Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/module.h>
  29#include <linux/pm_runtime.h>
  30
  31#include <drm/drm_atomic_helper.h>
  32#include <drm/drm_fourcc.h>
  33#include <drm/drm_plane_helper.h>
  34
  35#include "display/intel_atomic.h"
  36#include "display/intel_bw.h"
  37#include "display/intel_display_types.h"
  38#include "display/intel_fbc.h"
  39#include "display/intel_sprite.h"
  40
  41#include "gt/intel_llc.h"
  42
  43#include "i915_drv.h"
  44#include "i915_fixed.h"
  45#include "i915_irq.h"
  46#include "i915_trace.h"
  47#include "intel_pm.h"
  48#include "intel_sideband.h"
  49#include "../../../platform/x86/intel_ips.h"
  50
  51/* Stores plane specific WM parameters */
  52struct skl_wm_params {
  53	bool x_tiled, y_tiled;
  54	bool rc_surface;
  55	bool is_planar;
  56	u32 width;
  57	u8 cpp;
  58	u32 plane_pixel_rate;
  59	u32 y_min_scanlines;
  60	u32 plane_bytes_per_line;
  61	uint_fixed_16_16_t plane_blocks_per_line;
  62	uint_fixed_16_16_t y_tile_minimum;
  63	u32 linetime_us;
  64	u32 dbuf_block_size;
  65};
  66
  67/* used in computing the new watermarks state */
  68struct intel_wm_config {
  69	unsigned int num_pipes_active;
  70	bool sprites_enabled;
  71	bool sprites_scaled;
  72};
  73
  74static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  75{
  76	if (HAS_LLC(dev_priv)) {
  77		/*
  78		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
  79		 * Display WA #0390: skl,kbl
  80		 *
  81		 * Must match Sampler, Pixel Back End, and Media. See
  82		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
  83		 */
  84		I915_WRITE(CHICKEN_PAR1_1,
  85			   I915_READ(CHICKEN_PAR1_1) |
  86			   SKL_DE_COMPRESSED_HASH_MODE);
  87	}
  88
  89	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
  90	I915_WRITE(CHICKEN_PAR1_1,
  91		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  92
  93	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
  94	I915_WRITE(GEN8_CHICKEN_DCPR_1,
  95		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  96
  97	/*
  98	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
  99	 * Display WA #0859: skl,bxt,kbl,glk,cfl
 100	 */
 101	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
 102		   DISP_FBC_MEMORY_WAKE);
 103
 104	if (IS_SKYLAKE(dev_priv)) {
 105		/* WaDisableDopClockGating */
 106		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
 107			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
 108	}
 109}
 110
 111static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
 112{
 113	gen9_init_clock_gating(dev_priv);
 114
 115	/* WaDisableSDEUnitClockGating:bxt */
 116	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 117		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
 118
 119	/*
 120	 * FIXME:
 121	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
 122	 */
 123	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
 124		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
 125
 126	/*
 127	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
 128	 * to stay fully on.
 129	 */
 130	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 131		   PWM1_GATING_DIS | PWM2_GATING_DIS);
 132
 133	/*
 134	 * Lower the display internal timeout.
 135	 * This is needed to avoid any hard hangs when DSI port PLL
 136	 * is off and a MMIO access is attempted by any privilege
 137	 * application, using batch buffers or any other means.
 138	 */
 139	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
 140
 141	/*
 142	 * WaFbcTurnOffFbcWatermark:bxt
 143	 * Display WA #0562: bxt
 144	 */
 145	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
 146		   DISP_FBC_WM_DIS);
 147
 148	/*
 149	 * WaFbcHighMemBwCorruptionAvoidance:bxt
 150	 * Display WA #0883: bxt
 151	 */
 152	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
 153		   ILK_DPFC_DISABLE_DUMMY0);
 154}
 155
 156static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
 157{
 158	gen9_init_clock_gating(dev_priv);
 159
 160	/*
 161	 * WaDisablePWMClockGating:glk
 162	 * Backlight PWM may stop in the asserted state, causing backlight
 163	 * to stay fully on.
 164	 */
 165	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
 166		   PWM1_GATING_DIS | PWM2_GATING_DIS);
 167}
 168
 169static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
 170{
 171	u32 tmp;
 172
 173	tmp = I915_READ(CLKCFG);
 174
 175	switch (tmp & CLKCFG_FSB_MASK) {
 176	case CLKCFG_FSB_533:
 177		dev_priv->fsb_freq = 533; /* 133*4 */
 178		break;
 179	case CLKCFG_FSB_800:
 180		dev_priv->fsb_freq = 800; /* 200*4 */
 181		break;
 182	case CLKCFG_FSB_667:
 183		dev_priv->fsb_freq =  667; /* 167*4 */
 184		break;
 185	case CLKCFG_FSB_400:
 186		dev_priv->fsb_freq = 400; /* 100*4 */
 187		break;
 188	}
 189
 190	switch (tmp & CLKCFG_MEM_MASK) {
 191	case CLKCFG_MEM_533:
 192		dev_priv->mem_freq = 533;
 193		break;
 194	case CLKCFG_MEM_667:
 195		dev_priv->mem_freq = 667;
 196		break;
 197	case CLKCFG_MEM_800:
 198		dev_priv->mem_freq = 800;
 199		break;
 200	}
 201
 202	/* detect pineview DDR3 setting */
 203	tmp = I915_READ(CSHRDDR3CTL);
 204	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 205}
 206
 207static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
 208{
 209	u16 ddrpll, csipll;
 210
 211	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
 212	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
 213
 214	switch (ddrpll & 0xff) {
 215	case 0xc:
 216		dev_priv->mem_freq = 800;
 217		break;
 218	case 0x10:
 219		dev_priv->mem_freq = 1066;
 220		break;
 221	case 0x14:
 222		dev_priv->mem_freq = 1333;
 223		break;
 224	case 0x18:
 225		dev_priv->mem_freq = 1600;
 226		break;
 227	default:
 228		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
 229			ddrpll & 0xff);
 230		dev_priv->mem_freq = 0;
 231		break;
 232	}
 233
 234	switch (csipll & 0x3ff) {
 235	case 0x00c:
 236		dev_priv->fsb_freq = 3200;
 237		break;
 238	case 0x00e:
 239		dev_priv->fsb_freq = 3733;
 240		break;
 241	case 0x010:
 242		dev_priv->fsb_freq = 4266;
 243		break;
 244	case 0x012:
 245		dev_priv->fsb_freq = 4800;
 246		break;
 247	case 0x014:
 248		dev_priv->fsb_freq = 5333;
 249		break;
 250	case 0x016:
 251		dev_priv->fsb_freq = 5866;
 252		break;
 253	case 0x018:
 254		dev_priv->fsb_freq = 6400;
 255		break;
 256	default:
 257		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
 258			csipll & 0x3ff);
 259		dev_priv->fsb_freq = 0;
 260		break;
 261	}
 262}
 263
 264static const struct cxsr_latency cxsr_latency_table[] = {
 265	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 266	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 267	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 268	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 269	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 270
 271	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 272	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 273	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 274	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 275	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 276
 277	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 278	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 279	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 280	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 281	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 282
 283	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 284	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 285	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 286	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 287	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 288
 289	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 290	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 291	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 292	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 293	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 294
 295	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 296	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 297	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 298	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 299	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 300};
 301
 302static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
 303							 bool is_ddr3,
 304							 int fsb,
 305							 int mem)
 306{
 307	const struct cxsr_latency *latency;
 308	int i;
 309
 310	if (fsb == 0 || mem == 0)
 311		return NULL;
 312
 313	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 314		latency = &cxsr_latency_table[i];
 315		if (is_desktop == latency->is_desktop &&
 316		    is_ddr3 == latency->is_ddr3 &&
 317		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 318			return latency;
 319	}
 320
 321	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 322
 323	return NULL;
 324}
 325
 326static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
 327{
 328	u32 val;
 329
 330	vlv_punit_get(dev_priv);
 331
 332	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
 333	if (enable)
 334		val &= ~FORCE_DDR_HIGH_FREQ;
 335	else
 336		val |= FORCE_DDR_HIGH_FREQ;
 337	val &= ~FORCE_DDR_LOW_FREQ;
 338	val |= FORCE_DDR_FREQ_REQ_ACK;
 339	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
 340
 341	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
 342		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
 343		drm_err(&dev_priv->drm,
 344			"timed out waiting for Punit DDR DVFS request\n");
 345
 346	vlv_punit_put(dev_priv);
 347}
 348
 349static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
 350{
 351	u32 val;
 352
 353	vlv_punit_get(dev_priv);
 354
 355	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
 356	if (enable)
 357		val |= DSP_MAXFIFO_PM5_ENABLE;
 358	else
 359		val &= ~DSP_MAXFIFO_PM5_ENABLE;
 360	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
 361
 362	vlv_punit_put(dev_priv);
 363}
 364
 365#define FW_WM(value, plane) \
 366	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
 367
 368static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 369{
 370	bool was_enabled;
 371	u32 val;
 372
 373	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 374		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
 375		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
 376		POSTING_READ(FW_BLC_SELF_VLV);
 377	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
 378		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 379		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
 380		POSTING_READ(FW_BLC_SELF);
 381	} else if (IS_PINEVIEW(dev_priv)) {
 382		val = I915_READ(DSPFW3);
 383		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
 384		if (enable)
 385			val |= PINEVIEW_SELF_REFRESH_EN;
 386		else
 387			val &= ~PINEVIEW_SELF_REFRESH_EN;
 388		I915_WRITE(DSPFW3, val);
 389		POSTING_READ(DSPFW3);
 390	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
 391		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
 392		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
 393			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
 394		I915_WRITE(FW_BLC_SELF, val);
 395		POSTING_READ(FW_BLC_SELF);
 396	} else if (IS_I915GM(dev_priv)) {
 397		/*
 398		 * FIXME can't find a bit like this for 915G, and
 399		 * and yet it does have the related watermark in
 400		 * FW_BLC_SELF. What's going on?
 401		 */
 402		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
 403		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
 404			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
 405		I915_WRITE(INSTPM, val);
 406		POSTING_READ(INSTPM);
 407	} else {
 408		return false;
 409	}
 410
 411	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
 412
 413	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
 414		    enableddisabled(enable),
 415		    enableddisabled(was_enabled));
 416
 417	return was_enabled;
 418}
 419
 420/**
 421 * intel_set_memory_cxsr - Configure CxSR state
 422 * @dev_priv: i915 device
 423 * @enable: Allow vs. disallow CxSR
 424 *
 425 * Allow or disallow the system to enter a special CxSR
 426 * (C-state self refresh) state. What typically happens in CxSR mode
 427 * is that several display FIFOs may get combined into a single larger
 428 * FIFO for a particular plane (so called max FIFO mode) to allow the
 429 * system to defer memory fetches longer, and the memory will enter
 430 * self refresh.
 431 *
 432 * Note that enabling CxSR does not guarantee that the system enter
 433 * this special mode, nor does it guarantee that the system stays
 434 * in that mode once entered. So this just allows/disallows the system
 435 * to autonomously utilize the CxSR mode. Other factors such as core
 436 * C-states will affect when/if the system actually enters/exits the
 437 * CxSR mode.
 438 *
 439 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 440 * and the system is free to enter/exit memory self refresh at any time
 441 * even when the use of CxSR has been disallowed.
 442 *
 443 * While the system is actually in the CxSR/max FIFO mode, some plane
 444 * control registers will not get latched on vblank. Thus in order to
 445 * guarantee the system will respond to changes in the plane registers
 446 * we must always disallow CxSR prior to making changes to those registers.
 447 * Unfortunately the system will re-evaluate the CxSR conditions at
 448 * frame start which happens after vblank start (which is when the plane
 449 * registers would get latched), so we can't proceed with the plane update
 450 * during the same frame where we disallowed CxSR.
 451 *
 452 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 453 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 454 * the hardware w.r.t. HPLL SR when writing to plane registers.
 455 * Disallowing just CxSR is sufficient.
 456 */
 457bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
 458{
 459	bool ret;
 460
 461	mutex_lock(&dev_priv->wm.wm_mutex);
 462	ret = _intel_set_memory_cxsr(dev_priv, enable);
 463	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 464		dev_priv->wm.vlv.cxsr = enable;
 465	else if (IS_G4X(dev_priv))
 466		dev_priv->wm.g4x.cxsr = enable;
 467	mutex_unlock(&dev_priv->wm.wm_mutex);
 468
 469	return ret;
 470}
 471
 472/*
 473 * Latency for FIFO fetches is dependent on several factors:
 474 *   - memory configuration (speed, channels)
 475 *   - chipset
 476 *   - current MCH state
 477 * It can be fairly high in some situations, so here we assume a fairly
 478 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 479 * set this value too high, the FIFO will fetch frequently to stay full)
 480 * and power consumption (set it too low to save power and we might see
 481 * FIFO underruns and display "flicker").
 482 *
 483 * A value of 5us seems to be a good balance; safe for very low end
 484 * platforms but not overly aggressive on lower latency configs.
 485 */
 486static const int pessimal_latency_ns = 5000;
 487
 488#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
 489	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
 490
 491static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
 492{
 493	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 494	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 495	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
 496	enum pipe pipe = crtc->pipe;
 497	int sprite0_start, sprite1_start;
 498	u32 dsparb, dsparb2, dsparb3;
 499
 500	switch (pipe) {
 501	case PIPE_A:
 502		dsparb = I915_READ(DSPARB);
 503		dsparb2 = I915_READ(DSPARB2);
 504		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
 505		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
 506		break;
 507	case PIPE_B:
 508		dsparb = I915_READ(DSPARB);
 509		dsparb2 = I915_READ(DSPARB2);
 510		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
 511		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
 512		break;
 513	case PIPE_C:
 514		dsparb2 = I915_READ(DSPARB2);
 515		dsparb3 = I915_READ(DSPARB3);
 516		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
 517		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
 518		break;
 519	default:
 520		MISSING_CASE(pipe);
 521		return;
 522	}
 523
 524	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
 525	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
 526	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
 527	fifo_state->plane[PLANE_CURSOR] = 63;
 528}
 529
 530static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
 531			      enum i9xx_plane_id i9xx_plane)
 532{
 533	u32 dsparb = I915_READ(DSPARB);
 534	int size;
 535
 536	size = dsparb & 0x7f;
 537	if (i9xx_plane == PLANE_B)
 538		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 539
 540	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 541		    dsparb, plane_name(i9xx_plane), size);
 542
 543	return size;
 544}
 545
 546static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
 547			      enum i9xx_plane_id i9xx_plane)
 548{
 549	u32 dsparb = I915_READ(DSPARB);
 550	int size;
 551
 552	size = dsparb & 0x1ff;
 553	if (i9xx_plane == PLANE_B)
 554		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 555	size >>= 1; /* Convert to cachelines */
 556
 557	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 558		    dsparb, plane_name(i9xx_plane), size);
 559
 560	return size;
 561}
 562
 563static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
 564			      enum i9xx_plane_id i9xx_plane)
 565{
 566	u32 dsparb = I915_READ(DSPARB);
 567	int size;
 568
 569	size = dsparb & 0x7f;
 570	size >>= 2; /* Convert to cachelines */
 571
 572	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
 573		    dsparb, plane_name(i9xx_plane), size);
 574
 575	return size;
 576}
 577
 578/* Pineview has different values for various configs */
 579static const struct intel_watermark_params pnv_display_wm = {
 580	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 581	.max_wm = PINEVIEW_MAX_WM,
 582	.default_wm = PINEVIEW_DFT_WM,
 583	.guard_size = PINEVIEW_GUARD_WM,
 584	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 585};
 586
 587static const struct intel_watermark_params pnv_display_hplloff_wm = {
 588	.fifo_size = PINEVIEW_DISPLAY_FIFO,
 589	.max_wm = PINEVIEW_MAX_WM,
 590	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
 591	.guard_size = PINEVIEW_GUARD_WM,
 592	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 593};
 594
 595static const struct intel_watermark_params pnv_cursor_wm = {
 596	.fifo_size = PINEVIEW_CURSOR_FIFO,
 597	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 598	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 599	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 600	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 601};
 602
 603static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
 604	.fifo_size = PINEVIEW_CURSOR_FIFO,
 605	.max_wm = PINEVIEW_CURSOR_MAX_WM,
 606	.default_wm = PINEVIEW_CURSOR_DFT_WM,
 607	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
 608	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
 609};
 610
 611static const struct intel_watermark_params i965_cursor_wm_info = {
 612	.fifo_size = I965_CURSOR_FIFO,
 613	.max_wm = I965_CURSOR_MAX_WM,
 614	.default_wm = I965_CURSOR_DFT_WM,
 615	.guard_size = 2,
 616	.cacheline_size = I915_FIFO_LINE_SIZE,
 617};
 618
 619static const struct intel_watermark_params i945_wm_info = {
 620	.fifo_size = I945_FIFO_SIZE,
 621	.max_wm = I915_MAX_WM,
 622	.default_wm = 1,
 623	.guard_size = 2,
 624	.cacheline_size = I915_FIFO_LINE_SIZE,
 625};
 626
 627static const struct intel_watermark_params i915_wm_info = {
 628	.fifo_size = I915_FIFO_SIZE,
 629	.max_wm = I915_MAX_WM,
 630	.default_wm = 1,
 631	.guard_size = 2,
 632	.cacheline_size = I915_FIFO_LINE_SIZE,
 633};
 634
 635static const struct intel_watermark_params i830_a_wm_info = {
 636	.fifo_size = I855GM_FIFO_SIZE,
 637	.max_wm = I915_MAX_WM,
 638	.default_wm = 1,
 639	.guard_size = 2,
 640	.cacheline_size = I830_FIFO_LINE_SIZE,
 641};
 642
 643static const struct intel_watermark_params i830_bc_wm_info = {
 644	.fifo_size = I855GM_FIFO_SIZE,
 645	.max_wm = I915_MAX_WM/2,
 646	.default_wm = 1,
 647	.guard_size = 2,
 648	.cacheline_size = I830_FIFO_LINE_SIZE,
 649};
 650
 651static const struct intel_watermark_params i845_wm_info = {
 652	.fifo_size = I830_FIFO_SIZE,
 653	.max_wm = I915_MAX_WM,
 654	.default_wm = 1,
 655	.guard_size = 2,
 656	.cacheline_size = I830_FIFO_LINE_SIZE,
 657};
 658
 659/**
 660 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 661 * @pixel_rate: Pipe pixel rate in kHz
 662 * @cpp: Plane bytes per pixel
 663 * @latency: Memory wakeup latency in 0.1us units
 664 *
 665 * Compute the watermark using the method 1 or "small buffer"
 666 * formula. The caller may additonally add extra cachelines
 667 * to account for TLB misses and clock crossings.
 668 *
 669 * This method is concerned with the short term drain rate
 670 * of the FIFO, ie. it does not account for blanking periods
 671 * which would effectively reduce the average drain rate across
 672 * a longer period. The name "small" refers to the fact the
 673 * FIFO is relatively small compared to the amount of data
 674 * fetched.
 675 *
 676 * The FIFO level vs. time graph might look something like:
 677 *
 678 *   |\   |\
 679 *   | \  | \
 680 * __---__---__ (- plane active, _ blanking)
 681 * -> time
 682 *
 683 * or perhaps like this:
 684 *
 685 *   |\|\  |\|\
 686 * __----__----__ (- plane active, _ blanking)
 687 * -> time
 688 *
 689 * Returns:
 690 * The watermark in bytes
 691 */
 692static unsigned int intel_wm_method1(unsigned int pixel_rate,
 693				     unsigned int cpp,
 694				     unsigned int latency)
 695{
 696	u64 ret;
 697
 698	ret = mul_u32_u32(pixel_rate, cpp * latency);
 699	ret = DIV_ROUND_UP_ULL(ret, 10000);
 700
 701	return ret;
 702}
 703
 704/**
 705 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 706 * @pixel_rate: Pipe pixel rate in kHz
 707 * @htotal: Pipe horizontal total
 708 * @width: Plane width in pixels
 709 * @cpp: Plane bytes per pixel
 710 * @latency: Memory wakeup latency in 0.1us units
 711 *
 712 * Compute the watermark using the method 2 or "large buffer"
 713 * formula. The caller may additonally add extra cachelines
 714 * to account for TLB misses and clock crossings.
 715 *
 716 * This method is concerned with the long term drain rate
 717 * of the FIFO, ie. it does account for blanking periods
 718 * which effectively reduce the average drain rate across
 719 * a longer period. The name "large" refers to the fact the
 720 * FIFO is relatively large compared to the amount of data
 721 * fetched.
 722 *
 723 * The FIFO level vs. time graph might look something like:
 724 *
 725 *    |\___       |\___
 726 *    |    \___   |    \___
 727 *    |        \  |        \
 728 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 729 * -> time
 730 *
 731 * Returns:
 732 * The watermark in bytes
 733 */
 734static unsigned int intel_wm_method2(unsigned int pixel_rate,
 735				     unsigned int htotal,
 736				     unsigned int width,
 737				     unsigned int cpp,
 738				     unsigned int latency)
 739{
 740	unsigned int ret;
 741
 742	/*
 743	 * FIXME remove once all users are computing
 744	 * watermarks in the correct place.
 745	 */
 746	if (WARN_ON_ONCE(htotal == 0))
 747		htotal = 1;
 748
 749	ret = (latency * pixel_rate) / (htotal * 10000);
 750	ret = (ret + 1) * width * cpp;
 751
 752	return ret;
 753}
 754
 755/**
 756 * intel_calculate_wm - calculate watermark level
 757 * @pixel_rate: pixel clock
 758 * @wm: chip FIFO params
 759 * @fifo_size: size of the FIFO buffer
 760 * @cpp: bytes per pixel
 761 * @latency_ns: memory latency for the platform
 762 *
 763 * Calculate the watermark level (the level at which the display plane will
 764 * start fetching from memory again).  Each chip has a different display
 765 * FIFO size and allocation, so the caller needs to figure that out and pass
 766 * in the correct intel_watermark_params structure.
 767 *
 768 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 769 * on the pixel size.  When it reaches the watermark level, it'll start
 770 * fetching FIFO line sized based chunks from memory until the FIFO fills
 771 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 772 * will occur, and a display engine hang could result.
 773 */
 774static unsigned int intel_calculate_wm(int pixel_rate,
 775				       const struct intel_watermark_params *wm,
 776				       int fifo_size, int cpp,
 777				       unsigned int latency_ns)
 778{
 779	int entries, wm_size;
 780
 781	/*
 782	 * Note: we need to make sure we don't overflow for various clock &
 783	 * latency values.
 784	 * clocks go from a few thousand to several hundred thousand.
 785	 * latency is usually a few thousand
 786	 */
 787	entries = intel_wm_method1(pixel_rate, cpp,
 788				   latency_ns / 100);
 789	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
 790		wm->guard_size;
 791	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
 792
 793	wm_size = fifo_size - entries;
 794	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
 795
 796	/* Don't promote wm_size to unsigned... */
 797	if (wm_size > wm->max_wm)
 798		wm_size = wm->max_wm;
 799	if (wm_size <= 0)
 800		wm_size = wm->default_wm;
 801
 802	/*
 803	 * Bspec seems to indicate that the value shouldn't be lower than
 804	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
 805	 * Lets go for 8 which is the burst size since certain platforms
 806	 * already use a hardcoded 8 (which is what the spec says should be
 807	 * done).
 808	 */
 809	if (wm_size <= 8)
 810		wm_size = 8;
 811
 812	return wm_size;
 813}
 814
 815static bool is_disabling(int old, int new, int threshold)
 816{
 817	return old >= threshold && new < threshold;
 818}
 819
 820static bool is_enabling(int old, int new, int threshold)
 821{
 822	return old < threshold && new >= threshold;
 823}
 824
 825static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
 826{
 827	return dev_priv->wm.max_level + 1;
 828}
 829
 830static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
 831				   const struct intel_plane_state *plane_state)
 832{
 833	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
 834
 835	/* FIXME check the 'enable' instead */
 836	if (!crtc_state->hw.active)
 837		return false;
 838
 839	/*
 840	 * Treat cursor with fb as always visible since cursor updates
 841	 * can happen faster than the vrefresh rate, and the current
 842	 * watermark code doesn't handle that correctly. Cursor updates
 843	 * which set/clear the fb or change the cursor size are going
 844	 * to get throttled by intel_legacy_cursor_update() to work
 845	 * around this problem with the watermark code.
 846	 */
 847	if (plane->id == PLANE_CURSOR)
 848		return plane_state->hw.fb != NULL;
 849	else
 850		return plane_state->uapi.visible;
 851}
 852
 853static bool intel_crtc_active(struct intel_crtc *crtc)
 854{
 855	/* Be paranoid as we can arrive here with only partial
 856	 * state retrieved from the hardware during setup.
 857	 *
 858	 * We can ditch the adjusted_mode.crtc_clock check as soon
 859	 * as Haswell has gained clock readout/fastboot support.
 860	 *
 861	 * We can ditch the crtc->primary->state->fb check as soon as we can
 862	 * properly reconstruct framebuffers.
 863	 *
 864	 * FIXME: The intel_crtc->active here should be switched to
 865	 * crtc->state->active once we have proper CRTC states wired up
 866	 * for atomic.
 867	 */
 868	return crtc->active && crtc->base.primary->state->fb &&
 869		crtc->config->hw.adjusted_mode.crtc_clock;
 870}
 871
 872static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
 873{
 874	struct intel_crtc *crtc, *enabled = NULL;
 875
 876	for_each_intel_crtc(&dev_priv->drm, crtc) {
 877		if (intel_crtc_active(crtc)) {
 878			if (enabled)
 879				return NULL;
 880			enabled = crtc;
 881		}
 882	}
 883
 884	return enabled;
 885}
 886
 887static void pnv_update_wm(struct intel_crtc *unused_crtc)
 888{
 889	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
 890	struct intel_crtc *crtc;
 891	const struct cxsr_latency *latency;
 892	u32 reg;
 893	unsigned int wm;
 894
 895	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
 896					 dev_priv->is_ddr3,
 897					 dev_priv->fsb_freq,
 898					 dev_priv->mem_freq);
 899	if (!latency) {
 900		drm_dbg_kms(&dev_priv->drm,
 901			    "Unknown FSB/MEM found, disable CxSR\n");
 902		intel_set_memory_cxsr(dev_priv, false);
 903		return;
 904	}
 905
 906	crtc = single_enabled_crtc(dev_priv);
 907	if (crtc) {
 908		const struct drm_display_mode *adjusted_mode =
 909			&crtc->config->hw.adjusted_mode;
 910		const struct drm_framebuffer *fb =
 911			crtc->base.primary->state->fb;
 912		int cpp = fb->format->cpp[0];
 913		int clock = adjusted_mode->crtc_clock;
 914
 915		/* Display SR */
 916		wm = intel_calculate_wm(clock, &pnv_display_wm,
 917					pnv_display_wm.fifo_size,
 918					cpp, latency->display_sr);
 919		reg = I915_READ(DSPFW1);
 920		reg &= ~DSPFW_SR_MASK;
 921		reg |= FW_WM(wm, SR);
 922		I915_WRITE(DSPFW1, reg);
 923		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
 924
 925		/* cursor SR */
 926		wm = intel_calculate_wm(clock, &pnv_cursor_wm,
 927					pnv_display_wm.fifo_size,
 928					4, latency->cursor_sr);
 929		reg = I915_READ(DSPFW3);
 930		reg &= ~DSPFW_CURSOR_SR_MASK;
 931		reg |= FW_WM(wm, CURSOR_SR);
 932		I915_WRITE(DSPFW3, reg);
 933
 934		/* Display HPLL off SR */
 935		wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
 936					pnv_display_hplloff_wm.fifo_size,
 937					cpp, latency->display_hpll_disable);
 938		reg = I915_READ(DSPFW3);
 939		reg &= ~DSPFW_HPLL_SR_MASK;
 940		reg |= FW_WM(wm, HPLL_SR);
 941		I915_WRITE(DSPFW3, reg);
 942
 943		/* cursor HPLL off SR */
 944		wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
 945					pnv_display_hplloff_wm.fifo_size,
 946					4, latency->cursor_hpll_disable);
 947		reg = I915_READ(DSPFW3);
 948		reg &= ~DSPFW_HPLL_CURSOR_MASK;
 949		reg |= FW_WM(wm, HPLL_CURSOR);
 950		I915_WRITE(DSPFW3, reg);
 951		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
 952
 953		intel_set_memory_cxsr(dev_priv, true);
 954	} else {
 955		intel_set_memory_cxsr(dev_priv, false);
 956	}
 957}
 958
 959/*
 960 * Documentation says:
 961 * "If the line size is small, the TLB fetches can get in the way of the
 962 *  data fetches, causing some lag in the pixel data return which is not
 963 *  accounted for in the above formulas. The following adjustment only
 964 *  needs to be applied if eight whole lines fit in the buffer at once.
