Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright(c) 2016 Intel Corporation.
  3 *
  4 * This file is provided under a dual BSD/GPLv2 license.  When using or
  5 * redistributing this file, you may do so under either license.
  6 *
  7 * GPL LICENSE SUMMARY
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of version 2 of the GNU General Public License as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful, but
 14 * WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 16 * General Public License for more details.
 17 *
 18 * BSD LICENSE
 19 *
 20 * Redistribution and use in source and binary forms, with or without
 21 * modification, are permitted provided that the following conditions
 22 * are met:
 23 *
 24 *  - Redistributions of source code must retain the above copyright
 25 *    notice, this list of conditions and the following disclaimer.
 26 *  - Redistributions in binary form must reproduce the above copyright
 27 *    notice, this list of conditions and the following disclaimer in
 28 *    the documentation and/or other materials provided with the
 29 *    distribution.
 30 *  - Neither the name of Intel Corporation nor the names of its
 31 *    contributors may be used to endorse or promote products derived
 32 *    from this software without specific prior written permission.
 33 *
 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 45 *
 46 */
 47
 48#include <linux/slab.h>
 49#include <linux/vmalloc.h>
 50#include <rdma/ib_umem.h>
 51#include <rdma/rdma_vt.h>
 52#include "vt.h"
 53#include "mr.h"
 54#include "trace.h"
 55
 56/**
 57 * rvt_driver_mr_init - Init MR resources per driver
 58 * @rdi: rvt dev struct
 59 *
 60 * Do any intilization needed when a driver registers with rdmavt.
 61 *
 62 * Return: 0 on success or errno on failure
 63 */
 64int rvt_driver_mr_init(struct rvt_dev_info *rdi)
 65{
 66	unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
 67	unsigned lk_tab_size;
 68	int i;
 69
 70	/*
 71	 * The top hfi1_lkey_table_size bits are used to index the
 72	 * table.  The lower 8 bits can be owned by the user (copied from
 73	 * the LKEY).  The remaining bits act as a generation number or tag.
 74	 */
 75	if (!lkey_table_size)
 76		return -EINVAL;
 77
 78	spin_lock_init(&rdi->lkey_table.lock);
 79
 80	/* ensure generation is at least 4 bits */
 81	if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
 82		rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
 83			    lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
 84		rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
 85		lkey_table_size = rdi->dparms.lkey_table_size;
 86	}
 87	rdi->lkey_table.max = 1 << lkey_table_size;
 88	rdi->lkey_table.shift = 32 - lkey_table_size;
 89	lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
 90	rdi->lkey_table.table = (struct rvt_mregion __rcu **)
 91			       vmalloc_node(lk_tab_size, rdi->dparms.node);
 92	if (!rdi->lkey_table.table)
 93		return -ENOMEM;
 94
 95	RCU_INIT_POINTER(rdi->dma_mr, NULL);
 96	for (i = 0; i < rdi->lkey_table.max; i++)
 97		RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
 98
 99	rdi->dparms.props.max_mr = rdi->lkey_table.max;
100	return 0;
101}
102
103/**
104 *rvt_mr_exit: clean up MR
105 *@rdi: rvt dev structure
106 *
107 * called when drivers have unregistered or perhaps failed to register with us
108 */
109void rvt_mr_exit(struct rvt_dev_info *rdi)
110{
111	if (rdi->dma_mr)
112		rvt_pr_err(rdi, "DMA MR not null!\n");
113
114	vfree(rdi->lkey_table.table);
115}
116
117static void rvt_deinit_mregion(struct rvt_mregion *mr)
118{
119	int i = mr->mapsz;
120
121	mr->mapsz = 0;
122	while (i)
123		kfree(mr->map[--i]);
124	percpu_ref_exit(&mr->refcount);
125}
126
127static void __rvt_mregion_complete(struct percpu_ref *ref)
128{
129	struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
130					      refcount);
131
132	complete(&mr->comp);
133}
134
135static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
136			    int count, unsigned int percpu_flags)
137{
138	int m, i = 0;
139	struct rvt_dev_info *dev = ib_to_rvt(pd->device);
140
141	mr->mapsz = 0;
142	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
143	for (; i < m; i++) {
144		mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
145					  dev->dparms.node);
146		if (!mr->map[i])
147			goto bail;
148		mr->mapsz++;
149	}
150	init_completion(&mr->comp);
151	/* count returning the ptr to user */
152	if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
153			    percpu_flags, GFP_KERNEL))
154		goto bail;
155
156	atomic_set(&mr->lkey_invalid, 0);
157	mr->pd = pd;
158	mr->max_segs = count;
159	return 0;
160bail:
161	rvt_deinit_mregion(mr);
162	return -ENOMEM;
163}
164
165/**
166 * rvt_alloc_lkey - allocate an lkey
167 * @mr: memory region that this lkey protects
168 * @dma_region: 0->normal key, 1->restricted DMA key
169 *
170 * Returns 0 if successful, otherwise returns -errno.
