Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
  25 *
  26 */
  27
  28#include <linux/cpufreq.h>
  29#include "i915_drv.h"
  30#include "intel_drv.h"
  31#include "../../../platform/x86/intel_ips.h"
  32#include <linux/module.h>
  33
  34/* FBC, or Frame Buffer Compression, is a technique employed to compress the
  35 * framebuffer contents in-memory, aiming at reducing the required bandwidth
  36 * during in-memory transfers and, therefore, reduce the power packet.
  37 *
  38 * The benefits of FBC are mostly visible with solid backgrounds and
  39 * variation-less patterns.
  40 *
  41 * FBC-related functionality can be enabled by the means of the
  42 * i915.i915_enable_fbc parameter
  43 */
  44
  45static void i8xx_disable_fbc(struct drm_device *dev)
  46{
  47	struct drm_i915_private *dev_priv = dev->dev_private;
  48	u32 fbc_ctl;
  49
  50	/* Disable compression */
  51	fbc_ctl = I915_READ(FBC_CONTROL);
  52	if ((fbc_ctl & FBC_CTL_EN) == 0)
  53		return;
  54
  55	fbc_ctl &= ~FBC_CTL_EN;
  56	I915_WRITE(FBC_CONTROL, fbc_ctl);
  57
  58	/* Wait for compressing bit to clear */
  59	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  60		DRM_DEBUG_KMS("FBC idle timed out\n");
  61		return;
  62	}
  63
  64	DRM_DEBUG_KMS("disabled FBC\n");
  65}
  66
  67static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68{
  69	struct drm_device *dev = crtc->dev;
  70	struct drm_i915_private *dev_priv = dev->dev_private;
  71	struct drm_framebuffer *fb = crtc->fb;
  72	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73	struct drm_i915_gem_object *obj = intel_fb->obj;
  74	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75	int cfb_pitch;
  76	int plane, i;
  77	u32 fbc_ctl, fbc_ctl2;
  78
  79	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  80	if (fb->pitches[0] < cfb_pitch)
  81		cfb_pitch = fb->pitches[0];
  82
  83	/* FBC_CTL wants 64B units */
  84	cfb_pitch = (cfb_pitch / 64) - 1;
  85	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  86
  87	/* Clear old tags */
  88	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  89		I915_WRITE(FBC_TAG + (i * 4), 0);
  90
  91	/* Set it up... */
  92	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  93	fbc_ctl2 |= plane;
  94	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  95	I915_WRITE(FBC_FENCE_OFF, crtc->y);
  96
  97	/* enable it... */
  98	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  99	if (IS_I945GM(dev))
 100		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
 101	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
 102	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
 103	fbc_ctl |= obj->fence_reg;
 104	I915_WRITE(FBC_CONTROL, fbc_ctl);
 105
 106	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
 107		      cfb_pitch, crtc->y, intel_crtc->plane);
 108}
 109
 110static bool i8xx_fbc_enabled(struct drm_device *dev)
 111{
 112	struct drm_i915_private *dev_priv = dev->dev_private;
 113
 114	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
 115}
 116
 117static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 118{
 119	struct drm_device *dev = crtc->dev;
 120	struct drm_i915_private *dev_priv = dev->dev_private;
 121	struct drm_framebuffer *fb = crtc->fb;
 122	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 123	struct drm_i915_gem_object *obj = intel_fb->obj;
 124	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 125	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
 126	unsigned long stall_watermark = 200;
 127	u32 dpfc_ctl;
 128
 129	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
 130	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
 131	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
 132
 133	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
 134		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
 135		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
 136	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
 137
 138	/* enable it... */
 139	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
 140
 141	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
 142}
 143
 144static void g4x_disable_fbc(struct drm_device *dev)
 145{
 146	struct drm_i915_private *dev_priv = dev->dev_private;
 147	u32 dpfc_ctl;
 148
 149	/* Disable compression */
 150	dpfc_ctl = I915_READ(DPFC_CONTROL);
 151	if (dpfc_ctl & DPFC_CTL_EN) {
 152		dpfc_ctl &= ~DPFC_CTL_EN;
 153		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
 154
 155		DRM_DEBUG_KMS("disabled FBC\n");
 156	}
 157}
 158
 159static bool g4x_fbc_enabled(struct drm_device *dev)
 160{
 161	struct drm_i915_private *dev_priv = dev->dev_private;
 162
 163	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
 164}
 165
 166static void sandybridge_blit_fbc_update(struct drm_device *dev)
 167{
 168	struct drm_i915_private *dev_priv = dev->dev_private;
 169	u32 blt_ecoskpd;
 170
 171	/* Make sure blitter notifies FBC of writes */
 172	gen6_gt_force_wake_get(dev_priv);
 173	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
 174	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
 175		GEN6_BLITTER_LOCK_SHIFT;
 176	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 177	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
 178	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 179	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
 180			 GEN6_BLITTER_LOCK_SHIFT);
 181	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
 182	POSTING_READ(GEN6_BLITTER_ECOSKPD);
 183	gen6_gt_force_wake_put(dev_priv);
 184}
 185
 186static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 187{
 188	struct drm_device *dev = crtc->dev;
 189	struct drm_i915_private *dev_priv = dev->dev_private;
 190	struct drm_framebuffer *fb = crtc->fb;
 191	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 192	struct drm_i915_gem_object *obj = intel_fb->obj;
 193	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 194	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
 195	unsigned long stall_watermark = 200;
 196	u32 dpfc_ctl;
 197
 198	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 199	dpfc_ctl &= DPFC_RESERVED;
 200	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
 201	/* Set persistent mode for front-buffer rendering, ala X. */
 202	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
 203	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
 204	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
 205
 206	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
 207		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
 208		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
 209	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
 210	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
 211	/* enable it... */
 212	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 213
 214	if (IS_GEN6(dev)) {
 215		I915_WRITE(SNB_DPFC_CTL_SA,
 216			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
 217		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
 218		sandybridge_blit_fbc_update(dev);
 219	}
 220
 221	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
 222}
 223
 224static void ironlake_disable_fbc(struct drm_device *dev)
 225{
 226	struct drm_i915_private *dev_priv = dev->dev_private;
 227	u32 dpfc_ctl;
 228
 229	/* Disable compression */
 230	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
 231	if (dpfc_ctl & DPFC_CTL_EN) {
 232		dpfc_ctl &= ~DPFC_CTL_EN;
 233		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
 234
 235		DRM_DEBUG_KMS("disabled FBC\n");
 236	}
 237}
 238
 239static bool ironlake_fbc_enabled(struct drm_device *dev)
 240{
 241	struct drm_i915_private *dev_priv = dev->dev_private;
 242
 243	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
 244}
 245
 246bool intel_fbc_enabled(struct drm_device *dev)
 247{
 248	struct drm_i915_private *dev_priv = dev->dev_private;
 249
 250	if (!dev_priv->display.fbc_enabled)
 251		return false;
 252
 253	return dev_priv->display.fbc_enabled(dev);
 254}
 255
 256static void intel_fbc_work_fn(struct work_struct *__work)
 257{
 258	struct intel_fbc_work *work =
 259		container_of(to_delayed_work(__work),
 260			     struct intel_fbc_work, work);
 261	struct drm_device *dev = work->crtc->dev;
 262	struct drm_i915_private *dev_priv = dev->dev_private;
 263
 264	mutex_lock(&dev->struct_mutex);
 265	if (work == dev_priv->fbc_work) {
 266		/* Double check that we haven't switched fb without cancelling
 267		 * the prior work.