 965 *  The WM is adjusted upwards by the difference between the FIFO size
 966 *  and the size of 8 whole lines. This adjustment is always performed
 967 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 968 */
 969static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
 970{
 971	int tlb_miss = fifo_size * 64 - width * cpp * 8;
 972
 973	return max(0, tlb_miss);
 974}
 975
 976static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
 977				const struct g4x_wm_values *wm)
 978{
 979	enum pipe pipe;
 980
 981	for_each_pipe(dev_priv, pipe)
 982		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
 983
 984	I915_WRITE(DSPFW1,
 985		   FW_WM(wm->sr.plane, SR) |
 986		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
 987		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
 988		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
 989	I915_WRITE(DSPFW2,
 990		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
 991		   FW_WM(wm->sr.fbc, FBC_SR) |
 992		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
 993		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
 994		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
 995		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
 996	I915_WRITE(DSPFW3,
 997		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
 998		   FW_WM(wm->sr.cursor, CURSOR_SR) |
 999		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
1000		   FW_WM(wm->hpll.plane, HPLL_SR));
1001
1002	POSTING_READ(DSPFW1);
1003}
1004
1005#define FW_WM_VLV(value, plane) \
1006	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1007
1008static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1009				const struct vlv_wm_values *wm)
1010{
1011	enum pipe pipe;
1012
1013	for_each_pipe(dev_priv, pipe) {
1014		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1015
1016		I915_WRITE(VLV_DDL(pipe),
1017			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1018			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1019			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1020			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1021	}
1022
1023	/*
1024	 * Zero the (unused) WM1 watermarks, and also clear all the
1025	 * high order bits so that there are no out of bounds values
1026	 * present in the registers during the reprogramming.
1027	 */
1028	I915_WRITE(DSPHOWM, 0);
1029	I915_WRITE(DSPHOWM1, 0);
1030	I915_WRITE(DSPFW4, 0);
1031	I915_WRITE(DSPFW5, 0);
1032	I915_WRITE(DSPFW6, 0);
1033
1034	I915_WRITE(DSPFW1,
1035		   FW_WM(wm->sr.plane, SR) |
1036		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1037		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1038		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1039	I915_WRITE(DSPFW2,
1040		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1041		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1042		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1043	I915_WRITE(DSPFW3,
1044		   FW_WM(wm->sr.cursor, CURSOR_SR));
1045
1046	if (IS_CHERRYVIEW(dev_priv)) {
1047		I915_WRITE(DSPFW7_CHV,
1048			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1049			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1050		I915_WRITE(DSPFW8_CHV,
1051			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1052			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1053		I915_WRITE(DSPFW9_CHV,
1054			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1055			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1056		I915_WRITE(DSPHOWM,
1057			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1058			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1059			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1060			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1061			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1062			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1063			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1064			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1065			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1066			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1067	} else {
1068		I915_WRITE(DSPFW7,
1069			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1070			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1071		I915_WRITE(DSPHOWM,
1072			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1073			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1074			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1075			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1076			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1077			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1078			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1079	}
1080
1081	POSTING_READ(DSPFW1);
1082}
1083
1084#undef FW_WM_VLV
1085
1086static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1087{
1088	/* all latencies in usec */
1089	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1090	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1091	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1092
1093	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1094}
1095
1096static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1097{
1098	/*
1099	 * DSPCNTR[13] supposedly controls whether the
1100	 * primary plane can use the FIFO space otherwise
1101	 * reserved for the sprite plane. It's not 100% clear
1102	 * what the actual FIFO size is, but it looks like we
1103	 * can happily set both primary and sprite watermarks
1104	 * up to 127 cachelines. So that would seem to mean
1105	 * that either DSPCNTR[13] doesn't do anything, or that
1106	 * the total FIFO is >= 256 cachelines in size. Either
1107	 * way, we don't seem to have to worry about this
1108	 * repartitioning as the maximum watermark value the
1109	 * register can hold for each plane is lower than the
1110	 * minimum FIFO size.
1111	 */
1112	switch (plane_id) {
1113	case PLANE_CURSOR:
1114		return 63;
1115	case PLANE_PRIMARY:
1116		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1117	case PLANE_SPRITE0:
1118		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1119	default:
1120		MISSING_CASE(plane_id);
1121		return 0;
1122	}
1123}
1124
1125static int g4x_fbc_fifo_size(int level)
1126{
1127	switch (level) {
1128	case G4X_WM_LEVEL_SR:
1129		return 7;
1130	case G4X_WM_LEVEL_HPLL:
1131		return 15;
1132	default:
1133		MISSING_CASE(level);
1134		return 0;
1135	}
1136}
1137
1138static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1139			  const struct intel_plane_state *plane_state,
1140			  int level)
1141{
1142	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1143	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1144	const struct drm_display_mode *adjusted_mode =
1145		&crtc_state->hw.adjusted_mode;
1146	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1147	unsigned int clock, htotal, cpp, width, wm;
1148
1149	if (latency == 0)
1150		return USHRT_MAX;
1151
1152	if (!intel_wm_plane_visible(crtc_state, plane_state))
1153		return 0;
1154
1155	cpp = plane_state->hw.fb->format->cpp[0];
1156
1157	/*
1158	 * Not 100% sure which way ELK should go here as the
1159	 * spec only says CL/CTG should assume 32bpp and BW
1160	 * doesn't need to. But as these things followed the
1161	 * mobile vs. desktop lines on gen3 as well, let's
1162	 * assume ELK doesn't need this.
1163	 *
1164	 * The spec also fails to list such a restriction for
1165	 * the HPLL watermark, which seems a little strange.
1166	 * Let's use 32bpp for the HPLL watermark as well.
1167	 */
1168	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1169	    level != G4X_WM_LEVEL_NORMAL)
1170		cpp = max(cpp, 4u);
1171
1172	clock = adjusted_mode->crtc_clock;
1173	htotal = adjusted_mode->crtc_htotal;
1174
1175	width = drm_rect_width(&plane_state->uapi.dst);
1176
1177	if (plane->id == PLANE_CURSOR) {
1178		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1179	} else if (plane->id == PLANE_PRIMARY &&
1180		   level == G4X_WM_LEVEL_NORMAL) {
1181		wm = intel_wm_method1(clock, cpp, latency);
1182	} else {
1183		unsigned int small, large;
1184
1185		small = intel_wm_method1(clock, cpp, latency);
1186		large = intel_wm_method2(clock, htotal, width, cpp, latency);
1187
1188		wm = min(small, large);
1189	}
1190
1191	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1192			      width, cpp);
1193
1194	wm = DIV_ROUND_UP(wm, 64) + 2;
1195
1196	return min_t(unsigned int, wm, USHRT_MAX);
1197}
1198
1199static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1200				 int level, enum plane_id plane_id, u16 value)
1201{
1202	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1203	bool dirty = false;
1204
1205	for (; level < intel_wm_num_levels(dev_priv); level++) {
1206		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1207
1208		dirty |= raw->plane[plane_id] != value;
1209		raw->plane[plane_id] = value;
1210	}
1211
1212	return dirty;
1213}
1214
1215static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1216			       int level, u16 value)
1217{
1218	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1219	bool dirty = false;
1220
1221	/* NORMAL level doesn't have an FBC watermark */
1222	level = max(level, G4X_WM_LEVEL_SR);
1223
1224	for (; level < intel_wm_num_levels(dev_priv); level++) {
1225		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1226
1227		dirty |= raw->fbc != value;
1228		raw->fbc = value;
1229	}
1230
1231	return dirty;
1232}
1233
1234static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1235			      const struct intel_plane_state *plane_state,
1236			      u32 pri_val);
1237
1238static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1239				     const struct intel_plane_state *plane_state)
1240{
1241	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1242	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1243	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1244	enum plane_id plane_id = plane->id;
1245	bool dirty = false;
1246	int level;
1247
1248	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1249		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1250		if (plane_id == PLANE_PRIMARY)
1251			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1252		goto out;
1253	}
1254
1255	for (level = 0; level < num_levels; level++) {
1256		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1257		int wm, max_wm;
1258
1259		wm = g4x_compute_wm(crtc_state, plane_state, level);
1260		max_wm = g4x_plane_fifo_size(plane_id, level);
1261
1262		if (wm > max_wm)
1263			break;
1264
1265		dirty |= raw->plane[plane_id] != wm;
1266		raw->plane[plane_id] = wm;
1267
1268		if (plane_id != PLANE_PRIMARY ||
1269		    level == G4X_WM_LEVEL_NORMAL)
1270			continue;
1271
1272		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1273					raw->plane[plane_id]);
1274		max_wm = g4x_fbc_fifo_size(level);
1275
1276		/*
1277		 * FBC wm is not mandatory as we
1278		 * can always just disable its use.
1279		 */
1280		if (wm > max_wm)
1281			wm = USHRT_MAX;
1282
1283		dirty |= raw->fbc != wm;
1284		raw->fbc = wm;
1285	}
1286
1287	/* mark watermarks as invalid */
1288	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1289
1290	if (plane_id == PLANE_PRIMARY)
1291		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1292
1293 out:
1294	if (dirty) {
1295		drm_dbg_kms(&dev_priv->drm,
1296			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1297			    plane->base.name,
1298			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1299			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1300			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1301
1302		if (plane_id == PLANE_PRIMARY)
1303			drm_dbg_kms(&dev_priv->drm,
1304				    "FBC watermarks: SR=%d, HPLL=%d\n",
1305				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1306				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1307	}
1308
1309	return dirty;
1310}
1311
1312static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1313				      enum plane_id plane_id, int level)
1314{
1315	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1316
1317	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1318}
1319
1320static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1321				     int level)
1322{
1323	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1324
1325	if (level > dev_priv->wm.max_level)
1326		return false;
1327
1328	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1329		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1330		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1331}
1332
1333/* mark all levels starting from 'level' as invalid */
1334static void g4x_invalidate_wms(struct intel_crtc *crtc,
1335			       struct g4x_wm_state *wm_state, int level)
1336{
1337	if (level <= G4X_WM_LEVEL_NORMAL) {
1338		enum plane_id plane_id;
1339
1340		for_each_plane_id_on_crtc(crtc, plane_id)
1341			wm_state->wm.plane[plane_id] = USHRT_MAX;
1342	}
1343
1344	if (level <= G4X_WM_LEVEL_SR) {
1345		wm_state->cxsr = false;
1346		wm_state->sr.cursor = USHRT_MAX;
1347		wm_state->sr.plane = USHRT_MAX;
1348		wm_state->sr.fbc = USHRT_MAX;
1349	}
1350
1351	if (level <= G4X_WM_LEVEL_HPLL) {
1352		wm_state->hpll_en = false;
1353		wm_state->hpll.cursor = USHRT_MAX;
1354		wm_state->hpll.plane = USHRT_MAX;
1355		wm_state->hpll.fbc = USHRT_MAX;
1356	}
1357}
1358
1359static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1360			       int level)
1361{
1362	if (level < G4X_WM_LEVEL_SR)
1363		return false;
1364
1365	if (level >= G4X_WM_LEVEL_SR &&
1366	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1367		return false;
1368
1369	if (level >= G4X_WM_LEVEL_HPLL &&
1370	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1371		return false;
1372
1373	return true;
1374}
1375
1376static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1377{
1378	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1379	struct intel_atomic_state *state =
1380		to_intel_atomic_state(crtc_state->uapi.state);
1381	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1382	int num_active_planes = hweight8(crtc_state->active_planes &
1383					 ~BIT(PLANE_CURSOR));
1384	const struct g4x_pipe_wm *raw;
1385	const struct intel_plane_state *old_plane_state;
1386	const struct intel_plane_state *new_plane_state;
1387	struct intel_plane *plane;
1388	enum plane_id plane_id;
1389	int i, level;
1390	unsigned int dirty = 0;
1391
1392	for_each_oldnew_intel_plane_in_state(state, plane,
1393					     old_plane_state,
1394					     new_plane_state, i) {
1395		if (new_plane_state->hw.crtc != &crtc->base &&
1396		    old_plane_state->hw.crtc != &crtc->base)
1397			continue;
1398
1399		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1400			dirty |= BIT(plane->id);
1401	}
1402
1403	if (!dirty)
1404		return 0;
1405
1406	level = G4X_WM_LEVEL_NORMAL;
1407	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1408		goto out;
1409
1410	raw = &crtc_state->wm.g4x.raw[level];
1411	for_each_plane_id_on_crtc(crtc, plane_id)
1412		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1413
1414	level = G4X_WM_LEVEL_SR;
1415	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1416		goto out;
1417
1418	raw = &crtc_state->wm.g4x.raw[level];
1419	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1420	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1421	wm_state->sr.fbc = raw->fbc;
1422
1423	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1424
1425	level = G4X_WM_LEVEL_HPLL;
1426	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1427		goto out;
1428
1429	raw = &crtc_state->wm.g4x.raw[level];
1430	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1431	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1432	wm_state->hpll.fbc = raw->fbc;
1433
1434	wm_state->hpll_en = wm_state->cxsr;
1435
1436	level++;
1437
1438 out:
1439	if (level == G4X_WM_LEVEL_NORMAL)
1440		return -EINVAL;
1441
1442	/* invalidate the higher levels */
1443	g4x_invalidate_wms(crtc, wm_state, level);
1444
1445	/*
1446	 * Determine if the FBC watermark(s) can be used. IF
1447	 * this isn't the case we prefer to disable the FBC
1448	 * watermark(s) rather than disable the SR/HPLL
1449	 * level(s) entirely. 'level-1' is the highest valid
1450	 * level here.
1451	 */
1452	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1453
1454	return 0;
1455}
1456
1457static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1458{
1459	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1460	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1461	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1462	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1463	struct intel_atomic_state *intel_state =
1464		to_intel_atomic_state(new_crtc_state->uapi.state);
1465	const struct intel_crtc_state *old_crtc_state =
1466		intel_atomic_get_old_crtc_state(intel_state, crtc);
1467	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1468	enum plane_id plane_id;
1469
1470	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1471		*intermediate = *optimal;
1472
1473		intermediate->cxsr = false;
1474		intermediate->hpll_en = false;
1475		goto out;
1476	}
1477
1478	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1479		!new_crtc_state->disable_cxsr;
1480	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1481		!new_crtc_state->disable_cxsr;
1482	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1483
1484	for_each_plane_id_on_crtc(crtc, plane_id) {
1485		intermediate->wm.plane[plane_id] =
1486			max(optimal->wm.plane[plane_id],
1487			    active->wm.plane[plane_id]);
1488
1489		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1490			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1491	}
1492
1493	intermediate->sr.plane = max(optimal->sr.plane,
1494				     active->sr.plane);
1495	intermediate->sr.cursor = max(optimal->sr.cursor,
1496				      active->sr.cursor);
1497	intermediate->sr.fbc = max(optimal->sr.fbc,
1498				   active->sr.fbc);
1499
1500	intermediate->hpll.plane = max(optimal->hpll.plane,
1501				       active->hpll.plane);
1502	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1503					active->hpll.cursor);
1504	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1505				     active->hpll.fbc);
1506
1507	drm_WARN_ON(&dev_priv->drm,
1508		    (intermediate->sr.plane >
1509		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1510		     intermediate->sr.cursor >
1511		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1512		    intermediate->cxsr);
1513	drm_WARN_ON(&dev_priv->drm,
1514		    (intermediate->sr.plane >
1515		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1516		     intermediate->sr.cursor >
1517		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1518		    intermediate->hpll_en);
1519
1520	drm_WARN_ON(&dev_priv->drm,
1521		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1522		    intermediate->fbc_en && intermediate->cxsr);
1523	drm_WARN_ON(&dev_priv->drm,
1524		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1525		    intermediate->fbc_en && intermediate->hpll_en);
1526
1527out:
1528	/*
1529	 * If our intermediate WM are identical to the final WM, then we can
1530	 * omit the post-vblank programming; only update if it's different.
1531	 */
1532	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1533		new_crtc_state->wm.need_postvbl_update = true;
1534
1535	return 0;
1536}
1537
1538static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1539			 struct g4x_wm_values *wm)
1540{
1541	struct intel_crtc *crtc;
1542	int num_active_pipes = 0;
1543
1544	wm->cxsr = true;
1545	wm->hpll_en = true;
1546	wm->fbc_en = true;
1547
1548	for_each_intel_crtc(&dev_priv->drm, crtc) {
1549		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1550
1551		if (!crtc->active)
1552			continue;
1553
1554		if (!wm_state->cxsr)
1555			wm->cxsr = false;
1556		if (!wm_state->hpll_en)
1557			wm->hpll_en = false;
1558		if (!wm_state->fbc_en)
1559			wm->fbc_en = false;
1560
1561		num_active_pipes++;
1562	}
1563
1564	if (num_active_pipes != 1) {
1565		wm->cxsr = false;
1566		wm->hpll_en = false;
1567		wm->fbc_en = false;
1568	}
1569
1570	for_each_intel_crtc(&dev_priv->drm, crtc) {
1571		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1572		enum pipe pipe = crtc->pipe;
1573
1574		wm->pipe[pipe] = wm_state->wm;
1575		if (crtc->active && wm->cxsr)
1576			wm->sr = wm_state->sr;
1577		if (crtc->active && wm->hpll_en)
1578			wm->hpll = wm_state->hpll;
1579	}
1580}
1581
1582static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1583{
1584	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1585	struct g4x_wm_values new_wm = {};
1586
1587	g4x_merge_wm(dev_priv, &new_wm);
1588
1589	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1590		return;
1591
1592	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1593		_intel_set_memory_cxsr(dev_priv, false);
1594
1595	g4x_write_wm_values(dev_priv, &new_wm);
1596
1597	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1598		_intel_set_memory_cxsr(dev_priv, true);
1599
1600	*old_wm = new_wm;
1601}
1602
1603static void g4x_initial_watermarks(struct intel_atomic_state *state,
1604				   struct intel_crtc *crtc)
1605{
1606	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1607	const struct intel_crtc_state *crtc_state =
1608		intel_atomic_get_new_crtc_state(state, crtc);
1609
1610	mutex_lock(&dev_priv->wm.wm_mutex);
1611	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1612	g4x_program_watermarks(dev_priv);
1613	mutex_unlock(&dev_priv->wm.wm_mutex);
1614}
1615
1616static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1617				    struct intel_crtc *crtc)
1618{
1619	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1620	const struct intel_crtc_state *crtc_state =
1621		intel_atomic_get_new_crtc_state(state, crtc);
1622
1623	if (!crtc_state->wm.need_postvbl_update)
1624		return;
1625
1626	mutex_lock(&dev_priv->wm.wm_mutex);
1627	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1628	g4x_program_watermarks(dev_priv);
1629	mutex_unlock(&dev_priv->wm.wm_mutex);
1630}
1631
1632/* latency must be in 0.1us units. */
1633static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1634				   unsigned int htotal,
1635				   unsigned int width,
1636				   unsigned int cpp,
1637				   unsigned int latency)
1638{
1639	unsigned int ret;
1640
1641	ret = intel_wm_method2(pixel_rate, htotal,
1642			       width, cpp, latency);
1643	ret = DIV_ROUND_UP(ret, 64);
1644
1645	return ret;
1646}
1647
1648static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1649{
1650	/* all latencies in usec */
1651	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1652
1653	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1654
1655	if (IS_CHERRYVIEW(dev_priv)) {
1656		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1657		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1658
1659		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1660	}
1661}
1662
1663static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1664				const struct intel_plane_state *plane_state,
1665				int level)
1666{
1667	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1668	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1669	const struct drm_display_mode *adjusted_mode =
1670		&crtc_state->hw.adjusted_mode;
1671	unsigned int clock, htotal, cpp, width, wm;
1672
1673	if (dev_priv->wm.pri_latency[level] == 0)
1674		return USHRT_MAX;
1675
1676	if (!intel_wm_plane_visible(crtc_state, plane_state))
1677		return 0;
1678
1679	cpp = plane_state->hw.fb->format->cpp[0];
1680	clock = adjusted_mode->crtc_clock;
1681	htotal = adjusted_mode->crtc_htotal;
1682	width = crtc_state->pipe_src_w;
1683
1684	if (plane->id == PLANE_CURSOR) {
1685		/*
1686		 * FIXME the formula gives values that are
1687		 * too big for the cursor FIFO, and hence we
1688		 * would never be able to use cursors. For
1689		 * now just hardcode the watermark.
1690		 */
1691		wm = 63;
1692	} else {
1693		wm = vlv_wm_method2(clock, htotal, width, cpp,
1694				    dev_priv->wm.pri_latency[level] * 10);
1695	}
1696
1697	return min_t(unsigned int, wm, USHRT_MAX);
1698}
1699
1700static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1701{
1702	return (active_planes & (BIT(PLANE_SPRITE0) |
1703				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1704}
1705
1706static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1707{
1708	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1709	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1710	const struct g4x_pipe_wm *raw =
1711		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1712	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1713	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1714	int num_active_planes = hweight8(active_planes);
1715	const int fifo_size = 511;
1716	int fifo_extra, fifo_left = fifo_size;
1717	int sprite0_fifo_extra = 0;
1718	unsigned int total_rate;
1719	enum plane_id plane_id;
1720
1721	/*
1722	 * When enabling sprite0 after sprite1 has already been enabled
1723	 * we tend to get an underrun unless sprite0 already has some
1724	 * FIFO space allcoated. Hence we always allocate at least one
1725	 * cacheline for sprite0 whenever sprite1 is enabled.
1726	 *
1727	 * All other plane enable sequences appear immune to this problem.
1728	 */
1729	if (vlv_need_sprite0_fifo_workaround(active_planes))
1730		sprite0_fifo_extra = 1;
1731
1732	total_rate = raw->plane[PLANE_PRIMARY] +
1733		raw->plane[PLANE_SPRITE0] +
1734		raw->plane[PLANE_SPRITE1] +
1735		sprite0_fifo_extra;
1736
1737	if (total_rate > fifo_size)
1738		return -EINVAL;
1739
1740	if (total_rate == 0)
1741		total_rate = 1;
1742
1743	for_each_plane_id_on_crtc(crtc, plane_id) {
1744		unsigned int rate;
1745
1746		if ((active_planes & BIT(plane_id)) == 0) {
1747			fifo_state->plane[plane_id] = 0;
1748			continue;
1749		}
1750
1751		rate = raw->plane[plane_id];
1752		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1753		fifo_left -= fifo_state->plane[plane_id];
1754	}
1755
1756	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1757	fifo_left -= sprite0_fifo_extra;
1758
1759	fifo_state->plane[PLANE_CURSOR] = 63;
1760
1761	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1762
1763	/* spread the remainder evenly */
1764	for_each_plane_id_on_crtc(crtc, plane_id) {
1765		int plane_extra;
1766
1767		if (fifo_left == 0)
1768			break;
1769
1770		if ((active_planes & BIT(plane_id)) == 0)
1771			continue;
1772
1773		plane_extra = min(fifo_extra, fifo_left);
1774		fifo_state->plane[plane_id] += plane_extra;
1775		fifo_left -= plane_extra;
1776	}
1777
1778	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1779
1780	/* give it all to the first plane if none are active */
1781	if (active_planes == 0) {
1782		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1783		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1784	}
1785
1786	return 0;
1787}
1788
1789/* mark all levels starting from 'level' as invalid */
1790static void vlv_invalidate_wms(struct intel_crtc *crtc,
1791			       struct vlv_wm_state *wm_state, int level)
1792{
1793	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1794
1795	for (; level < intel_wm_num_levels(dev_priv); level++) {
1796		enum plane_id plane_id;
1797
1798		for_each_plane_id_on_crtc(crtc, plane_id)
1799			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1800
1801		wm_state->sr[level].cursor = USHRT_MAX;
1802		wm_state->sr[level].plane = USHRT_MAX;
1803	}
1804}
1805
1806static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1807{
1808	if (wm > fifo_size)
1809		return USHRT_MAX;
1810	else
1811		return fifo_size - wm;
1812}
1813
1814/*
1815 * Starting from 'level' set all higher
1816 * levels to 'value' in the "raw" watermarks.
1817 */
1818static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1819				 int level, enum plane_id plane_id, u16 value)
1820{
1821	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1822	int num_levels = intel_wm_num_levels(dev_priv);
1823	bool dirty = false;
1824
1825	for (; level < num_levels; level++) {
1826		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1827
1828		dirty |= raw->plane[plane_id] != value;
1829		raw->plane[plane_id] = value;
1830	}
1831
1832	return dirty;
1833}
1834
1835static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1836				     const struct intel_plane_state *plane_state)
1837{
1838	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1839	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1840	enum plane_id plane_id = plane->id;
1841	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1842	int level;
1843	bool dirty = false;
1844
1845	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1846		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1847		goto out;
1848	}
1849
1850	for (level = 0; level < num_levels; level++) {
1851		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1852		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1853		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1854
1855		if (wm > max_wm)
1856			break;
1857
1858		dirty |= raw->plane[plane_id] != wm;
1859		raw->plane[plane_id] = wm;
1860	}
1861
1862	/* mark all higher levels as invalid */
1863	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1864
1865out:
1866	if (dirty)
1867		drm_dbg_kms(&dev_priv->drm,
1868			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1869			    plane->base.name,
1870			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1871			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1872			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1873
1874	return dirty;
1875}
1876
1877static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1878				      enum plane_id plane_id, int level)
1879{
1880	const struct g4x_pipe_wm *raw =
1881		&crtc_state->wm.vlv.raw[level];
1882	const struct vlv_fifo_state *fifo_state =
1883		&crtc_state->wm.vlv.fifo_state;
1884
1885	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1886}
1887
1888static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1889{
1890	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1891		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1892		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1893		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1894}
1895
1896static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1897{
1898	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1899	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1900	struct intel_atomic_state *state =
1901		to_intel_atomic_state(crtc_state->uapi.state);
1902	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1903	const struct vlv_fifo_state *fifo_state =
1904		&crtc_state->wm.vlv.fifo_state;
1905	int num_active_planes = hweight8(crtc_state->active_planes &
1906					 ~BIT(PLANE_CURSOR));
1907	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1908	const struct intel_plane_state *old_plane_state;
1909	const struct intel_plane_state *new_plane_state;
1910	struct intel_plane *plane;
1911	enum plane_id plane_id;
1912	int level, ret, i;
1913	unsigned int dirty = 0;
1914
1915	for_each_oldnew_intel_plane_in_state(state, plane,
1916					     old_plane_state,
1917					     new_plane_state, i) {
1918		if (new_plane_state->hw.crtc != &crtc->base &&
1919		    old_plane_state->hw.crtc != &crtc->base)
1920			continue;
1921
1922		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1923			dirty |= BIT(plane->id);
1924	}
1925
1926	/*
1927	 * DSPARB registers may have been reset due to the
1928	 * power well being turned off. Make sure we restore
1929	 * them to a consistent state even if no primary/sprite
1930	 * planes are initially active.
1931	 */
1932	if (needs_modeset)
1933		crtc_state->fifo_changed = true;
1934
1935	if (!dirty)
1936		return 0;
1937
1938	/* cursor changes don't warrant a FIFO recompute */
1939	if (dirty & ~BIT(PLANE_CURSOR)) {
1940		const struct intel_crtc_state *old_crtc_state =
1941			intel_atomic_get_old_crtc_state(state, crtc);
1942		const struct vlv_fifo_state *old_fifo_state =
1943			&old_crtc_state->wm.vlv.fifo_state;
1944
1945		ret = vlv_compute_fifo(crtc_state);
1946		if (ret)
1947			return ret;
1948
1949		if (needs_modeset ||
1950		    memcmp(old_fifo_state, fifo_state,
1951			   sizeof(*fifo_state)) != 0)
1952			crtc_state->fifo_changed = true;
1953	}
1954
1955	/* initially allow all levels */
1956	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1957	/*
1958	 * Note that enabling cxsr with no primary/sprite planes
1959	 * enabled can wedge the pipe. Hence we only allow cxsr
1960	 * with exactly one enabled primary/sprite plane.
