Loading...
Note: File does not exist in v3.1.
1/*
2 * Copyright(c) 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/slab.h>
49#include <linux/vmalloc.h>
50#include <rdma/ib_umem.h>
51#include <rdma/rdma_vt.h>
52#include "vt.h"
53#include "mr.h"
54#include "trace.h"
55
56/**
57 * rvt_driver_mr_init - Init MR resources per driver
58 * @rdi: rvt dev struct
59 *
60 * Do any intilization needed when a driver registers with rdmavt.
61 *
62 * Return: 0 on success or errno on failure
63 */
64int rvt_driver_mr_init(struct rvt_dev_info *rdi)
65{
66 unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
67 unsigned lk_tab_size;
68 int i;
69
70 /*
71 * The top hfi1_lkey_table_size bits are used to index the
72 * table. The lower 8 bits can be owned by the user (copied from
73 * the LKEY). The remaining bits act as a generation number or tag.
74 */
75 if (!lkey_table_size)
76 return -EINVAL;
77
78 spin_lock_init(&rdi->lkey_table.lock);
79
80 /* ensure generation is at least 4 bits */
81 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
82 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
83 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
84 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
85 lkey_table_size = rdi->dparms.lkey_table_size;
86 }
87 rdi->lkey_table.max = 1 << lkey_table_size;
88 rdi->lkey_table.shift = 32 - lkey_table_size;
89 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
90 rdi->lkey_table.table = (struct rvt_mregion __rcu **)
91 vmalloc_node(lk_tab_size, rdi->dparms.node);
92 if (!rdi->lkey_table.table)
93 return -ENOMEM;
94
95 RCU_INIT_POINTER(rdi->dma_mr, NULL);
96 for (i = 0; i < rdi->lkey_table.max; i++)
97 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
98
99 rdi->dparms.props.max_mr = rdi->lkey_table.max;
100 return 0;
101}
102
103/**
104 * rvt_mr_exit - clean up MR
105 * @rdi: rvt dev structure
106 *
107 * called when drivers have unregistered or perhaps failed to register with us
108 */
109void rvt_mr_exit(struct rvt_dev_info *rdi)
110{
111 if (rdi->dma_mr)
112 rvt_pr_err(rdi, "DMA MR not null!\n");
113
114 vfree(rdi->lkey_table.table);
115}
116
117static void rvt_deinit_mregion(struct rvt_mregion *mr)
118{
119 int i = mr->mapsz;
120
121 mr->mapsz = 0;
122 while (i)
123 kfree(mr->map[--i]);
124 percpu_ref_exit(&mr->refcount);
125}
126
127static void __rvt_mregion_complete(struct percpu_ref *ref)
128{
129 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
130 refcount);
131
132 complete(&mr->comp);
133}
134
135static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
136 int count, unsigned int percpu_flags)
137{
138 int m, i = 0;
139 struct rvt_dev_info *dev = ib_to_rvt(pd->device);
140
141 mr->mapsz = 0;
142 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
143 for (; i < m; i++) {
144 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
145 dev->dparms.node);
146 if (!mr->map[i])
147 goto bail;
148 mr->mapsz++;
149 }
150 init_completion(&mr->comp);
151 /* count returning the ptr to user */
152 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
153 percpu_flags, GFP_KERNEL))
154 goto bail;
155
156 atomic_set(&mr->lkey_invalid, 0);
157 mr->pd = pd;
158 mr->max_segs = count;
159 return 0;
160bail:
161 rvt_deinit_mregion(mr);
162 return -ENOMEM;
163}
164
165/**
166 * rvt_alloc_lkey - allocate an lkey
167 * @mr: memory region that this lkey protects
168 * @dma_region: 0->normal key, 1->restricted DMA key
169 *
170 * Returns 0 if successful, otherwise returns -errno.
171 *
172 * Increments mr reference count as required.
173 *
174 * Sets the lkey field mr for non-dma regions.