 268		 */
 269		if (work->crtc->fb == work->fb) {
 270			dev_priv->display.enable_fbc(work->crtc,
 271						     work->interval);
 272
 273			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
 274			dev_priv->cfb_fb = work->crtc->fb->base.id;
 275			dev_priv->cfb_y = work->crtc->y;
 276		}
 277
 278		dev_priv->fbc_work = NULL;
 279	}
 280	mutex_unlock(&dev->struct_mutex);
 281
 282	kfree(work);
 283}
 284
 285static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
 286{
 287	if (dev_priv->fbc_work == NULL)
 288		return;
 289
 290	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
 291
 292	/* Synchronisation is provided by struct_mutex and checking of
 293	 * dev_priv->fbc_work, so we can perform the cancellation
 294	 * entirely asynchronously.
 295	 */
 296	if (cancel_delayed_work(&dev_priv->fbc_work->work))
 297		/* tasklet was killed before being run, clean up */
 298		kfree(dev_priv->fbc_work);
 299
 300	/* Mark the work as no longer wanted so that if it does
 301	 * wake-up (because the work was already running and waiting
 302	 * for our mutex), it will discover that is no longer
 303	 * necessary to run.
 304	 */
 305	dev_priv->fbc_work = NULL;
 306}
 307
 308void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
 309{
 310	struct intel_fbc_work *work;
 311	struct drm_device *dev = crtc->dev;
 312	struct drm_i915_private *dev_priv = dev->dev_private;
 313
 314	if (!dev_priv->display.enable_fbc)
 315		return;
 316
 317	intel_cancel_fbc_work(dev_priv);
 318
 319	work = kzalloc(sizeof *work, GFP_KERNEL);
 320	if (work == NULL) {
 321		dev_priv->display.enable_fbc(crtc, interval);
 322		return;
 323	}
 324
 325	work->crtc = crtc;
 326	work->fb = crtc->fb;
 327	work->interval = interval;
 328	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
 329
 330	dev_priv->fbc_work = work;
 331
 332	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
 333
 334	/* Delay the actual enabling to let pageflipping cease and the
 335	 * display to settle before starting the compression. Note that
 336	 * this delay also serves a second purpose: it allows for a
 337	 * vblank to pass after disabling the FBC before we attempt
 338	 * to modify the control registers.
 339	 *
 340	 * A more complicated solution would involve tracking vblanks
 341	 * following the termination of the page-flipping sequence
 342	 * and indeed performing the enable as a co-routine and not
 343	 * waiting synchronously upon the vblank.
 344	 */
 345	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
 346}
 347
 348void intel_disable_fbc(struct drm_device *dev)
 349{
 350	struct drm_i915_private *dev_priv = dev->dev_private;
 351
 352	intel_cancel_fbc_work(dev_priv);
 353
 354	if (!dev_priv->display.disable_fbc)
 355		return;
 356
 357	dev_priv->display.disable_fbc(dev);
 358	dev_priv->cfb_plane = -1;
 359}
 360
 361/**
 362 * intel_update_fbc - enable/disable FBC as needed
 363 * @dev: the drm_device
 364 *
 365 * Set up the framebuffer compression hardware at mode set time.  We
 366 * enable it if possible:
 367 *   - plane A only (on pre-965)
 368 *   - no pixel mulitply/line duplication
 369 *   - no alpha buffer discard
 370 *   - no dual wide
 371 *   - framebuffer <= 2048 in width, 1536 in height
 372 *
 373 * We can't assume that any compression will take place (worst case),
 374 * so the compressed buffer has to be the same size as the uncompressed
 375 * one.  It also must reside (along with the line length buffer) in
 376 * stolen memory.
 377 *
 378 * We need to enable/disable FBC on a global basis.
 379 */
 380void intel_update_fbc(struct drm_device *dev)
 381{
 382	struct drm_i915_private *dev_priv = dev->dev_private;
 383	struct drm_crtc *crtc = NULL, *tmp_crtc;
 384	struct intel_crtc *intel_crtc;
 385	struct drm_framebuffer *fb;
 386	struct intel_framebuffer *intel_fb;
 387	struct drm_i915_gem_object *obj;
 388	int enable_fbc;
 389
 390	DRM_DEBUG_KMS("\n");
 391
 392	if (!i915_powersave)
 393		return;
 394
 395	if (!I915_HAS_FBC(dev))
 396		return;
 397
 398	/*
 399	 * If FBC is already on, we just have to verify that we can
 400	 * keep it that way...