1961	 */
1962	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1963
1964	for (level = 0; level < wm_state->num_levels; level++) {
1965		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1966		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1967
1968		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1969			break;
1970
1971		for_each_plane_id_on_crtc(crtc, plane_id) {
1972			wm_state->wm[level].plane[plane_id] =
1973				vlv_invert_wm_value(raw->plane[plane_id],
1974						    fifo_state->plane[plane_id]);
1975		}
1976
1977		wm_state->sr[level].plane =
1978			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1979						 raw->plane[PLANE_SPRITE0],
1980						 raw->plane[PLANE_SPRITE1]),
1981					    sr_fifo_size);
1982
1983		wm_state->sr[level].cursor =
1984			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1985					    63);
1986	}
1987
1988	if (level == 0)
1989		return -EINVAL;
1990
1991	/* limit to only levels we can actually handle */
1992	wm_state->num_levels = level;
1993
1994	/* invalidate the higher levels */
1995	vlv_invalidate_wms(crtc, wm_state, level);
1996
1997	return 0;
1998}
1999
2000#define VLV_FIFO(plane, value) \
2001	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
2002
2003static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
2004				   struct intel_crtc *crtc)
2005{
2006	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2007	struct intel_uncore *uncore = &dev_priv->uncore;
2008	const struct intel_crtc_state *crtc_state =
2009		intel_atomic_get_new_crtc_state(state, crtc);
2010	const struct vlv_fifo_state *fifo_state =
2011		&crtc_state->wm.vlv.fifo_state;
2012	int sprite0_start, sprite1_start, fifo_size;
2013	u32 dsparb, dsparb2, dsparb3;
2014
2015	if (!crtc_state->fifo_changed)
2016		return;
2017
2018	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2019	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2020	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2021
2022	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2023	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2024
2025	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2026
2027	/*
2028	 * uncore.lock serves a double purpose here. It allows us to
2029	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
2030	 * it protects the DSPARB registers from getting clobbered by
2031	 * parallel updates from multiple pipes.
2032	 *
2033	 * intel_pipe_update_start() has already disabled interrupts
2034	 * for us, so a plain spin_lock() is sufficient here.
2035	 */
2036	spin_lock(&uncore->lock);
2037
2038	switch (crtc->pipe) {
2039	case PIPE_A:
2040		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2041		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2042
2043		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2044			    VLV_FIFO(SPRITEB, 0xff));
2045		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2046			   VLV_FIFO(SPRITEB, sprite1_start));
2047
2048		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2049			     VLV_FIFO(SPRITEB_HI, 0x1));
2050		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2051			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2052
2053		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2054		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2055		break;
2056	case PIPE_B:
2057		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2058		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2059
2060		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2061			    VLV_FIFO(SPRITED, 0xff));
2062		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2063			   VLV_FIFO(SPRITED, sprite1_start));
2064
2065		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2066			     VLV_FIFO(SPRITED_HI, 0xff));
2067		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2068			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2069
2070		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2071		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2072		break;
2073	case PIPE_C:
2074		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2075		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2076
2077		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2078			     VLV_FIFO(SPRITEF, 0xff));
2079		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2080			    VLV_FIFO(SPRITEF, sprite1_start));
2081
2082		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2083			     VLV_FIFO(SPRITEF_HI, 0xff));
2084		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2085			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2086
2087		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2088		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2089		break;
2090	default:
2091		break;
2092	}
2093
2094	intel_uncore_posting_read_fw(uncore, DSPARB);
2095
2096	spin_unlock(&uncore->lock);
2097}
2098
2099#undef VLV_FIFO
2100
2101static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2102{
2103	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2104	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2105	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2106	struct intel_atomic_state *intel_state =
2107		to_intel_atomic_state(new_crtc_state->uapi.state);
2108	const struct intel_crtc_state *old_crtc_state =
2109		intel_atomic_get_old_crtc_state(intel_state, crtc);
2110	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2111	int level;
2112
2113	if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2114		*intermediate = *optimal;
2115
2116		intermediate->cxsr = false;
2117		goto out;
2118	}
2119
2120	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2121	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2122		!new_crtc_state->disable_cxsr;
2123
2124	for (level = 0; level < intermediate->num_levels; level++) {
2125		enum plane_id plane_id;
2126
2127		for_each_plane_id_on_crtc(crtc, plane_id) {
2128			intermediate->wm[level].plane[plane_id] =
2129				min(optimal->wm[level].plane[plane_id],
2130				    active->wm[level].plane[plane_id]);
2131		}
2132
2133		intermediate->sr[level].plane = min(optimal->sr[level].plane,
2134						    active->sr[level].plane);
2135		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2136						     active->sr[level].cursor);
2137	}
2138
2139	vlv_invalidate_wms(crtc, intermediate, level);
2140
2141out:
2142	/*
2143	 * If our intermediate WM are identical to the final WM, then we can
2144	 * omit the post-vblank programming; only update if it's different.
2145	 */
2146	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2147		new_crtc_state->wm.need_postvbl_update = true;
2148
2149	return 0;
2150}
2151
2152static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2153			 struct vlv_wm_values *wm)
2154{
2155	struct intel_crtc *crtc;
2156	int num_active_pipes = 0;
2157
2158	wm->level = dev_priv->wm.max_level;
2159	wm->cxsr = true;
2160
2161	for_each_intel_crtc(&dev_priv->drm, crtc) {
2162		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2163
2164		if (!crtc->active)
2165			continue;
2166
2167		if (!wm_state->cxsr)
2168			wm->cxsr = false;
2169
2170		num_active_pipes++;
2171		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2172	}
2173
2174	if (num_active_pipes != 1)
2175		wm->cxsr = false;
2176
2177	if (num_active_pipes > 1)
2178		wm->level = VLV_WM_LEVEL_PM2;
2179
2180	for_each_intel_crtc(&dev_priv->drm, crtc) {
2181		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2182		enum pipe pipe = crtc->pipe;
2183
2184		wm->pipe[pipe] = wm_state->wm[wm->level];
2185		if (crtc->active && wm->cxsr)
2186			wm->sr = wm_state->sr[wm->level];
2187
2188		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2189		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2190		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2191		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2192	}
2193}
2194
2195static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2196{
2197	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2198	struct vlv_wm_values new_wm = {};
2199
2200	vlv_merge_wm(dev_priv, &new_wm);
2201
2202	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2203		return;
2204
2205	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2206		chv_set_memory_dvfs(dev_priv, false);
2207
2208	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2209		chv_set_memory_pm5(dev_priv, false);
2210
2211	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2212		_intel_set_memory_cxsr(dev_priv, false);
2213
2214	vlv_write_wm_values(dev_priv, &new_wm);
2215
2216	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2217		_intel_set_memory_cxsr(dev_priv, true);
2218
2219	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2220		chv_set_memory_pm5(dev_priv, true);
2221
2222	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2223		chv_set_memory_dvfs(dev_priv, true);
2224
2225	*old_wm = new_wm;
2226}
2227
2228static void vlv_initial_watermarks(struct intel_atomic_state *state,
2229				   struct intel_crtc *crtc)
2230{
2231	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2232	const struct intel_crtc_state *crtc_state =
2233		intel_atomic_get_new_crtc_state(state, crtc);
2234
2235	mutex_lock(&dev_priv->wm.wm_mutex);
2236	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2237	vlv_program_watermarks(dev_priv);
2238	mutex_unlock(&dev_priv->wm.wm_mutex);
2239}
2240
2241static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2242				    struct intel_crtc *crtc)
2243{
2244	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2245	const struct intel_crtc_state *crtc_state =
2246		intel_atomic_get_new_crtc_state(state, crtc);
2247
2248	if (!crtc_state->wm.need_postvbl_update)
2249		return;
2250
2251	mutex_lock(&dev_priv->wm.wm_mutex);
2252	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2253	vlv_program_watermarks(dev_priv);
2254	mutex_unlock(&dev_priv->wm.wm_mutex);
2255}
2256
2257static void i965_update_wm(struct intel_crtc *unused_crtc)
2258{
2259	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2260	struct intel_crtc *crtc;
2261	int srwm = 1;
2262	int cursor_sr = 16;
2263	bool cxsr_enabled;
2264
2265	/* Calc sr entries for one plane configs */
2266	crtc = single_enabled_crtc(dev_priv);
2267	if (crtc) {
2268		/* self-refresh has much higher latency */
2269		static const int sr_latency_ns = 12000;
2270		const struct drm_display_mode *adjusted_mode =
2271			&crtc->config->hw.adjusted_mode;
2272		const struct drm_framebuffer *fb =
2273			crtc->base.primary->state->fb;
2274		int clock = adjusted_mode->crtc_clock;
2275		int htotal = adjusted_mode->crtc_htotal;
2276		int hdisplay = crtc->config->pipe_src_w;
2277		int cpp = fb->format->cpp[0];
2278		int entries;
2279
2280		entries = intel_wm_method2(clock, htotal,
2281					   hdisplay, cpp, sr_latency_ns / 100);
2282		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2283		srwm = I965_FIFO_SIZE - entries;
2284		if (srwm < 0)
2285			srwm = 1;
2286		srwm &= 0x1ff;
2287		drm_dbg_kms(&dev_priv->drm,
2288			    "self-refresh entries: %d, wm: %d\n",
2289			    entries, srwm);
2290
2291		entries = intel_wm_method2(clock, htotal,
2292					   crtc->base.cursor->state->crtc_w, 4,
2293					   sr_latency_ns / 100);
2294		entries = DIV_ROUND_UP(entries,
2295				       i965_cursor_wm_info.cacheline_size) +
2296			i965_cursor_wm_info.guard_size;
2297
2298		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2299		if (cursor_sr > i965_cursor_wm_info.max_wm)
2300			cursor_sr = i965_cursor_wm_info.max_wm;
2301
2302		drm_dbg_kms(&dev_priv->drm,
2303			    "self-refresh watermark: display plane %d "
2304			    "cursor %d\n", srwm, cursor_sr);
2305
2306		cxsr_enabled = true;
2307	} else {
2308		cxsr_enabled = false;
2309		/* Turn off self refresh if both pipes are enabled */
2310		intel_set_memory_cxsr(dev_priv, false);
2311	}
2312
2313	drm_dbg_kms(&dev_priv->drm,
2314		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2315		    srwm);
2316
2317	/* 965 has limitations... */
2318	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2319		   FW_WM(8, CURSORB) |
2320		   FW_WM(8, PLANEB) |
2321		   FW_WM(8, PLANEA));
2322	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2323		   FW_WM(8, PLANEC_OLD));
2324	/* update cursor SR watermark */
2325	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2326
2327	if (cxsr_enabled)
2328		intel_set_memory_cxsr(dev_priv, true);
2329}
2330
2331#undef FW_WM
2332
2333static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2334{
2335	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2336	const struct intel_watermark_params *wm_info;
2337	u32 fwater_lo;
2338	u32 fwater_hi;
2339	int cwm, srwm = 1;
2340	int fifo_size;
2341	int planea_wm, planeb_wm;
2342	struct intel_crtc *crtc, *enabled = NULL;
2343
2344	if (IS_I945GM(dev_priv))
2345		wm_info = &i945_wm_info;
2346	else if (!IS_GEN(dev_priv, 2))
2347		wm_info = &i915_wm_info;
2348	else
2349		wm_info = &i830_a_wm_info;
2350
2351	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2352	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2353	if (intel_crtc_active(crtc)) {
2354		const struct drm_display_mode *adjusted_mode =
2355			&crtc->config->hw.adjusted_mode;
2356		const struct drm_framebuffer *fb =
2357			crtc->base.primary->state->fb;
2358		int cpp;
2359
2360		if (IS_GEN(dev_priv, 2))
2361			cpp = 4;
2362		else
2363			cpp = fb->format->cpp[0];
2364
2365		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2366					       wm_info, fifo_size, cpp,
2367					       pessimal_latency_ns);
2368		enabled = crtc;
2369	} else {
2370		planea_wm = fifo_size - wm_info->guard_size;
2371		if (planea_wm > (long)wm_info->max_wm)
2372			planea_wm = wm_info->max_wm;
2373	}
2374
2375	if (IS_GEN(dev_priv, 2))
2376		wm_info = &i830_bc_wm_info;
2377
2378	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2379	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2380	if (intel_crtc_active(crtc)) {
2381		const struct drm_display_mode *adjusted_mode =
2382			&crtc->config->hw.adjusted_mode;
2383		const struct drm_framebuffer *fb =
2384			crtc->base.primary->state->fb;
2385		int cpp;
2386
2387		if (IS_GEN(dev_priv, 2))
2388			cpp = 4;
2389		else
2390			cpp = fb->format->cpp[0];
2391
2392		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2393					       wm_info, fifo_size, cpp,
2394					       pessimal_latency_ns);
2395		if (enabled == NULL)
2396			enabled = crtc;
2397		else
2398			enabled = NULL;
2399	} else {
2400		planeb_wm = fifo_size - wm_info->guard_size;
2401		if (planeb_wm > (long)wm_info->max_wm)
2402			planeb_wm = wm_info->max_wm;
2403	}
2404
2405	drm_dbg_kms(&dev_priv->drm,
2406		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2407
2408	if (IS_I915GM(dev_priv) && enabled) {
2409		struct drm_i915_gem_object *obj;
2410
2411		obj = intel_fb_obj(enabled->base.primary->state->fb);
2412
2413		/* self-refresh seems busted with untiled */
2414		if (!i915_gem_object_is_tiled(obj))
2415			enabled = NULL;
2416	}
2417
2418	/*
2419	 * Overlay gets an aggressive default since video jitter is bad.
2420	 */
2421	cwm = 2;
2422
2423	/* Play safe and disable self-refresh before adjusting watermarks. */
2424	intel_set_memory_cxsr(dev_priv, false);
2425
2426	/* Calc sr entries for one plane configs */
2427	if (HAS_FW_BLC(dev_priv) && enabled) {
2428		/* self-refresh has much higher latency */
2429		static const int sr_latency_ns = 6000;
2430		const struct drm_display_mode *adjusted_mode =
2431			&enabled->config->hw.adjusted_mode;
2432		const struct drm_framebuffer *fb =
2433			enabled->base.primary->state->fb;
2434		int clock = adjusted_mode->crtc_clock;
2435		int htotal = adjusted_mode->crtc_htotal;
2436		int hdisplay = enabled->config->pipe_src_w;
2437		int cpp;
2438		int entries;
2439
2440		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2441			cpp = 4;
2442		else
2443			cpp = fb->format->cpp[0];
2444
2445		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2446					   sr_latency_ns / 100);
2447		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2448		drm_dbg_kms(&dev_priv->drm,
2449			    "self-refresh entries: %d\n", entries);
2450		srwm = wm_info->fifo_size - entries;
2451		if (srwm < 0)
2452			srwm = 1;
2453
2454		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2455			I915_WRITE(FW_BLC_SELF,
2456				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2457		else
2458			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2459	}
2460
2461	drm_dbg_kms(&dev_priv->drm,
2462		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2463		     planea_wm, planeb_wm, cwm, srwm);
2464
2465	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2466	fwater_hi = (cwm & 0x1f);
2467
2468	/* Set request length to 8 cachelines per fetch */
2469	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2470	fwater_hi = fwater_hi | (1 << 8);
2471
2472	I915_WRITE(FW_BLC, fwater_lo);
2473	I915_WRITE(FW_BLC2, fwater_hi);
2474
2475	if (enabled)
2476		intel_set_memory_cxsr(dev_priv, true);
2477}
2478
2479static void i845_update_wm(struct intel_crtc *unused_crtc)
2480{
2481	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2482	struct intel_crtc *crtc;
2483	const struct drm_display_mode *adjusted_mode;
2484	u32 fwater_lo;
2485	int planea_wm;
2486
2487	crtc = single_enabled_crtc(dev_priv);
2488	if (crtc == NULL)
2489		return;
2490
2491	adjusted_mode = &crtc->config->hw.adjusted_mode;
2492	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2493				       &i845_wm_info,
2494				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2495				       4, pessimal_latency_ns);
2496	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2497	fwater_lo |= (3<<8) | planea_wm;
2498
2499	drm_dbg_kms(&dev_priv->drm,
2500		    "Setting FIFO watermarks - A: %d\n", planea_wm);
2501
2502	I915_WRITE(FW_BLC, fwater_lo);
2503}
2504
2505/* latency must be in 0.1us units. */
2506static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2507				   unsigned int cpp,
2508				   unsigned int latency)
2509{
2510	unsigned int ret;
2511
2512	ret = intel_wm_method1(pixel_rate, cpp, latency);
2513	ret = DIV_ROUND_UP(ret, 64) + 2;
2514
2515	return ret;
2516}
2517
2518/* latency must be in 0.1us units. */
2519static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2520				   unsigned int htotal,
2521				   unsigned int width,
2522				   unsigned int cpp,
2523				   unsigned int latency)
2524{
2525	unsigned int ret;
2526
2527	ret = intel_wm_method2(pixel_rate, htotal,
2528			       width, cpp, latency);
2529	ret = DIV_ROUND_UP(ret, 64) + 2;
2530
2531	return ret;
2532}
2533
2534static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2535{
2536	/*
2537	 * Neither of these should be possible since this function shouldn't be
2538	 * called if the CRTC is off or the plane is invisible.  But let's be
2539	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2540	 * elsewhere in the driver.
2541	 */
2542	if (WARN_ON(!cpp))
2543		return 0;
2544	if (WARN_ON(!horiz_pixels))
2545		return 0;
2546
2547	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2548}
2549
2550struct ilk_wm_maximums {
2551	u16 pri;
2552	u16 spr;
2553	u16 cur;
2554	u16 fbc;
2555};
2556
2557/*
2558 * For both WM_PIPE and WM_LP.
2559 * mem_value must be in 0.1us units.
2560 */
2561static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2562			      const struct intel_plane_state *plane_state,
2563			      u32 mem_value, bool is_lp)
2564{
2565	u32 method1, method2;
2566	int cpp;
2567
2568	if (mem_value == 0)
2569		return U32_MAX;
2570
2571	if (!intel_wm_plane_visible(crtc_state, plane_state))
2572		return 0;
2573
2574	cpp = plane_state->hw.fb->format->cpp[0];
2575
2576	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2577
2578	if (!is_lp)
2579		return method1;
2580
2581	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2582				 crtc_state->hw.adjusted_mode.crtc_htotal,
2583				 drm_rect_width(&plane_state->uapi.dst),
2584				 cpp, mem_value);
2585
2586	return min(method1, method2);
2587}
2588
2589/*
2590 * For both WM_PIPE and WM_LP.
2591 * mem_value must be in 0.1us units.
2592 */
2593static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2594			      const struct intel_plane_state *plane_state,
2595			      u32 mem_value)
2596{
2597	u32 method1, method2;
2598	int cpp;
2599
2600	if (mem_value == 0)
2601		return U32_MAX;
2602
2603	if (!intel_wm_plane_visible(crtc_state, plane_state))
2604		return 0;
2605
2606	cpp = plane_state->hw.fb->format->cpp[0];
2607
2608	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2609	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2610				 crtc_state->hw.adjusted_mode.crtc_htotal,
2611				 drm_rect_width(&plane_state->uapi.dst),
2612				 cpp, mem_value);
2613	return min(method1, method2);
2614}
2615
2616/*
2617 * For both WM_PIPE and WM_LP.
2618 * mem_value must be in 0.1us units.
2619 */
2620static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2621			      const struct intel_plane_state *plane_state,
2622			      u32 mem_value)
2623{
2624	int cpp;
2625
2626	if (mem_value == 0)
2627		return U32_MAX;
2628
2629	if (!intel_wm_plane_visible(crtc_state, plane_state))
2630		return 0;
2631
2632	cpp = plane_state->hw.fb->format->cpp[0];
2633
2634	return ilk_wm_method2(crtc_state->pixel_rate,
2635			      crtc_state->hw.adjusted_mode.crtc_htotal,
2636			      drm_rect_width(&plane_state->uapi.dst),
2637			      cpp, mem_value);
2638}
2639
2640/* Only for WM_LP. */
2641static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2642			      const struct intel_plane_state *plane_state,
2643			      u32 pri_val)
2644{
2645	int cpp;
2646
2647	if (!intel_wm_plane_visible(crtc_state, plane_state))
2648		return 0;
2649
2650	cpp = plane_state->hw.fb->format->cpp[0];
2651
2652	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2653			  cpp);
2654}
2655
2656static unsigned int
2657ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2658{
2659	if (INTEL_GEN(dev_priv) >= 8)
2660		return 3072;
2661	else if (INTEL_GEN(dev_priv) >= 7)
2662		return 768;
2663	else
2664		return 512;
2665}
2666
2667static unsigned int
2668ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2669		     int level, bool is_sprite)
2670{
2671	if (INTEL_GEN(dev_priv) >= 8)
2672		/* BDW primary/sprite plane watermarks */
2673		return level == 0 ? 255 : 2047;
2674	else if (INTEL_GEN(dev_priv) >= 7)
2675		/* IVB/HSW primary/sprite plane watermarks */
2676		return level == 0 ? 127 : 1023;
2677	else if (!is_sprite)
2678		/* ILK/SNB primary plane watermarks */
2679		return level == 0 ? 127 : 511;
2680	else
2681		/* ILK/SNB sprite plane watermarks */
2682		return level == 0 ? 63 : 255;
2683}
2684
2685static unsigned int
2686ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2687{
2688	if (INTEL_GEN(dev_priv) >= 7)
2689		return level == 0 ? 63 : 255;
2690	else
2691		return level == 0 ? 31 : 63;
2692}
2693
2694static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2695{
2696	if (INTEL_GEN(dev_priv) >= 8)
2697		return 31;
2698	else
2699		return 15;
2700}
2701
2702/* Calculate the maximum primary/sprite plane watermark */
2703static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2704				     int level,
2705				     const struct intel_wm_config *config,
2706				     enum intel_ddb_partitioning ddb_partitioning,
2707				     bool is_sprite)
2708{
2709	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2710
2711	/* if sprites aren't enabled, sprites get nothing */
2712	if (is_sprite && !config->sprites_enabled)
2713		return 0;
2714
2715	/* HSW allows LP1+ watermarks even with multiple pipes */
2716	if (level == 0 || config->num_pipes_active > 1) {
2717		fifo_size /= INTEL_NUM_PIPES(dev_priv);
2718
2719		/*
2720		 * For some reason the non self refresh
2721		 * FIFO size is only half of the self
2722		 * refresh FIFO size on ILK/SNB.
2723		 */
2724		if (INTEL_GEN(dev_priv) <= 6)
2725			fifo_size /= 2;
2726	}
2727
2728	if (config->sprites_enabled) {
2729		/* level 0 is always calculated with 1:1 split */
2730		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2731			if (is_sprite)
2732				fifo_size *= 5;
2733			fifo_size /= 6;
2734		} else {
2735			fifo_size /= 2;
2736		}
2737	}
2738
2739	/* clamp to max that the registers can hold */
2740	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2741}
2742
2743/* Calculate the maximum cursor plane watermark */
2744static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2745				      int level,
2746				      const struct intel_wm_config *config)
2747{
2748	/* HSW LP1+ watermarks w/ multiple pipes */
2749	if (level > 0 && config->num_pipes_active > 1)
2750		return 64;
2751
2752	/* otherwise just report max that registers can hold */
2753	return ilk_cursor_wm_reg_max(dev_priv, level);
2754}
2755
2756static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2757				    int level,
2758				    const struct intel_wm_config *config,
2759				    enum intel_ddb_partitioning ddb_partitioning,
2760				    struct ilk_wm_maximums *max)
2761{
2762	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2763	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2764	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2765	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2766}
2767
2768static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2769					int level,
2770					struct ilk_wm_maximums *max)
2771{
2772	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2773	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2774	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2775	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2776}
2777
2778static bool ilk_validate_wm_level(int level,
2779				  const struct ilk_wm_maximums *max,
2780				  struct intel_wm_level *result)
2781{
2782	bool ret;
2783
2784	/* already determined to be invalid? */
2785	if (!result->enable)
2786		return false;
2787
2788	result->enable = result->pri_val <= max->pri &&
2789			 result->spr_val <= max->spr &&
2790			 result->cur_val <= max->cur;
2791
2792	ret = result->enable;
2793
2794	/*
2795	 * HACK until we can pre-compute everything,
2796	 * and thus fail gracefully if LP0 watermarks
2797	 * are exceeded...
2798	 */
2799	if (level == 0 && !result->enable) {
2800		if (result->pri_val > max->pri)
2801			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2802				      level, result->pri_val, max->pri);
2803		if (result->spr_val > max->spr)
2804			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2805				      level, result->spr_val, max->spr);
2806		if (result->cur_val > max->cur)
2807			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2808				      level, result->cur_val, max->cur);
2809
2810		result->pri_val = min_t(u32, result->pri_val, max->pri);
2811		result->spr_val = min_t(u32, result->spr_val, max->spr);
2812		result->cur_val = min_t(u32, result->cur_val, max->cur);
2813		result->enable = true;
2814	}
2815
2816	return ret;
2817}
2818
2819static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2820				 const struct intel_crtc *crtc,
2821				 int level,
2822				 struct intel_crtc_state *crtc_state,
2823				 const struct intel_plane_state *pristate,
2824				 const struct intel_plane_state *sprstate,
2825				 const struct intel_plane_state *curstate,
2826				 struct intel_wm_level *result)
2827{
2828	u16 pri_latency = dev_priv->wm.pri_latency[level];
2829	u16 spr_latency = dev_priv->wm.spr_latency[level];
2830	u16 cur_latency = dev_priv->wm.cur_latency[level];
2831
2832	/* WM1+ latency values stored in 0.5us units */
2833	if (level > 0) {
2834		pri_latency *= 5;
2835		spr_latency *= 5;
2836		cur_latency *= 5;
2837	}
2838
2839	if (pristate) {
2840		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2841						     pri_latency, level);
2842		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2843	}
2844
2845	if (sprstate)
2846		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2847
2848	if (curstate)
2849		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2850
2851	result->enable = true;
2852}
2853
2854static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2855				  u16 wm[8])
2856{
2857	struct intel_uncore *uncore = &dev_priv->uncore;
2858
2859	if (INTEL_GEN(dev_priv) >= 9) {
2860		u32 val;
2861		int ret, i;
2862		int level, max_level = ilk_wm_max_level(dev_priv);
2863
2864		/* read the first set of memory latencies[0:3] */
2865		val = 0; /* data0 to be programmed to 0 for first set */
2866		ret = sandybridge_pcode_read(dev_priv,
2867					     GEN9_PCODE_READ_MEM_LATENCY,
2868					     &val, NULL);
2869
2870		if (ret) {
2871			drm_err(&dev_priv->drm,
2872				"SKL Mailbox read error = %d\n", ret);
2873			return;
2874		}
2875
2876		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2877		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2878				GEN9_MEM_LATENCY_LEVEL_MASK;
2879		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2880				GEN9_MEM_LATENCY_LEVEL_MASK;
2881		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2882				GEN9_MEM_LATENCY_LEVEL_MASK;
2883
2884		/* read the second set of memory latencies[4:7] */
2885		val = 1; /* data0 to be programmed to 1 for second set */
2886		ret = sandybridge_pcode_read(dev_priv,
2887					     GEN9_PCODE_READ_MEM_LATENCY,
2888					     &val, NULL);
2889		if (ret) {
2890			drm_err(&dev_priv->drm,
2891				"SKL Mailbox read error = %d\n", ret);
2892			return;
2893		}
2894
2895		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2896		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2897				GEN9_MEM_LATENCY_LEVEL_MASK;
2898		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2899				GEN9_MEM_LATENCY_LEVEL_MASK;
2900		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2901				GEN9_MEM_LATENCY_LEVEL_MASK;
2902
2903		/*
2904		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2905		 * need to be disabled. We make sure to sanitize the values out
2906		 * of the punit to satisfy this requirement.
