Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Primary bucket allocation code
  3 *
  4 * Copyright 2012 Google, Inc.
  5 *
  6 * Allocation in bcache is done in terms of buckets:
  7 *
  8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
  9 * btree pointers - they must match for the pointer to be considered valid.
 10 *
 11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
 12 * bucket simply by incrementing its gen.
 13 *
 14 * The gens (along with the priorities; it's really the gens are important but
 15 * the code is named as if it's the priorities) are written in an arbitrary list
 16 * of buckets on disk, with a pointer to them in the journal header.
 17 *
 18 * When we invalidate a bucket, we have to write its new gen to disk and wait
 19 * for that write to complete before we use it - otherwise after a crash we
 20 * could have pointers that appeared to be good but pointed to data that had
 21 * been overwritten.
 22 *
 23 * Since the gens and priorities are all stored contiguously on disk, we can
 24 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
 25 * call prio_write(), and when prio_write() finishes we pull buckets off the
 26 * free_inc list and optionally discard them.
 27 *
 28 * free_inc isn't the only freelist - if it was, we'd often to sleep while
 29 * priorities and gens were being written before we could allocate. c->free is a
 30 * smaller freelist, and buckets on that list are always ready to be used.
 31 *
 32 * If we've got discards enabled, that happens when a bucket moves from the
 33 * free_inc list to the free list.
 34 *
 35 * There is another freelist, because sometimes we have buckets that we know
 36 * have nothing pointing into them - these we can reuse without waiting for
 37 * priorities to be rewritten. These come from freed btree nodes and buckets
 38 * that garbage collection discovered no longer had valid keys pointing into
 39 * them (because they were overwritten). That's the unused list - buckets on the
 40 * unused list move to the free list, optionally being discarded in the process.
 41 *
 42 * It's also important to ensure that gens don't wrap around - with respect to
 43 * either the oldest gen in the btree or the gen on disk. This is quite
 44 * difficult to do in practice, but we explicitly guard against it anyways - if
 45 * a bucket is in danger of wrapping around we simply skip invalidating it that
 46 * time around, and we garbage collect or rewrite the priorities sooner than we
 47 * would have otherwise.
 48 *
 49 * bch_bucket_alloc() allocates a single bucket from a specific cache.
 50 *
 51 * bch_bucket_alloc_set() allocates one or more buckets from different caches
 52 * out of a cache set.
 53 *
 54 * free_some_buckets() drives all the processes described above. It's called
 55 * from bch_bucket_alloc() and a few other places that need to make sure free
 56 * buckets are ready.
 57 *
 58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
 59 * invalidated, and then invalidate them and stick them on the free_inc list -
 60 * in either lru or fifo order.
 61 */
 62
 63#include "bcache.h"
 64#include "btree.h"
 65
 66#include <linux/blkdev.h>
 67#include <linux/kthread.h>
 68#include <linux/random.h>
 69#include <trace/events/bcache.h>
 70
 71/* Bucket heap / gen */
 72
 73uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
 74{
 75	uint8_t ret = ++b->gen;
 76
 77	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
 78	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
 79
 80	return ret;
 81}
 82
 83void bch_rescale_priorities(struct cache_set *c, int sectors)
 84{
 85	struct cache *ca;
 86	struct bucket *b;
 87	unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
 88	unsigned i;
 89	int r;
 90
 91	atomic_sub(sectors, &c->rescale);
 92
 93	do {
 94		r = atomic_read(&c->rescale);
 95
 96		if (r >= 0)
 97			return;
 98	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
 99
100	mutex_lock(&c->bucket_lock);
101
102	c->min_prio = USHRT_MAX;
103
104	for_each_cache(ca, c, i)
105		for_each_bucket(b, ca)
106			if (b->prio &&
107			    b->prio != BTREE_PRIO &&
108			    !atomic_read(&b->pin)) {
109				b->prio--;
110				c->min_prio = min(c->min_prio, b->prio);
111			}
112
113	mutex_unlock(&c->bucket_lock);
114}
115
116/*
117 * Background allocation thread: scans for buckets to be invalidated,
118 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
119 * then optionally issues discard commands to the newly free buckets, then puts
120 * them on the various freelists.