175 *
176 */
177static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
178{
179 unsigned long flags;
180 u32 r;
181 u32 n;
182 int ret = 0;
183 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
184 struct rvt_lkey_table *rkt = &dev->lkey_table;
185
186 rvt_get_mr(mr);
187 spin_lock_irqsave(&rkt->lock, flags);
188
189 /* special case for dma_mr lkey == 0 */
190 if (dma_region) {
191 struct rvt_mregion *tmr;
192
193 tmr = rcu_access_pointer(dev->dma_mr);
194 if (!tmr) {
195 mr->lkey_published = 1;
196 /* Insure published written first */
197 rcu_assign_pointer(dev->dma_mr, mr);
198 rvt_get_mr(mr);
199 }
200 goto success;
201 }
202
203 /* Find the next available LKEY */
204 r = rkt->next;
205 n = r;
206 for (;;) {
207 if (!rcu_access_pointer(rkt->table[r]))
208 break;
209 r = (r + 1) & (rkt->max - 1);
210 if (r == n)
211 goto bail;
212 }
213 rkt->next = (r + 1) & (rkt->max - 1);
214 /*
215 * Make sure lkey is never zero which is reserved to indicate an
216 * unrestricted LKEY.
217 */
218 rkt->gen++;
219 /*
220 * bits are capped to ensure enough bits for generation number
221 */
222 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
223 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
224 << 8);
225 if (mr->lkey == 0) {
226 mr->lkey |= 1 << 8;
227 rkt->gen++;
228 }
229 mr->lkey_published = 1;
230 /* Insure published written first */
231 rcu_assign_pointer(rkt->table[r], mr);
232success:
233 spin_unlock_irqrestore(&rkt->lock, flags);
234out:
235 return ret;
236bail:
237 rvt_put_mr(mr);
238 spin_unlock_irqrestore(&rkt->lock, flags);
239 ret = -ENOMEM;
240 goto out;
241}
242
243/**
244 * rvt_free_lkey - free an lkey
245 * @mr: mr to free from tables
246 */
247static void rvt_free_lkey(struct rvt_mregion *mr)
248{
249 unsigned long flags;
250 u32 lkey = mr->lkey;
251 u32 r;
252 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
253 struct rvt_lkey_table *rkt = &dev->lkey_table;
254 int freed = 0;
255
256 spin_lock_irqsave(&rkt->lock, flags);
257 if (!lkey) {
258 if (mr->lkey_published) {
259 mr->lkey_published = 0;
260 /* insure published is written before pointer */
261 rcu_assign_pointer(dev->dma_mr, NULL);
262 rvt_put_mr(mr);
263 }
264 } else {
265 if (!mr->lkey_published)
266 goto out;
267 r = lkey >> (32 - dev->dparms.lkey_table_size);
268 mr->lkey_published = 0;
269 /* insure published is written before pointer */
270 rcu_assign_pointer(rkt->table[r], NULL);
271 }
272 freed++;
273out:
274 spin_unlock_irqrestore(&rkt->lock, flags);
275 if (freed)
276 percpu_ref_kill(&mr->refcount);
277}
278
279static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
280{
281 struct rvt_mr *mr;
282 int rval = -ENOMEM;
283 int m;
284
285 /* Allocate struct plus pointers to first level page tables. */
286 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
287 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
288 if (!mr)
289 goto bail;
290
291 rval = rvt_init_mregion(&mr->mr, pd, count, 0);
292 if (rval)
293 goto bail;
294 /*
295 * ib_reg_phys_mr() will initialize mr->ibmr except for
296 * lkey and rkey.
297 */
298 rval = rvt_alloc_lkey(&mr->mr, 0);
299 if (rval)
300 goto bail_mregion;
301 mr->ibmr.lkey = mr->mr.lkey;
302 mr->ibmr.rkey = mr->mr.lkey;
303done:
304 return mr;
305
306bail_mregion:
307 rvt_deinit_mregion(&mr->mr);
308bail:
309 kfree(mr);
310 mr = ERR_PTR(rval);
311 goto done;
312}
313
314static void __rvt_free_mr(struct rvt_mr *mr)
315{
316 rvt_free_lkey(&mr->mr);
317 rvt_deinit_mregion(&mr->mr);
318 kfree(mr);
319}
320
321/**
322 * rvt_get_dma_mr - get a DMA memory region
323 * @pd: protection domain for this memory region
324 * @acc: access flags
325 *
326 * Return: the memory region on success, otherwise returns an errno.