2907		 */
2908		for (level = 1; level <= max_level; level++) {
2909			if (wm[level] == 0) {
2910				for (i = level + 1; i <= max_level; i++)
2911					wm[i] = 0;
2912				break;
2913			}
2914		}
2915
2916		/*
2917		 * WaWmMemoryReadLatency:skl+,glk
2918		 *
2919		 * punit doesn't take into account the read latency so we need
2920		 * to add 2us to the various latency levels we retrieve from the
2921		 * punit when level 0 response data us 0us.
2922		 */
2923		if (wm[0] == 0) {
2924			wm[0] += 2;
2925			for (level = 1; level <= max_level; level++) {
2926				if (wm[level] == 0)
2927					break;
2928				wm[level] += 2;
2929			}
2930		}
2931
2932		/*
2933		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2934		 * If we could not get dimm info enable this WA to prevent from
2935		 * any underrun. If not able to get Dimm info assume 16GB dimm
2936		 * to avoid any underrun.
2937		 */
2938		if (dev_priv->dram_info.is_16gb_dimm)
2939			wm[0] += 1;
2940
2941	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2942		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2943
2944		wm[0] = (sskpd >> 56) & 0xFF;
2945		if (wm[0] == 0)
2946			wm[0] = sskpd & 0xF;
2947		wm[1] = (sskpd >> 4) & 0xFF;
2948		wm[2] = (sskpd >> 12) & 0xFF;
2949		wm[3] = (sskpd >> 20) & 0x1FF;
2950		wm[4] = (sskpd >> 32) & 0x1FF;
2951	} else if (INTEL_GEN(dev_priv) >= 6) {
2952		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2953
2954		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2955		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2956		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2957		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2958	} else if (INTEL_GEN(dev_priv) >= 5) {
2959		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2960
2961		/* ILK primary LP0 latency is 700 ns */
2962		wm[0] = 7;
2963		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2964		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2965	} else {
2966		MISSING_CASE(INTEL_DEVID(dev_priv));
2967	}
2968}
2969
2970static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2971				       u16 wm[5])
2972{
2973	/* ILK sprite LP0 latency is 1300 ns */
2974	if (IS_GEN(dev_priv, 5))
2975		wm[0] = 13;
2976}
2977
2978static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2979				       u16 wm[5])
2980{
2981	/* ILK cursor LP0 latency is 1300 ns */
2982	if (IS_GEN(dev_priv, 5))
2983		wm[0] = 13;
2984}
2985
2986int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2987{
2988	/* how many WM levels are we expecting */
2989	if (INTEL_GEN(dev_priv) >= 9)
2990		return 7;
2991	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2992		return 4;
2993	else if (INTEL_GEN(dev_priv) >= 6)
2994		return 3;
2995	else
2996		return 2;
2997}
2998
2999static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
3000				   const char *name,
3001				   const u16 wm[8])
3002{
3003	int level, max_level = ilk_wm_max_level(dev_priv);
3004
3005	for (level = 0; level <= max_level; level++) {
3006		unsigned int latency = wm[level];
3007
3008		if (latency == 0) {
3009			drm_dbg_kms(&dev_priv->drm,
3010				    "%s WM%d latency not provided\n",
3011				    name, level);
3012			continue;
3013		}
3014
3015		/*
3016		 * - latencies are in us on gen9.
3017		 * - before then, WM1+ latency values are in 0.5us units
3018		 */
3019		if (INTEL_GEN(dev_priv) >= 9)
3020			latency *= 10;
3021		else if (level > 0)
3022			latency *= 5;
3023
3024		drm_dbg_kms(&dev_priv->drm,
3025			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
3026			    wm[level], latency / 10, latency % 10);
3027	}
3028}
3029
3030static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3031				    u16 wm[5], u16 min)
3032{
3033	int level, max_level = ilk_wm_max_level(dev_priv);
3034
3035	if (wm[0] >= min)
3036		return false;
3037
3038	wm[0] = max(wm[0], min);
3039	for (level = 1; level <= max_level; level++)
3040		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3041
3042	return true;
3043}
3044
3045static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3046{
3047	bool changed;
3048
3049	/*
3050	 * The BIOS provided WM memory latency values are often
3051	 * inadequate for high resolution displays. Adjust them.
3052	 */
3053	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3054		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3055		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3056
3057	if (!changed)
3058		return;
3059
3060	drm_dbg_kms(&dev_priv->drm,
3061		    "WM latency values increased to avoid potential underruns\n");
3062	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3063	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3064	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3065}
3066
3067static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3068{
3069	/*
3070	 * On some SNB machines (Thinkpad X220 Tablet at least)
3071	 * LP3 usage can cause vblank interrupts to be lost.
3072	 * The DEIIR bit will go high but it looks like the CPU
3073	 * never gets interrupted.
3074	 *
3075	 * It's not clear whether other interrupt source could
3076	 * be affected or if this is somehow limited to vblank
3077	 * interrupts only. To play it safe we disable LP3
3078	 * watermarks entirely.
3079	 */
3080	if (dev_priv->wm.pri_latency[3] == 0 &&
3081	    dev_priv->wm.spr_latency[3] == 0 &&
3082	    dev_priv->wm.cur_latency[3] == 0)
3083		return;
3084
3085	dev_priv->wm.pri_latency[3] = 0;
3086	dev_priv->wm.spr_latency[3] = 0;
3087	dev_priv->wm.cur_latency[3] = 0;
3088
3089	drm_dbg_kms(&dev_priv->drm,
3090		    "LP3 watermarks disabled due to potential for lost interrupts\n");
3091	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3092	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3093	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3094}
3095
3096static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3097{
3098	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3099
3100	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3101	       sizeof(dev_priv->wm.pri_latency));
3102	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3103	       sizeof(dev_priv->wm.pri_latency));
3104
3105	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3106	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3107
3108	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3109	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3110	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3111
3112	if (IS_GEN(dev_priv, 6)) {
3113		snb_wm_latency_quirk(dev_priv);
3114		snb_wm_lp3_irq_quirk(dev_priv);
3115	}
3116}
3117
3118static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3119{
3120	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3121	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3122}
3123
3124static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3125				 struct intel_pipe_wm *pipe_wm)
3126{
3127	/* LP0 watermark maximums depend on this pipe alone */
3128	const struct intel_wm_config config = {
3129		.num_pipes_active = 1,
3130		.sprites_enabled = pipe_wm->sprites_enabled,
3131		.sprites_scaled = pipe_wm->sprites_scaled,
3132	};
3133	struct ilk_wm_maximums max;
3134
3135	/* LP0 watermarks always use 1/2 DDB partitioning */
3136	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3137
3138	/* At least LP0 must be valid */
3139	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3140		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3141		return false;
3142	}
3143
3144	return true;
3145}
3146
3147/* Compute new watermarks for the pipe */
3148static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3149{
3150	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3151	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3152	struct intel_pipe_wm *pipe_wm;
3153	struct intel_plane *plane;
3154	const struct intel_plane_state *plane_state;
3155	const struct intel_plane_state *pristate = NULL;
3156	const struct intel_plane_state *sprstate = NULL;
3157	const struct intel_plane_state *curstate = NULL;
3158	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3159	struct ilk_wm_maximums max;
3160
3161	pipe_wm = &crtc_state->wm.ilk.optimal;
3162
3163	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3164		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3165			pristate = plane_state;
3166		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3167			sprstate = plane_state;
3168		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3169			curstate = plane_state;
3170	}
3171
3172	pipe_wm->pipe_enabled = crtc_state->hw.active;
3173	if (sprstate) {
3174		pipe_wm->sprites_enabled = sprstate->uapi.visible;
3175		pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3176			(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3177			 drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3178	}
3179
3180	usable_level = max_level;
3181
3182	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3183	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3184		usable_level = 1;
3185
3186	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3187	if (pipe_wm->sprites_scaled)
3188		usable_level = 0;
3189
3190	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3191	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3192			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3193
3194	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3195		return -EINVAL;
3196
3197	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3198
3199	for (level = 1; level <= usable_level; level++) {
3200		struct intel_wm_level *wm = &pipe_wm->wm[level];
3201
3202		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3203				     pristate, sprstate, curstate, wm);
3204
3205		/*
3206		 * Disable any watermark level that exceeds the
3207		 * register maximums since such watermarks are
3208		 * always invalid.
3209		 */
3210		if (!ilk_validate_wm_level(level, &max, wm)) {
3211			memset(wm, 0, sizeof(*wm));
3212			break;
3213		}
3214	}
3215
3216	return 0;
3217}
3218
3219/*
3220 * Build a set of 'intermediate' watermark values that satisfy both the old
3221 * state and the new state.  These can be programmed to the hardware
3222 * immediately.
3223 */
3224static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3225{
3226	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3227	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3228	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3229	struct intel_atomic_state *intel_state =
3230		to_intel_atomic_state(newstate->uapi.state);
3231	const struct intel_crtc_state *oldstate =
3232		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3233	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3234	int level, max_level = ilk_wm_max_level(dev_priv);
3235
3236	/*
3237	 * Start with the final, target watermarks, then combine with the
3238	 * currently active watermarks to get values that are safe both before
3239	 * and after the vblank.
3240	 */
3241	*a = newstate->wm.ilk.optimal;
3242	if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3243	    intel_state->skip_intermediate_wm)
3244		return 0;
3245
3246	a->pipe_enabled |= b->pipe_enabled;
3247	a->sprites_enabled |= b->sprites_enabled;
3248	a->sprites_scaled |= b->sprites_scaled;
3249
3250	for (level = 0; level <= max_level; level++) {
3251		struct intel_wm_level *a_wm = &a->wm[level];
3252		const struct intel_wm_level *b_wm = &b->wm[level];
3253
3254		a_wm->enable &= b_wm->enable;
3255		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3256		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3257		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3258		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3259	}
3260
3261	/*
3262	 * We need to make sure that these merged watermark values are
3263	 * actually a valid configuration themselves.  If they're not,
3264	 * there's no safe way to transition from the old state to
3265	 * the new state, so we need to fail the atomic transaction.
3266	 */
3267	if (!ilk_validate_pipe_wm(dev_priv, a))
3268		return -EINVAL;
3269
3270	/*
3271	 * If our intermediate WM are identical to the final WM, then we can
3272	 * omit the post-vblank programming; only update if it's different.
3273	 */
3274	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3275		newstate->wm.need_postvbl_update = true;
3276
3277	return 0;
3278}
3279
3280/*
3281 * Merge the watermarks from all active pipes for a specific level.
3282 */
3283static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3284			       int level,
3285			       struct intel_wm_level *ret_wm)
3286{
3287	const struct intel_crtc *intel_crtc;
3288
3289	ret_wm->enable = true;
3290
3291	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3292		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3293		const struct intel_wm_level *wm = &active->wm[level];
3294
3295		if (!active->pipe_enabled)
3296			continue;
3297
3298		/*
3299		 * The watermark values may have been used in the past,
3300		 * so we must maintain them in the registers for some
3301		 * time even if the level is now disabled.
3302		 */
3303		if (!wm->enable)
3304			ret_wm->enable = false;
3305
3306		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3307		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3308		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3309		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3310	}
3311}
3312
3313/*
3314 * Merge all low power watermarks for all active pipes.
3315 */
3316static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3317			 const struct intel_wm_config *config,
3318			 const struct ilk_wm_maximums *max,
3319			 struct intel_pipe_wm *merged)
3320{
3321	int level, max_level = ilk_wm_max_level(dev_priv);
3322	int last_enabled_level = max_level;
3323
3324	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3325	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3326	    config->num_pipes_active > 1)
3327		last_enabled_level = 0;
3328
3329	/* ILK: FBC WM must be disabled always */
3330	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3331
3332	/* merge each WM1+ level */
3333	for (level = 1; level <= max_level; level++) {
3334		struct intel_wm_level *wm = &merged->wm[level];
3335
3336		ilk_merge_wm_level(dev_priv, level, wm);
3337
3338		if (level > last_enabled_level)
3339			wm->enable = false;
3340		else if (!ilk_validate_wm_level(level, max, wm))
3341			/* make sure all following levels get disabled */
3342			last_enabled_level = level - 1;
3343
3344		/*
3345		 * The spec says it is preferred to disable
3346		 * FBC WMs instead of disabling a WM level.
3347		 */
3348		if (wm->fbc_val > max->fbc) {
3349			if (wm->enable)
3350				merged->fbc_wm_enabled = false;
3351			wm->fbc_val = 0;
3352		}
3353	}
3354
3355	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3356	/*
3357	 * FIXME this is racy. FBC might get enabled later.
3358	 * What we should check here is whether FBC can be
3359	 * enabled sometime later.
3360	 */
3361	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3362	    intel_fbc_is_active(dev_priv)) {
3363		for (level = 2; level <= max_level; level++) {
3364			struct intel_wm_level *wm = &merged->wm[level];
3365
3366			wm->enable = false;
3367		}
3368	}
3369}
3370
3371static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3372{
3373	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3374	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3375}
3376
3377/* The value we need to program into the WM_LPx latency field */
3378static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3379				      int level)
3380{
3381	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3382		return 2 * level;
3383	else
3384		return dev_priv->wm.pri_latency[level];
3385}
3386
3387static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3388				   const struct intel_pipe_wm *merged,
3389				   enum intel_ddb_partitioning partitioning,
3390				   struct ilk_wm_values *results)
3391{
3392	struct intel_crtc *intel_crtc;
3393	int level, wm_lp;
3394
3395	results->enable_fbc_wm = merged->fbc_wm_enabled;
3396	results->partitioning = partitioning;
3397
3398	/* LP1+ register values */
3399	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3400		const struct intel_wm_level *r;
3401
3402		level = ilk_wm_lp_to_level(wm_lp, merged);
3403
3404		r = &merged->wm[level];
3405
3406		/*
3407		 * Maintain the watermark values even if the level is
3408		 * disabled. Doing otherwise could cause underruns.
3409		 */
3410		results->wm_lp[wm_lp - 1] =
3411			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3412			(r->pri_val << WM1_LP_SR_SHIFT) |
3413			r->cur_val;
3414
3415		if (r->enable)
3416			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3417
3418		if (INTEL_GEN(dev_priv) >= 8)
3419			results->wm_lp[wm_lp - 1] |=
3420				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3421		else
3422			results->wm_lp[wm_lp - 1] |=
3423				r->fbc_val << WM1_LP_FBC_SHIFT;
3424
3425		/*
3426		 * Always set WM1S_LP_EN when spr_val != 0, even if the
3427		 * level is disabled. Doing otherwise could cause underruns.
3428		 */
3429		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3430			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3431			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3432		} else
3433			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3434	}
3435
3436	/* LP0 register values */
3437	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3438		enum pipe pipe = intel_crtc->pipe;
3439		const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
3440		const struct intel_wm_level *r = &pipe_wm->wm[0];
3441
3442		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3443			continue;
3444
3445		results->wm_pipe[pipe] =
3446			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3447			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3448			r->cur_val;
3449	}
3450}
3451
3452/* Find the result with the highest level enabled. Check for enable_fbc_wm in
3453 * case both are at the same level. Prefer r1 in case they're the same. */
3454static struct intel_pipe_wm *
3455ilk_find_best_result(struct drm_i915_private *dev_priv,
3456		     struct intel_pipe_wm *r1,
3457		     struct intel_pipe_wm *r2)
3458{
3459	int level, max_level = ilk_wm_max_level(dev_priv);
3460	int level1 = 0, level2 = 0;
3461
3462	for (level = 1; level <= max_level; level++) {
3463		if (r1->wm[level].enable)
3464			level1 = level;
3465		if (r2->wm[level].enable)
3466			level2 = level;
3467	}
3468
3469	if (level1 == level2) {
3470		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3471			return r2;
3472		else
3473			return r1;
3474	} else if (level1 > level2) {
3475		return r1;
3476	} else {
3477		return r2;
3478	}
3479}
3480
3481/* dirty bits used to track which watermarks need changes */
3482#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3483#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3484#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3485#define WM_DIRTY_FBC (1 << 24)
3486#define WM_DIRTY_DDB (1 << 25)
3487
3488static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3489					 const struct ilk_wm_values *old,
3490					 const struct ilk_wm_values *new)
3491{
3492	unsigned int dirty = 0;
3493	enum pipe pipe;
3494	int wm_lp;
3495
3496	for_each_pipe(dev_priv, pipe) {
3497		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3498			dirty |= WM_DIRTY_PIPE(pipe);
3499			/* Must disable LP1+ watermarks too */
3500			dirty |= WM_DIRTY_LP_ALL;
3501		}
3502	}
3503
3504	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3505		dirty |= WM_DIRTY_FBC;
3506		/* Must disable LP1+ watermarks too */
3507		dirty |= WM_DIRTY_LP_ALL;
3508	}
3509
3510	if (old->partitioning != new->partitioning) {
3511		dirty |= WM_DIRTY_DDB;
3512		/* Must disable LP1+ watermarks too */
3513		dirty |= WM_DIRTY_LP_ALL;
3514	}
3515
3516	/* LP1+ watermarks already deemed dirty, no need to continue */
3517	if (dirty & WM_DIRTY_LP_ALL)
3518		return dirty;
3519
3520	/* Find the lowest numbered LP1+ watermark in need of an update... */
3521	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3522		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3523		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3524			break;
3525	}
3526
3527	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3528	for (; wm_lp <= 3; wm_lp++)
3529		dirty |= WM_DIRTY_LP(wm_lp);
3530
3531	return dirty;
3532}
3533
3534static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3535			       unsigned int dirty)
3536{
3537	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3538	bool changed = false;
3539
3540	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3541		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3542		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3543		changed = true;
3544	}
3545	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3546		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3547		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3548		changed = true;
3549	}
3550	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3551		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3552		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3553		changed = true;
3554	}
3555
3556	/*
3557	 * Don't touch WM1S_LP_EN here.
3558	 * Doing so could cause underruns.
3559	 */
3560
3561	return changed;
3562}
3563
3564/*
3565 * The spec says we shouldn't write when we don't need, because every write
3566 * causes WMs to be re-evaluated, expending some power.
3567 */
3568static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3569				struct ilk_wm_values *results)
3570{
3571	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3572	unsigned int dirty;
3573	u32 val;
3574
3575	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3576	if (!dirty)
3577		return;
3578
3579	_ilk_disable_lp_wm(dev_priv, dirty);
3580
3581	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3582		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3583	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3584		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3585	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3586		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3587
3588	if (dirty & WM_DIRTY_DDB) {
3589		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3590			val = I915_READ(WM_MISC);
3591			if (results->partitioning == INTEL_DDB_PART_1_2)
3592				val &= ~WM_MISC_DATA_PARTITION_5_6;
3593			else
3594				val |= WM_MISC_DATA_PARTITION_5_6;
3595			I915_WRITE(WM_MISC, val);
3596		} else {
3597			val = I915_READ(DISP_ARB_CTL2);
3598			if (results->partitioning == INTEL_DDB_PART_1_2)
3599				val &= ~DISP_DATA_PARTITION_5_6;
3600			else
3601				val |= DISP_DATA_PARTITION_5_6;
3602			I915_WRITE(DISP_ARB_CTL2, val);
3603		}
3604	}
3605
3606	if (dirty & WM_DIRTY_FBC) {
3607		val = I915_READ(DISP_ARB_CTL);
3608		if (results->enable_fbc_wm)
3609			val &= ~DISP_FBC_WM_DIS;
3610		else
3611			val |= DISP_FBC_WM_DIS;
3612		I915_WRITE(DISP_ARB_CTL, val);
3613	}
3614
3615	if (dirty & WM_DIRTY_LP(1) &&
3616	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3617		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3618
3619	if (INTEL_GEN(dev_priv) >= 7) {
3620		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3621			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3622		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3623			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3624	}
3625
3626	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3627		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3628	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3629		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3630	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3631		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3632
3633	dev_priv->wm.hw = *results;
3634}
3635
3636bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3637{
3638	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3639}
3640
3641u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3642{
3643	int i;
3644	int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3645	u8 enabled_slices_mask = 0;
3646
3647	for (i = 0; i < max_slices; i++) {
3648		if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3649			enabled_slices_mask |= BIT(i);
3650	}
3651
3652	return enabled_slices_mask;
3653}
3654
3655/*
3656 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3657 * so assume we'll always need it in order to avoid underruns.
3658 */
3659static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3660{
3661	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3662}
3663
3664static bool
3665intel_has_sagv(struct drm_i915_private *dev_priv)
3666{
3667	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3668		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3669}
3670
3671static void
3672skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3673{
3674	if (INTEL_GEN(dev_priv) >= 12) {
3675		u32 val = 0;
3676		int ret;
3677
3678		ret = sandybridge_pcode_read(dev_priv,
3679					     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3680					     &val, NULL);
3681		if (!ret) {
3682			dev_priv->sagv_block_time_us = val;
3683			return;
3684		}
3685
3686		drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3687	} else if (IS_GEN(dev_priv, 11)) {
3688		dev_priv->sagv_block_time_us = 10;
3689		return;
3690	} else if (IS_GEN(dev_priv, 10)) {
3691		dev_priv->sagv_block_time_us = 20;
3692		return;
3693	} else if (IS_GEN(dev_priv, 9)) {
3694		dev_priv->sagv_block_time_us = 30;
3695		return;
3696	} else {
3697		MISSING_CASE(INTEL_GEN(dev_priv));
3698	}
3699
3700	/* Default to an unusable block time */
3701	dev_priv->sagv_block_time_us = -1;
3702}
3703
3704/*
3705 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3706 * depending on power and performance requirements. The display engine access
3707 * to system memory is blocked during the adjustment time. Because of the
3708 * blocking time, having this enabled can cause full system hangs and/or pipe
3709 * underruns if we don't meet all of the following requirements:
3710 *
3711 *  - <= 1 pipe enabled
3712 *  - All planes can enable watermarks for latencies >= SAGV engine block time
3713 *  - We're not using an interlaced display configuration
3714 */
3715int
3716intel_enable_sagv(struct drm_i915_private *dev_priv)
3717{
3718	int ret;
3719
3720	if (!intel_has_sagv(dev_priv))
3721		return 0;
3722
3723	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3724		return 0;
3725
3726	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3727	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3728				      GEN9_SAGV_ENABLE);
3729
3730	/* We don't need to wait for SAGV when enabling */
3731
3732	/*
3733	 * Some skl systems, pre-release machines in particular,
3734	 * don't actually have SAGV.
3735	 */
3736	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3737		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3738		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3739		return 0;
3740	} else if (ret < 0) {
3741		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3742		return ret;
3743	}
3744
3745	dev_priv->sagv_status = I915_SAGV_ENABLED;
3746	return 0;
3747}
3748
3749int
3750intel_disable_sagv(struct drm_i915_private *dev_priv)
3751{
3752	int ret;
3753
3754	if (!intel_has_sagv(dev_priv))
3755		return 0;
3756
3757	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3758		return 0;
3759
3760	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3761	/* bspec says to keep retrying for at least 1 ms */
3762	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3763				GEN9_SAGV_DISABLE,
3764				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3765				1);
3766	/*
3767	 * Some skl systems, pre-release machines in particular,
3768	 * don't actually have SAGV.
3769	 */
3770	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3771		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3772		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3773		return 0;
3774	} else if (ret < 0) {
3775		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3776		return ret;
3777	}
3778
3779	dev_priv->sagv_status = I915_SAGV_DISABLED;
3780	return 0;
3781}
3782
3783void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3784{
3785	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3786	const struct intel_bw_state *new_bw_state;
3787	const struct intel_bw_state *old_bw_state;
3788	u32 new_mask = 0;
3789
3790	/*
3791	 * Just return if we can't control SAGV or don't have it.
3792	 * This is different from situation when we have SAGV but just can't
3793	 * afford it due to DBuf limitation - in case if SAGV is completely
3794	 * disabled in a BIOS, we are not even allowed to send a PCode request,
3795	 * as it will throw an error. So have to check it here.
3796	 */
3797	if (!intel_has_sagv(dev_priv))
3798		return;
3799
3800	new_bw_state = intel_atomic_get_new_bw_state(state);
3801	if (!new_bw_state)
3802		return;
3803
3804	if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3805		intel_disable_sagv(dev_priv);
3806		return;
3807	}
3808
3809	old_bw_state = intel_atomic_get_old_bw_state(state);
3810	/*
3811	 * Nothing to mask
3812	 */
3813	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3814		return;
3815
3816	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3817
3818	/*
3819	 * If new mask is zero - means there is nothing to mask,
3820	 * we can only unmask, which should be done in unmask.
3821	 */
3822	if (!new_mask)
3823		return;
3824
3825	/*
3826	 * Restrict required qgv points before updating the configuration.
3827	 * According to BSpec we can't mask and unmask qgv points at the same
3828	 * time. Also masking should be done before updating the configuration
3829	 * and unmasking afterwards.
3830	 */
3831	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3832}
3833
3834void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3835{
3836	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3837	const struct intel_bw_state *new_bw_state;
3838	const struct intel_bw_state *old_bw_state;
3839	u32 new_mask = 0;
3840
3841	/*
3842	 * Just return if we can't control SAGV or don't have it.
3843	 * This is different from situation when we have SAGV but just can't
3844	 * afford it due to DBuf limitation - in case if SAGV is completely
3845	 * disabled in a BIOS, we are not even allowed to send a PCode request,
3846	 * as it will throw an error. So have to check it here.
3847	 */
3848	if (!intel_has_sagv(dev_priv))
3849		return;
3850
3851	new_bw_state = intel_atomic_get_new_bw_state(state);
3852	if (!new_bw_state)
3853		return;
3854
3855	if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3856		intel_enable_sagv(dev_priv);
3857		return;
3858	}
3859
3860	old_bw_state = intel_atomic_get_old_bw_state(state);
3861	/*
3862	 * Nothing to unmask
3863	 */
3864	if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3865		return;
3866
3867	new_mask = new_bw_state->qgv_points_mask;
3868
3869	/*
3870	 * Allow required qgv points after updating the configuration.
3871	 * According to BSpec we can't mask and unmask qgv points at the same
3872	 * time. Also masking should be done before updating the configuration
3873	 * and unmasking afterwards.
3874	 */
3875	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3876}
3877
3878static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3879{
3880	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3881	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3882	struct intel_plane *plane;
3883	const struct intel_plane_state *plane_state;
3884	int level, latency;
3885
3886	if (!intel_has_sagv(dev_priv))
3887		return false;
3888
3889	if (!crtc_state->hw.active)
3890		return true;
3891
3892	if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3893		return false;
3894
3895	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3896		const struct skl_plane_wm *wm =
3897			&crtc_state->wm.skl.optimal.planes[plane->id];
3898
3899		/* Skip this plane if it's not enabled */
3900		if (!wm->wm[0].plane_en)
3901			continue;
3902
3903		/* Find the highest enabled wm level for this plane */
3904		for (level = ilk_wm_max_level(dev_priv);
3905		     !wm->wm[level].plane_en; --level)
3906		     { }
3907
3908		latency = dev_priv->wm.skl_latency[level];
3909
3910		if (skl_needs_memory_bw_wa(dev_priv) &&
3911		    plane_state->uapi.fb->modifier ==
3912		    I915_FORMAT_MOD_X_TILED)
3913			latency += 15;
3914
3915		/*
3916		 * If any of the planes on this pipe don't enable wm levels that
3917		 * incur memory latencies higher than sagv_block_time_us we
3918		 * can't enable SAGV.