121 */
122
123static inline bool can_inc_bucket_gen(struct bucket *b)
124{
125	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
126}
127
128bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
129{
130	BUG_ON(!ca->set->gc_mark_valid);
131
132	return (!GC_MARK(b) ||
133		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
134		!atomic_read(&b->pin) &&
135		can_inc_bucket_gen(b);
136}
137
138void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
139{
140	lockdep_assert_held(&ca->set->bucket_lock);
141	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
142
143	if (GC_SECTORS_USED(b))
144		trace_bcache_invalidate(ca, b - ca->buckets);
145
146	bch_inc_gen(ca, b);
147	b->prio = INITIAL_PRIO;
148	atomic_inc(&b->pin);
149}
150
151static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
152{
153	__bch_invalidate_one_bucket(ca, b);
154
155	fifo_push(&ca->free_inc, b - ca->buckets);
156}
157
158/*
159 * Determines what order we're going to reuse buckets, smallest bucket_prio()
160 * first: we also take into account the number of sectors of live data in that
161 * bucket, and in order for that multiply to make sense we have to scale bucket
162 *
163 * Thus, we scale the bucket priorities so that the bucket with the smallest
164 * prio is worth 1/8th of what INITIAL_PRIO is worth.
165 */
166
167#define bucket_prio(b)							\
168({									\
169	unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
170									\
171	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
172})
173
174#define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
175#define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
176
177static void invalidate_buckets_lru(struct cache *ca)
178{
179	struct bucket *b;
180	ssize_t i;
181
182	ca->heap.used = 0;
183
184	for_each_bucket(b, ca) {
185		if (!bch_can_invalidate_bucket(ca, b))
186			continue;
187
188		if (!heap_full(&ca->heap))
189			heap_add(&ca->heap, b, bucket_max_cmp);
190		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
191			ca->heap.data[0] = b;
192			heap_sift(&ca->heap, 0, bucket_max_cmp);
193		}
194	}
195
196	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
197		heap_sift(&ca->heap, i, bucket_min_cmp);
198
199	while (!fifo_full(&ca->free_inc)) {
200		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
201			/*
202			 * We don't want to be calling invalidate_buckets()
203			 * multiple times when it can't do anything
204			 */
205			ca->invalidate_needs_gc = 1;
206			wake_up_gc(ca->set);
207			return;
208		}
209
210		bch_invalidate_one_bucket(ca, b);
211	}
212}
213
214static void invalidate_buckets_fifo(struct cache *ca)
215{
216	struct bucket *b;
217	size_t checked = 0;
218
219	while (!fifo_full(&ca->free_inc)) {
220		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
221		    ca->fifo_last_bucket >= ca->sb.nbuckets)
222			ca->fifo_last_bucket = ca->sb.first_bucket;
223
224		b = ca->buckets + ca->fifo_last_bucket++;
225
226		if (bch_can_invalidate_bucket(ca, b))
227			bch_invalidate_one_bucket(ca, b);
228
229		if (++checked >= ca->sb.nbuckets) {
230			ca->invalidate_needs_gc = 1;
231			wake_up_gc(ca->set);
232			return;
233		}
234	}
235}
236
237static void invalidate_buckets_random(struct cache *ca)
238{
239	struct bucket *b;
240	size_t checked = 0;
241
242	while (!fifo_full(&ca->free_inc)) {
243		size_t n;
244		get_random_bytes(&n, sizeof(n));
245