327 */
328struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
329{
330 struct rvt_mr *mr;
331 struct ib_mr *ret;
332 int rval;
333
334 if (ibpd_to_rvtpd(pd)->user)
335 return ERR_PTR(-EPERM);
336
337 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
338 if (!mr) {
339 ret = ERR_PTR(-ENOMEM);
340 goto bail;
341 }
342
343 rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
344 if (rval) {
345 ret = ERR_PTR(rval);
346 goto bail;
347 }
348
349 rval = rvt_alloc_lkey(&mr->mr, 1);
350 if (rval) {
351 ret = ERR_PTR(rval);
352 goto bail_mregion;
353 }
354
355 mr->mr.access_flags = acc;
356 ret = &mr->ibmr;
357done:
358 return ret;
359
360bail_mregion:
361 rvt_deinit_mregion(&mr->mr);
362bail:
363 kfree(mr);
364 goto done;
365}
366
367/**
368 * rvt_reg_user_mr - register a userspace memory region
369 * @pd: protection domain for this memory region
370 * @start: starting userspace address
371 * @length: length of region to register
372 * @virt_addr: associated virtual address
373 * @mr_access_flags: access flags for this memory region
374 * @udata: unused by the driver
375 *
376 * Return: the memory region on success, otherwise returns an errno.
377 */
378struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
379 u64 virt_addr, int mr_access_flags,
380 struct ib_udata *udata)
381{
382 struct rvt_mr *mr;
383 struct ib_umem *umem;
384 struct sg_page_iter sg_iter;
385 int n, m;
386 struct ib_mr *ret;
387
388 if (length == 0)
389 return ERR_PTR(-EINVAL);
390
391 umem = ib_umem_get(pd->device, start, length, mr_access_flags);
392 if (IS_ERR(umem))
393 return (void *)umem;
394
395 n = ib_umem_num_pages(umem);
396
397 mr = __rvt_alloc_mr(n, pd);
398 if (IS_ERR(mr)) {
399 ret = (struct ib_mr *)mr;
400 goto bail_umem;
401 }
402
403 mr->mr.user_base = start;
404 mr->mr.iova = virt_addr;
405 mr->mr.length = length;
406 mr->mr.offset = ib_umem_offset(umem);
407 mr->mr.access_flags = mr_access_flags;
408 mr->umem = umem;
409
410 mr->mr.page_shift = PAGE_SHIFT;
411 m = 0;
412 n = 0;
413 for_each_sg_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) {
414 void *vaddr;
415
416 vaddr = page_address(sg_page_iter_page(&sg_iter));
417 if (!vaddr) {
418 ret = ERR_PTR(-EINVAL);
419 goto bail_inval;
420 }
421 mr->mr.map[m]->segs[n].vaddr = vaddr;
422 mr->mr.map[m]->segs[n].length = PAGE_SIZE;
423 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
424 if (++n == RVT_SEGSZ) {
425 m++;
426 n = 0;
427 }
428 }
429 return &mr->ibmr;
430
431bail_inval:
432 __rvt_free_mr(mr);
433
434bail_umem:
435 ib_umem_release(umem);
436
437 return ret;
438}
439
440/**
441 * rvt_dereg_clean_qp_cb - callback from iterator
442 * @qp: the qp
443 * @v: the mregion (as u64)
444 *
445 * This routine fields the callback for all QPs and
446 * for QPs in the same PD as the MR will call the
447 * rvt_qp_mr_clean() to potentially cleanup references.
448 */
449static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
450{
451 struct rvt_mregion *mr = (struct rvt_mregion *)v;
452
453 /* skip PDs that are not ours */
454 if (mr->pd != qp->ibqp.pd)
455 return;
456 rvt_qp_mr_clean(qp, mr->lkey);
457}
458
459/**
460 * rvt_dereg_clean_qps - find QPs for reference cleanup
461 * @mr: the MR that is being deregistered
462 *
463 * This routine iterates RC QPs looking for references
464 * to the lkey noted in mr.
465 */
466static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
467{
468 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
469
470 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
471}
472
473/**
474 * rvt_check_refs - check references
475 * @mr: the megion
476 * @t: the caller identification
477 *
478 * This routine checks MRs holding a reference during
479 * when being de-registered.
480 *
481 * If the count is non-zero, the code calls a clean routine then
482 * waits for the timeout for the count to zero.
483 */
484static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
485{
486 unsigned long timeout;
487 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
488
489 if (mr->lkey) {
490 /* avoid dma mr */
491 rvt_dereg_clean_qps(mr);
492 /* @mr was indexed on rcu protected @lkey_table */
493 synchronize_rcu();
494 }
495
496 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
497 if (!timeout) {
498 rvt_pr_err(rdi,
499 "%s timeout mr %p pd %p lkey %x refcount %ld\n",
500 t, mr, mr->pd, mr->lkey,
501 atomic_long_read(&mr->refcount.data->count));
502 rvt_get_mr(mr);
503 return -EBUSY;
504 }
505 return 0;
506}
507
508/**
509 * rvt_mr_has_lkey - is MR
510 * @mr: the mregion
511 * @lkey: the lkey
512 */
513bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
514{
515 return mr && lkey == mr->lkey;
516}
517
518/**
519 * rvt_ss_has_lkey - is mr in sge tests
520 * @ss: the sge state
521 * @lkey: the lkey
522 *
523 * This code tests for an MR in the indicated
524 * sge state.