3919		 */
3920		if (latency < dev_priv->sagv_block_time_us)
3921			return false;
3922	}
3923
3924	return true;
3925}
3926
3927static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3928{
3929	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3930	enum plane_id plane_id;
3931
3932	if (!crtc_state->hw.active)
3933		return true;
3934
3935	for_each_plane_id_on_crtc(crtc, plane_id) {
3936		const struct skl_ddb_entry *plane_alloc =
3937			&crtc_state->wm.skl.plane_ddb_y[plane_id];
3938		const struct skl_plane_wm *wm =
3939			&crtc_state->wm.skl.optimal.planes[plane_id];
3940
3941		if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
3942			return false;
3943	}
3944
3945	return true;
3946}
3947
3948static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3949{
3950	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3951	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3952
3953	if (INTEL_GEN(dev_priv) >= 12)
3954		return tgl_crtc_can_enable_sagv(crtc_state);
3955	else
3956		return skl_crtc_can_enable_sagv(crtc_state);
3957}
3958
3959bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
3960			   const struct intel_bw_state *bw_state)
3961{
3962	if (INTEL_GEN(dev_priv) < 11 &&
3963	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3964		return false;
3965
3966	return bw_state->pipe_sagv_reject == 0;
3967}
3968
3969static int intel_compute_sagv_mask(struct intel_atomic_state *state)
3970{
3971	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3972	int ret;
3973	struct intel_crtc *crtc;
3974	struct intel_crtc_state *new_crtc_state;
3975	struct intel_bw_state *new_bw_state = NULL;
3976	const struct intel_bw_state *old_bw_state = NULL;
3977	int i;
3978
3979	for_each_new_intel_crtc_in_state(state, crtc,
3980					 new_crtc_state, i) {
3981		new_bw_state = intel_atomic_get_bw_state(state);
3982		if (IS_ERR(new_bw_state))
3983			return PTR_ERR(new_bw_state);
3984
3985		old_bw_state = intel_atomic_get_old_bw_state(state);
3986
3987		if (intel_crtc_can_enable_sagv(new_crtc_state))
3988			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
3989		else
3990			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
3991	}
3992
3993	if (!new_bw_state)
3994		return 0;
3995
3996	new_bw_state->active_pipes =
3997		intel_calc_active_pipes(state, old_bw_state->active_pipes);
3998
3999	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
4000		ret = intel_atomic_lock_global_state(&new_bw_state->base);
4001		if (ret)
4002			return ret;
4003	}
4004
4005	for_each_new_intel_crtc_in_state(state, crtc,
4006					 new_crtc_state, i) {
4007		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
4008
4009		/*
4010		 * We store use_sagv_wm in the crtc state rather than relying on
4011		 * that bw state since we have no convenient way to get at the
4012		 * latter from the plane commit hooks (especially in the legacy
4013		 * cursor case)
4014		 */
4015		pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
4016				       intel_can_enable_sagv(dev_priv, new_bw_state);
4017	}
4018
4019	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4020	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
4021		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4022		if (ret)
4023			return ret;
4024	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4025		ret = intel_atomic_lock_global_state(&new_bw_state->base);
4026		if (ret)
4027			return ret;
4028	}
4029
4030	return 0;
4031}
4032
4033/*
4034 * Calculate initial DBuf slice offset, based on slice size
4035 * and mask(i.e if slice size is 1024 and second slice is enabled
4036 * offset would be 1024)
4037 */
4038static unsigned int
4039icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
4040				u32 slice_size,
4041				u32 ddb_size)
4042{
4043	unsigned int offset = 0;
4044
4045	if (!dbuf_slice_mask)
4046		return 0;
4047
4048	offset = (ffs(dbuf_slice_mask) - 1) * slice_size;
4049
4050	WARN_ON(offset >= ddb_size);
4051	return offset;
4052}
4053
4054u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
4055{
4056	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
4057	drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
4058
4059	if (INTEL_GEN(dev_priv) < 11)
4060		return ddb_size - 4; /* 4 blocks for bypass path allocation */
4061
4062	return ddb_size;
4063}
4064
4065u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4066			    const struct skl_ddb_entry *entry)
4067{
4068	u32 slice_mask = 0;
4069	u16 ddb_size = intel_get_ddb_size(dev_priv);
4070	u16 num_supported_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4071	u16 slice_size = ddb_size / num_supported_slices;
4072	u16 start_slice;
4073	u16 end_slice;
4074
4075	if (!skl_ddb_entry_size(entry))
4076		return 0;
4077
4078	start_slice = entry->start / slice_size;
4079	end_slice = (entry->end - 1) / slice_size;
4080
4081	/*
4082	 * Per plane DDB entry can in a really worst case be on multiple slices
4083	 * but single entry is anyway contigious.
4084	 */
4085	while (start_slice <= end_slice) {
4086		slice_mask |= BIT(start_slice);
4087		start_slice++;
4088	}
4089
4090	return slice_mask;
4091}
4092
4093static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4094				  u8 active_pipes);
4095
4096static int
4097skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
4098				   const struct intel_crtc_state *crtc_state,
4099				   const u64 total_data_rate,
4100				   struct skl_ddb_entry *alloc, /* out */
4101				   int *num_active /* out */)
4102{
4103	struct drm_atomic_state *state = crtc_state->uapi.state;
4104	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4105	struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
4106	const struct intel_crtc *crtc;
4107	u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
4108	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
4109	struct intel_dbuf_state *new_dbuf_state =
4110		intel_atomic_get_new_dbuf_state(intel_state);
4111	const struct intel_dbuf_state *old_dbuf_state =
4112		intel_atomic_get_old_dbuf_state(intel_state);
4113	u8 active_pipes = new_dbuf_state->active_pipes;
4114	u16 ddb_size;
4115	u32 ddb_range_size;
4116	u32 i;
4117	u32 dbuf_slice_mask;
4118	u32 offset;
4119	u32 slice_size;
4120	u32 total_slice_mask;
4121	u32 start, end;
4122	int ret;
4123
4124	*num_active = hweight8(active_pipes);
4125
4126	if (!crtc_state->hw.active) {
4127		alloc->start = 0;
4128		alloc->end = 0;
4129		return 0;
4130	}
4131
4132	ddb_size = intel_get_ddb_size(dev_priv);
4133
4134	slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4135
4136	/*
4137	 * If the state doesn't change the active CRTC's or there is no
4138	 * modeset request, then there's no need to recalculate;
4139	 * the existing pipe allocation limits should remain unchanged.
4140	 * Note that we're safe from racing commits since any racing commit
4141	 * that changes the active CRTC list or do modeset would need to
4142	 * grab _all_ crtc locks, including the one we currently hold.
4143	 */
4144	if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes &&
4145	    !dev_priv->wm.distrust_bios_wm) {
4146		/*
4147		 * alloc may be cleared by clear_intel_crtc_state,
4148		 * copy from old state to be sure
4149		 *
4150		 * FIXME get rid of this mess
4151		 */
4152		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4153		return 0;
4154	}
4155
4156	/*
4157	 * Get allowed DBuf slices for correspondent pipe and platform.
4158	 */
4159	dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);
4160
4161	/*
4162	 * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
4163	 * and slice size is 1024, the offset would be 1024
4164	 */
4165	offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
4166						 slice_size, ddb_size);
4167
4168	/*
4169	 * Figure out total size of allowed DBuf slices, which is basically
4170	 * a number of allowed slices for that pipe multiplied by slice size.
4171	 * Inside of this
4172	 * range ddb entries are still allocated in proportion to display width.
4173	 */
4174	ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;
4175
4176	/*
4177	 * Watermark/ddb requirement highly depends upon width of the
4178	 * framebuffer, So instead of allocating DDB equally among pipes
4179	 * distribute DDB based on resolution/width of the display.
4180	 */
4181	total_slice_mask = dbuf_slice_mask;
4182	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
4183		const struct drm_display_mode *adjusted_mode =
4184			&crtc_state->hw.adjusted_mode;
4185		enum pipe pipe = crtc->pipe;
4186		int hdisplay, vdisplay;
4187		u32 pipe_dbuf_slice_mask;
4188
4189		if (!crtc_state->hw.active)
4190			continue;
4191
4192		pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
4193							       active_pipes);
4194
4195		/*
4196		 * According to BSpec pipe can share one dbuf slice with another
4197		 * pipes or pipe can use multiple dbufs, in both cases we
4198		 * account for other pipes only if they have exactly same mask.
4199		 * However we need to account how many slices we should enable
4200		 * in total.
4201		 */
4202		total_slice_mask |= pipe_dbuf_slice_mask;
4203
4204		/*
4205		 * Do not account pipes using other slice sets
4206		 * luckily as of current BSpec slice sets do not partially
4207		 * intersect(pipes share either same one slice or same slice set
4208		 * i.e no partial intersection), so it is enough to check for
4209		 * equality for now.
4210		 */
4211		if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4212			continue;
4213
4214		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4215
4216		total_width_in_range += hdisplay;
4217
4218		if (pipe < for_pipe)
4219			width_before_pipe_in_range += hdisplay;
4220		else if (pipe == for_pipe)
4221			pipe_width = hdisplay;
4222	}
4223
4224	/*
4225	 * FIXME: For now we always enable slice S1 as per
4226	 * the Bspec display initialization sequence.
4227	 */
4228	new_dbuf_state->enabled_slices = total_slice_mask | BIT(DBUF_S1);
4229
4230	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
4231		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
4232		if (ret)
4233			return ret;
4234	}
4235
4236	start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
4237	end = ddb_range_size *
4238		(width_before_pipe_in_range + pipe_width) / total_width_in_range;
4239
4240	alloc->start = offset + start;
4241	alloc->end = offset + end;
4242
4243	drm_dbg_kms(&dev_priv->drm,
4244		    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
4245		    for_crtc->base.id, for_crtc->name,
4246		    dbuf_slice_mask, alloc->start, alloc->end, active_pipes);
4247
4248	return 0;
4249}
4250
4251static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4252				 int width, const struct drm_format_info *format,
4253				 u64 modifier, unsigned int rotation,
4254				 u32 plane_pixel_rate, struct skl_wm_params *wp,
4255				 int color_plane);
4256static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4257				 int level,
4258				 unsigned int latency,
4259				 const struct skl_wm_params *wp,
4260				 const struct skl_wm_level *result_prev,
4261				 struct skl_wm_level *result /* out */);
4262
4263static unsigned int
4264skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4265		      int num_active)
4266{
4267	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4268	int level, max_level = ilk_wm_max_level(dev_priv);
4269	struct skl_wm_level wm = {};
4270	int ret, min_ddb_alloc = 0;
4271	struct skl_wm_params wp;
4272
4273	ret = skl_compute_wm_params(crtc_state, 256,
4274				    drm_format_info(DRM_FORMAT_ARGB8888),
4275				    DRM_FORMAT_MOD_LINEAR,
4276				    DRM_MODE_ROTATE_0,
4277				    crtc_state->pixel_rate, &wp, 0);
4278	drm_WARN_ON(&dev_priv->drm, ret);
4279
4280	for (level = 0; level <= max_level; level++) {
4281		unsigned int latency = dev_priv->wm.skl_latency[level];
4282
4283		skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4284		if (wm.min_ddb_alloc == U16_MAX)
4285			break;
4286
4287		min_ddb_alloc = wm.min_ddb_alloc;
4288	}
4289
4290	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4291}
4292
4293static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4294				       struct skl_ddb_entry *entry, u32 reg)
4295{
4296
4297	entry->start = reg & DDB_ENTRY_MASK;
4298	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4299
4300	if (entry->end)
4301		entry->end += 1;
4302}
4303
4304static void
4305skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4306			   const enum pipe pipe,
4307			   const enum plane_id plane_id,
4308			   struct skl_ddb_entry *ddb_y,
4309			   struct skl_ddb_entry *ddb_uv)
4310{
4311	u32 val, val2;
4312	u32 fourcc = 0;
4313
4314	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
4315	if (plane_id == PLANE_CURSOR) {
4316		val = I915_READ(CUR_BUF_CFG(pipe));
4317		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4318		return;
4319	}
4320
4321	val = I915_READ(PLANE_CTL(pipe, plane_id));
4322
4323	/* No DDB allocated for disabled planes */
4324	if (val & PLANE_CTL_ENABLE)
4325		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4326					      val & PLANE_CTL_ORDER_RGBX,
4327					      val & PLANE_CTL_ALPHA_MASK);
4328
4329	if (INTEL_GEN(dev_priv) >= 11) {
4330		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4331		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4332	} else {
4333		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4334		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4335
4336		if (fourcc &&
4337		    drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4338			swap(val, val2);
4339
4340		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4341		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4342	}
4343}
4344
4345void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4346			       struct skl_ddb_entry *ddb_y,
4347			       struct skl_ddb_entry *ddb_uv)
4348{
4349	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4350	enum intel_display_power_domain power_domain;
4351	enum pipe pipe = crtc->pipe;
4352	intel_wakeref_t wakeref;
4353	enum plane_id plane_id;
4354
4355	power_domain = POWER_DOMAIN_PIPE(pipe);
4356	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4357	if (!wakeref)
4358		return;
4359
4360	for_each_plane_id_on_crtc(crtc, plane_id)
4361		skl_ddb_get_hw_plane_state(dev_priv, pipe,
4362					   plane_id,
4363					   &ddb_y[plane_id],
4364					   &ddb_uv[plane_id]);
4365
4366	intel_display_power_put(dev_priv, power_domain, wakeref);
4367}
4368
4369/*
4370 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4371 * The bspec defines downscale amount as:
4372 *
4373 * """
4374 * Horizontal down scale amount = maximum[1, Horizontal source size /
4375 *                                           Horizontal destination size]
4376 * Vertical down scale amount = maximum[1, Vertical source size /
4377 *                                         Vertical destination size]
4378 * Total down scale amount = Horizontal down scale amount *
4379 *                           Vertical down scale amount
4380 * """
4381 *
4382 * Return value is provided in 16.16 fixed point form to retain fractional part.
4383 * Caller should take care of dividing & rounding off the value.
4384 */
4385static uint_fixed_16_16_t
4386skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4387			   const struct intel_plane_state *plane_state)
4388{
4389	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4390	u32 src_w, src_h, dst_w, dst_h;
4391	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4392	uint_fixed_16_16_t downscale_h, downscale_w;
4393
4394	if (drm_WARN_ON(&dev_priv->drm,
4395			!intel_wm_plane_visible(crtc_state, plane_state)))
4396		return u32_to_fixed16(0);
4397
4398	/*
4399	 * Src coordinates are already rotated by 270 degrees for
4400	 * the 90/270 degree plane rotation cases (to match the
4401	 * GTT mapping), hence no need to account for rotation here.
4402	 *
4403	 * n.b., src is 16.16 fixed point, dst is whole integer.
4404	 */
4405	src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4406	src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4407	dst_w = drm_rect_width(&plane_state->uapi.dst);
4408	dst_h = drm_rect_height(&plane_state->uapi.dst);
4409
4410	fp_w_ratio = div_fixed16(src_w, dst_w);
4411	fp_h_ratio = div_fixed16(src_h, dst_h);
4412	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4413	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4414
4415	return mul_fixed16(downscale_w, downscale_h);
4416}
4417
4418struct dbuf_slice_conf_entry {
4419	u8 active_pipes;
4420	u8 dbuf_mask[I915_MAX_PIPES];
4421};
4422
4423/*
4424 * Table taken from Bspec 12716
4425 * Pipes do have some preferred DBuf slice affinity,
4426 * plus there are some hardcoded requirements on how
4427 * those should be distributed for multipipe scenarios.
4428 * For more DBuf slices algorithm can get even more messy
4429 * and less readable, so decided to use a table almost
4430 * as is from BSpec itself - that way it is at least easier
4431 * to compare, change and check.
4432 */
4433static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4434/* Autogenerated with igt/tools/intel_dbuf_map tool: */
4435{
4436	{
4437		.active_pipes = BIT(PIPE_A),
4438		.dbuf_mask = {
4439			[PIPE_A] = BIT(DBUF_S1),
4440		},
4441	},
4442	{
4443		.active_pipes = BIT(PIPE_B),
4444		.dbuf_mask = {
4445			[PIPE_B] = BIT(DBUF_S1),
4446		},
4447	},
4448	{
4449		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4450		.dbuf_mask = {
4451			[PIPE_A] = BIT(DBUF_S1),
4452			[PIPE_B] = BIT(DBUF_S2),
4453		},
4454	},
4455	{
4456		.active_pipes = BIT(PIPE_C),
4457		.dbuf_mask = {
4458			[PIPE_C] = BIT(DBUF_S2),
4459		},
4460	},
4461	{
4462		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4463		.dbuf_mask = {
4464			[PIPE_A] = BIT(DBUF_S1),
4465			[PIPE_C] = BIT(DBUF_S2),
4466		},
4467	},
4468	{
4469		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4470		.dbuf_mask = {
4471			[PIPE_B] = BIT(DBUF_S1),
4472			[PIPE_C] = BIT(DBUF_S2),
4473		},
4474	},
4475	{
4476		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4477		.dbuf_mask = {
4478			[PIPE_A] = BIT(DBUF_S1),
4479			[PIPE_B] = BIT(DBUF_S1),
4480			[PIPE_C] = BIT(DBUF_S2),
4481		},
4482	},
4483	{}
4484};
4485
4486/*
4487 * Table taken from Bspec 49255
4488 * Pipes do have some preferred DBuf slice affinity,
4489 * plus there are some hardcoded requirements on how
4490 * those should be distributed for multipipe scenarios.
4491 * For more DBuf slices algorithm can get even more messy
4492 * and less readable, so decided to use a table almost
4493 * as is from BSpec itself - that way it is at least easier
4494 * to compare, change and check.
4495 */
4496static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4497/* Autogenerated with igt/tools/intel_dbuf_map tool: */
4498{
4499	{
4500		.active_pipes = BIT(PIPE_A),
4501		.dbuf_mask = {
4502			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4503		},
4504	},
4505	{
4506		.active_pipes = BIT(PIPE_B),
4507		.dbuf_mask = {
4508			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4509		},
4510	},
4511	{
4512		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4513		.dbuf_mask = {
4514			[PIPE_A] = BIT(DBUF_S2),
4515			[PIPE_B] = BIT(DBUF_S1),
4516		},
4517	},
4518	{
4519		.active_pipes = BIT(PIPE_C),
4520		.dbuf_mask = {
4521			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4522		},
4523	},
4524	{
4525		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4526		.dbuf_mask = {
4527			[PIPE_A] = BIT(DBUF_S1),
4528			[PIPE_C] = BIT(DBUF_S2),
4529		},
4530	},
4531	{
4532		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4533		.dbuf_mask = {
4534			[PIPE_B] = BIT(DBUF_S1),
4535			[PIPE_C] = BIT(DBUF_S2),
4536		},
4537	},
4538	{
4539		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4540		.dbuf_mask = {
4541			[PIPE_A] = BIT(DBUF_S1),
4542			[PIPE_B] = BIT(DBUF_S1),
4543			[PIPE_C] = BIT(DBUF_S2),
4544		},
4545	},
4546	{
4547		.active_pipes = BIT(PIPE_D),
4548		.dbuf_mask = {
4549			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4550		},
4551	},
4552	{
4553		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4554		.dbuf_mask = {
4555			[PIPE_A] = BIT(DBUF_S1),
4556			[PIPE_D] = BIT(DBUF_S2),
4557		},
4558	},
4559	{
4560		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4561		.dbuf_mask = {
4562			[PIPE_B] = BIT(DBUF_S1),
4563			[PIPE_D] = BIT(DBUF_S2),
4564		},
4565	},
4566	{
4567		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4568		.dbuf_mask = {
4569			[PIPE_A] = BIT(DBUF_S1),
4570			[PIPE_B] = BIT(DBUF_S1),
4571			[PIPE_D] = BIT(DBUF_S2),
4572		},
4573	},
4574	{
4575		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4576		.dbuf_mask = {
4577			[PIPE_C] = BIT(DBUF_S1),
4578			[PIPE_D] = BIT(DBUF_S2),
4579		},
4580	},
4581	{
4582		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4583		.dbuf_mask = {
4584			[PIPE_A] = BIT(DBUF_S1),
4585			[PIPE_C] = BIT(DBUF_S2),
4586			[PIPE_D] = BIT(DBUF_S2),
4587		},
4588	},
4589	{
4590		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4591		.dbuf_mask = {
4592			[PIPE_B] = BIT(DBUF_S1),
4593			[PIPE_C] = BIT(DBUF_S2),
4594			[PIPE_D] = BIT(DBUF_S2),
4595		},
4596	},
4597	{
4598		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4599		.dbuf_mask = {
4600			[PIPE_A] = BIT(DBUF_S1),
4601			[PIPE_B] = BIT(DBUF_S1),
4602			[PIPE_C] = BIT(DBUF_S2),
4603			[PIPE_D] = BIT(DBUF_S2),
4604		},
4605	},
4606	{}
4607};
4608
4609static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4610			      const struct dbuf_slice_conf_entry *dbuf_slices)
4611{
4612	int i;
4613
4614	for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4615		if (dbuf_slices[i].active_pipes == active_pipes)
4616			return dbuf_slices[i].dbuf_mask[pipe];
4617	}
4618	return 0;
4619}
4620
4621/*
4622 * This function finds an entry with same enabled pipe configuration and
4623 * returns correspondent DBuf slice mask as stated in BSpec for particular
4624 * platform.
4625 */
4626static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4627{
4628	/*
4629	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4630	 * required calculating "pipe ratio" in order to determine
4631	 * if one or two slices can be used for single pipe configurations
4632	 * as additional constraint to the existing table.
4633	 * However based on recent info, it should be not "pipe ratio"
4634	 * but rather ratio between pixel_rate and cdclk with additional
4635	 * constants, so for now we are using only table until this is
4636	 * clarified. Also this is the reason why crtc_state param is
4637	 * still here - we will need it once those additional constraints
4638	 * pop up.
4639	 */
4640	return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4641}
4642
4643static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4644{
4645	return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4646}
4647
4648static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4649				  u8 active_pipes)
4650{
4651	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4652	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4653	enum pipe pipe = crtc->pipe;
4654
4655	if (IS_GEN(dev_priv, 12))
4656		return tgl_compute_dbuf_slices(pipe, active_pipes);
4657	else if (IS_GEN(dev_priv, 11))
4658		return icl_compute_dbuf_slices(pipe, active_pipes);
4659	/*
4660	 * For anything else just return one slice yet.
4661	 * Should be extended for other platforms.
4662	 */
4663	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4664}
4665
4666static u64
4667skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4668			     const struct intel_plane_state *plane_state,
4669			     int color_plane)
4670{
4671	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4672	const struct drm_framebuffer *fb = plane_state->hw.fb;
4673	u32 data_rate;
4674	u32 width = 0, height = 0;
4675	uint_fixed_16_16_t down_scale_amount;
4676	u64 rate;
4677
4678	if (!plane_state->uapi.visible)
4679		return 0;
4680
4681	if (plane->id == PLANE_CURSOR)
4682		return 0;
4683
4684	if (color_plane == 1 &&
4685	    !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4686		return 0;
4687
4688	/*
4689	 * Src coordinates are already rotated by 270 degrees for
4690	 * the 90/270 degree plane rotation cases (to match the
4691	 * GTT mapping), hence no need to account for rotation here.
4692	 */
4693	width = drm_rect_width(&plane_state->uapi.src) >> 16;
4694	height = drm_rect_height(&plane_state->uapi.src) >> 16;
4695
4696	/* UV plane does 1/2 pixel sub-sampling */
4697	if (color_plane == 1) {
4698		width /= 2;
4699		height /= 2;
4700	}
4701
4702	data_rate = width * height;
4703
4704	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4705
4706	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4707
4708	rate *= fb->format->cpp[color_plane];
4709	return rate;
4710}
4711
4712static u64
4713skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4714				 u64 *plane_data_rate,
4715				 u64 *uv_plane_data_rate)
4716{
4717	struct intel_plane *plane;
4718	const struct intel_plane_state *plane_state;
4719	u64 total_data_rate = 0;
4720
4721	/* Calculate and cache data rate for each plane */
4722	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4723		enum plane_id plane_id = plane->id;
4724		u64 rate;
4725
4726		/* packed/y */
4727		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4728		plane_data_rate[plane_id] = rate;
4729		total_data_rate += rate;
4730
4731		/* uv-plane */
4732		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4733		uv_plane_data_rate[plane_id] = rate;
4734		total_data_rate += rate;
4735	}
4736
4737	return total_data_rate;
4738}
4739
4740static u64
4741icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4742				 u64 *plane_data_rate)
4743{
4744	struct intel_plane *plane;
4745	const struct intel_plane_state *plane_state;
4746	u64 total_data_rate = 0;
4747
4748	/* Calculate and cache data rate for each plane */
4749	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4750		enum plane_id plane_id = plane->id;
4751		u64 rate;
4752
4753		if (!plane_state->planar_linked_plane) {
4754			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4755			plane_data_rate[plane_id] = rate;
4756			total_data_rate += rate;
4757		} else {
4758			enum plane_id y_plane_id;
4759
4760			/*
4761			 * The slave plane might not iterate in
4762			 * intel_atomic_crtc_state_for_each_plane_state(),
4763			 * and needs the master plane state which may be
4764			 * NULL if we try get_new_plane_state(), so we
4765			 * always calculate from the master.
4766			 */
4767			if (plane_state->planar_slave)
4768				continue;
4769
4770			/* Y plane rate is calculated on the slave */
4771			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4772			y_plane_id = plane_state->planar_linked_plane->id;
4773			plane_data_rate[y_plane_id] = rate;
4774			total_data_rate += rate;
4775
4776			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4777			plane_data_rate[plane_id] = rate;
4778			total_data_rate += rate;
4779		}
4780	}
4781
4782	return total_data_rate;
4783}
4784
4785static const struct skl_wm_level *
4786skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
4787		   enum plane_id plane_id,
4788		   int level)
4789{
4790	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
4791	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4792
4793	if (level == 0 && pipe_wm->use_sagv_wm)
4794		return &wm->sagv_wm0;
4795
4796	return &wm->wm[level];
4797}
4798
4799static int
4800skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4801{
4802	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4803	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4804	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4805	u16 alloc_size, start = 0;
4806	u16 total[I915_MAX_PLANES] = {};
4807	u16 uv_total[I915_MAX_PLANES] = {};
4808	u64 total_data_rate;
4809	enum plane_id plane_id;
4810	int num_active;
4811	u64 plane_data_rate[I915_MAX_PLANES] = {};
4812	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4813	u32 blocks;
4814	int level;
4815	int ret;
4816
4817	/* Clear the partitioning for disabled planes. */
4818	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4819	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4820
4821	if (!crtc_state->hw.active) {
4822		struct intel_atomic_state *state =
4823			to_intel_atomic_state(crtc_state->uapi.state);
4824		struct intel_dbuf_state *new_dbuf_state =
4825			intel_atomic_get_new_dbuf_state(state);
4826		const struct intel_dbuf_state *old_dbuf_state =
4827			intel_atomic_get_old_dbuf_state(state);
4828
4829		/*
4830		 * FIXME hack to make sure we compute this sensibly when
4831		 * turning off all the pipes. Otherwise we leave it at
4832		 * whatever we had previously, and then runtime PM will
4833		 * mess it up by turning off all but S1. Remove this
4834		 * once the dbuf state computation flow becomes sane.
4835		 */
4836		if (new_dbuf_state->active_pipes == 0) {
4837			new_dbuf_state->enabled_slices = BIT(DBUF_S1);
4838
4839			if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
4840				ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
4841				if (ret)
4842					return ret;
4843			}
4844		}
4845
4846		alloc->start = alloc->end = 0;
4847		return 0;
4848	}
4849
4850	if (INTEL_GEN(dev_priv) >= 11)
4851		total_data_rate =
4852			icl_get_total_relative_data_rate(crtc_state,
4853							 plane_data_rate);
4854	else
4855		total_data_rate =
4856			skl_get_total_relative_data_rate(crtc_state,
4857							 plane_data_rate,
4858							 uv_plane_data_rate);
4859
4860	ret = skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state,
4861						 total_data_rate,
4862						 alloc, &num_active);
4863	if (ret)
4864		return ret;
4865
4866	alloc_size = skl_ddb_entry_size(alloc);
4867	if (alloc_size == 0)
4868		return 0;
4869
4870	/* Allocate fixed number of blocks for cursor. */
4871	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4872	alloc_size -= total[PLANE_CURSOR];
4873	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4874		alloc->end - total[PLANE_CURSOR];
4875	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4876
4877	if (total_data_rate == 0)
4878		return 0;
4879
4880	/*
4881	 * Find the highest watermark level for which we can satisfy the block
4882	 * requirement of active planes.
4883	 */
4884	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4885		blocks = 0;
4886		for_each_plane_id_on_crtc(crtc, plane_id) {
4887			const struct skl_plane_wm *wm =
4888				&crtc_state->wm.skl.optimal.planes[plane_id];
4889
4890			if (plane_id == PLANE_CURSOR) {
4891				if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4892					drm_WARN_ON(&dev_priv->drm,
4893						    wm->wm[level].min_ddb_alloc != U16_MAX);
4894					blocks = U32_MAX;
4895					break;
4896				}
4897				continue;
4898			}
4899
4900			blocks += wm->wm[level].min_ddb_alloc;
4901			blocks += wm->uv_wm[level].min_ddb_alloc;
4902		}
4903
4904		if (blocks <= alloc_size) {
4905			alloc_size -= blocks;
4906			break;
4907		}
4908	}
4909
4910	if (level < 0) {
4911		drm_dbg_kms(&dev_priv->drm,
4912			    "Requested display configuration exceeds system DDB limitations");
4913		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
4914			    blocks, alloc_size);
4915		return -EINVAL;
4916	}
4917
4918	/*
4919	 * Grant each plane the blocks it requires at the highest achievable
4920	 * watermark level, plus an extra share of the leftover blocks
4921	 * proportional to its relative data rate.