 401	 * Need to disable if:
 402	 *   - more than one pipe is active
 403	 *   - changing FBC params (stride, fence, mode)
 404	 *   - new fb is too large to fit in compressed buffer
 405	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
 406	 */
 407	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
 408		if (tmp_crtc->enabled && tmp_crtc->fb) {
 409			if (crtc) {
 410				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
 411				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
 412				goto out_disable;
 413			}
 414			crtc = tmp_crtc;
 415		}
 416	}
 417
 418	if (!crtc || crtc->fb == NULL) {
 419		DRM_DEBUG_KMS("no output, disabling\n");
 420		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
 421		goto out_disable;
 422	}
 423
 424	intel_crtc = to_intel_crtc(crtc);
 425	fb = crtc->fb;
 426	intel_fb = to_intel_framebuffer(fb);
 427	obj = intel_fb->obj;
 428
 429	enable_fbc = i915_enable_fbc;
 430	if (enable_fbc < 0) {
 431		DRM_DEBUG_KMS("fbc set to per-chip default\n");
 432		enable_fbc = 1;
 433		if (INTEL_INFO(dev)->gen <= 6)
 434			enable_fbc = 0;
 435	}
 436	if (!enable_fbc) {
 437		DRM_DEBUG_KMS("fbc disabled per module param\n");
 438		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
 439		goto out_disable;
 440	}
 441	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
 442		DRM_DEBUG_KMS("framebuffer too large, disabling "
 443			      "compression\n");
 444		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
 445		goto out_disable;
 446	}
 447	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
 448	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
 449		DRM_DEBUG_KMS("mode incompatible with compression, "
 450			      "disabling\n");
 451		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
 452		goto out_disable;
 453	}
 454	if ((crtc->mode.hdisplay > 2048) ||
 455	    (crtc->mode.vdisplay > 1536)) {
 456		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
 457		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
 458		goto out_disable;
 459	}
 460	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
 461		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
 462		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
 463		goto out_disable;
 464	}
 465
 466	/* The use of a CPU fence is mandatory in order to detect writes
 467	 * by the CPU to the scanout and trigger updates to the FBC.
 468	 */
 469	if (obj->tiling_mode != I915_TILING_X ||
 470	    obj->fence_reg == I915_FENCE_REG_NONE) {
 471		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
 472		dev_priv->no_fbc_reason = FBC_NOT_TILED;
 473		goto out_disable;
 474	}
 475
 476	/* If the kernel debugger is active, always disable compression */
 477	if (in_dbg_master())
 478		goto out_disable;
 479
 480	/* If the scanout has not changed, don't modify the FBC settings.
 481	 * Note that we make the fundamental assumption that the fb->obj
 482	 * cannot be unpinned (and have its GTT offset and fence revoked)
 483	 * without first being decoupled from the scanout and FBC disabled.
 484	 */
 485	if (dev_priv->cfb_plane == intel_crtc->plane &&
 486	    dev_priv->cfb_fb == fb->base.id &&
 487	    dev_priv->cfb_y == crtc->y)
 488		return;
 489
 490	if (intel_fbc_enabled(dev)) {
 491		/* We update FBC along two paths, after changing fb/crtc
 492		 * configuration (modeswitching) and after page-flipping
 493		 * finishes. For the latter, we know that not only did
 494		 * we disable the FBC at the start of the page-flip
 495		 * sequence, but also more than one vblank has passed.
 496		 *
 497		 * For the former case of modeswitching, it is possible
 498		 * to switch between two FBC valid configurations
 499		 * instantaneously so we do need to disable the FBC
 500		 * before we can modify its control registers. We also
 501		 * have to wait for the next vblank for that to take
 502		 * effect. However, since we delay enabling FBC we can
 503		 * assume that a vblank has passed since disabling and
 504		 * that we can safely alter the registers in the deferred
 505		 * callback.
 506		 *
 507		 * In the scenario that we go from a valid to invalid
 508		 * and then back to valid FBC configuration we have
 509		 * no strict enforcement that a vblank occurred since
 510		 * disabling the FBC. However, along all current pipe
 511		 * disabling paths we do need to wait for a vblank at
 512		 * some point. And we wait before enabling FBC anyway.
 513		 */
 514		DRM_DEBUG_KMS("disabling active FBC for update\n");
 515		intel_disable_fbc(dev);
 516	}
 517
 518	intel_enable_fbc(crtc, 500);
 519	return;
 520
 521out_disable:
 522	/* Multiple disables should be harmless */
 523	if (intel_fbc_enabled(dev)) {
 524		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
 525		intel_disable_fbc(dev);
 526	}
 527}
 528
 529static void i915_pineview_get_mem_freq(struct drm_device *dev)
 530{
 531	drm_i915_private_t *dev_priv = dev->dev_private;
 532	u32 tmp;
 533
 534	tmp = I915_READ(CLKCFG);
 535
 536	switch (tmp & CLKCFG_FSB_MASK) {
 537	case CLKCFG_FSB_533:
 538		dev_priv->fsb_freq = 533; /* 133*4 */
 539		break;
 540	case CLKCFG_FSB_800:
 541		dev_priv->fsb_freq = 800; /* 200*4 */
 542		break;
 543	case CLKCFG_FSB_667:
 544		dev_priv->fsb_freq =  667; /* 167*4 */
 545		break;
 546	case CLKCFG_FSB_400:
 547		dev_priv->fsb_freq = 400; /* 100*4 */
 548		break;
 549	}
 550
 551	switch (tmp & CLKCFG_MEM_MASK) {
 552	case CLKCFG_MEM_533:
 553		dev_priv->mem_freq = 533;
 554		break;
 555	case CLKCFG_MEM_667:
 556		dev_priv->mem_freq = 667;
 557		break;
 558	case CLKCFG_MEM_800:
 559		dev_priv->mem_freq = 800;
 560		break;
 561	}
 562
 563	/* detect pineview DDR3 setting */
 564	tmp = I915_READ(CSHRDDR3CTL);
 565	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
 566}
 567
 568static void i915_ironlake_get_mem_freq(struct drm_device *dev)
 569{
 570	drm_i915_private_t *dev_priv = dev->dev_private;