171 *
172 * Increments mr reference count as required.
173 *
174 * Sets the lkey field mr for non-dma regions.
175 *
176 */
177static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
178{
179	unsigned long flags;
180	u32 r;
181	u32 n;
182	int ret = 0;
183	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
184	struct rvt_lkey_table *rkt = &dev->lkey_table;
185
186	rvt_get_mr(mr);
187	spin_lock_irqsave(&rkt->lock, flags);
188
189	/* special case for dma_mr lkey == 0 */
190	if (dma_region) {
191		struct rvt_mregion *tmr;
192
193		tmr = rcu_access_pointer(dev->dma_mr);
194		if (!tmr) {
195			mr->lkey_published = 1;
196			/* Insure published written first */
197			rcu_assign_pointer(dev->dma_mr, mr);
198			rvt_get_mr(mr);
199		}
200		goto success;
201	}
202
203	/* Find the next available LKEY */
204	r = rkt->next;
205	n = r;
206	for (;;) {
207		if (!rcu_access_pointer(rkt->table[r]))
208			break;
209		r = (r + 1) & (rkt->max - 1);
210		if (r == n)
211			goto bail;
212	}
213	rkt->next = (r + 1) & (rkt->max - 1);
214	/*
215	 * Make sure lkey is never zero which is reserved to indicate an
216	 * unrestricted LKEY.
217	 */
218	rkt->gen++;
219	/*
220	 * bits are capped to ensure enough bits for generation number
221	 */
222	mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
223		((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
224		 << 8);
225	if (mr->lkey == 0) {
226		mr->lkey |= 1 << 8;
227		rkt->gen++;
228	}
229	mr->lkey_published = 1;
230	/* Insure published written first */
231	rcu_assign_pointer(rkt->table[r], mr);
232success:
233	spin_unlock_irqrestore(&rkt->lock, flags);
234out:
235	return ret;
236bail:
237	rvt_put_mr(mr);
238	spin_unlock_irqrestore(&rkt->lock, flags);
239	ret = -ENOMEM;
240	goto out;
241}
242
243/**
244 * rvt_free_lkey - free an lkey
245 * @mr: mr to free from tables
246 */
247static void rvt_free_lkey(struct rvt_mregion *mr)
248{
249	unsigned long flags;
250	u32 lkey = mr->lkey;
251	u32 r;
252	struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
253	struct rvt_lkey_table *rkt = &dev->lkey_table;
254	int freed = 0;
255
256	spin_lock_irqsave(&rkt->lock, flags);
257	if (!lkey) {
258		if (mr->lkey_published) {
259			mr->lkey_published = 0;
260			/* insure published is written before pointer */
261			rcu_assign_pointer(dev->dma_mr, NULL);
262			rvt_put_mr(mr);
263		}
264	} else {
265		if (!mr->lkey_published)
266			goto out;
267		r = lkey >> (32 - dev->dparms.lkey_table_size);
268		mr->lkey_published = 0;
269		/* insure published is written before pointer */
270		rcu_assign_pointer(rkt->table[r], NULL);
271	}
272	freed++;
273out:
274	spin_unlock_irqrestore(&rkt->lock, flags);
275	if (freed)
276		percpu_ref_kill(&mr->refcount);
277}
278
279static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
280{
281	struct rvt_mr *mr;
282	int rval = -ENOMEM;
283	int m;
284
285	/* Allocate struct plus pointers to first level page tables. */
286	m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
287	mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
288	if (!mr)
289		goto bail;
290
291	rval = rvt_init_mregion(&mr->mr, pd, count, 0);
292	if (rval)
293		goto bail;
294	/*
295	 * ib_reg_phys_mr() will initialize mr->ibmr except for
296	 * lkey and rkey.
