_PTRS(&b->key); i++)
656		EBUG_ON(ptr_stale(c, &b->key, i));
657
658	/* Set up the pointer to the space we're allocating: */
659
660	for (i = 0; i < KEY_PTRS(&b->key); i++)
661		k->ptr[i] = b->key.ptr[i];
662
663	sectors = min(sectors, b->sectors_free);
664
665	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
666	SET_KEY_SIZE(k, sectors);
667	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
668
669	/*
670	 * Move b to the end of the lru, and keep track of what this bucket was
671	 * last used for:
672	 */
673	list_move_tail(&b->list, &c->data_buckets);
674	bkey_copy_key(&b->key, k);
675	b->last_write_point = write_point;
676
677	b->sectors_free	-= sectors;
678
679	for (i = 0; i < KEY_PTRS(&b->key); i++) {
680		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
681
682		atomic_long_add(sectors,
683				&PTR_CACHE(c, &b->key, i)->sectors_written);
684	}
685
686	if (b->sectors_free < c->sb.block_size)
687		b->sectors_free = 0;
688
689	/*
690	 * k takes refcounts on the buckets it points to until it's inserted
691	 * into the btree, but if we're done with this bucket we just transfer
692	 * get_data_bucket()'s refcount.
693	 */
694	if (b->sectors_free)
695		for (i = 0; i < KEY_PTRS(&b->key); i++)
696			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
697
698	spin_unlock(&c->data_bucket_lock);
699	return true;
700}
701
702/* Init */
703
704void bch_open_buckets_free(struct cache_set *c)
705{
706	struct open_bucket *b;
707
708	while (!list_empty(&c->data_buckets)) {
709		b = list_first_entry(&c->data_buckets,
710				     struct open_bucket, list);
711		list_del(&b->list);
712		kfree(b);
713	}
714}
715
716int bch_open_buckets_alloc(struct cache_set *c)
717{
718	int i;
719
720	spin_lock_init(&c->data_bucket_lock);
721
722	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
723		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
724
725		if (!b)
726			return -ENOMEM;
727
728		list_add(&b->list, &c->data_buckets);
729	}
730
731	return 0;
732}
733
734int bch_cache_allocator_start(struct cache *ca)
735{
736	struct task_struct *k = kthread_run(bch_allocator_thread,
737					    ca, "bcache_allocator");
738	if (IS_ERR(k))
739		return PTR_ERR(k);
740
741	ca->alloc_thread = k;
742	return 0;
743}