4922	 */
4923	for_each_plane_id_on_crtc(crtc, plane_id) {
4924		const struct skl_plane_wm *wm =
4925			&crtc_state->wm.skl.optimal.planes[plane_id];
4926		u64 rate;
4927		u16 extra;
4928
4929		if (plane_id == PLANE_CURSOR)
4930			continue;
4931
4932		/*
4933		 * We've accounted for all active planes; remaining planes are
4934		 * all disabled.
4935		 */
4936		if (total_data_rate == 0)
4937			break;
4938
4939		rate = plane_data_rate[plane_id];
4940		extra = min_t(u16, alloc_size,
4941			      DIV64_U64_ROUND_UP(alloc_size * rate,
4942						 total_data_rate));
4943		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4944		alloc_size -= extra;
4945		total_data_rate -= rate;
4946
4947		if (total_data_rate == 0)
4948			break;
4949
4950		rate = uv_plane_data_rate[plane_id];
4951		extra = min_t(u16, alloc_size,
4952			      DIV64_U64_ROUND_UP(alloc_size * rate,
4953						 total_data_rate));
4954		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4955		alloc_size -= extra;
4956		total_data_rate -= rate;
4957	}
4958	drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4959
4960	/* Set the actual DDB start/end points for each plane */
4961	start = alloc->start;
4962	for_each_plane_id_on_crtc(crtc, plane_id) {
4963		struct skl_ddb_entry *plane_alloc =
4964			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4965		struct skl_ddb_entry *uv_plane_alloc =
4966			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4967
4968		if (plane_id == PLANE_CURSOR)
4969			continue;
4970
4971		/* Gen11+ uses a separate plane for UV watermarks */
4972		drm_WARN_ON(&dev_priv->drm,
4973			    INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4974
4975		/* Leave disabled planes at (0,0) */
4976		if (total[plane_id]) {
4977			plane_alloc->start = start;
4978			start += total[plane_id];
4979			plane_alloc->end = start;
4980		}
4981
4982		if (uv_total[plane_id]) {
4983			uv_plane_alloc->start = start;
4984			start += uv_total[plane_id];
4985			uv_plane_alloc->end = start;
4986		}
4987	}
4988
4989	/*
4990	 * When we calculated watermark values we didn't know how high
4991	 * of a level we'd actually be able to hit, so we just marked
4992	 * all levels as "enabled."  Go back now and disable the ones
4993	 * that aren't actually possible.
4994	 */
4995	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4996		for_each_plane_id_on_crtc(crtc, plane_id) {
4997			struct skl_plane_wm *wm =
4998				&crtc_state->wm.skl.optimal.planes[plane_id];
4999
5000			/*
5001			 * We only disable the watermarks for each plane if
5002			 * they exceed the ddb allocation of said plane. This
5003			 * is done so that we don't end up touching cursor
5004			 * watermarks needlessly when some other plane reduces
5005			 * our max possible watermark level.
5006			 *
5007			 * Bspec has this to say about the PLANE_WM enable bit:
5008			 * "All the watermarks at this level for all enabled
5009			 *  planes must be enabled before the level will be used."
5010			 * So this is actually safe to do.
5011			 */
5012			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
5013			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
5014				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
5015
5016			/*
5017			 * Wa_1408961008:icl, ehl
5018			 * Underruns with WM1+ disabled
5019			 */
5020			if (IS_GEN(dev_priv, 11) &&
5021			    level == 1 && wm->wm[0].plane_en) {
5022				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
5023				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
5024				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5025			}
5026		}
5027	}
5028
5029	/*
5030	 * Go back and disable the transition watermark if it turns out we
5031	 * don't have enough DDB blocks for it.
5032	 */
5033	for_each_plane_id_on_crtc(crtc, plane_id) {
5034		struct skl_plane_wm *wm =
5035			&crtc_state->wm.skl.optimal.planes[plane_id];
5036
5037		if (wm->trans_wm.plane_res_b >= total[plane_id])
5038			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
5039	}
5040
5041	return 0;
5042}
5043
5044/*
5045 * The max latency should be 257 (max the punit can code is 255 and we add 2us
5046 * for the read latency) and cpp should always be <= 8, so that
5047 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5048 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5049*/
5050static uint_fixed_16_16_t
5051skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5052	       u8 cpp, u32 latency, u32 dbuf_block_size)
5053{
5054	u32 wm_intermediate_val;
5055	uint_fixed_16_16_t ret;
5056
5057	if (latency == 0)
5058		return FP_16_16_MAX;
5059
5060	wm_intermediate_val = latency * pixel_rate * cpp;
5061	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5062
5063	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5064		ret = add_fixed16_u32(ret, 1);
5065
5066	return ret;
5067}
5068
5069static uint_fixed_16_16_t
5070skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5071	       uint_fixed_16_16_t plane_blocks_per_line)
5072{
5073	u32 wm_intermediate_val;
5074	uint_fixed_16_16_t ret;
5075
5076	if (latency == 0)
5077		return FP_16_16_MAX;
5078
5079	wm_intermediate_val = latency * pixel_rate;
5080	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5081					   pipe_htotal * 1000);
5082	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5083	return ret;
5084}
5085
5086static uint_fixed_16_16_t
5087intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5088{
5089	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5090	u32 pixel_rate;
5091	u32 crtc_htotal;
5092	uint_fixed_16_16_t linetime_us;
5093
5094	if (!crtc_state->hw.active)
5095		return u32_to_fixed16(0);
5096
5097	pixel_rate = crtc_state->pixel_rate;
5098
5099	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5100		return u32_to_fixed16(0);
5101
5102	crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
5103	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5104
5105	return linetime_us;
5106}
5107
5108static u32
5109skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
5110			      const struct intel_plane_state *plane_state)
5111{
5112	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5113	u64 adjusted_pixel_rate;
5114	uint_fixed_16_16_t downscale_amount;
5115
5116	/* Shouldn't reach here on disabled planes... */
5117	if (drm_WARN_ON(&dev_priv->drm,
5118			!intel_wm_plane_visible(crtc_state, plane_state)))
5119		return 0;
5120
5121	/*
5122	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
5123	 * with additional adjustments for plane-specific scaling.
5124	 */
5125	adjusted_pixel_rate = crtc_state->pixel_rate;
5126	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
5127
5128	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
5129					    downscale_amount);
5130}
5131
5132static int
5133skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5134		      int width, const struct drm_format_info *format,
5135		      u64 modifier, unsigned int rotation,
5136		      u32 plane_pixel_rate, struct skl_wm_params *wp,
5137		      int color_plane)
5138{
5139	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5140	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5141	u32 interm_pbpl;
5142
5143	/* only planar format has two planes */
5144	if (color_plane == 1 &&
5145	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5146		drm_dbg_kms(&dev_priv->drm,
5147			    "Non planar format have single plane\n");
5148		return -EINVAL;
5149	}
5150
5151	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5152		      modifier == I915_FORMAT_MOD_Yf_TILED ||
5153		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5154		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5155	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5156	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5157			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5158	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5159
5160	wp->width = width;
5161	if (color_plane == 1 && wp->is_planar)
5162		wp->width /= 2;
5163
5164	wp->cpp = format->cpp[color_plane];
5165	wp->plane_pixel_rate = plane_pixel_rate;
5166
5167	if (INTEL_GEN(dev_priv) >= 11 &&
5168	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5169		wp->dbuf_block_size = 256;
5170	else
5171		wp->dbuf_block_size = 512;
5172
5173	if (drm_rotation_90_or_270(rotation)) {
5174		switch (wp->cpp) {
5175		case 1:
5176			wp->y_min_scanlines = 16;
5177			break;
5178		case 2:
5179			wp->y_min_scanlines = 8;
5180			break;
5181		case 4:
5182			wp->y_min_scanlines = 4;
5183			break;
5184		default:
5185			MISSING_CASE(wp->cpp);
5186			return -EINVAL;
5187		}
5188	} else {
5189		wp->y_min_scanlines = 4;
5190	}
5191
5192	if (skl_needs_memory_bw_wa(dev_priv))
5193		wp->y_min_scanlines *= 2;
5194
5195	wp->plane_bytes_per_line = wp->width * wp->cpp;
5196	if (wp->y_tiled) {
5197		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5198					   wp->y_min_scanlines,
5199					   wp->dbuf_block_size);
5200
5201		if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5202			interm_pbpl++;
5203
5204		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5205							wp->y_min_scanlines);
5206	} else {
5207		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5208					   wp->dbuf_block_size);
5209
5210		if (!wp->x_tiled ||
5211		    INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5212			interm_pbpl++;
5213
5214		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5215	}
5216
5217	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5218					     wp->plane_blocks_per_line);
5219
5220	wp->linetime_us = fixed16_to_u32_round_up(
5221					intel_get_linetime_us(crtc_state));
5222
5223	return 0;
5224}
5225
5226static int
5227skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5228			    const struct intel_plane_state *plane_state,
5229			    struct skl_wm_params *wp, int color_plane)
5230{
5231	const struct drm_framebuffer *fb = plane_state->hw.fb;
5232	int width;
5233
5234	/*
5235	 * Src coordinates are already rotated by 270 degrees for
5236	 * the 90/270 degree plane rotation cases (to match the
5237	 * GTT mapping), hence no need to account for rotation here.
5238	 */
5239	width = drm_rect_width(&plane_state->uapi.src) >> 16;
5240
5241	return skl_compute_wm_params(crtc_state, width,
5242				     fb->format, fb->modifier,
5243				     plane_state->hw.rotation,
5244				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
5245				     wp, color_plane);
5246}
5247
5248static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5249{
5250	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5251		return true;
5252
5253	/* The number of lines are ignored for the level 0 watermark. */
5254	return level > 0;
5255}
5256
5257static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5258				 int level,
5259				 unsigned int latency,
5260				 const struct skl_wm_params *wp,
5261				 const struct skl_wm_level *result_prev,
5262				 struct skl_wm_level *result /* out */)
5263{
5264	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5265	uint_fixed_16_16_t method1, method2;
5266	uint_fixed_16_16_t selected_result;
5267	u32 res_blocks, res_lines, min_ddb_alloc = 0;
5268
5269	if (latency == 0) {
5270		/* reject it */
5271		result->min_ddb_alloc = U16_MAX;
5272		return;
5273	}
5274
5275	/*
5276	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
5277	 * Display WA #1141: kbl,cfl
5278	 */
5279	if ((IS_KABYLAKE(dev_priv) ||
5280	     IS_COFFEELAKE(dev_priv) ||
5281	     IS_COMETLAKE(dev_priv)) &&
5282	    dev_priv->ipc_enabled)
5283		latency += 4;
5284
5285	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5286		latency += 15;
5287
5288	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5289				 wp->cpp, latency, wp->dbuf_block_size);
5290	method2 = skl_wm_method2(wp->plane_pixel_rate,
5291				 crtc_state->hw.adjusted_mode.crtc_htotal,
5292				 latency,
5293				 wp->plane_blocks_per_line);
5294
5295	if (wp->y_tiled) {
5296		selected_result = max_fixed16(method2, wp->y_tile_minimum);
5297	} else {
5298		if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5299		     wp->dbuf_block_size < 1) &&
5300		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5301			selected_result = method2;
5302		} else if (latency >= wp->linetime_us) {
5303			if (IS_GEN(dev_priv, 9) &&
5304			    !IS_GEMINILAKE(dev_priv))
5305				selected_result = min_fixed16(method1, method2);
5306			else
5307				selected_result = method2;
5308		} else {
5309			selected_result = method1;
5310		}
5311	}
5312
5313	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5314	res_lines = div_round_up_fixed16(selected_result,
5315					 wp->plane_blocks_per_line);
5316
5317	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
5318		/* Display WA #1125: skl,bxt,kbl */
5319		if (level == 0 && wp->rc_surface)
5320			res_blocks +=
5321				fixed16_to_u32_round_up(wp->y_tile_minimum);
5322
5323		/* Display WA #1126: skl,bxt,kbl */
5324		if (level >= 1 && level <= 7) {
5325			if (wp->y_tiled) {
5326				res_blocks +=
5327				    fixed16_to_u32_round_up(wp->y_tile_minimum);
5328				res_lines += wp->y_min_scanlines;
5329			} else {
5330				res_blocks++;
5331			}
5332
5333			/*
5334			 * Make sure result blocks for higher latency levels are
5335			 * atleast as high as level below the current level.
5336			 * Assumption in DDB algorithm optimization for special
5337			 * cases. Also covers Display WA #1125 for RC.
5338			 */
5339			if (result_prev->plane_res_b > res_blocks)
5340				res_blocks = result_prev->plane_res_b;
5341		}
5342	}
5343
5344	if (INTEL_GEN(dev_priv) >= 11) {
5345		if (wp->y_tiled) {
5346			int extra_lines;
5347
5348			if (res_lines % wp->y_min_scanlines == 0)
5349				extra_lines = wp->y_min_scanlines;
5350			else
5351				extra_lines = wp->y_min_scanlines * 2 -
5352					res_lines % wp->y_min_scanlines;
5353
5354			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
5355								 wp->plane_blocks_per_line);
5356		} else {
5357			min_ddb_alloc = res_blocks +
5358				DIV_ROUND_UP(res_blocks, 10);
5359		}
5360	}
5361
5362	if (!skl_wm_has_lines(dev_priv, level))
5363		res_lines = 0;
5364
5365	if (res_lines > 31) {
5366		/* reject it */
5367		result->min_ddb_alloc = U16_MAX;
5368		return;
5369	}
5370
5371	/*
5372	 * If res_lines is valid, assume we can use this watermark level
5373	 * for now.  We'll come back and disable it after we calculate the
5374	 * DDB allocation if it turns out we don't actually have enough
5375	 * blocks to satisfy it.
5376	 */
5377	result->plane_res_b = res_blocks;
5378	result->plane_res_l = res_lines;
5379	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5380	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5381	result->plane_en = true;
5382}
5383
5384static void
5385skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5386		      const struct skl_wm_params *wm_params,
5387		      struct skl_wm_level *levels)
5388{
5389	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5390	int level, max_level = ilk_wm_max_level(dev_priv);
5391	struct skl_wm_level *result_prev = &levels[0];
5392
5393	for (level = 0; level <= max_level; level++) {
5394		struct skl_wm_level *result = &levels[level];
5395		unsigned int latency = dev_priv->wm.skl_latency[level];
5396
5397		skl_compute_plane_wm(crtc_state, level, latency,
5398				     wm_params, result_prev, result);
5399
5400		result_prev = result;
5401	}
5402}
5403
5404static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5405				const struct skl_wm_params *wm_params,
5406				struct skl_plane_wm *plane_wm)
5407{
5408	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5409	struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
5410	struct skl_wm_level *levels = plane_wm->wm;
5411	unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
5412
5413	skl_compute_plane_wm(crtc_state, 0, latency,
5414			     wm_params, &levels[0],
5415			     sagv_wm);
5416}
5417
5418static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5419				      const struct skl_wm_params *wp,
5420				      struct skl_plane_wm *wm)
5421{
5422	struct drm_device *dev = crtc_state->uapi.crtc->dev;
5423	const struct drm_i915_private *dev_priv = to_i915(dev);
5424	u16 trans_min, trans_amount, trans_y_tile_min;
5425	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5426
5427	/* Transition WM don't make any sense if ipc is disabled */
5428	if (!dev_priv->ipc_enabled)
5429		return;
5430
5431	/*
5432	 * WaDisableTWM:skl,kbl,cfl,bxt
5433	 * Transition WM are not recommended by HW team for GEN9
5434	 */
5435	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
5436		return;
5437
5438	if (INTEL_GEN(dev_priv) >= 11)
5439		trans_min = 4;
5440	else
5441		trans_min = 14;
5442
5443	/* Display WA #1140: glk,cnl */
5444	if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
5445		trans_amount = 0;
5446	else
5447		trans_amount = 10; /* This is configurable amount */
5448
5449	trans_offset_b = trans_min + trans_amount;
5450
5451	/*
5452	 * The spec asks for Selected Result Blocks for wm0 (the real value),
5453	 * not Result Blocks (the integer value). Pay attention to the capital
5454	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
5455	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5456	 * and since we later will have to get the ceiling of the sum in the
5457	 * transition watermarks calculation, we can just pretend Selected
5458	 * Result Blocks is Result Blocks minus 1 and it should work for the
5459	 * current platforms.
5460	 */
5461	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5462
5463	if (wp->y_tiled) {
5464		trans_y_tile_min =
5465			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5466		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5467				trans_offset_b;
5468	} else {
5469		res_blocks = wm0_sel_res_b + trans_offset_b;
5470	}
5471
5472	/*
5473	 * Just assume we can enable the transition watermark.  After
5474	 * computing the DDB we'll come back and disable it if that
5475	 * assumption turns out to be false.
5476	 */
5477	wm->trans_wm.plane_res_b = res_blocks + 1;
5478	wm->trans_wm.plane_en = true;
5479}
5480
5481static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5482				     const struct intel_plane_state *plane_state,
5483				     enum plane_id plane_id, int color_plane)
5484{
5485	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5486	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5487	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5488	struct skl_wm_params wm_params;
5489	int ret;
5490
5491	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5492					  &wm_params, color_plane);
5493	if (ret)
5494		return ret;
5495
5496	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5497
5498	if (INTEL_GEN(dev_priv) >= 12)
5499		tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
5500
5501	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5502
5503	return 0;
5504}
5505
5506static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5507				 const struct intel_plane_state *plane_state,
5508				 enum plane_id plane_id)
5509{
5510	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5511	struct skl_wm_params wm_params;
5512	int ret;
5513
5514	wm->is_planar = true;
5515
5516	/* uv plane watermarks must also be validated for NV12/Planar */
5517	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5518					  &wm_params, 1);
5519	if (ret)
5520		return ret;
5521
5522	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5523
5524	return 0;
5525}
5526
5527static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5528			      const struct intel_plane_state *plane_state)
5529{
5530	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5531	const struct drm_framebuffer *fb = plane_state->hw.fb;
5532	enum plane_id plane_id = plane->id;
5533	int ret;
5534
5535	if (!intel_wm_plane_visible(crtc_state, plane_state))
5536		return 0;
5537
5538	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5539					plane_id, 0);
5540	if (ret)
5541		return ret;
5542
5543	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5544		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5545					    plane_id);
5546		if (ret)
5547			return ret;
5548	}
5549
5550	return 0;
5551}
5552
5553static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5554			      const struct intel_plane_state *plane_state)
5555{
5556	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5557	enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5558	int ret;
5559
5560	/* Watermarks calculated in master */
5561	if (plane_state->planar_slave)
5562		return 0;
5563
5564	if (plane_state->planar_linked_plane) {
5565		const struct drm_framebuffer *fb = plane_state->hw.fb;
5566		enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5567
5568		drm_WARN_ON(&dev_priv->drm,
5569			    !intel_wm_plane_visible(crtc_state, plane_state));
5570		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5571			    fb->format->num_planes == 1);
5572
5573		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5574						y_plane_id, 0);
5575		if (ret)
5576			return ret;
5577
5578		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5579						plane_id, 1);
5580		if (ret)
5581			return ret;
5582	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5583		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5584						plane_id, 0);
5585		if (ret)
5586			return ret;
5587	}
5588
5589	return 0;
5590}
5591
5592static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5593{
5594	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5595	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5596	struct intel_plane *plane;
5597	const struct intel_plane_state *plane_state;
5598	int ret;
5599
5600	/*
5601	 * We'll only calculate watermarks for planes that are actually
5602	 * enabled, so make sure all other planes are set as disabled.
5603	 */
5604	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5605
5606	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
5607						     crtc_state) {
5608
5609		if (INTEL_GEN(dev_priv) >= 11)
5610			ret = icl_build_plane_wm(crtc_state, plane_state);
5611		else
5612			ret = skl_build_plane_wm(crtc_state, plane_state);
5613		if (ret)
5614			return ret;
5615	}
5616
5617	return 0;
5618}
5619
5620static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5621				i915_reg_t reg,
5622				const struct skl_ddb_entry *entry)
5623{
5624	if (entry->end)
5625		intel_de_write_fw(dev_priv, reg,
5626				  (entry->end - 1) << 16 | entry->start);
5627	else
5628		intel_de_write_fw(dev_priv, reg, 0);
5629}
5630
5631static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5632			       i915_reg_t reg,
5633			       const struct skl_wm_level *level)
5634{
5635	u32 val = 0;
5636
5637	if (level->plane_en)
5638		val |= PLANE_WM_EN;
5639	if (level->ignore_lines)
5640		val |= PLANE_WM_IGNORE_LINES;
5641	val |= level->plane_res_b;
5642	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5643
5644	intel_de_write_fw(dev_priv, reg, val);
5645}
5646
5647void skl_write_plane_wm(struct intel_plane *plane,
5648			const struct intel_crtc_state *crtc_state)
5649{
5650	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5651	int level, max_level = ilk_wm_max_level(dev_priv);
5652	enum plane_id plane_id = plane->id;
5653	enum pipe pipe = plane->pipe;
5654	const struct skl_plane_wm *wm =
5655		&crtc_state->wm.skl.optimal.planes[plane_id];
5656	const struct skl_ddb_entry *ddb_y =
5657		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5658	const struct skl_ddb_entry *ddb_uv =
5659		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5660
5661	for (level = 0; level <= max_level; level++) {
5662		const struct skl_wm_level *wm_level;
5663
5664		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5665
5666		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5667				   wm_level);
5668	}
5669	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5670			   &wm->trans_wm);
5671
5672	if (INTEL_GEN(dev_priv) >= 11) {
5673		skl_ddb_entry_write(dev_priv,
5674				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5675		return;
5676	}
5677
5678	if (wm->is_planar)
5679		swap(ddb_y, ddb_uv);
5680
5681	skl_ddb_entry_write(dev_priv,
5682			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5683	skl_ddb_entry_write(dev_priv,
5684			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5685}
5686
5687void skl_write_cursor_wm(struct intel_plane *plane,
5688			 const struct intel_crtc_state *crtc_state)
5689{
5690	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5691	int level, max_level = ilk_wm_max_level(dev_priv);
5692	enum plane_id plane_id = plane->id;
5693	enum pipe pipe = plane->pipe;
5694	const struct skl_plane_wm *wm =
5695		&crtc_state->wm.skl.optimal.planes[plane_id];
5696	const struct skl_ddb_entry *ddb =
5697		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5698
5699	for (level = 0; level <= max_level; level++) {
5700		const struct skl_wm_level *wm_level;
5701
5702		wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5703
5704		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5705				   wm_level);
5706	}
5707	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5708
5709	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5710}
5711
5712bool skl_wm_level_equals(const struct skl_wm_level *l1,
5713			 const struct skl_wm_level *l2)
5714{
5715	return l1->plane_en == l2->plane_en &&
5716		l1->ignore_lines == l2->ignore_lines &&
5717		l1->plane_res_l == l2->plane_res_l &&
5718		l1->plane_res_b == l2->plane_res_b;
5719}
5720
5721static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5722				const struct skl_plane_wm *wm1,
5723				const struct skl_plane_wm *wm2)
5724{
5725	int level, max_level = ilk_wm_max_level(dev_priv);
5726
5727	for (level = 0; level <= max_level; level++) {
5728		/*
5729		 * We don't check uv_wm as the hardware doesn't actually
5730		 * use it. It only gets used for calculating the required
5731		 * ddb allocation.
5732		 */
5733		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5734			return false;
5735	}
5736
5737	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5738}
5739
5740static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5741				    const struct skl_ddb_entry *b)
5742{
5743	return a->start < b->end && b->start < a->end;
5744}
5745
5746bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5747				 const struct skl_ddb_entry *entries,
5748				 int num_entries, int ignore_idx)
5749{
5750	int i;
5751
5752	for (i = 0; i < num_entries; i++) {
5753		if (i != ignore_idx &&
5754		    skl_ddb_entries_overlap(ddb, &entries[i]))
5755			return true;
5756	}
5757
5758	return false;
5759}
5760
5761static int
5762skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5763			    struct intel_crtc_state *new_crtc_state)
5764{
5765	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5766	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5767	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5768	struct intel_plane *plane;
5769
5770	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5771		struct intel_plane_state *plane_state;
5772		enum plane_id plane_id = plane->id;
5773
5774		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5775					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5776		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5777					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5778			continue;
5779
5780		plane_state = intel_atomic_get_plane_state(state, plane);
5781		if (IS_ERR(plane_state))
5782			return PTR_ERR(plane_state);
5783
5784		new_crtc_state->update_planes |= BIT(plane_id);
5785	}
5786
5787	return 0;
5788}
5789
5790static int
5791skl_compute_ddb(struct intel_atomic_state *state)
5792{
5793	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5794	const struct intel_dbuf_state *old_dbuf_state;
5795	const struct intel_dbuf_state *new_dbuf_state;
5796	const struct intel_crtc_state *old_crtc_state;
5797	struct intel_crtc_state *new_crtc_state;
5798	struct intel_crtc *crtc;
5799	int ret, i;
5800
5801	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5802					    new_crtc_state, i) {
5803		ret = skl_allocate_pipe_ddb(new_crtc_state);
5804		if (ret)
5805			return ret;
5806
5807		ret = skl_ddb_add_affected_planes(old_crtc_state,
5808						  new_crtc_state);
5809		if (ret)
5810			return ret;
5811	}
5812
5813	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
5814	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
5815
5816	if (new_dbuf_state &&
5817	    new_dbuf_state->enabled_slices != old_dbuf_state->enabled_slices)
5818		drm_dbg_kms(&dev_priv->drm,
5819			    "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
5820			    old_dbuf_state->enabled_slices,
5821			    new_dbuf_state->enabled_slices,
5822			    INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
5823
5824	return 0;
5825}
5826
5827static char enast(bool enable)
5828{
5829	return enable ? '*' : ' ';
5830}
5831
5832static void
5833skl_print_wm_changes(struct intel_atomic_state *state)
5834{
5835	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5836	const struct intel_crtc_state *old_crtc_state;
5837	const struct intel_crtc_state *new_crtc_state;
5838	struct intel_plane *plane;
5839	struct intel_crtc *crtc;
5840	int i;
5841
5842	if (!drm_debug_enabled(DRM_UT_KMS))
5843		return;
5844
5845	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5846					    new_crtc_state, i) {
5847		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5848
5849		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5850		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5851
5852		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5853			enum plane_id plane_id = plane->id;
5854			const struct skl_ddb_entry *old, *new;
5855
5856			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5857			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5858
5859			if (skl_ddb_entry_equal(old, new))
5860				continue;
5861
5862			drm_dbg_kms(&dev_priv->drm,
5863				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5864				    plane->base.base.id, plane->base.name,
5865				    old->start, old->end, new->start, new->end,
5866				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5867		}
5868
5869		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5870			enum plane_id plane_id = plane->id;
5871			const struct skl_plane_wm *old_wm, *new_wm;
5872
5873			old_wm = &old_pipe_wm->planes[plane_id];
5874			new_wm = &new_pipe_wm->planes[plane_id];
5875
5876			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5877				continue;
5878
5879			drm_dbg_kms(&dev_priv->drm,
5880				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
5881				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5882				    plane->base.base.id, plane->base.name,
5883				    enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5884				    enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5885				    enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5886				    enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5887				    enast(old_wm->trans_wm.plane_en),
5888				    enast(old_wm->sagv_wm0.plane_en),
5889				    enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5890				    enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5891				    enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5892				    enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5893				    enast(new_wm->trans_wm.plane_en),
5894				    enast(new_wm->sagv_wm0.plane_en));
5895
5896			drm_dbg_kms(&dev_priv->drm,
5897				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5898				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5899				    plane->base.base.id, plane->base.name,
5900				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5901				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5902				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5903				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5904				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5905				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5906				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5907				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5908				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5909				    enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
5910
5911				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5912				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5913				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5914				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5915				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5916				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5917				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5918				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5919				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
5920				    enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
5921
5922			drm_dbg_kms(&dev_priv->drm,
5923				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5924				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5925				    plane->base.base.id, plane->base.name,
5926				    old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5927				    old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5928				    old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5929				    old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5930				    old_wm->trans_wm.plane_res_b,
5931				    old_wm->sagv_wm0.plane_res_b,
5932				    new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5933				    new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5934				    new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5935				    new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5936				    new_wm->trans_wm.plane_res_b,
5937				    new_wm->sagv_wm0.plane_res_b);
5938
5939			drm_dbg_kms(&dev_priv->drm,
5940				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5941				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5942				    plane->base.base.id, plane->base.name,
5943				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5944				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5945				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5946				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5947				    old_wm->trans_wm.min_ddb_alloc,
5948				    old_wm->sagv_wm0.min_ddb_alloc,
5949				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5950				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5951				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5952				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5953				    new_wm->trans_wm.min_ddb_alloc,
5954				    new_wm->sagv_wm0.min_ddb_alloc);
5955		}
5956	}
5957}
5958
5959static int intel_add_affected_pipes(struct intel_atomic_state *state,
5960				    u8 pipe_mask)
5961{
5962	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5963	struct intel_crtc *crtc;
5964
5965	for_each_intel_crtc(&dev_priv->drm, crtc) {
5966		struct intel_crtc_state *crtc_state;
5967
5968		if ((pipe_mask & BIT(crtc->pipe)) == 0)
5969			continue;
5970
5971		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5972		if (IS_ERR(crtc_state))
5973			return PTR_ERR(crtc_state);
5974	}
5975
5976	return 0;
5977}
5978
5979static int
5980skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5981{
5982	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5983	struct intel_crtc_state *crtc_state;
5984	struct intel_crtc *crtc;
5985	int i, ret;
5986
5987	if (dev_priv->wm.distrust_bios_wm) {
5988		/*
5989		 * skl_ddb_get_pipe_allocation_limits() currently requires
5990		 * all active pipes to be included in the state so that
5991		 * it can redistribute the dbuf among them, and it really
5992		 * wants to recompute things when distrust_bios_wm is set
5993		 * so we add all the pipes to the state.