 571	u16 ddrpll, csipll;
 572
 573	ddrpll = I915_READ16(DDRMPLL1);
 574	csipll = I915_READ16(CSIPLL0);
 575
 576	switch (ddrpll & 0xff) {
 577	case 0xc:
 578		dev_priv->mem_freq = 800;
 579		break;
 580	case 0x10:
 581		dev_priv->mem_freq = 1066;
 582		break;
 583	case 0x14:
 584		dev_priv->mem_freq = 1333;
 585		break;
 586	case 0x18:
 587		dev_priv->mem_freq = 1600;
 588		break;
 589	default:
 590		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
 591				 ddrpll & 0xff);
 592		dev_priv->mem_freq = 0;
 593		break;
 594	}
 595
 596	dev_priv->r_t = dev_priv->mem_freq;
 597
 598	switch (csipll & 0x3ff) {
 599	case 0x00c:
 600		dev_priv->fsb_freq = 3200;
 601		break;
 602	case 0x00e:
 603		dev_priv->fsb_freq = 3733;
 604		break;
 605	case 0x010:
 606		dev_priv->fsb_freq = 4266;
 607		break;
 608	case 0x012:
 609		dev_priv->fsb_freq = 4800;
 610		break;
 611	case 0x014:
 612		dev_priv->fsb_freq = 5333;
 613		break;
 614	case 0x016:
 615		dev_priv->fsb_freq = 5866;
 616		break;
 617	case 0x018:
 618		dev_priv->fsb_freq = 6400;
 619		break;
 620	default:
 621		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
 622				 csipll & 0x3ff);
 623		dev_priv->fsb_freq = 0;
 624		break;
 625	}
 626
 627	if (dev_priv->fsb_freq == 3200) {
 628		dev_priv->c_m = 0;
 629	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
 630		dev_priv->c_m = 1;
 631	} else {
 632		dev_priv->c_m = 2;
 633	}
 634}
 635
 636static const struct cxsr_latency cxsr_latency_table[] = {
 637	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
 638	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
 639	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
 640	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
 641	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
 642
 643	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
 644	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
 645	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
 646	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
 647	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
 648
 649	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
 650	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
 651	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
 652	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
 653	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
 654
 655	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
 656	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
 657	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
 658	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
 659	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
 660
 661	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
 662	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
 663	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
 664	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
 665	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
 666
 667	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
 668	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
 669	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
 670	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
 671	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
 672};
 673
 674static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
 675							 int is_ddr3,
 676							 int fsb,
 677							 int mem)
 678{
 679	const struct cxsr_latency *latency;
 680	int i;
 681
 682	if (fsb == 0 || mem == 0)
 683		return NULL;
 684
 685	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
 686		latency = &cxsr_latency_table[i];
 687		if (is_desktop == latency->is_desktop &&
 688		    is_ddr3 == latency->is_ddr3 &&
 689		    fsb == latency->fsb_freq && mem == latency->mem_freq)
 690			return latency;
 691	}
 692
 693	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 694
 695	return NULL;
 696}
 697
 698static void pineview_disable_cxsr(struct drm_device *dev)
 699{
 700	struct drm_i915_private *dev_priv = dev->dev_private;
 701
 702	/* deactivate cxsr */
 703	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
 704}
 705
 706/*
 707 * Latency for FIFO fetches is dependent on several factors:
 708 *   - memory configuration (speed, channels)
 709 *   - chipset
 710 *   - current MCH state
 711 * It can be fairly high in some situations, so here we assume a fairly
 712 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 713 * set this value too high, the FIFO will fetch frequently to stay full)
 714 * and power consumption (set it too low to save power and we might see
 715 * FIFO underruns and display "flicker").
 716 *
 717 * A value of 5us seems to be a good balance; safe for very low end
 718 * platforms but not overly aggressive on lower latency configs.
 719 */
 720static const int latency_ns = 5000;
 721
 722static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
 723{
 724	struct drm_i915_private *dev_priv = dev->dev_private;
 725	uint32_t dsparb = I915_READ(DSPARB);
 726	int size;
 727
 728	size = dsparb & 0x7f;
 729	if (plane)
 730		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 731
 732	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 733		      plane ? "B" : "A", size);
 734
 735	return size;
 736}
 737
 738static int i85x_get_fifo_size(struct drm_device *dev, int plane)
 739{
 740	struct drm_i915_private *dev_priv = dev->dev_private;
 741	uint32_t dsparb = I915_READ(DSPARB);
 742	int size;
 743
 744	size = dsparb & 0x1ff;
 745	if (plane)
 746		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
 747	size >>= 1; /* Convert to cachelines */
 748
 749	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 750		      plane ? "B" : "A", size);
 751
 752	return size;
 753}
 754
 755static int i845_get_fifo_size(struct drm_device *dev, int plane)
 756{
 757	struct drm_i915_private *dev_priv = dev->dev_private;
 758	uint32_t dsparb = I915_READ(DSPARB);