525 */
526bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
527{
528 int i;
529 bool rval = false;
530
531 if (!ss->num_sge)
532 return rval;
533 /* first one */
534 rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
535 /* any others */
536 for (i = 0; !rval && i < ss->num_sge - 1; i++)
537 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
538 return rval;
539}
540
541/**
542 * rvt_dereg_mr - unregister and free a memory region
543 * @ibmr: the memory region to free
544 * @udata: unused by the driver
545 *
546 * Note that this is called to free MRs created by rvt_get_dma_mr()
547 * or rvt_reg_user_mr().
548 *
549 * Returns 0 on success.
550 */
551int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
552{
553 struct rvt_mr *mr = to_imr(ibmr);
554 int ret;
555
556 rvt_free_lkey(&mr->mr);
557
558 rvt_put_mr(&mr->mr); /* will set completion if last */
559 ret = rvt_check_refs(&mr->mr, __func__);
560 if (ret)
561 goto out;
562 rvt_deinit_mregion(&mr->mr);
563 ib_umem_release(mr->umem);
564 kfree(mr);
565out:
566 return ret;
567}
568
569/**
570 * rvt_alloc_mr - Allocate a memory region usable with the
571 * @pd: protection domain for this memory region
572 * @mr_type: mem region type
573 * @max_num_sg: Max number of segments allowed
574 *
575 * Return: the memory region on success, otherwise return an errno.
576 */
577struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
578 u32 max_num_sg)
579{
580 struct rvt_mr *mr;
581
582 if (mr_type != IB_MR_TYPE_MEM_REG)
583 return ERR_PTR(-EINVAL);
584
585 mr = __rvt_alloc_mr(max_num_sg, pd);
586 if (IS_ERR(mr))
587 return (struct ib_mr *)mr;
588
589 return &mr->ibmr;
590}
591
592/**
593 * rvt_set_page - page assignment function called by ib_sg_to_pages
594 * @ibmr: memory region
595 * @addr: dma address of mapped page
596 *
597 * Return: 0 on success
598 */
599static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
600{
601 struct rvt_mr *mr = to_imr(ibmr);
602 u32 ps = 1 << mr->mr.page_shift;
603 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
604 int m, n;
605
606 if (unlikely(mapped_segs == mr->mr.max_segs))
607 return -ENOMEM;
608
609 m = mapped_segs / RVT_SEGSZ;
610 n = mapped_segs % RVT_SEGSZ;
611 mr->mr.map[m]->segs[n].vaddr = (void *)addr;
612 mr->mr.map[m]->segs[n].length = ps;
613 mr->mr.length += ps;
614 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
615
616 return 0;
617}
618
619/**
620 * rvt_map_mr_sg - map sg list and set it the memory region
621 * @ibmr: memory region
622 * @sg: dma mapped scatterlist
623 * @sg_nents: number of entries in sg
624 * @sg_offset: offset in bytes into sg
625 *
626 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
627 *
628 * Return: number of sg elements mapped to the memory region
629 */
630int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
631 int sg_nents, unsigned int *sg_offset)
632{
633 struct rvt_mr *mr = to_imr(ibmr);
634 int ret;
635
636 mr->mr.length = 0;
637 mr->mr.page_shift = PAGE_SHIFT;
638 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
639 mr->mr.user_base = ibmr->iova;
640 mr->mr.iova = ibmr->iova;
641 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
642 mr->mr.length = (size_t)ibmr->length;
643 trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
644 return ret;
645}
646
647/**
648 * rvt_fast_reg_mr - fast register physical MR
649 * @qp: the queue pair where the work request comes from
650 * @ibmr: the memory region to be registered
651 * @key: updated key for this memory region
652 * @access: access flags for this memory region
653 *
654 * Returns 0 on success.