297	 */
298	rval = rvt_alloc_lkey(&mr->mr, 0);
299	if (rval)
300		goto bail_mregion;
301	mr->ibmr.lkey = mr->mr.lkey;
302	mr->ibmr.rkey = mr->mr.lkey;
303done:
304	return mr;
305
306bail_mregion:
307	rvt_deinit_mregion(&mr->mr);
308bail:
309	kfree(mr);
310	mr = ERR_PTR(rval);
311	goto done;
312}
313
314static void __rvt_free_mr(struct rvt_mr *mr)
315{
316	rvt_free_lkey(&mr->mr);
317	rvt_deinit_mregion(&mr->mr);
318	kfree(mr);
319}
320
321/**
322 * rvt_get_dma_mr - get a DMA memory region
323 * @pd: protection domain for this memory region
324 * @acc: access flags
325 *
326 * Return: the memory region on success, otherwise returns an errno.
327 * Note that all DMA addresses should be created via the functions in
328 * struct dma_virt_ops.
329 */
330struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
331{
332	struct rvt_mr *mr;
333	struct ib_mr *ret;
334	int rval;
335
336	if (ibpd_to_rvtpd(pd)->user)
337		return ERR_PTR(-EPERM);
338
339	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
340	if (!mr) {
341		ret = ERR_PTR(-ENOMEM);
342		goto bail;
343	}
344
345	rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
346	if (rval) {
347		ret = ERR_PTR(rval);
348		goto bail;
349	}
350
351	rval = rvt_alloc_lkey(&mr->mr, 1);
352	if (rval) {
353		ret = ERR_PTR(rval);
354		goto bail_mregion;
355	}
356
357	mr->mr.access_flags = acc;
358	ret = &mr->ibmr;
359done:
360	return ret;
361
362bail_mregion:
363	rvt_deinit_mregion(&mr->mr);
364bail:
365	kfree(mr);
366	goto done;
367}
368
369/**
370 * rvt_reg_user_mr - register a userspace memory region
371 * @pd: protection domain for this memory region
372 * @start: starting userspace address
373 * @length: length of region to register
374 * @mr_access_flags: access flags for this memory region
375 * @udata: unused by the driver
376 *
377 * Return: the memory region on success, otherwise returns an errno.
378 */
379struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
380			      u64 virt_addr, int mr_access_flags,
381			      struct ib_udata *udata)
382{
383	struct rvt_mr *mr;
384	struct ib_umem *umem;
385	struct sg_page_iter sg_iter;
386	int n, m;
387	struct ib_mr *ret;
388
389	if (length == 0)
390		return ERR_PTR(-EINVAL);
391
392	umem = ib_umem_get(pd->device, start, length, mr_access_flags);
393	if (IS_ERR(umem))
394		return (void *)umem;
395
396	n = ib_umem_num_pages(umem);
397
398	mr = __rvt_alloc_mr(n, pd);
399	if (IS_ERR(mr)) {
400		ret = (struct ib_mr *)mr;
401		goto bail_umem;
402	}
403
404	mr->mr.user_base = start;
405	mr->mr.iova = virt_addr;
406	mr->mr.length = length;
407	mr->mr.offset = ib_umem_offset(umem);
408	mr->mr.access_flags = mr_access_flags;
409	mr->umem = umem;
410
411	mr->mr.page_shift = PAGE_SHIFT;
412	m = 0;
413	n = 0;
414	for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) {
415		void *vaddr;
416
417		vaddr = page_address(sg_page_iter_page(&sg_iter));
418		if (!vaddr) {
419			ret = ERR_PTR(-EINVAL);
420			goto bail_inval;
421		}
422		mr->mr.map[m]->segs[n].vaddr = vaddr;
423		mr->mr.map[m]->segs[n].length = PAGE_SIZE;
424		trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
425		if (++n == RVT_SEGSZ) {
426			m++;
427			n = 0;
428		}
429	}
430	return &mr->ibmr;
431
432bail_inval:
433	__rvt_free_mr(mr);
434
435bail_umem:
436	ib_umem_release(umem);
437
438	return ret;
439}
440
441/**
442 * rvt_dereg_clean_qp_cb - callback from iterator
443 * @qp - the qp
444 * @v - the mregion (as u64)
445 *
446 * This routine fields the callback for all QPs and
447 * for QPs in the same PD as the MR will call the
448 * rvt_qp_mr_clean() to potentially cleanup references.