 759	int size;
 760
 761	size = dsparb & 0x7f;
 762	size >>= 2; /* Convert to cachelines */
 763
 764	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 765		      plane ? "B" : "A",
 766		      size);
 767
 768	return size;
 769}
 770
 771static int i830_get_fifo_size(struct drm_device *dev, int plane)
 772{
 773	struct drm_i915_private *dev_priv = dev->dev_private;
 774	uint32_t dsparb = I915_READ(DSPARB);
 775	int size;
 776
 777	size = dsparb & 0x7f;
 778	size >>= 1; /* Convert to cachelines */
 779
 780	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
 781		      plane ? "B" : "A", size);
 782
 783	return size;
 784}
 785
 786/* Pineview has different values for various configs */
 787static const struct intel_watermark_params pineview_display_wm = {
 788	PINEVIEW_DISPLAY_FIFO,
 789	PINEVIEW_MAX_WM,
 790	PINEVIEW_DFT_WM,
 791	PINEVIEW_GUARD_WM,
 792	PINEVIEW_FIFO_LINE_SIZE
 793};
 794static const struct intel_watermark_params pineview_display_hplloff_wm = {
 795	PINEVIEW_DISPLAY_FIFO,
 796	PINEVIEW_MAX_WM,
 797	PINEVIEW_DFT_HPLLOFF_WM,
 798	PINEVIEW_GUARD_WM,
 799	PINEVIEW_FIFO_LINE_SIZE
 800};
 801static const struct intel_watermark_params pineview_cursor_wm = {
 802	PINEVIEW_CURSOR_FIFO,
 803	PINEVIEW_CURSOR_MAX_WM,
 804	PINEVIEW_CURSOR_DFT_WM,
 805	PINEVIEW_CURSOR_GUARD_WM,
 806	PINEVIEW_FIFO_LINE_SIZE,
 807};
 808static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
 809	PINEVIEW_CURSOR_FIFO,
 810	PINEVIEW_CURSOR_MAX_WM,
 811	PINEVIEW_CURSOR_DFT_WM,
 812	PINEVIEW_CURSOR_GUARD_WM,
 813	PINEVIEW_FIFO_LINE_SIZE
 814};
 815static const struct intel_watermark_params g4x_wm_info = {
 816	G4X_FIFO_SIZE,
 817	G4X_MAX_WM,
 818	G4X_MAX_WM,
 819	2,
 820	G4X_FIFO_LINE_SIZE,
 821};
 822static const struct intel_watermark_params g4x_cursor_wm_info = {
 823	I965_CURSOR_FIFO,
 824	I965_CURSOR_MAX_WM,
 825	I965_CURSOR_DFT_WM,
 826	2,
 827	G4X_FIFO_LINE_SIZE,
 828};
 829static const struct intel_watermark_params valleyview_wm_info = {
 830	VALLEYVIEW_FIFO_SIZE,
 831	VALLEYVIEW_MAX_WM,
 832	VALLEYVIEW_MAX_WM,
 833	2,
 834	G4X_FIFO_LINE_SIZE,
 835};
 836static const struct intel_watermark_params valleyview_cursor_wm_info = {
 837	I965_CURSOR_FIFO,
 838	VALLEYVIEW_CURSOR_MAX_WM,
 839	I965_CURSOR_DFT_WM,
 840	2,
 841	G4X_FIFO_LINE_SIZE,
 842};
 843static const struct intel_watermark_params i965_cursor_wm_info = {
 844	I965_CURSOR_FIFO,
 845	I965_CURSOR_MAX_WM,
 846	I965_CURSOR_DFT_WM,
 847	2,
 848	I915_FIFO_LINE_SIZE,
 849};
 850static const struct intel_watermark_params i945_wm_info = {
 851	I945_FIFO_SIZE,
 852	I915_MAX_WM,
 853	1,
 854	2,
 855	I915_FIFO_LINE_SIZE
 856};
 857static const struct intel_watermark_params i915_wm_info = {
 858	I915_FIFO_SIZE,
 859	I915_MAX_WM,
 860	1,
 861	2,
 862	I915_FIFO_LINE_SIZE
 863};
 864static const struct intel_watermark_params i855_wm_info = {
 865	I855GM_FIFO_SIZE,
 866	I915_MAX_WM,
 867	1,
 868	2,
 869	I830_FIFO_LINE_SIZE
 870};
 871static const struct intel_watermark_params i830_wm_info = {
 872	I830_FIFO_SIZE,
 873	I915_MAX_WM,
 874	1,
 875	2,
 876	I830_FIFO_LINE_SIZE
 877};
 878
 879static const struct intel_watermark_params ironlake_display_wm_info = {
 880	ILK_DISPLAY_FIFO,
 881	ILK_DISPLAY_MAXWM,
 882	ILK_DISPLAY_DFTWM,
 883	2,
 884	ILK_FIFO_LINE_SIZE
 885};
 886static const struct intel_watermark_params ironlake_cursor_wm_info = {
 887	ILK_CURSOR_FIFO,
 888	ILK_CURSOR_MAXWM,
 889	ILK_CURSOR_DFTWM,
 890	2,
 891	ILK_FIFO_LINE_SIZE
 892};
 893static const struct intel_watermark_params ironlake_display_srwm_info = {
 894	ILK_DISPLAY_SR_FIFO,
 895	ILK_DISPLAY_MAX_SRWM,
 896	ILK_DISPLAY_DFT_SRWM,
 897	2,
 898	ILK_FIFO_LINE_SIZE
 899};
 900static const struct intel_watermark_params ironlake_cursor_srwm_info = {
 901	ILK_CURSOR_SR_FIFO,
 902	ILK_CURSOR_MAX_SRWM,
 903	ILK_CURSOR_DFT_SRWM,
 904	2,
 905	ILK_FIFO_LINE_SIZE
 906};
 907
 908static const struct intel_watermark_params sandybridge_display_wm_info = {
 909	SNB_DISPLAY_FIFO,
 910	SNB_DISPLAY_MAXWM,
 911	SNB_DISPLAY_DFTWM,
 912	2,
 913	SNB_FIFO_LINE_SIZE
 914};
 915static const struct intel_watermark_params sandybridge_cursor_wm_info = {
 916	SNB_CURSOR_FIFO,
 917	SNB_CURSOR_MAXWM,
 918	SNB_CURSOR_DFTWM,
 919	2,
 920	SNB_FIFO_LINE_SIZE
 921};
 922static const struct intel_watermark_params sandybridge_display_srwm_info = {
 923	SNB_DISPLAY_SR_FIFO,
 924	SNB_DISPLAY_MAX_SRWM,
 925	SNB_DISPLAY_DFT_SRWM,
 926	2,
 927	SNB_FIFO_LINE_SIZE
 928};
 929static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
 930	SNB_CURSOR_SR_FIFO,
 931	SNB_CURSOR_MAX_SRWM,
 932	SNB_CURSOR_DFT_SRWM,
 933	2,
 934	SNB_FIFO_LINE_SIZE
 935};
 936
 937
 938/**
 939 * intel_calculate_wm - calculate watermark level
 940 * @clock_in_khz: pixel clock
 941 * @wm: chip FIFO params
 942 * @pixel_size: display pixel size
 943 * @latency_ns: memory latency for the platform
 944 *
 945 * Calculate the watermark level (the level at which the display plane will
 946 * start fetching from memory again).  Each chip has a different display
 947 * FIFO size and allocation, so the caller needs to figure that out and pass
 948 * in the correct intel_watermark_params structure.
 949 *
 950 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 951 * on the pixel size.  When it reaches the watermark level, it'll start
 952 * fetching FIFO line sized based chunks from memory until the FIFO fills
 953 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 954 * will occur, and a display engine hang could result.
 955 */
 956static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
 957					const struct intel_watermark_params *wm,
 958					int fifo_size,
 959					int pixel_size,
 960					unsigned long latency_ns)
 961{
 962	long entries_required, wm_size;
 963
 964	/*
 965	 * Note: we need to make sure we don't overflow for various clock &
 966	 * latency values.
 967	 * clocks go from a few thousand to several hundred thousand.