246		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
247		n += ca->sb.first_bucket;
248
249		b = ca->buckets + n;
250
251		if (bch_can_invalidate_bucket(ca, b))
252			bch_invalidate_one_bucket(ca, b);
253
254		if (++checked >= ca->sb.nbuckets / 2) {
255			ca->invalidate_needs_gc = 1;
256			wake_up_gc(ca->set);
257			return;
258		}
259	}
260}
261
262static void invalidate_buckets(struct cache *ca)
263{
264	BUG_ON(ca->invalidate_needs_gc);
265
266	switch (CACHE_REPLACEMENT(&ca->sb)) {
267	case CACHE_REPLACEMENT_LRU:
268		invalidate_buckets_lru(ca);
269		break;
270	case CACHE_REPLACEMENT_FIFO:
271		invalidate_buckets_fifo(ca);
272		break;
273	case CACHE_REPLACEMENT_RANDOM:
274		invalidate_buckets_random(ca);
275		break;
276	}
277}
278
279#define allocator_wait(ca, cond)					\
280do {									\
281	while (1) {							\
282		set_current_state(TASK_INTERRUPTIBLE);			\
283		if (cond)						\
284			break;						\
285									\
286		mutex_unlock(&(ca)->set->bucket_lock);			\
287		if (kthread_should_stop())				\
288			return 0;					\
289									\
290		schedule();						\
291		mutex_lock(&(ca)->set->bucket_lock);			\
292	}								\
293	__set_current_state(TASK_RUNNING);				\
294} while (0)
295
296static int bch_allocator_push(struct cache *ca, long bucket)
297{
298	unsigned i;
299
300	/* Prios/gens are actually the most important reserve */
301	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
302		return true;
303
304	for (i = 0; i < RESERVE_NR; i++)
305		if (fifo_push(&ca->free[i], bucket))
306			return true;
307
308	return false;
309}
310
311static int bch_allocator_thread(void *arg)
312{
313	struct cache *ca = arg;
314
315	mutex_lock(&ca->set->bucket_lock);
316
317	while (1) {
318		/*
319		 * First, we pull buckets off of the unused and free_inc lists,
320		 * possibly issue discards to them, then we add the bucket to
321		 * the free list:
322		 */
323		while (!fifo_empty(&ca->free_inc)) {
324			long bucket;
325
326			fifo_pop(&ca->free_inc, bucket);
327
328			if (ca->discard) {
329				mutex_unlock(&ca->set->bucket_lock);
330				blkdev_issue_discard(ca->bdev,
331					bucket_to_sector(ca->set, bucket),
332					ca->sb.bucket_size, GFP_KERNEL, 0);
333				mutex_lock(&ca->set->bucket_lock);
334			}
335
336			allocator_wait(ca, bch_allocator_push(ca, bucket));
337			wake_up(&ca->set->btree_cache_wait);
338			wake_up(&ca->set->bucket_wait);
339		}
340
341		/*
342		 * We've run out of free buckets, we need to find some buckets
343		 * we can invalidate. First, invalidate them in memory and add
344		 * them to the free_inc list:
345		 */
346
347retry_invalidate:
348		allocator_wait(ca, ca->set->gc_mark_valid &&
349			       !ca->invalidate_needs_gc);
350		invalidate_buckets(ca);
351
352		/*
353		 * Now, we write their new gens to disk so we can start writing
354		 * new stuff to them:
355		 */
356		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
357		if (CACHE_SYNC(&ca->set->sb)) {
358			/*
359			 * This could deadlock if an allocation with a btree
360			 * node locked ever blocked - having the btree node
361			 * locked would block garbage collection, but here we're
362			 * waiting on garbage collection before we invalidate
363			 * and free anything.
364			 *
365			 * But this should be safe since the btree code always
366			 * uses btree_check_reserve() before allocating now, and
367			 * if it fails it blocks without btree nodes locked.