449 */
450static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
451{
452	struct rvt_mregion *mr = (struct rvt_mregion *)v;
453
454	/* skip PDs that are not ours */
455	if (mr->pd != qp->ibqp.pd)
456		return;
457	rvt_qp_mr_clean(qp, mr->lkey);
458}
459
460/**
461 * rvt_dereg_clean_qps - find QPs for reference cleanup
462 * @mr - the MR that is being deregistered
463 *
464 * This routine iterates RC QPs looking for references
465 * to the lkey noted in mr.
466 */
467static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
468{
469	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
470
471	rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
472}
473
474/**
475 * rvt_check_refs - check references
476 * @mr - the megion
477 * @t - the caller identification
478 *
479 * This routine checks MRs holding a reference during
480 * when being de-registered.
481 *
482 * If the count is non-zero, the code calls a clean routine then
483 * waits for the timeout for the count to zero.
484 */
485static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
486{
487	unsigned long timeout;
488	struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
489
490	if (mr->lkey) {
491		/* avoid dma mr */
492		rvt_dereg_clean_qps(mr);
493		/* @mr was indexed on rcu protected @lkey_table */
494		synchronize_rcu();
495	}
496
497	timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
498	if (!timeout) {
499		rvt_pr_err(rdi,
500			   "%s timeout mr %p pd %p lkey %x refcount %ld\n",
501			   t, mr, mr->pd, mr->lkey,
502			   atomic_long_read(&mr->refcount.count));
503		rvt_get_mr(mr);
504		return -EBUSY;
505	}
506	return 0;
507}
508
509/**
510 * rvt_mr_has_lkey - is MR
511 * @mr - the mregion
512 * @lkey - the lkey
513 */
514bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
515{
516	return mr && lkey == mr->lkey;
517}
518
519/**
520 * rvt_ss_has_lkey - is mr in sge tests
521 * @ss - the sge state
522 * @lkey
523 *
524 * This code tests for an MR in the indicated
525 * sge state.
526 */
527bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
528{
529	int i;
530	bool rval = false;
531
532	if (!ss->num_sge)
533		return rval;
534	/* first one */
535	rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
536	/* any others */
537	for (i = 0; !rval && i < ss->num_sge - 1; i++)
538		rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
539	return rval;
540}
541
542/**
543 * rvt_dereg_mr - unregister and free a memory region
544 * @ibmr: the memory region to free
545 *
546 *
547 * Note that this is called to free MRs created by rvt_get_dma_mr()
548 * or rvt_reg_user_mr().
549 *
550 * Returns 0 on success.
551 */
552int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
553{
554	struct rvt_mr *mr = to_imr(ibmr);
555	int ret;
556
557	rvt_free_lkey(&mr->mr);
558
559	rvt_put_mr(&mr->mr); /* will set completion if last */
560	ret = rvt_check_refs(&mr->mr, __func__);
561	if (ret)
562		goto out;
563	rvt_deinit_mregion(&mr->mr);
564	ib_umem_release(mr->umem);
565	kfree(mr);
566out:
567	return ret;
568}
569
570/**
571 * rvt_alloc_mr - Allocate a memory region usable with the
572 * @pd: protection domain for this memory region
573 * @mr_type: mem region type
574 * @max_num_sg: Max number of segments allowed
575 *
576 * Return: the memory region on success, otherwise return an errno.