 968	 * latency is usually a few thousand
 969	 */
 970	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
 971		1000;
 972	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 973
 974	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 975
 976	wm_size = fifo_size - (entries_required + wm->guard_size);
 977
 978	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 979
 980	/* Don't promote wm_size to unsigned... */
 981	if (wm_size > (long)wm->max_wm)
 982		wm_size = wm->max_wm;
 983	if (wm_size <= 0)
 984		wm_size = wm->default_wm;
 985	return wm_size;
 986}
 987
 988static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
 989{
 990	struct drm_crtc *crtc, *enabled = NULL;
 991
 992	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 993		if (crtc->enabled && crtc->fb) {
 994			if (enabled)
 995				return NULL;
 996			enabled = crtc;
 997		}
 998	}
 999
1000	return enabled;
1001}
1002
1003static void pineview_update_wm(struct drm_device *dev)
1004{
1005	struct drm_i915_private *dev_priv = dev->dev_private;
1006	struct drm_crtc *crtc;
1007	const struct cxsr_latency *latency;
1008	u32 reg;
1009	unsigned long wm;
1010
1011	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1012					 dev_priv->fsb_freq, dev_priv->mem_freq);
1013	if (!latency) {
1014		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1015		pineview_disable_cxsr(dev);
1016		return;
1017	}
1018
1019	crtc = single_enabled_crtc(dev);
1020	if (crtc) {
1021		int clock = crtc->mode.clock;
1022		int pixel_size = crtc->fb->bits_per_pixel / 8;
1023
1024		/* Display SR */
1025		wm = intel_calculate_wm(clock, &pineview_display_wm,
1026					pineview_display_wm.fifo_size,
1027					pixel_size, latency->display_sr);
1028		reg = I915_READ(DSPFW1);
1029		reg &= ~DSPFW_SR_MASK;
1030		reg |= wm << DSPFW_SR_SHIFT;
1031		I915_WRITE(DSPFW1, reg);
1032		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1033
1034		/* cursor SR */
1035		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1036					pineview_display_wm.fifo_size,
1037					pixel_size, latency->cursor_sr);
1038		reg = I915_READ(DSPFW3);
1039		reg &= ~DSPFW_CURSOR_SR_MASK;
1040		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1041		I915_WRITE(DSPFW3, reg);
1042
1043		/* Display HPLL off SR */
1044		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1045					pineview_display_hplloff_wm.fifo_size,
1046					pixel_size, latency->display_hpll_disable);
1047		reg = I915_READ(DSPFW3);
1048		reg &= ~DSPFW_HPLL_SR_MASK;
1049		reg |= wm & DSPFW_HPLL_SR_MASK;
1050		I915_WRITE(DSPFW3, reg);
1051
1052		/* cursor HPLL off SR */
1053		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1054					pineview_display_hplloff_wm.fifo_size,
1055					pixel_size, latency->cursor_hpll_disable);
1056		reg = I915_READ(DSPFW3);
1057		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1058		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1059		I915_WRITE(DSPFW3, reg);
1060		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1061
1062		/* activate cxsr */
1063		I915_WRITE(DSPFW3,
1064			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1065		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1066	} else {
1067		pineview_disable_cxsr(dev);
1068		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1069	}
1070}
1071
1072static bool g4x_compute_wm0(struct drm_device *dev,
1073			    int plane,
1074			    const struct intel_watermark_params *display,
1075			    int display_latency_ns,
1076			    const struct intel_watermark_params *cursor,
1077			    int cursor_latency_ns,
1078			    int *plane_wm,
1079			    int *cursor_wm)
1080{
1081	struct drm_crtc *crtc;
1082	int htotal, hdisplay, clock, pixel_size;
1083	int line_time_us, line_count;
1084	int entries, tlb_miss;
1085
1086	crtc = intel_get_crtc_for_plane(dev, plane);
1087	if (crtc->fb == NULL || !crtc->enabled) {
1088		*cursor_wm = cursor->guard_size;
1089		*plane_wm = display->guard_size;
1090		return false;
1091	}
1092
1093	htotal = crtc->mode.htotal;
1094	hdisplay = crtc->mode.hdisplay;
1095	clock = crtc->mode.clock;
1096	pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098	/* Use the small buffer method to calculate plane watermark */
1099	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1100	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1101	if (tlb_miss > 0)
1102		entries += tlb_miss;
1103	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1104	*plane_wm = entries + display->guard_size;
1105	if (*plane_wm > (int)display->max_wm)
1106		*plane_wm = display->max_wm;
1107
1108	/* Use the large buffer method to calculate cursor watermark */
1109	line_time_us = ((htotal * 1000) / clock);
1110	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1111	entries = line_count * 64 * pixel_size;
1112	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1113	if (tlb_miss > 0)
1114		entries += tlb_miss;
1115	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1116	*cursor_wm = entries + cursor->guard_size;
1117	if (*cursor_wm > (int)cursor->max_wm)
1118		*cursor_wm = (int)cursor->max_wm;
1119
1120	return true;
1121}
1122
1123/*
1124 * Check the wm result.
1125 *
1126 * If any calculated watermark values is larger than the maximum value that
1127 * can be programmed into the associated watermark register, that watermark
1128 * must be disabled.