655 */
656int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
657 int access)
658{
659 struct rvt_mr *mr = to_imr(ibmr);
660
661 if (qp->ibqp.pd != mr->mr.pd)
662 return -EACCES;
663
664 /* not applicable to dma MR or user MR */
665 if (!mr->mr.lkey || mr->umem)
666 return -EINVAL;
667
668 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
669 return -EINVAL;
670
671 ibmr->lkey = key;
672 ibmr->rkey = key;
673 mr->mr.lkey = key;
674 mr->mr.access_flags = access;
675 mr->mr.iova = ibmr->iova;
676 atomic_set(&mr->mr.lkey_invalid, 0);
677
678 return 0;
679}
680EXPORT_SYMBOL(rvt_fast_reg_mr);
681
682/**
683 * rvt_invalidate_rkey - invalidate an MR rkey
684 * @qp: queue pair associated with the invalidate op
685 * @rkey: rkey to invalidate
686 *
687 * Returns 0 on success.
688 */
689int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
690{
691 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
692 struct rvt_lkey_table *rkt = &dev->lkey_table;
693 struct rvt_mregion *mr;
694
695 if (rkey == 0)
696 return -EINVAL;
697
698 rcu_read_lock();
699 mr = rcu_dereference(
700 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
701 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
702 goto bail;
703
704 atomic_set(&mr->lkey_invalid, 1);
705 rcu_read_unlock();
706 return 0;
707
708bail:
709 rcu_read_unlock();
710 return -EINVAL;
711}
712EXPORT_SYMBOL(rvt_invalidate_rkey);
713
714/**
715 * rvt_sge_adjacent - is isge compressible
716 * @last_sge: last outgoing SGE written
717 * @sge: SGE to check
718 *
719 * If adjacent will update last_sge to add length.
720 *
721 * Return: true if isge is adjacent to last sge
722 */
723static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
724 struct ib_sge *sge)
725{
726 if (last_sge && sge->lkey == last_sge->mr->lkey &&
727 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
728 if (sge->lkey) {
729 if (unlikely((sge->addr - last_sge->mr->user_base +
730 sge->length > last_sge->mr->length)))
731 return false; /* overrun, caller will catch */
732 } else {
733 last_sge->length += sge->length;
734 }
735 last_sge->sge_length += sge->length;
736 trace_rvt_sge_adjacent(last_sge, sge);
737 return true;
738 }
739 return false;
740}
741
742/**
743 * rvt_lkey_ok - check IB SGE for validity and initialize
744 * @rkt: table containing lkey to check SGE against
745 * @pd: protection domain
746 * @isge: outgoing internal SGE
747 * @last_sge: last outgoing SGE written
748 * @sge: SGE to check
749 * @acc: access flags
750 *
751 * Check the IB SGE for validity and initialize our internal version
752 * of it.
753 *
754 * Increments the reference count when a new sge is stored.
755 *
756 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
757 */
758int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
759 struct rvt_sge *isge, struct rvt_sge *last_sge,
760 struct ib_sge *sge, int acc)
761{
762 struct rvt_mregion *mr;
763 unsigned n, m;
764 size_t off;
765
766 /*
767 * We use LKEY == zero for kernel virtual addresses
768 * (see rvt_get_dma_mr()).
769 */
770 if (sge->lkey == 0) {
771 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
772
773 if (pd->user)
774 return -EINVAL;
775 if (rvt_sge_adjacent(last_sge, sge))
776 return 0;
777 rcu_read_lock();
778 mr = rcu_dereference(dev->dma_mr);
779 if (!mr)
780 goto bail;
781 rvt_get_mr(mr);
782 rcu_read_unlock();
783
784 isge->mr = mr;
785 isge->vaddr = (void *)sge->addr;
786 isge->length = sge->length;
787 isge->sge_length = sge->length;
788 isge->m = 0;
789 isge->n = 0;
790 goto ok;
791 }
792 if (rvt_sge_adjacent(last_sge, sge))
793 return 0;
794 rcu_read_lock();
795 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
796 if (!mr)
797 goto bail;
798 rvt_get_mr(mr);
799 if (!READ_ONCE(mr->lkey_published))
800 goto bail_unref;
801
802 if (unlikely(atomic_read(&mr->lkey_invalid) ||
803 mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
804 goto bail_unref;
805
806 off = sge->addr - mr->user_base;
807 if (unlikely(sge->addr < mr->user_base ||
808 off + sge->length > mr->length ||
809 (mr->access_flags & acc) != acc))
810 goto bail_unref;
811 rcu_read_unlock();
812
813 off += mr->offset;
814 if (mr->page_shift) {
815 /*
816 * page sizes are uniform power of 2 so no loop is necessary
817 * entries_spanned_by_off is the number of times the loop below
818 * would have executed.