577 */
578struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
579			   u32 max_num_sg)
580{
581	struct rvt_mr *mr;
582
583	if (mr_type != IB_MR_TYPE_MEM_REG)
584		return ERR_PTR(-EINVAL);
585
586	mr = __rvt_alloc_mr(max_num_sg, pd);
587	if (IS_ERR(mr))
588		return (struct ib_mr *)mr;
589
590	return &mr->ibmr;
591}
592
593/**
594 * rvt_set_page - page assignment function called by ib_sg_to_pages
595 * @ibmr: memory region
596 * @addr: dma address of mapped page
597 *
598 * Return: 0 on success
599 */
600static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
601{
602	struct rvt_mr *mr = to_imr(ibmr);
603	u32 ps = 1 << mr->mr.page_shift;
604	u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
605	int m, n;
606
607	if (unlikely(mapped_segs == mr->mr.max_segs))
608		return -ENOMEM;
609
610	m = mapped_segs / RVT_SEGSZ;
611	n = mapped_segs % RVT_SEGSZ;
612	mr->mr.map[m]->segs[n].vaddr = (void *)addr;
613	mr->mr.map[m]->segs[n].length = ps;
614	mr->mr.length += ps;
615	trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
616
617	return 0;
618}
619
620/**
621 * rvt_map_mr_sg - map sg list and set it the memory region
622 * @ibmr: memory region
623 * @sg: dma mapped scatterlist
624 * @sg_nents: number of entries in sg
625 * @sg_offset: offset in bytes into sg
626 *
627 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
628 *
629 * Return: number of sg elements mapped to the memory region
630 */
631int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
632		  int sg_nents, unsigned int *sg_offset)
633{
634	struct rvt_mr *mr = to_imr(ibmr);
635	int ret;
636
637	mr->mr.length = 0;
638	mr->mr.page_shift = PAGE_SHIFT;
639	ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
640	mr->mr.user_base = ibmr->iova;
641	mr->mr.iova = ibmr->iova;
642	mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
643	mr->mr.length = (size_t)ibmr->length;
644	trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
645	return ret;
646}
647
648/**
649 * rvt_fast_reg_mr - fast register physical MR
650 * @qp: the queue pair where the work request comes from
651 * @ibmr: the memory region to be registered
652 * @key: updated key for this memory region
653 * @access: access flags for this memory region
654 *
655 * Returns 0 on success.
656 */
657int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
658		    int access)
659{
660	struct rvt_mr *mr = to_imr(ibmr);
661
662	if (qp->ibqp.pd != mr->mr.pd)
663		return -EACCES;
664
665	/* not applicable to dma MR or user MR */
666	if (!mr->mr.lkey || mr->umem)
667		return -EINVAL;
668
669	if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
670		return -EINVAL;
671
672	ibmr->lkey = key;
673	ibmr->rkey = key;
674	mr->mr.lkey = key;
675	mr->mr.access_flags = access;
676	mr->mr.iova = ibmr->iova;
677	atomic_set(&mr->mr.lkey_invalid, 0);
678
679	return 0;
680}
681EXPORT_SYMBOL(rvt_fast_reg_mr);
682
683/**
684 * rvt_invalidate_rkey - invalidate an MR rkey
685 * @qp: queue pair associated with the invalidate op
686 * @rkey: rkey to invalidate
687 *
688 * Returns 0 on success.