368			 */
369			if (!fifo_full(&ca->free_inc))
370				goto retry_invalidate;
371
372			bch_prio_write(ca);
373		}
374	}
375}
376
377/* Allocation */
378
379long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
380{
381	DEFINE_WAIT(w);
382	struct bucket *b;
383	long r;
384
385	/* fastpath */
386	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
387	    fifo_pop(&ca->free[reserve], r))
388		goto out;
389
390	if (!wait) {
391		trace_bcache_alloc_fail(ca, reserve);
392		return -1;
393	}
394
395	do {
396		prepare_to_wait(&ca->set->bucket_wait, &w,
397				TASK_UNINTERRUPTIBLE);
398
399		mutex_unlock(&ca->set->bucket_lock);
400		schedule();
401		mutex_lock(&ca->set->bucket_lock);
402	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
403		 !fifo_pop(&ca->free[reserve], r));
404
405	finish_wait(&ca->set->bucket_wait, &w);
406out:
407	wake_up_process(ca->alloc_thread);
408
409	trace_bcache_alloc(ca, reserve);
410
411	if (expensive_debug_checks(ca->set)) {
412		size_t iter;
413		long i;
414		unsigned j;
415
416		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
417			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
418
419		for (j = 0; j < RESERVE_NR; j++)
420			fifo_for_each(i, &ca->free[j], iter)
421				BUG_ON(i == r);
422		fifo_for_each(i, &ca->free_inc, iter)
423			BUG_ON(i == r);
424	}
425
426	b = ca->buckets + r;
427
428	BUG_ON(atomic_read(&b->pin) != 1);
429
430	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
431
432	if (reserve <= RESERVE_PRIO) {
433		SET_GC_MARK(b, GC_MARK_METADATA);
434		SET_GC_MOVE(b, 0);
435		b->prio = BTREE_PRIO;
436	} else {
437		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
438		SET_GC_MOVE(b, 0);
439		b->prio = INITIAL_PRIO;
440	}
441
442	return r;
443}
444
445void __bch_bucket_free(struct cache *ca, struct bucket *b)
446{
447	SET_GC_MARK(b, 0);
448	SET_GC_SECTORS_USED(b, 0);
449}
450
451void bch_bucket_free(struct cache_set *c, struct bkey *k)
452{
453	unsigned i;
454
455	for (i = 0; i < KEY_PTRS(k); i++)
456		__bch_bucket_free(PTR_CACHE(c, k, i),
457				  PTR_BUCKET(c, k, i));
458}
459
460int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
461			   struct bkey *k, int n, bool wait)
462{
463	int i;
464
465	lockdep_assert_held(&c->bucket_lock);
466	BUG_ON(!n || n > c->caches_loaded || n > 8);
467
468	bkey_init(k);
469
470	/* sort by free space/prio of oldest data in caches */
471
472	for (i = 0; i < n; i++) {
473		struct cache *ca = c->cache_by_alloc[i];
474		long b = bch_bucket_alloc(ca, reserve, wait);
475
476		if (b == -1)
477			goto err;
478
479		k->ptr[i] = PTR(ca->buckets[b].gen,
480				bucket_to_sector(c, b),
481				ca->sb.nr_this_dev);
482
483		SET_KEY_PTRS(k, i + 1);
484	}
485
486	return 0;
487err:
488	bch_bucket_free(c, k);
489	bkey_put(c, k);
490	return -1;
491}
492
493int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
494			 struct bkey *k, int n, bool wait)
495{
496	int ret;
497	mutex_lock(&c->bucket_lock);
498	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
499	mutex_unlock(&c->bucket_lock);
500	return ret;
501}
502
503/* Sector allocator */
504
505struct open_bucket {
506	struct list_head	list;
507	unsigned		last_write_point;
508	unsigned		sectors_free;
509	BKEY_PADDED(key);
510};
511
512/*
513 * We keep multiple buckets open for writes, and try to segregate different
514 * write streams for better cache utilization: first we look for a bucket where
515 * the last write to it was sequential with the current write, and failing that
516 * we look for a bucket that was last used by the same task.
517 *
518 * The ideas is if you've got multiple tasks pulling data into the cache at the
519 * same time, you'll get better cache utilization if you try to segregate their
520 * data and preserve locality.
521 *
522 * For example, say you've starting Firefox at the same time you're copying a
523 * bunch of files. Firefox will likely end up being fairly hot and stay in the
524 * cache awhile, but the data you copied might not be; if you wrote all that
525 * data to the same buckets it'd get invalidated at the same time.
526 *
527 * Both of those tasks will be doing fairly random IO so we can't rely on
528 * detecting sequential IO to segregate their data, but going off of the task
529 * should be a sane heuristic.
530 */
531static struct open_bucket *pick_data_bucket(struct cache_set *c,
532					    const struct bkey *search,
533					    unsigned write_point,
534					    struct bkey *alloc)
535{
536	struct open_bucket *ret, *ret_task = NULL;
537
538	list_for_each_entry_reverse(ret, &c->data_buckets, list)
539		if (!bkey_cmp(&ret->key, search))
540			goto found;
541		else if (ret->last_write_point == write_point)
542			ret_task = ret;
543
544	ret = ret_task ?: list_first_entry(&c->data_buckets,
545					   struct open_bucket, list);
546found:
547	if (!ret->sectors_free && KEY_PTRS(alloc)) {
548		ret->sectors_free = c->sb.bucket_size;
549		bkey_copy(&ret->key, alloc);
550		bkey_init(alloc);
551	}
552
553	if (!ret->sectors_free)
554		ret = NULL;
555
556	return ret;
557}
558
559/*
560 * Allocates some space in the cache to write to, and k to point to the newly
561 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
562 * end of the newly allocated space).