819 */
820 size_t entries_spanned_by_off;
821
822 entries_spanned_by_off = off >> mr->page_shift;
823 off -= (entries_spanned_by_off << mr->page_shift);
824 m = entries_spanned_by_off / RVT_SEGSZ;
825 n = entries_spanned_by_off % RVT_SEGSZ;
826 } else {
827 m = 0;
828 n = 0;
829 while (off >= mr->map[m]->segs[n].length) {
830 off -= mr->map[m]->segs[n].length;
831 n++;
832 if (n >= RVT_SEGSZ) {
833 m++;
834 n = 0;
835 }
836 }
837 }
838 isge->mr = mr;
839 isge->vaddr = mr->map[m]->segs[n].vaddr + off;
840 isge->length = mr->map[m]->segs[n].length - off;
841 isge->sge_length = sge->length;
842 isge->m = m;
843 isge->n = n;
844ok:
845 trace_rvt_sge_new(isge, sge);
846 return 1;
847bail_unref:
848 rvt_put_mr(mr);
849bail:
850 rcu_read_unlock();
851 return -EINVAL;
852}
853EXPORT_SYMBOL(rvt_lkey_ok);
854
855/**
856 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
857 * @qp: qp for validation
858 * @sge: SGE state
859 * @len: length of data
860 * @vaddr: virtual address to place data
861 * @rkey: rkey to check
862 * @acc: access flags
863 *
864 * Return: 1 if successful, otherwise 0.
865 *
866 * increments the reference count upon success
867 */
868int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
869 u32 len, u64 vaddr, u32 rkey, int acc)
870{
871 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
872 struct rvt_lkey_table *rkt = &dev->lkey_table;
873 struct rvt_mregion *mr;
874 unsigned n, m;
875 size_t off;
876
877 /*
878 * We use RKEY == zero for kernel virtual addresses
879 * (see rvt_get_dma_mr()).
880 */
881 rcu_read_lock();
882 if (rkey == 0) {
883 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
884 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
885
886 if (pd->user)
887 goto bail;
888 mr = rcu_dereference(rdi->dma_mr);
889 if (!mr)
890 goto bail;
891 rvt_get_mr(mr);
892 rcu_read_unlock();
893
894 sge->mr = mr;
895 sge->vaddr = (void *)vaddr;
896 sge->length = len;
897 sge->sge_length = len;
898 sge->m = 0;
899 sge->n = 0;
900 goto ok;
901 }
902
903 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
904 if (!mr)
905 goto bail;
906 rvt_get_mr(mr);
907 /* insure mr read is before test */
908 if (!READ_ONCE(mr->lkey_published))
909 goto bail_unref;
910 if (unlikely(atomic_read(&mr->lkey_invalid) ||
911 mr->lkey != rkey || qp->ibqp.pd != mr->pd))
912 goto bail_unref;
913
914 off = vaddr - mr->iova;
915 if (unlikely(vaddr < mr->iova || off + len > mr->length ||
916 (mr->access_flags & acc) == 0))
917 goto bail_unref;
918 rcu_read_unlock();
919
920 off += mr->offset;
921 if (mr->page_shift) {
922 /*
923 * page sizes are uniform power of 2 so no loop is necessary
924 * entries_spanned_by_off is the number of times the loop below
925 * would have executed.
926 */
927 size_t entries_spanned_by_off;
928
929 entries_spanned_by_off = off >> mr->page_shift;
930 off -= (entries_spanned_by_off << mr->page_shift);
931 m = entries_spanned_by_off / RVT_SEGSZ;
932 n = entries_spanned_by_off % RVT_SEGSZ;
933 } else {
934 m = 0;
935 n = 0;
936 while (off >= mr->map[m]->segs[n].length) {
937 off -= mr->map[m]->segs[n].length;
938 n++;
939 if (n >= RVT_SEGSZ) {
940 m++;
941 n = 0;
942 }
943 }
944 }
945 sge->mr = mr;
946 sge->vaddr = mr->map[m]->segs[n].vaddr + off;
947 sge->length = mr->map[m]->segs[n].length - off;
948 sge->sge_length = len;
949 sge->m = m;
950 sge->n = n;
951ok:
952 return 1;
953bail_unref:
954 rvt_put_mr(mr);
955bail:
956 rcu_read_unlock();
957 return 0;
958}
959EXPORT_SYMBOL(rvt_rkey_ok);