689 */
690int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
691{
692	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
693	struct rvt_lkey_table *rkt = &dev->lkey_table;
694	struct rvt_mregion *mr;
695
696	if (rkey == 0)
697		return -EINVAL;
698
699	rcu_read_lock();
700	mr = rcu_dereference(
701		rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
702	if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
703		goto bail;
704
705	atomic_set(&mr->lkey_invalid, 1);
706	rcu_read_unlock();
707	return 0;
708
709bail:
710	rcu_read_unlock();
711	return -EINVAL;
712}
713EXPORT_SYMBOL(rvt_invalidate_rkey);
714
715/**
716 * rvt_sge_adjacent - is isge compressible
717 * @last_sge: last outgoing SGE written
718 * @sge: SGE to check
719 *
720 * If adjacent will update last_sge to add length.
721 *
722 * Return: true if isge is adjacent to last sge
723 */
724static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
725				    struct ib_sge *sge)
726{
727	if (last_sge && sge->lkey == last_sge->mr->lkey &&
728	    ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
729		if (sge->lkey) {
730			if (unlikely((sge->addr - last_sge->mr->user_base +
731			      sge->length > last_sge->mr->length)))
732				return false; /* overrun, caller will catch */
733		} else {
734			last_sge->length += sge->length;
735		}
736		last_sge->sge_length += sge->length;
737		trace_rvt_sge_adjacent(last_sge, sge);
738		return true;
739	}
740	return false;
741}
742
743/**
744 * rvt_lkey_ok - check IB SGE for validity and initialize
745 * @rkt: table containing lkey to check SGE against
746 * @pd: protection domain
747 * @isge: outgoing internal SGE
748 * @last_sge: last outgoing SGE written
749 * @sge: SGE to check
750 * @acc: access flags
751 *
752 * Check the IB SGE for validity and initialize our internal version
753 * of it.
754 *
755 * Increments the reference count when a new sge is stored.
756 *
757 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
758 */
759int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
760		struct rvt_sge *isge, struct rvt_sge *last_sge,
761		struct ib_sge *sge, int acc)
762{
763	struct rvt_mregion *mr;
764	unsigned n, m;
765	size_t off;
766
767	/*
768	 * We use LKEY == zero for kernel virtual addresses
769	 * (see rvt_get_dma_mr() and dma_virt_ops).
770	 */
771	if (sge->lkey == 0) {
772		struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
773
774		if (pd->user)
775			return -EINVAL;
776		if (rvt_sge_adjacent(last_sge, sge))
777			return 0;
778		rcu_read_lock();
779		mr = rcu_dereference(dev->dma_mr);
780		if (!mr)
781			goto bail;
782		rvt_get_mr(mr);
783		rcu_read_unlock();
784
785		isge->mr = mr;
786		isge->vaddr = (void *)sge->addr;
787		isge->length = sge->length;
788		isge->sge_length = sge->length;
789		isge->m = 0;
790		isge->n = 0;
791		goto ok;
792	}
793	if (rvt_sge_adjacent(last_sge, sge))
794		return 0;
795	rcu_read_lock();
796	mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
797	if (!mr)
798		goto bail;
799	rvt_get_mr(mr);
800	if (!READ_ONCE(mr->lkey_published))
801		goto bail_unref;
802
803	if (unlikely(atomic_read(&mr->lkey_invalid) ||
804		     mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
805		goto bail_unref;
806
807	off = sge->addr - mr->user_base;
808	if (unlikely(sge->addr < mr->user_base ||
809		     off + sge->length > mr->length ||
810		     (mr->access_flags & acc) != acc))
811		goto bail_unref;
812	rcu_read_unlock();
813
814	off += mr->offset;
815	if (mr->page_shift) {
816		/*
817		 * page sizes are uniform power of 2 so no loop is necessary
818		 * entries_spanned_by_off is the number of times the loop below
819		 * would have executed.