1129 */
1130static bool g4x_check_srwm(struct drm_device *dev,
1131			   int display_wm, int cursor_wm,
1132			   const struct intel_watermark_params *display,
1133			   const struct intel_watermark_params *cursor)
1134{
1135	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1136		      display_wm, cursor_wm);
1137
1138	if (display_wm > display->max_wm) {
1139		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1140			      display_wm, display->max_wm);
1141		return false;
1142	}
1143
1144	if (cursor_wm > cursor->max_wm) {
1145		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1146			      cursor_wm, cursor->max_wm);
1147		return false;
1148	}
1149
1150	if (!(display_wm || cursor_wm)) {
1151		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1152		return false;
1153	}
1154
1155	return true;
1156}
1157
1158static bool g4x_compute_srwm(struct drm_device *dev,
1159			     int plane,
1160			     int latency_ns,
1161			     const struct intel_watermark_params *display,
1162			     const struct intel_watermark_params *cursor,
1163			     int *display_wm, int *cursor_wm)
1164{
1165	struct drm_crtc *crtc;
1166	int hdisplay, htotal, pixel_size, clock;
1167	unsigned long line_time_us;
1168	int line_count, line_size;
1169	int small, large;
1170	int entries;
1171
1172	if (!latency_ns) {
1173		*display_wm = *cursor_wm = 0;
1174		return false;
1175	}
1176
1177	crtc = intel_get_crtc_for_plane(dev, plane);
1178	hdisplay = crtc->mode.hdisplay;
1179	htotal = crtc->mode.htotal;
1180	clock = crtc->mode.clock;
1181	pixel_size = crtc->fb->bits_per_pixel / 8;
1182
1183	line_time_us = (htotal * 1000) / clock;
1184	line_count = (latency_ns / line_time_us + 1000) / 1000;
1185	line_size = hdisplay * pixel_size;
1186
1187	/* Use the minimum of the small and large buffer method for primary */
1188	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1189	large = line_count * line_size;
1190
1191	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1192	*display_wm = entries + display->guard_size;
1193
1194	/* calculate the self-refresh watermark for display cursor */
1195	entries = line_count * pixel_size * 64;
1196	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1197	*cursor_wm = entries + cursor->guard_size;
1198
1199	return g4x_check_srwm(dev,
1200			      *display_wm, *cursor_wm,
1201			      display, cursor);
1202}
1203
1204static bool vlv_compute_drain_latency(struct drm_device *dev,
1205				     int plane,
1206				     int *plane_prec_mult,
1207				     int *plane_dl,
1208				     int *cursor_prec_mult,
1209				     int *cursor_dl)
1210{
1211	struct drm_crtc *crtc;
1212	int clock, pixel_size;
1213	int entries;
1214
1215	crtc = intel_get_crtc_for_plane(dev, plane);
1216	if (crtc->fb == NULL || !crtc->enabled)
1217		return false;
1218
1219	clock = crtc->mode.clock;	/* VESA DOT Clock */
1220	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1221
1222	entries = (clock / 1000) * pixel_size;
1223	*plane_prec_mult = (entries > 256) ?
1224		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1225	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1226						     pixel_size);
1227
1228	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1229	*cursor_prec_mult = (entries > 256) ?
1230		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1231	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1232
1233	return true;
1234}
1235
1236/*
1237 * Update drain latency registers of memory arbiter
1238 *
1239 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1240 * to be programmed. Each plane has a drain latency multiplier and a drain
1241 * latency value.
1242 */
1243
1244static void vlv_update_drain_latency(struct drm_device *dev)
1245{
1246	struct drm_i915_private *dev_priv = dev->dev_private;
1247	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1248	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1249	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1250							either 16 or 32 */
1251
1252	/* For plane A, Cursor A */
1253	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1254				      &cursor_prec_mult, &cursora_dl)) {
1255		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1256			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1257		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1258			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1259
1260		I915_WRITE(VLV_DDL1, cursora_prec |
1261				(cursora_dl << DDL_CURSORA_SHIFT) |
1262				planea_prec | planea_dl);
1263	}
1264
1265	/* For plane B, Cursor B */
1266	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1267				      &cursor_prec_mult, &cursorb_dl)) {
1268		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1270		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1272
1273		I915_WRITE(VLV_DDL2, cursorb_prec |
1274				(cursorb_dl << DDL_CURSORB_SHIFT) |
1275				planeb_prec | planeb_dl);
1276	}
1277}
1278
1279#define single_plane_enabled(mask) is_power_of_2(mask)
1280
1281static void valleyview_update_wm(struct drm_device *dev)
1282{
1283	static const int sr_latency_ns = 12000;
1284	struct drm_i915_private *dev_priv = dev->dev_private;
1285	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1286	int plane_sr, cursor_sr;
1287	unsigned int enabled = 0;
1288
1289	vlv_update_drain_latency(dev);
1290
1291	if (g4x_compute_wm0(dev, 0,
1292			    &valleyview_wm_info, latency_ns,
1293			    &valleyview_cursor_wm_info, latency_ns,
1294			    &planea_wm, &cursora_wm))
1295		enabled |= 1;
1296
1297	if (g4x_compute_wm0(dev, 1,
1298			    &valleyview_wm_info, latency_ns,
1299			    &valleyview_cursor_wm_info, latency_ns,
1300			    &planeb_wm, &cursorb_wm))
1301		enabled |= 2;
1302
1303	plane_sr = cursor_sr = 0;
1304	if (single_plane_enabled(enabled) &&
1305	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1306			     sr_latency_ns,
1307			     &valleyview_wm_info,
1308			     &valleyview_cursor_wm_info,
1309			     &plane_sr, &cursor_sr))
1310		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1311	else
1312		I915_WRITE(FW_BLC_SELF_VLV,
1313			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1314
1315	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1316		      planea_wm, cursora_wm,
1317		      planeb_wm, cursorb_wm,
1318		      plane_sr, cursor_sr);
1319
1320	I915_WRITE(DSPFW1,
1321		   (plane_sr << DSPFW_SR_SHIFT) |
1322		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1323		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1324		   planea_wm);
1325	I915_WRITE(DSPFW2,
1326		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1327		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1328	I915_WRITE(DSPFW3,
1329		   (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1330}
1331
1332static void g4x_update_wm(struct drm_device *dev)
1333{
1334	static const int sr_latency_ns = 12000;
1335	struct drm_i915_private *dev_priv = dev->dev_private;
1336	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1337	int plane_sr, cursor_sr;
1338	unsigned int enabled = 0;
1339
1340	if (g4x_compute_wm0(dev, 0,