5994		 */
5995		ret = intel_add_affected_pipes(state, ~0);
5996		if (ret)
5997			return ret;
5998	}
5999
6000	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
6001		struct intel_dbuf_state *new_dbuf_state;
6002		const struct intel_dbuf_state *old_dbuf_state;
6003
6004		new_dbuf_state = intel_atomic_get_dbuf_state(state);
6005		if (IS_ERR(new_dbuf_state))
6006			return PTR_ERR(new_dbuf_state);
6007
6008		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
6009
6010		new_dbuf_state->active_pipes =
6011			intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
6012
6013		if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes)
6014			break;
6015
6016		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6017		if (ret)
6018			return ret;
6019
6020		/*
6021		 * skl_ddb_get_pipe_allocation_limits() currently requires
6022		 * all active pipes to be included in the state so that
6023		 * it can redistribute the dbuf among them.
6024		 */
6025		ret = intel_add_affected_pipes(state,
6026					       new_dbuf_state->active_pipes);
6027		if (ret)
6028			return ret;
6029
6030		break;
6031	}
6032
6033	return 0;
6034}
6035
6036/*
6037 * To make sure the cursor watermark registers are always consistent
6038 * with our computed state the following scenario needs special
6039 * treatment:
6040 *
6041 * 1. enable cursor
6042 * 2. move cursor entirely offscreen
6043 * 3. disable cursor
6044 *
6045 * Step 2. does call .disable_plane() but does not zero the watermarks
6046 * (since we consider an offscreen cursor still active for the purposes
6047 * of watermarks). Step 3. would not normally call .disable_plane()
6048 * because the actual plane visibility isn't changing, and we don't
6049 * deallocate the cursor ddb until the pipe gets disabled. So we must
6050 * force step 3. to call .disable_plane() to update the watermark
6051 * registers properly.
6052 *
6053 * Other planes do not suffer from this issues as their watermarks are
6054 * calculated based on the actual plane visibility. The only time this
6055 * can trigger for the other planes is during the initial readout as the
6056 * default value of the watermarks registers is not zero.
6057 */
6058static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6059				      struct intel_crtc *crtc)
6060{
6061	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6062	const struct intel_crtc_state *old_crtc_state =
6063		intel_atomic_get_old_crtc_state(state, crtc);
6064	struct intel_crtc_state *new_crtc_state =
6065		intel_atomic_get_new_crtc_state(state, crtc);
6066	struct intel_plane *plane;
6067
6068	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6069		struct intel_plane_state *plane_state;
6070		enum plane_id plane_id = plane->id;
6071
6072		/*
6073		 * Force a full wm update for every plane on modeset.
6074		 * Required because the reset value of the wm registers
6075		 * is non-zero, whereas we want all disabled planes to
6076		 * have zero watermarks. So if we turn off the relevant
6077		 * power well the hardware state will go out of sync
6078		 * with the software state.
6079		 */
6080		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6081		    skl_plane_wm_equals(dev_priv,
6082					&old_crtc_state->wm.skl.optimal.planes[plane_id],
6083					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
6084			continue;
6085
6086		plane_state = intel_atomic_get_plane_state(state, plane);
6087		if (IS_ERR(plane_state))
6088			return PTR_ERR(plane_state);
6089
6090		new_crtc_state->update_planes |= BIT(plane_id);
6091	}
6092
6093	return 0;
6094}
6095
6096static int
6097skl_compute_wm(struct intel_atomic_state *state)
6098{
6099	struct intel_crtc *crtc;
6100	struct intel_crtc_state *new_crtc_state;
6101	struct intel_crtc_state *old_crtc_state;
6102	int ret, i;
6103
6104	ret = skl_ddb_add_affected_pipes(state);
6105	if (ret)
6106		return ret;
6107
6108	/*
6109	 * Calculate WM's for all pipes that are part of this transaction.
6110	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
6111	 * weren't otherwise being modified if pipe allocations had to change.
6112	 */
6113	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6114					    new_crtc_state, i) {
6115		ret = skl_build_pipe_wm(new_crtc_state);
6116		if (ret)
6117			return ret;
6118	}
6119
6120	ret = skl_compute_ddb(state);
6121	if (ret)
6122		return ret;
6123
6124	ret = intel_compute_sagv_mask(state);
6125	if (ret)
6126		return ret;
6127
6128	/*
6129	 * skl_compute_ddb() will have adjusted the final watermarks
6130	 * based on how much ddb is available. Now we can actually
6131	 * check if the final watermarks changed.
6132	 */
6133	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6134					    new_crtc_state, i) {
6135		ret = skl_wm_add_affected_planes(state, crtc);
6136		if (ret)
6137			return ret;
6138	}
6139
6140	skl_print_wm_changes(state);
6141
6142	return 0;
6143}
6144
6145static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6146				  struct intel_wm_config *config)
6147{
6148	struct intel_crtc *crtc;
6149
6150	/* Compute the currently _active_ config */
6151	for_each_intel_crtc(&dev_priv->drm, crtc) {
6152		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6153
6154		if (!wm->pipe_enabled)
6155			continue;
6156
6157		config->sprites_enabled |= wm->sprites_enabled;
6158		config->sprites_scaled |= wm->sprites_scaled;
6159		config->num_pipes_active++;
6160	}
6161}
6162
6163static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6164{
6165	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6166	struct ilk_wm_maximums max;
6167	struct intel_wm_config config = {};
6168	struct ilk_wm_values results = {};
6169	enum intel_ddb_partitioning partitioning;
6170
6171	ilk_compute_wm_config(dev_priv, &config);
6172
6173	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6174	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6175
6176	/* 5/6 split only in single pipe config on IVB+ */
6177	if (INTEL_GEN(dev_priv) >= 7 &&
6178	    config.num_pipes_active == 1 && config.sprites_enabled) {
6179		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6180		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6181
6182		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6183	} else {
6184		best_lp_wm = &lp_wm_1_2;
6185	}
6186
6187	partitioning = (best_lp_wm == &lp_wm_1_2) ?
6188		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6189
6190	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6191
6192	ilk_write_wm_values(dev_priv, &results);
6193}
6194
6195static void ilk_initial_watermarks(struct intel_atomic_state *state,
6196				   struct intel_crtc *crtc)
6197{
6198	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6199	const struct intel_crtc_state *crtc_state =
6200		intel_atomic_get_new_crtc_state(state, crtc);
6201
6202	mutex_lock(&dev_priv->wm.wm_mutex);
6203	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6204	ilk_program_watermarks(dev_priv);
6205	mutex_unlock(&dev_priv->wm.wm_mutex);
6206}
6207
6208static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6209				    struct intel_crtc *crtc)
6210{
6211	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6212	const struct intel_crtc_state *crtc_state =
6213		intel_atomic_get_new_crtc_state(state, crtc);
6214
6215	if (!crtc_state->wm.need_postvbl_update)
6216		return;
6217
6218	mutex_lock(&dev_priv->wm.wm_mutex);
6219	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6220	ilk_program_watermarks(dev_priv);
6221	mutex_unlock(&dev_priv->wm.wm_mutex);
6222}
6223
6224static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6225{
6226	level->plane_en = val & PLANE_WM_EN;
6227	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6228	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
6229	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
6230		PLANE_WM_LINES_MASK;
6231}
6232
6233void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6234			      struct skl_pipe_wm *out)
6235{
6236	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6237	enum pipe pipe = crtc->pipe;
6238	int level, max_level;
6239	enum plane_id plane_id;
6240	u32 val;
6241
6242	max_level = ilk_wm_max_level(dev_priv);
6243
6244	for_each_plane_id_on_crtc(crtc, plane_id) {
6245		struct skl_plane_wm *wm = &out->planes[plane_id];
6246
6247		for (level = 0; level <= max_level; level++) {
6248			if (plane_id != PLANE_CURSOR)
6249				val = I915_READ(PLANE_WM(pipe, plane_id, level));
6250			else
6251				val = I915_READ(CUR_WM(pipe, level));
6252
6253			skl_wm_level_from_reg_val(val, &wm->wm[level]);
6254		}
6255
6256		if (INTEL_GEN(dev_priv) >= 12)
6257			wm->sagv_wm0 = wm->wm[0];
6258
6259		if (plane_id != PLANE_CURSOR)
6260			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6261		else
6262			val = I915_READ(CUR_WM_TRANS(pipe));
6263
6264		skl_wm_level_from_reg_val(val, &wm->trans_wm);
6265	}
6266
6267	if (!crtc->active)
6268		return;
6269}
6270
6271void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6272{
6273	struct intel_crtc *crtc;
6274	struct intel_crtc_state *crtc_state;
6275
6276	for_each_intel_crtc(&dev_priv->drm, crtc) {
6277		crtc_state = to_intel_crtc_state(crtc->base.state);
6278
6279		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6280	}
6281
6282	if (dev_priv->active_pipes) {
6283		/* Fully recompute DDB on first atomic commit */
6284		dev_priv->wm.distrust_bios_wm = true;
6285	}
6286}
6287
6288static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6289{
6290	struct drm_device *dev = crtc->base.dev;
6291	struct drm_i915_private *dev_priv = to_i915(dev);
6292	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6293	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6294	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6295	enum pipe pipe = crtc->pipe;
6296	static const i915_reg_t wm0_pipe_reg[] = {
6297		[PIPE_A] = WM0_PIPEA_ILK,
6298		[PIPE_B] = WM0_PIPEB_ILK,
6299		[PIPE_C] = WM0_PIPEC_IVB,
6300	};
6301
6302	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
6303
6304	memset(active, 0, sizeof(*active));
6305
6306	active->pipe_enabled = crtc->active;
6307
6308	if (active->pipe_enabled) {
6309		u32 tmp = hw->wm_pipe[pipe];
6310
6311		/*
6312		 * For active pipes LP0 watermark is marked as
6313		 * enabled, and LP1+ watermaks as disabled since
6314		 * we can't really reverse compute them in case
6315		 * multiple pipes are active.
6316		 */
6317		active->wm[0].enable = true;
6318		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6319		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6320		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6321	} else {
6322		int level, max_level = ilk_wm_max_level(dev_priv);
6323
6324		/*
6325		 * For inactive pipes, all watermark levels
6326		 * should be marked as enabled but zeroed,
6327		 * which is what we'd compute them to.
6328		 */
6329		for (level = 0; level <= max_level; level++)
6330			active->wm[level].enable = true;
6331	}
6332
6333	crtc->wm.active.ilk = *active;
6334}
6335
6336#define _FW_WM(value, plane) \
6337	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6338#define _FW_WM_VLV(value, plane) \
6339	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6340
6341static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6342			       struct g4x_wm_values *wm)
6343{
6344	u32 tmp;
6345
6346	tmp = I915_READ(DSPFW1);
6347	wm->sr.plane = _FW_WM(tmp, SR);
6348	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6349	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6350	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6351
6352	tmp = I915_READ(DSPFW2);
6353	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6354	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6355	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6356	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6357	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6358	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6359
6360	tmp = I915_READ(DSPFW3);
6361	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6362	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6363	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6364	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6365}
6366
6367static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6368			       struct vlv_wm_values *wm)
6369{
6370	enum pipe pipe;
6371	u32 tmp;
6372
6373	for_each_pipe(dev_priv, pipe) {
6374		tmp = I915_READ(VLV_DDL(pipe));
6375
6376		wm->ddl[pipe].plane[PLANE_PRIMARY] =
6377			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6378		wm->ddl[pipe].plane[PLANE_CURSOR] =
6379			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6380		wm->ddl[pipe].plane[PLANE_SPRITE0] =
6381			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6382		wm->ddl[pipe].plane[PLANE_SPRITE1] =
6383			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6384	}
6385
6386	tmp = I915_READ(DSPFW1);
6387	wm->sr.plane = _FW_WM(tmp, SR);
6388	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6389	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6390	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6391
6392	tmp = I915_READ(DSPFW2);
6393	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6394	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6395	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6396
6397	tmp = I915_READ(DSPFW3);
6398	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6399
6400	if (IS_CHERRYVIEW(dev_priv)) {
6401		tmp = I915_READ(DSPFW7_CHV);
6402		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6403		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6404
6405		tmp = I915_READ(DSPFW8_CHV);
6406		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6407		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6408
6409		tmp = I915_READ(DSPFW9_CHV);
6410		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6411		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6412
6413		tmp = I915_READ(DSPHOWM);
6414		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6415		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6416		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6417		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6418		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6419		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6420		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6421		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6422		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6423		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6424	} else {
6425		tmp = I915_READ(DSPFW7);
6426		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6427		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6428
6429		tmp = I915_READ(DSPHOWM);
6430		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6431		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6432		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6433		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6434		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6435		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6436		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6437	}
6438}
6439
6440#undef _FW_WM
6441#undef _FW_WM_VLV
6442
6443void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6444{
6445	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6446	struct intel_crtc *crtc;
6447
6448	g4x_read_wm_values(dev_priv, wm);
6449
6450	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
6451
6452	for_each_intel_crtc(&dev_priv->drm, crtc) {
6453		struct intel_crtc_state *crtc_state =
6454			to_intel_crtc_state(crtc->base.state);
6455		struct g4x_wm_state *active = &crtc->wm.active.g4x;
6456		struct g4x_pipe_wm *raw;
6457		enum pipe pipe = crtc->pipe;
6458		enum plane_id plane_id;
6459		int level, max_level;
6460
6461		active->cxsr = wm->cxsr;
6462		active->hpll_en = wm->hpll_en;
6463		active->fbc_en = wm->fbc_en;
6464
6465		active->sr = wm->sr;
6466		active->hpll = wm->hpll;
6467
6468		for_each_plane_id_on_crtc(crtc, plane_id) {
6469			active->wm.plane[plane_id] =
6470				wm->pipe[pipe].plane[plane_id];
6471		}
6472
6473		if (wm->cxsr && wm->hpll_en)
6474			max_level = G4X_WM_LEVEL_HPLL;
6475		else if (wm->cxsr)
6476			max_level = G4X_WM_LEVEL_SR;
6477		else
6478			max_level = G4X_WM_LEVEL_NORMAL;
6479
6480		level = G4X_WM_LEVEL_NORMAL;
6481		raw = &crtc_state->wm.g4x.raw[level];
6482		for_each_plane_id_on_crtc(crtc, plane_id)
6483			raw->plane[plane_id] = active->wm.plane[plane_id];
6484
6485		if (++level > max_level)
6486			goto out;
6487
6488		raw = &crtc_state->wm.g4x.raw[level];
6489		raw->plane[PLANE_PRIMARY] = active->sr.plane;
6490		raw->plane[PLANE_CURSOR] = active->sr.cursor;
6491		raw->plane[PLANE_SPRITE0] = 0;
6492		raw->fbc = active->sr.fbc;
6493
6494		if (++level > max_level)
6495			goto out;
6496
6497		raw = &crtc_state->wm.g4x.raw[level];
6498		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6499		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6500		raw->plane[PLANE_SPRITE0] = 0;
6501		raw->fbc = active->hpll.fbc;
6502
6503	out:
6504		for_each_plane_id_on_crtc(crtc, plane_id)
6505			g4x_raw_plane_wm_set(crtc_state, level,
6506					     plane_id, USHRT_MAX);
6507		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6508
6509		crtc_state->wm.g4x.optimal = *active;
6510		crtc_state->wm.g4x.intermediate = *active;
6511
6512		drm_dbg_kms(&dev_priv->drm,
6513			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6514			    pipe_name(pipe),
6515			    wm->pipe[pipe].plane[PLANE_PRIMARY],
6516			    wm->pipe[pipe].plane[PLANE_CURSOR],
6517			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
6518	}
6519
6520	drm_dbg_kms(&dev_priv->drm,
6521		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6522		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6523	drm_dbg_kms(&dev_priv->drm,
6524		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6525		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6526	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6527		    yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6528}
6529
6530void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6531{
6532	struct intel_plane *plane;
6533	struct intel_crtc *crtc;
6534
6535	mutex_lock(&dev_priv->wm.wm_mutex);
6536
6537	for_each_intel_plane(&dev_priv->drm, plane) {
6538		struct intel_crtc *crtc =
6539			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6540		struct intel_crtc_state *crtc_state =
6541			to_intel_crtc_state(crtc->base.state);
6542		struct intel_plane_state *plane_state =
6543			to_intel_plane_state(plane->base.state);
6544		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6545		enum plane_id plane_id = plane->id;
6546		int level;
6547
6548		if (plane_state->uapi.visible)
6549			continue;
6550
6551		for (level = 0; level < 3; level++) {
6552			struct g4x_pipe_wm *raw =
6553				&crtc_state->wm.g4x.raw[level];
6554
6555			raw->plane[plane_id] = 0;
6556			wm_state->wm.plane[plane_id] = 0;
6557		}
6558
6559		if (plane_id == PLANE_PRIMARY) {
6560			for (level = 0; level < 3; level++) {
6561				struct g4x_pipe_wm *raw =
6562					&crtc_state->wm.g4x.raw[level];
6563				raw->fbc = 0;
6564			}
6565
6566			wm_state->sr.fbc = 0;
6567			wm_state->hpll.fbc = 0;
6568			wm_state->fbc_en = false;
6569		}
6570	}
6571
6572	for_each_intel_crtc(&dev_priv->drm, crtc) {
6573		struct intel_crtc_state *crtc_state =
6574			to_intel_crtc_state(crtc->base.state);
6575
6576		crtc_state->wm.g4x.intermediate =
6577			crtc_state->wm.g4x.optimal;
6578		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6579	}
6580
6581	g4x_program_watermarks(dev_priv);
6582
6583	mutex_unlock(&dev_priv->wm.wm_mutex);
6584}
6585
6586void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6587{
6588	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6589	struct intel_crtc *crtc;
6590	u32 val;
6591
6592	vlv_read_wm_values(dev_priv, wm);
6593
6594	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6595	wm->level = VLV_WM_LEVEL_PM2;
6596
6597	if (IS_CHERRYVIEW(dev_priv)) {
6598		vlv_punit_get(dev_priv);
6599
6600		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6601		if (val & DSP_MAXFIFO_PM5_ENABLE)
6602			wm->level = VLV_WM_LEVEL_PM5;
6603
6604		/*
6605		 * If DDR DVFS is disabled in the BIOS, Punit
6606		 * will never ack the request. So if that happens
6607		 * assume we don't have to enable/disable DDR DVFS
6608		 * dynamically. To test that just set the REQ_ACK
6609		 * bit to poke the Punit, but don't change the
6610		 * HIGH/LOW bits so that we don't actually change
6611		 * the current state.
6612		 */
6613		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6614		val |= FORCE_DDR_FREQ_REQ_ACK;
6615		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6616
6617		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6618			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6619			drm_dbg_kms(&dev_priv->drm,
6620				    "Punit not acking DDR DVFS request, "
6621				    "assuming DDR DVFS is disabled\n");
6622			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6623		} else {
6624			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6625			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6626				wm->level = VLV_WM_LEVEL_DDR_DVFS;
6627		}
6628
6629		vlv_punit_put(dev_priv);
6630	}
6631
6632	for_each_intel_crtc(&dev_priv->drm, crtc) {
6633		struct intel_crtc_state *crtc_state =
6634			to_intel_crtc_state(crtc->base.state);
6635		struct vlv_wm_state *active = &crtc->wm.active.vlv;
6636		const struct vlv_fifo_state *fifo_state =
6637			&crtc_state->wm.vlv.fifo_state;
6638		enum pipe pipe = crtc->pipe;
6639		enum plane_id plane_id;
6640		int level;
6641
6642		vlv_get_fifo_size(crtc_state);
6643
6644		active->num_levels = wm->level + 1;
6645		active->cxsr = wm->cxsr;
6646
6647		for (level = 0; level < active->num_levels; level++) {
6648			struct g4x_pipe_wm *raw =
6649				&crtc_state->wm.vlv.raw[level];
6650
6651			active->sr[level].plane = wm->sr.plane;
6652			active->sr[level].cursor = wm->sr.cursor;
6653
6654			for_each_plane_id_on_crtc(crtc, plane_id) {
6655				active->wm[level].plane[plane_id] =
6656					wm->pipe[pipe].plane[plane_id];
6657
6658				raw->plane[plane_id] =
6659					vlv_invert_wm_value(active->wm[level].plane[plane_id],
6660							    fifo_state->plane[plane_id]);
6661			}
6662		}
6663
6664		for_each_plane_id_on_crtc(crtc, plane_id)
6665			vlv_raw_plane_wm_set(crtc_state, level,
6666					     plane_id, USHRT_MAX);
6667		vlv_invalidate_wms(crtc, active, level);
6668
6669		crtc_state->wm.vlv.optimal = *active;
6670		crtc_state->wm.vlv.intermediate = *active;
6671
6672		drm_dbg_kms(&dev_priv->drm,
6673			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6674			    pipe_name(pipe),
6675			    wm->pipe[pipe].plane[PLANE_PRIMARY],
6676			    wm->pipe[pipe].plane[PLANE_CURSOR],
6677			    wm->pipe[pipe].plane[PLANE_SPRITE0],
6678			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
6679	}
6680
6681	drm_dbg_kms(&dev_priv->drm,
6682		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6683		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6684}
6685
6686void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6687{
6688	struct intel_plane *plane;
6689	struct intel_crtc *crtc;
6690
6691	mutex_lock(&dev_priv->wm.wm_mutex);
6692
6693	for_each_intel_plane(&dev_priv->drm, plane) {
6694		struct intel_crtc *crtc =
6695			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6696		struct intel_crtc_state *crtc_state =
6697			to_intel_crtc_state(crtc->base.state);
6698		struct intel_plane_state *plane_state =
6699			to_intel_plane_state(plane->base.state);
6700		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6701		const struct vlv_fifo_state *fifo_state =
6702			&crtc_state->wm.vlv.fifo_state;
6703		enum plane_id plane_id = plane->id;
6704		int level;
6705
6706		if (plane_state->uapi.visible)
6707			continue;
6708
6709		for (level = 0; level < wm_state->num_levels; level++) {
6710			struct g4x_pipe_wm *raw =
6711				&crtc_state->wm.vlv.raw[level];
6712
6713			raw->plane[plane_id] = 0;
6714
6715			wm_state->wm[level].plane[plane_id] =
6716				vlv_invert_wm_value(raw->plane[plane_id],
6717						    fifo_state->plane[plane_id]);
6718		}
6719	}
6720
6721	for_each_intel_crtc(&dev_priv->drm, crtc) {
6722		struct intel_crtc_state *crtc_state =
6723			to_intel_crtc_state(crtc->base.state);
6724
6725		crtc_state->wm.vlv.intermediate =
6726			crtc_state->wm.vlv.optimal;
6727		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6728	}
6729
6730	vlv_program_watermarks(dev_priv);
6731
6732	mutex_unlock(&dev_priv->wm.wm_mutex);
6733}
6734
6735/*
6736 * FIXME should probably kill this and improve
6737 * the real watermark readout/sanitation instead
6738 */
6739static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6740{
6741	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6742	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6743	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6744
6745	/*
6746	 * Don't touch WM1S_LP_EN here.
6747	 * Doing so could cause underruns.
6748	 */
6749}
6750
6751void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6752{
6753	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6754	struct intel_crtc *crtc;
6755
6756	ilk_init_lp_watermarks(dev_priv);
6757
6758	for_each_intel_crtc(&dev_priv->drm, crtc)
6759		ilk_pipe_wm_get_hw_state(crtc);
6760
6761	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6762	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6763	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6764
6765	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6766	if (INTEL_GEN(dev_priv) >= 7) {
6767		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6768		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6769	}
6770
6771	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6772		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6773			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6774	else if (IS_IVYBRIDGE(dev_priv))
6775		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6776			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6777
6778	hw->enable_fbc_wm =
6779		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6780}
6781
6782/**
6783 * intel_update_watermarks - update FIFO watermark values based on current modes
6784 * @crtc: the #intel_crtc on which to compute the WM
6785 *
6786 * Calculate watermark values for the various WM regs based on current mode
6787 * and plane configuration.
6788 *
6789 * There are several cases to deal with here:
6790 *   - normal (i.e. non-self-refresh)
6791 *   - self-refresh (SR) mode
6792 *   - lines are large relative to FIFO size (buffer can hold up to 2)
6793 *   - lines are small relative to FIFO size (buffer can hold more than 2
6794 *     lines), so need to account for TLB latency
6795 *
6796 *   The normal calculation is:
6797 *     watermark = dotclock * bytes per pixel * latency
6798 *   where latency is platform & configuration dependent (we assume pessimal
6799 *   values here).
6800 *
6801 *   The SR calculation is:
6802 *     watermark = (trunc(latency/line time)+1) * surface width *
6803 *       bytes per pixel
6804 *   where
6805 *     line time = htotal / dotclock
6806 *     surface width = hdisplay for normal plane and 64 for cursor
6807 *   and latency is assumed to be high, as above.
6808 *
6809 * The final value programmed to the register should always be rounded up,
6810 * and include an extra 2 entries to account for clock crossings.
6811 *
6812 * We don't use the sprite, so we can ignore that.  And on Crestline we have
6813 * to set the non-SR watermarks to 8.
6814 */
6815void intel_update_watermarks(struct intel_crtc *crtc)
6816{
6817	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6818
6819	if (dev_priv->display.update_wm)
6820		dev_priv->display.update_wm(crtc);
6821}
6822
6823void intel_enable_ipc(struct drm_i915_private *dev_priv)
6824{
6825	u32 val;
6826
6827	if (!HAS_IPC(dev_priv))
6828		return;
6829
6830	val = I915_READ(DISP_ARB_CTL2);
6831
6832	if (dev_priv->ipc_enabled)
6833		val |= DISP_IPC_ENABLE;
6834	else
6835		val &= ~DISP_IPC_ENABLE;
6836
6837	I915_WRITE(DISP_ARB_CTL2, val);
6838}
6839
6840static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6841{
6842	/* Display WA #0477 WaDisableIPC: skl */
6843	if (IS_SKYLAKE(dev_priv))
6844		return false;
6845
6846	/* Display WA #1141: SKL:all KBL:all CFL */
6847	if (IS_KABYLAKE(dev_priv) ||
6848	    IS_COFFEELAKE(dev_priv) ||
6849	    IS_COMETLAKE(dev_priv))
6850		return dev_priv->dram_info.symmetric_memory;
6851
6852	return true;
6853}
6854
6855void intel_init_ipc(struct drm_i915_private *dev_priv)
6856{
6857	if (!HAS_IPC(dev_priv))
6858		return;
6859
6860	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6861
6862	intel_enable_ipc(dev_priv);
6863}
6864
6865static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6866{
6867	/*
6868	 * On Ibex Peak and Cougar Point, we need to disable clock
6869	 * gating for the panel power sequencer or it will fail to
6870	 * start up when no ports are active.