820		*/
821		size_t entries_spanned_by_off;
822
823		entries_spanned_by_off = off >> mr->page_shift;
824		off -= (entries_spanned_by_off << mr->page_shift);
825		m = entries_spanned_by_off / RVT_SEGSZ;
826		n = entries_spanned_by_off % RVT_SEGSZ;
827	} else {
828		m = 0;
829		n = 0;
830		while (off >= mr->map[m]->segs[n].length) {
831			off -= mr->map[m]->segs[n].length;
832			n++;
833			if (n >= RVT_SEGSZ) {
834				m++;
835				n = 0;
836			}
837		}
838	}
839	isge->mr = mr;
840	isge->vaddr = mr->map[m]->segs[n].vaddr + off;
841	isge->length = mr->map[m]->segs[n].length - off;
842	isge->sge_length = sge->length;
843	isge->m = m;
844	isge->n = n;
845ok:
846	trace_rvt_sge_new(isge, sge);
847	return 1;
848bail_unref:
849	rvt_put_mr(mr);
850bail:
851	rcu_read_unlock();
852	return -EINVAL;
853}
854EXPORT_SYMBOL(rvt_lkey_ok);
855
856/**
857 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
858 * @qp: qp for validation
859 * @sge: SGE state
860 * @len: length of data
861 * @vaddr: virtual address to place data
862 * @rkey: rkey to check
863 * @acc: access flags
864 *
865 * Return: 1 if successful, otherwise 0.
866 *
867 * increments the reference count upon success
868 */
869int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
870		u32 len, u64 vaddr, u32 rkey, int acc)
871{
872	struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
873	struct rvt_lkey_table *rkt = &dev->lkey_table;
874	struct rvt_mregion *mr;
875	unsigned n, m;
876	size_t off;
877
878	/*
879	 * We use RKEY == zero for kernel virtual addresses
880	 * (see rvt_get_dma_mr() and dma_virt_ops).
881	 */
882	rcu_read_lock();
883	if (rkey == 0) {
884		struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
885		struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
886
887		if (pd->user)
888			goto bail;
889		mr = rcu_dereference(rdi->dma_mr);
890		if (!mr)
891			goto bail;
892		rvt_get_mr(mr);
893		rcu_read_unlock();
894
895		sge->mr = mr;
896		sge->vaddr = (void *)vaddr;
897		sge->length = len;
898		sge->sge_length = len;
899		sge->m = 0;
900		sge->n = 0;
901		goto ok;
902	}
903
904	mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
905	if (!mr)
906		goto bail;
907	rvt_get_mr(mr);
908	/* insure mr read is before test */
909	if (!READ_ONCE(mr->lkey_published))
910		goto bail_unref;
911	if (unlikely(atomic_read(&mr->lkey_invalid) ||
912		     mr->lkey != rkey || qp->ibqp.pd != mr->pd))
913		goto bail_unref;
914
915	off = vaddr - mr->iova;
916	if (unlikely(vaddr < mr->iova || off + len > mr->length ||
917		     (mr->access_flags & acc) == 0))
918		goto bail_unref;
919	rcu_read_unlock();
920
921	off += mr->offset;
922	if (mr->page_shift) {
923		/*
924		 * page sizes are uniform power of 2 so no loop is necessary
925		 * entries_spanned_by_off is the number of times the loop below
926		 * would have executed.
927		*/
928		size_t entries_spanned_by_off;
929
930		entries_spanned_by_off = off >> mr->page_shift;
931		off -= (entries_spanned_by_off << mr->page_shift);
932		m = entries_spanned_by_off / RVT_SEGSZ;
933		n = entries_spanned_by_off % RVT_SEGSZ;
934	} else {
935		m = 0;
936		n = 0;
937		while (off >= mr->map[m]->segs[n].length) {
938			off -= mr->map[m]->segs[n].length;
939			n++;
940			if (n >= RVT_SEGSZ) {
941				m++;
942				n = 0;
943			}
944		}
945	}
946	sge->mr = mr;
947	sge->vaddr = mr->map[m]->segs[n].vaddr + off;
948	sge->length = mr->map[m]->segs[n].length - off;
949	sge->sge_length = len;
950	sge->m = m;
951	sge->n = n;
952ok:
953	return 1;
954bail_unref:
955	rvt_put_mr(mr);
956bail:
957	rcu_read_unlock();
958	return 0;
959}
960EXPORT_SYMBOL(rvt_rkey_ok);