563 *
564 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
565 * sectors were actually allocated.
566 *
567 * If s->writeback is true, will not fail.
568 */
569bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
570		       unsigned write_point, unsigned write_prio, bool wait)
571{
572	struct open_bucket *b;
573	BKEY_PADDED(key) alloc;
574	unsigned i;
575
576	/*
577	 * We might have to allocate a new bucket, which we can't do with a
578	 * spinlock held. So if we have to allocate, we drop the lock, allocate
579	 * and then retry. KEY_PTRS() indicates whether alloc points to
580	 * allocated bucket(s).
581	 */
582
583	bkey_init(&alloc.key);
584	spin_lock(&c->data_bucket_lock);
585
586	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
587		unsigned watermark = write_prio
588			? RESERVE_MOVINGGC
589			: RESERVE_NONE;
590
591		spin_unlock(&c->data_bucket_lock);
592
593		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
594			return false;
595
596		spin_lock(&c->data_bucket_lock);
597	}
598
599	/*
600	 * If we had to allocate, we might race and not need to allocate the
601	 * second time we call find_data_bucket(). If we allocated a bucket but
602	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
603	 */
604	if (KEY_PTRS(&alloc.key))
605		bkey_put(c, &alloc.key);
606
607	for (i = 0; i < KEY_PTRS(&b->key); i++)
608		EBUG_ON(ptr_stale(c, &b->key, i));
609
610	/* Set up the pointer to the space we're allocating: */
611
612	for (i = 0; i < KEY_PTRS(&b->key); i++)
613		k->ptr[i] = b->key.ptr[i];
614
615	sectors = min(sectors, b->sectors_free);
616
617	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
618	SET_KEY_SIZE(k, sectors);
619	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
620
621	/*
622	 * Move b to the end of the lru, and keep track of what this bucket was
623	 * last used for:
624	 */
625	list_move_tail(&b->list, &c->data_buckets);
626	bkey_copy_key(&b->key, k);
627	b->last_write_point = write_point;
628
629	b->sectors_free	-= sectors;
630
631	for (i = 0; i < KEY_PTRS(&b->key); i++) {
632		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
633
634		atomic_long_add(sectors,
635				&PTR_CACHE(c, &b->key, i)->sectors_written);
636	}
637
638	if (b->sectors_free < c->sb.block_size)
639		b->sectors_free = 0;
640
641	/*
642	 * k takes refcounts on the buckets it points to until it's inserted
643	 * into the btree, but if we're done with this bucket we just transfer
644	 * get_data_bucket()'s refcount.
645	 */
646	if (b->sectors_free)
647		for (i = 0; i < KEY_PTRS(&b->key); i++)
648			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
649
650	spin_unlock(&c->data_bucket_lock);
651	return true;
652}
653
654/* Init */
655
656void bch_open_buckets_free(struct cache_set *c)
657{
658	struct open_bucket *b;
659
660	while (!list_empty(&c->data_buckets)) {
661		b = list_first_entry(&c->data_buckets,
662				     struct open_bucket, list);
663		list_del(&b->list);
664		kfree(b);
665	}
666}
667
668int bch_open_buckets_alloc(struct cache_set *c)
669{
670	int i;
671
672	spin_lock_init(&c->data_bucket_lock);
673
674	for (i = 0; i < 6; i++) {
675		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
676		if (!b)
677			return -ENOMEM;
678
679		list_add(&b->list, &c->data_buckets);
680	}
681
682	return 0;
683}
684
685int bch_cache_allocator_start(struct cache *ca)
686{
687	struct task_struct *k = kthread_run(bch_allocator_thread,
688					    ca, "bcache_allocator");
689	if (IS_ERR(k))
690		return PTR_ERR(k);
691
692	ca->alloc_thread = k;
693	return 0;
694}