6871	 */
6872	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6873}
6874
6875static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6876{
6877	enum pipe pipe;
6878
6879	for_each_pipe(dev_priv, pipe) {
6880		I915_WRITE(DSPCNTR(pipe),
6881			   I915_READ(DSPCNTR(pipe)) |
6882			   DISPPLANE_TRICKLE_FEED_DISABLE);
6883
6884		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6885		POSTING_READ(DSPSURF(pipe));
6886	}
6887}
6888
6889static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6890{
6891	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6892
6893	/*
6894	 * Required for FBC
6895	 * WaFbcDisableDpfcClockGating:ilk
6896	 */
6897	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6898		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6899		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6900
6901	I915_WRITE(PCH_3DCGDIS0,
6902		   MARIUNIT_CLOCK_GATE_DISABLE |
6903		   SVSMUNIT_CLOCK_GATE_DISABLE);
6904	I915_WRITE(PCH_3DCGDIS1,
6905		   VFMUNIT_CLOCK_GATE_DISABLE);
6906
6907	/*
6908	 * According to the spec the following bits should be set in
6909	 * order to enable memory self-refresh
6910	 * The bit 22/21 of 0x42004
6911	 * The bit 5 of 0x42020
6912	 * The bit 15 of 0x45000
6913	 */
6914	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6915		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6916		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6917	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6918	I915_WRITE(DISP_ARB_CTL,
6919		   (I915_READ(DISP_ARB_CTL) |
6920		    DISP_FBC_WM_DIS));
6921
6922	/*
6923	 * Based on the document from hardware guys the following bits
6924	 * should be set unconditionally in order to enable FBC.
6925	 * The bit 22 of 0x42000
6926	 * The bit 22 of 0x42004
6927	 * The bit 7,8,9 of 0x42020.
6928	 */
6929	if (IS_IRONLAKE_M(dev_priv)) {
6930		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6931		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6932			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6933			   ILK_FBCQ_DIS);
6934		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6935			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6936			   ILK_DPARB_GATE);
6937	}
6938
6939	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6940
6941	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6942		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6943		   ILK_ELPIN_409_SELECT);
6944
6945	g4x_disable_trickle_feed(dev_priv);
6946
6947	ibx_init_clock_gating(dev_priv);
6948}
6949
6950static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6951{
6952	enum pipe pipe;
6953	u32 val;
6954
6955	/*
6956	 * On Ibex Peak and Cougar Point, we need to disable clock
6957	 * gating for the panel power sequencer or it will fail to
6958	 * start up when no ports are active.
6959	 */
6960	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6961		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6962		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6963	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6964		   DPLS_EDP_PPS_FIX_DIS);
6965	/* The below fixes the weird display corruption, a few pixels shifted
6966	 * downward, on (only) LVDS of some HP laptops with IVY.
6967	 */
6968	for_each_pipe(dev_priv, pipe) {
6969		val = I915_READ(TRANS_CHICKEN2(pipe));
6970		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6971		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6972		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6973			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6974		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6975		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6976		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6977	}
6978	/* WADP0ClockGatingDisable */
6979	for_each_pipe(dev_priv, pipe) {
6980		I915_WRITE(TRANS_CHICKEN1(pipe),
6981			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6982	}
6983}
6984
6985static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6986{
6987	u32 tmp;
6988
6989	tmp = I915_READ(MCH_SSKPD);
6990	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6991		drm_dbg_kms(&dev_priv->drm,
6992			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6993			    tmp);
6994}
6995
6996static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6997{
6998	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6999
7000	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7001
7002	I915_WRITE(ILK_DISPLAY_CHICKEN2,
7003		   I915_READ(ILK_DISPLAY_CHICKEN2) |
7004		   ILK_ELPIN_409_SELECT);
7005
7006	I915_WRITE(GEN6_UCGCTL1,
7007		   I915_READ(GEN6_UCGCTL1) |
7008		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7009		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7010
7011	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7012	 * gating disable must be set.  Failure to set it results in
7013	 * flickering pixels due to Z write ordering failures after
7014	 * some amount of runtime in the Mesa "fire" demo, and Unigine
7015	 * Sanctuary and Tropics, and apparently anything else with
7016	 * alpha test or pixel discard.
7017	 *
7018	 * According to the spec, bit 11 (RCCUNIT) must also be set,
7019	 * but we didn't debug actual testcases to find it out.
7020	 *
7021	 * WaDisableRCCUnitClockGating:snb
7022	 * WaDisableRCPBUnitClockGating:snb
7023	 */
7024	I915_WRITE(GEN6_UCGCTL2,
7025		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7026		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7027
7028	/*
7029	 * According to the spec the following bits should be
7030	 * set in order to enable memory self-refresh and fbc:
7031	 * The bit21 and bit22 of 0x42000
7032	 * The bit21 and bit22 of 0x42004
7033	 * The bit5 and bit7 of 0x42020
7034	 * The bit14 of 0x70180
7035	 * The bit14 of 0x71180
7036	 *
7037	 * WaFbcAsynchFlipDisableFbcQueue:snb
7038	 */
7039	I915_WRITE(ILK_DISPLAY_CHICKEN1,
7040		   I915_READ(ILK_DISPLAY_CHICKEN1) |
7041		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7042	I915_WRITE(ILK_DISPLAY_CHICKEN2,
7043		   I915_READ(ILK_DISPLAY_CHICKEN2) |
7044		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7045	I915_WRITE(ILK_DSPCLK_GATE_D,
7046		   I915_READ(ILK_DSPCLK_GATE_D) |
7047		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7048		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7049
7050	g4x_disable_trickle_feed(dev_priv);
7051
7052	cpt_init_clock_gating(dev_priv);
7053
7054	gen6_check_mch_setup(dev_priv);
7055}
7056
7057static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7058{
7059	/*
7060	 * TODO: this bit should only be enabled when really needed, then
7061	 * disabled when not needed anymore in order to save power.
7062	 */
7063	if (HAS_PCH_LPT_LP(dev_priv))
7064		I915_WRITE(SOUTH_DSPCLK_GATE_D,
7065			   I915_READ(SOUTH_DSPCLK_GATE_D) |
7066			   PCH_LP_PARTITION_LEVEL_DISABLE);
7067
7068	/* WADPOClockGatingDisable:hsw */
7069	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7070		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7071		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7072}
7073
7074static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7075{
7076	if (HAS_PCH_LPT_LP(dev_priv)) {
7077		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7078
7079		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7080		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7081	}
7082}
7083
7084static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7085				   int general_prio_credits,
7086				   int high_prio_credits)
7087{
7088	u32 misccpctl;
7089	u32 val;
7090
7091	/* WaTempDisableDOPClkGating:bdw */
7092	misccpctl = I915_READ(GEN7_MISCCPCTL);
7093	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7094
7095	val = I915_READ(GEN8_L3SQCREG1);
7096	val &= ~L3_PRIO_CREDITS_MASK;
7097	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7098	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7099	I915_WRITE(GEN8_L3SQCREG1, val);
7100
7101	/*
7102	 * Wait at least 100 clocks before re-enabling clock gating.
7103	 * See the definition of L3SQCREG1 in BSpec.
7104	 */
7105	POSTING_READ(GEN8_L3SQCREG1);
7106	udelay(1);
7107	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7108}
7109
7110static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7111{
7112	/* Wa_1409120013:icl,ehl */
7113	I915_WRITE(ILK_DPFC_CHICKEN,
7114		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7115
7116	/* This is not an Wa. Enable to reduce Sampler power */
7117	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
7118		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7119
7120	/*Wa_14010594013:icl, ehl */
7121	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7122			 0, CNL_DELAY_PMRSP);
7123}
7124
7125static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
7126{
7127	u32 vd_pg_enable = 0;
7128	unsigned int i;
7129
7130	/* Wa_1409120013:tgl */
7131	I915_WRITE(ILK_DPFC_CHICKEN,
7132		   ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7133
7134	/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
7135	for (i = 0; i < I915_MAX_VCS; i++) {
7136		if (HAS_ENGINE(&dev_priv->gt, _VCS(i)))
7137			vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
7138					VDN_MFX_POWERGATE_ENABLE(i);
7139	}
7140
7141	I915_WRITE(POWERGATE_ENABLE,
7142		   I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
7143
7144	/* Wa_1409825376:tgl (pre-prod)*/
7145	if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
7146		I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
7147			   TGL_VRH_GATING_DIS);
7148
7149	/* Wa_14011059788:tgl */
7150	intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
7151			 0, DFR_DISABLE);
7152}
7153
7154static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7155{
7156	if (!HAS_PCH_CNP(dev_priv))
7157		return;
7158
7159	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7160	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
7161		   CNP_PWM_CGE_GATING_DISABLE);
7162}
7163
7164static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7165{
7166	u32 val;
7167	cnp_init_clock_gating(dev_priv);
7168
7169	/* This is not an Wa. Enable for better image quality */
7170	I915_WRITE(_3D_CHICKEN3,
7171		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
7172
7173	/* WaEnableChickenDCPR:cnl */
7174	I915_WRITE(GEN8_CHICKEN_DCPR_1,
7175		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
7176
7177	/*
7178	 * WaFbcWakeMemOn:cnl
7179	 * Display WA #0859: cnl
7180	 */
7181	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7182		   DISP_FBC_MEMORY_WAKE);
7183
7184	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
7185	/* ReadHitWriteOnlyDisable:cnl */
7186	val |= RCCUNIT_CLKGATE_DIS;
7187	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
7188
7189	/* Wa_2201832410:cnl */
7190	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
7191	val |= GWUNIT_CLKGATE_DIS;
7192	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
7193
7194	/* WaDisableVFclkgate:cnl */
7195	/* WaVFUnitClockGatingDisable:cnl */
7196	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
7197	val |= VFUNIT_CLKGATE_DIS;
7198	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
7199}
7200
7201static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7202{
7203	cnp_init_clock_gating(dev_priv);
7204	gen9_init_clock_gating(dev_priv);
7205
7206	/*
7207	 * WaFbcTurnOffFbcWatermark:cfl
7208	 * Display WA #0562: cfl
7209	 */
7210	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7211		   DISP_FBC_WM_DIS);
7212
7213	/*
7214	 * WaFbcNukeOnHostModify:cfl
7215	 * Display WA #0873: cfl
7216	 */
7217	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7218		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7219}
7220
7221static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7222{
7223	gen9_init_clock_gating(dev_priv);
7224
7225	/* WaDisableSDEUnitClockGating:kbl */
7226	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7227		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7228			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7229
7230	/* WaDisableGamClockGating:kbl */
7231	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7232		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7233			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7234
7235	/*
7236	 * WaFbcTurnOffFbcWatermark:kbl
7237	 * Display WA #0562: kbl
7238	 */
7239	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7240		   DISP_FBC_WM_DIS);
7241
7242	/*
7243	 * WaFbcNukeOnHostModify:kbl
7244	 * Display WA #0873: kbl
7245	 */
7246	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7247		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7248}
7249
7250static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7251{
7252	gen9_init_clock_gating(dev_priv);
7253
7254	/* WAC6entrylatency:skl */
7255	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7256		   FBC_LLC_FULLY_OPEN);
7257
7258	/*
7259	 * WaFbcTurnOffFbcWatermark:skl
7260	 * Display WA #0562: skl
7261	 */
7262	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7263		   DISP_FBC_WM_DIS);
7264
7265	/*
7266	 * WaFbcNukeOnHostModify:skl
7267	 * Display WA #0873: skl
7268	 */
7269	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7270		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7271
7272	/*
7273	 * WaFbcHighMemBwCorruptionAvoidance:skl
7274	 * Display WA #0883: skl
7275	 */
7276	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7277		   ILK_DPFC_DISABLE_DUMMY0);
7278}
7279
7280static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7281{
7282	enum pipe pipe;
7283
7284	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7285	I915_WRITE(CHICKEN_PIPESL_1(PIPE_A),
7286		   I915_READ(CHICKEN_PIPESL_1(PIPE_A)) |
7287		   HSW_FBCQ_DIS);
7288
7289	/* WaSwitchSolVfFArbitrationPriority:bdw */
7290	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7291
7292	/* WaPsrDPAMaskVBlankInSRD:bdw */
7293	I915_WRITE(CHICKEN_PAR1_1,
7294		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7295
7296	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7297	for_each_pipe(dev_priv, pipe) {
7298		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7299			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7300			   BDW_DPRS_MASK_VBLANK_SRD);
7301	}
7302
7303	/* WaVSRefCountFullforceMissDisable:bdw */
7304	/* WaDSRefCountFullforceMissDisable:bdw */
7305	I915_WRITE(GEN7_FF_THREAD_MODE,
7306		   I915_READ(GEN7_FF_THREAD_MODE) &
7307		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7308
7309	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7310		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7311
7312	/* WaDisableSDEUnitClockGating:bdw */
7313	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7314		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7315
7316	/* WaProgramL3SqcReg1Default:bdw */
7317	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7318
7319	/* WaKVMNotificationOnConfigChange:bdw */
7320	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7321		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7322
7323	lpt_init_clock_gating(dev_priv);
7324
7325	/* WaDisableDopClockGating:bdw
7326	 *
7327	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7328	 * clock gating.
7329	 */
7330	I915_WRITE(GEN6_UCGCTL1,
7331		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7332}
7333
7334static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7335{
7336	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7337	I915_WRITE(CHICKEN_PIPESL_1(PIPE_A),
7338		   I915_READ(CHICKEN_PIPESL_1(PIPE_A)) |
7339		   HSW_FBCQ_DIS);
7340
7341	/* This is required by WaCatErrorRejectionIssue:hsw */
7342	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7343		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7344		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7345
7346	/* WaSwitchSolVfFArbitrationPriority:hsw */
7347	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7348
7349	lpt_init_clock_gating(dev_priv);
7350}
7351
7352static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7353{
7354	u32 snpcr;
7355
7356	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7357
7358	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
7359	I915_WRITE(ILK_DISPLAY_CHICKEN1,
7360		   I915_READ(ILK_DISPLAY_CHICKEN1) |
7361		   ILK_FBCQ_DIS);
7362
7363	/* WaDisableBackToBackFlipFix:ivb */
7364	I915_WRITE(IVB_CHICKEN3,
7365		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7366		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7367
7368	if (IS_IVB_GT1(dev_priv))
7369		I915_WRITE(GEN7_ROW_CHICKEN2,
7370			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7371	else {
7372		/* must write both registers */
7373		I915_WRITE(GEN7_ROW_CHICKEN2,
7374			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7375		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7376			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7377	}
7378
7379	/*
7380	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7381	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7382	 */
7383	I915_WRITE(GEN6_UCGCTL2,
7384		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7385
7386	/* This is required by WaCatErrorRejectionIssue:ivb */
7387	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7388			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7389			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7390
7391	g4x_disable_trickle_feed(dev_priv);
7392
7393	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7394	snpcr &= ~GEN6_MBC_SNPCR_MASK;
7395	snpcr |= GEN6_MBC_SNPCR_MED;
7396	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7397
7398	if (!HAS_PCH_NOP(dev_priv))
7399		cpt_init_clock_gating(dev_priv);
7400
7401	gen6_check_mch_setup(dev_priv);
7402}
7403
7404static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7405{
7406	/* WaDisableBackToBackFlipFix:vlv */
7407	I915_WRITE(IVB_CHICKEN3,
7408		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7409		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
7410
7411	/* WaDisableDopClockGating:vlv */
7412	I915_WRITE(GEN7_ROW_CHICKEN2,
7413		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7414
7415	/* This is required by WaCatErrorRejectionIssue:vlv */
7416	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7417		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7418		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7419
7420	/*
7421	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7422	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7423	 */
7424	I915_WRITE(GEN6_UCGCTL2,
7425		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7426
7427	/* WaDisableL3Bank2xClockGate:vlv
7428	 * Disabling L3 clock gating- MMIO 940c[25] = 1
7429	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7430	I915_WRITE(GEN7_UCGCTL4,
7431		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7432
7433	/*
7434	 * WaDisableVLVClockGating_VBIIssue:vlv
7435	 * Disable clock gating on th GCFG unit to prevent a delay
7436	 * in the reporting of vblank events.
7437	 */
7438	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7439}
7440
7441static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7442{
7443	/* WaVSRefCountFullforceMissDisable:chv */
7444	/* WaDSRefCountFullforceMissDisable:chv */
7445	I915_WRITE(GEN7_FF_THREAD_MODE,
7446		   I915_READ(GEN7_FF_THREAD_MODE) &
7447		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7448
7449	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7450	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7451		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7452
7453	/* WaDisableCSUnitClockGating:chv */
7454	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7455		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7456
7457	/* WaDisableSDEUnitClockGating:chv */
7458	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7459		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7460
7461	/*
7462	 * WaProgramL3SqcReg1Default:chv
7463	 * See gfxspecs/Related Documents/Performance Guide/
7464	 * LSQC Setting Recommendations.
7465	 */
7466	gen8_set_l3sqc_credits(dev_priv, 38, 2);
7467}
7468
7469static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7470{
7471	u32 dspclk_gate;
7472
7473	I915_WRITE(RENCLK_GATE_D1, 0);
7474	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7475		   GS_UNIT_CLOCK_GATE_DISABLE |
7476		   CL_UNIT_CLOCK_GATE_DISABLE);
7477	I915_WRITE(RAMCLK_GATE_D, 0);
7478	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7479		OVRUNIT_CLOCK_GATE_DISABLE |
7480		OVCUNIT_CLOCK_GATE_DISABLE;
7481	if (IS_GM45(dev_priv))
7482		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7483	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7484
7485	g4x_disable_trickle_feed(dev_priv);
7486}
7487
7488static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7489{
7490	struct intel_uncore *uncore = &dev_priv->uncore;
7491
7492	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7493	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7494	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7495	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7496	intel_uncore_write16(uncore, DEUC, 0);
7497	intel_uncore_write(uncore,
7498			   MI_ARB_STATE,
7499			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7500}
7501
7502static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7503{
7504	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7505		   I965_RCC_CLOCK_GATE_DISABLE |
7506		   I965_RCPB_CLOCK_GATE_DISABLE |
7507		   I965_ISC_CLOCK_GATE_DISABLE |
7508		   I965_FBC_CLOCK_GATE_DISABLE);
7509	I915_WRITE(RENCLK_GATE_D2, 0);
7510	I915_WRITE(MI_ARB_STATE,
7511		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7512}
7513
7514static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7515{
7516	u32 dstate = I915_READ(D_STATE);
7517
7518	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7519		DSTATE_DOT_CLOCK_GATING;
7520	I915_WRITE(D_STATE, dstate);
7521
7522	if (IS_PINEVIEW(dev_priv))
7523		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7524
7525	/* IIR "flip pending" means done if this bit is set */
7526	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7527
7528	/* interrupts should cause a wake up from C3 */
7529	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7530
7531	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7532	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7533
7534	I915_WRITE(MI_ARB_STATE,
7535		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7536}
7537
7538static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7539{
7540	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7541
7542	/* interrupts should cause a wake up from C3 */
7543	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7544		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7545
7546	I915_WRITE(MEM_MODE,
7547		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7548
7549	/*
7550	 * Have FBC ignore 3D activity since we use software
7551	 * render tracking, and otherwise a pure 3D workload
7552	 * (even if it just renders a single frame and then does
7553	 * abosultely nothing) would not allow FBC to recompress
7554	 * until a 2D blit occurs.
7555	 */
7556	I915_WRITE(SCPD0,
7557		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7558}
7559
7560static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7561{
7562	I915_WRITE(MEM_MODE,
7563		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7564		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7565}
7566
7567void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7568{
7569	dev_priv->display.init_clock_gating(dev_priv);
7570}
7571
7572void intel_suspend_hw(struct drm_i915_private *dev_priv)
7573{
7574	if (HAS_PCH_LPT(dev_priv))
7575		lpt_suspend_hw(dev_priv);
7576}
7577
7578static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7579{
7580	drm_dbg_kms(&dev_priv->drm,
7581		    "No clock gating settings or workarounds applied.\n");
7582}
7583
7584/**
7585 * intel_init_clock_gating_hooks - setup the clock gating hooks
7586 * @dev_priv: device private
7587 *
7588 * Setup the hooks that configure which clocks of a given platform can be
7589 * gated and also apply various GT and display specific workarounds for these
7590 * platforms. Note that some GT specific workarounds are applied separately
7591 * when GPU contexts or batchbuffers start their execution.
7592 */
7593void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7594{
7595	if (IS_GEN(dev_priv, 12))
7596		dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7597	else if (IS_GEN(dev_priv, 11))
7598		dev_priv->display.init_clock_gating = icl_init_clock_gating;
7599	else if (IS_CANNONLAKE(dev_priv))
7600		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7601	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7602		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7603	else if (IS_SKYLAKE(dev_priv))
7604		dev_priv->display.init_clock_gating = skl_init_clock_gating;
7605	else if (IS_KABYLAKE(dev_priv))
7606		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7607	else if (IS_BROXTON(dev_priv))
7608		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7609	else if (IS_GEMINILAKE(dev_priv))
7610		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7611	else if (IS_BROADWELL(dev_priv))
7612		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7613	else if (IS_CHERRYVIEW(dev_priv))
7614		dev_priv->display.init_clock_gating = chv_init_clock_gating;
7615	else if (IS_HASWELL(dev_priv))
7616		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7617	else if (IS_IVYBRIDGE(dev_priv))
7618		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7619	else if (IS_VALLEYVIEW(dev_priv))
7620		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7621	else if (IS_GEN(dev_priv, 6))
7622		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7623	else if (IS_GEN(dev_priv, 5))
7624		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7625	else if (IS_G4X(dev_priv))
7626		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7627	else if (IS_I965GM(dev_priv))
7628		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7629	else if (IS_I965G(dev_priv))
7630		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7631	else if (IS_GEN(dev_priv, 3))
7632		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7633	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7634		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7635	else if (IS_GEN(dev_priv, 2))
7636		dev_priv->display.init_clock_gating = i830_init_clock_gating;
7637	else {
7638		MISSING_CASE(INTEL_DEVID(dev_priv));
7639		dev_priv->display.init_clock_gating = nop_init_clock_gating;
7640	}
7641}
7642
7643/* Set up chip specific power management-related functions */
7644void intel_init_pm(struct drm_i915_private *dev_priv)
7645{
7646	/* For cxsr */
7647	if (IS_PINEVIEW(dev_priv))
7648		pnv_get_mem_freq(dev_priv);
7649	else if (IS_GEN(dev_priv, 5))
7650		ilk_get_mem_freq(dev_priv);
7651
7652	if (intel_has_sagv(dev_priv))
7653		skl_setup_sagv_block_time(dev_priv);
7654
7655	/* For FIFO watermark updates */
7656	if (INTEL_GEN(dev_priv) >= 9) {
7657		skl_setup_wm_latency(dev_priv);
7658		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7659	} else if (HAS_PCH_SPLIT(dev_priv)) {
7660		ilk_setup_wm_latency(dev_priv);
7661
7662		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7663		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7664		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7665		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7666			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7667			dev_priv->display.compute_intermediate_wm =
7668				ilk_compute_intermediate_wm;
7669			dev_priv->display.initial_watermarks =
7670				ilk_initial_watermarks;
7671			dev_priv->display.optimize_watermarks =
7672				ilk_optimize_watermarks;
7673		} else {
7674			drm_dbg_kms(&dev_priv->drm,
7675				    "Failed to read display plane latency. "
7676				    "Disable CxSR\n");
7677		}
7678	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7679		vlv_setup_wm_latency(dev_priv);
7680		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7681		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7682		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7683		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7684		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7685	} else if (IS_G4X(dev_priv)) {
7686		g4x_setup_wm_latency(dev_priv);
7687		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7688		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7689		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7690		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7691	} else if (IS_PINEVIEW(dev_priv)) {
7692		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7693					    dev_priv->is_ddr3,
7694					    dev_priv->fsb_freq,
7695					    dev_priv->mem_freq)) {
7696			drm_info(&dev_priv->drm,
7697				 "failed to find known CxSR latency "
7698				 "(found ddr%s fsb freq %d, mem freq %d), "
7699				 "disabling CxSR\n",
7700				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7701				 dev_priv->fsb_freq, dev_priv->mem_freq);
7702			/* Disable CxSR and never update its watermark again */
7703			intel_set_memory_cxsr(dev_priv, false);
7704			dev_priv->display.update_wm = NULL;
7705		} else
7706			dev_priv->display.update_wm = pnv_update_wm;
7707	} else if (IS_GEN(dev_priv, 4)) {
7708		dev_priv->display.update_wm = i965_update_wm;
7709	} else if (IS_GEN(dev_priv, 3)) {
7710		dev_priv->display.update_wm = i9xx_update_wm;
7711		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7712	} else if (IS_GEN(dev_priv, 2)) {
7713		if (INTEL_NUM_PIPES(dev_priv) == 1) {
7714			dev_priv->display.update_wm = i845_update_wm;
7715			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7716		} else {
7717			dev_priv->display.update_wm = i9xx_update_wm;
7718			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7719		}
7720	} else {
7721		drm_err(&dev_priv->drm,
7722			"unexpected fall-through in %s\n", __func__);
7723	}
7724}
7725
7726void intel_pm_setup(struct drm_i915_private *dev_priv)
7727{
7728	dev_priv->runtime_pm.suspended = false;
7729	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7730}
7731
7732static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
7733{
7734	struct intel_dbuf_state *dbuf_state;
7735
7736	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
7737	if (!dbuf_state)
7738		return NULL;
7739
7740	return &dbuf_state->base;
7741}
7742
7743static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
7744				     struct intel_global_state *state)
7745{
7746	kfree(state);
7747}
7748
7749static const struct intel_global_state_funcs intel_dbuf_funcs = {
7750	.atomic_duplicate_state = intel_dbuf_duplicate_state,
7751	.atomic_destroy_state = intel_dbuf_destroy_state,
7752};
7753
7754struct intel_dbuf_state *
7755intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
7756{
7757	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7758	struct intel_global_state *dbuf_state;
7759
7760	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
7761	if (IS_ERR(dbuf_state))
7762		return ERR_CAST(dbuf_state);
7763
7764	return to_intel_dbuf_state(dbuf_state);
7765}
7766
7767int intel_dbuf_init(struct drm_i915_private *dev_priv)
7768{
7769	struct intel_dbuf_state *dbuf_state;
7770
7771	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
7772	if (!dbuf_state)
7773		return -ENOMEM;
7774
7775	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
7776				     &dbuf_state->base, &intel_dbuf_funcs);
7777
7778	return 0;
7779}
7780
7781void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
7782{
7783	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7784	const struct intel_dbuf_state *new_dbuf_state =
7785		intel_atomic_get_new_dbuf_state(state);
7786	const struct intel_dbuf_state *old_dbuf_state =
7787		intel_atomic_get_old_dbuf_state(state);
7788
7789	if (!new_dbuf_state ||
7790	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
7791		return;
7792
7793	WARN_ON(!new_dbuf_state->base.changed);
7794
7795	gen9_dbuf_slices_update(dev_priv,
7796				old_dbuf_state->enabled_slices |
7797				new_dbuf_state->enabled_slices);
7798}
7799
7800void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
7801{
7802	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7803	const struct intel_dbuf_state *new_dbuf_state =
7804		intel_atomic_get_new_dbuf_state(state);
7805	const struct intel_dbuf_state *old_dbuf_state =
7806		intel_atomic_get_old_dbuf_state(state);
7807
7808	if (!new_dbuf_state ||
7809	    new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
7810		return;
7811
7812	WARN_ON(!new_dbuf_state->base.changed);
7813
7814	gen9_dbuf_slices_update(dev_priv,
7815				new_dbuf_state->enabled_slices);
7816}