1341			    &g4x_wm_info, latency_ns,
1342			    &g4x_cursor_wm_info, latency_ns,
1343			    &planea_wm, &cursora_wm))
1344		enabled |= 1;
1345
1346	if (g4x_compute_wm0(dev, 1,
1347			    &g4x_wm_info, latency_ns,
1348			    &g4x_cursor_wm_info, latency_ns,
1349			    &planeb_wm, &cursorb_wm))
1350		enabled |= 2;
1351
1352	plane_sr = cursor_sr = 0;
1353	if (single_plane_enabled(enabled) &&
1354	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1355			     sr_latency_ns,
1356			     &g4x_wm_info,
1357			     &g4x_cursor_wm_info,
1358			     &plane_sr, &cursor_sr))
1359		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1360	else
1361		I915_WRITE(FW_BLC_SELF,
1362			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1363
1364	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1365		      planea_wm, cursora_wm,
1366		      planeb_wm, cursorb_wm,
1367		      plane_sr, cursor_sr);
1368
1369	I915_WRITE(DSPFW1,
1370		   (plane_sr << DSPFW_SR_SHIFT) |
1371		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1372		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1373		   planea_wm);
1374	I915_WRITE(DSPFW2,
1375		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1376		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1377	/* HPLL off in SR has some issues on G4x... disable it */
1378	I915_WRITE(DSPFW3,
1379		   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1380		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1381}
1382
1383static void i965_update_wm(struct drm_device *dev)
1384{
1385	struct drm_i915_private *dev_priv = dev->dev_private;
1386	struct drm_crtc *crtc;
1387	int srwm = 1;
1388	int cursor_sr = 16;
1389
1390	/* Calc sr entries for one plane configs */
1391	crtc = single_enabled_crtc(dev);
1392	if (crtc) {
1393		/* self-refresh has much higher latency */
1394		static const int sr_latency_ns = 12000;
1395		int clock = crtc->mode.clock;
1396		int htotal = crtc->mode.htotal;
1397		int hdisplay = crtc->mode.hdisplay;
1398		int pixel_size = crtc->fb->bits_per_pixel / 8;
1399		unsigned long line_time_us;
1400		int entries;
1401
1402		line_time_us = ((htotal * 1000) / clock);
1403
1404		/* Use ns/us then divide to preserve precision */
1405		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1406			pixel_size * hdisplay;
1407		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1408		srwm = I965_FIFO_SIZE - entries;
1409		if (srwm < 0)
1410			srwm = 1;
1411		srwm &= 0x1ff;
1412		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1413			      entries, srwm);
1414
1415		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1416			pixel_size * 64;
1417		entries = DIV_ROUND_UP(entries,
1418					  i965_cursor_wm_info.cacheline_size);
1419		cursor_sr = i965_cursor_wm_info.fifo_size -
1420			(entries + i965_cursor_wm_info.guard_size);
1421
1422		if (cursor_sr > i965_cursor_wm_info.max_wm)
1423			cursor_sr = i965_cursor_wm_info.max_wm;
1424
1425		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1426			      "cursor %d\n", srwm, cursor_sr);
1427
1428		if (IS_CRESTLINE(dev))
1429			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1430	} else {
1431		/* Turn off self refresh if both pipes are enabled */
1432		if (IS_CRESTLINE(dev))
1433			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1434				   & ~FW_BLC_SELF_EN);
1435	}
1436
1437	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1438		      srwm);
1439
1440	/* 965 has limitations... */
1441	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1442		   (8 << 16) | (8 << 8) | (8 << 0));
1443	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1444	/* update cursor SR watermark */
1445	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1446}
1447
1448static void i9xx_update_wm(struct drm_device *dev)
1449{
1450	struct drm_i915_private *dev_priv = dev->dev_private;
1451	const struct intel_watermark_params *wm_info;
1452	uint32_t fwater_lo;
1453	uint32_t fwater_hi;
1454	int cwm, srwm = 1;
1455	int fifo_size;
1456	int planea_wm, planeb_wm;
1457	struct drm_crtc *crtc, *enabled = NULL;
1458
1459	if (IS_I945GM(dev))
1460		wm_info = &i945_wm_info;
1461	else if (!IS_GEN2(dev))
1462		wm_info = &i915_wm_info;
1463	else
1464		wm_info = &i855_wm_info;
1465
1466	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1467	crtc = intel_get_crtc_for_plane(dev, 0);
1468	if (crtc->enabled && crtc->fb) {
1469		planea_wm = intel_calculate_wm(crtc->mode.clock,
1470					       wm_info, fifo_size,
1471					       crtc->fb->bits_per_pixel / 8,
1472					       latency_ns);
1473		enabled = crtc;
1474	} else
1475		planea_wm = fifo_size - wm_info->guard_size;
1476
1477	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1478	crtc = intel_get_crtc_for_plane(dev, 1);
1479	if (crtc->enabled && crtc->fb) {
1480		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1481					       wm_info, fifo_size,
1482					       crtc->fb->bits_per_pixel / 8,
1483					       latency_ns);
1484		if (enabled == NULL)
1485			enabled = crtc;
1486		else
1487			enabled = NULL;
1488	} else
1489		planeb_wm = fifo_size - wm_info->guard_size;
1490
1491	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1492
1493	/*
1494	 * Overlay gets an aggressive default since video jitter is bad.
1495	 */
1496	cwm = 2;
1497
1498	/* Play safe and disable self-refresh before adjusting watermarks. */
1499	if (IS_I945G(dev) || IS_I945GM(dev))
1500		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1501	else if (IS_I915GM(dev))
1502		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1503
1504	/* Calc sr entries for one plane configs */
1505	if (HAS_FW_BLC(dev) && enabled) {
1506		/* self-refresh has much higher latency */
1507		static const int sr_latency_ns = 6000;
1508		int clock = enabled->mode.clock;
1509		int htotal = enabled->mode.htotal;
1510		int hdisplay = enabled->mode.hdisplay;
1511		int pixel_size = enabled->fb->bits_per_pixel / 8;
1512		unsigned long line_time_us;
1513		int entries;
1514
1515		line_time_us = (htotal * 1000) / clock;
1516
1517		/* Use ns/us then divide to preserve precision */
1518		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1519			pixel_size * hdisplay;
1520		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1521		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1522		srwm = wm_info->fifo_size - entries;
1523		if (srwm < 0)
1524			srwm = 1;
1525
1526		if (IS_I945G(dev) || IS_I945GM(dev))
1527			I915_WRITE(FW_BLC_SELF,
1528				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1529		else if (IS_I915GM(dev))
1530			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1531	}
1532
1533	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1534		      planea_wm, planeb_wm, cwm, srwm);
1535
1536	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1537	fwater_hi = (cwm & 0x1f);
1538
1539	/* Set request length to 8 cachelines per fetch */
1540	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1541	fwater_hi = fwater_hi | (1 << 8);
1542
1543	I915_WRITE(FW_BLC, fwater_lo);
1544	I915_WRITE(FW_BLC2, fwater_hi);
1545
1546	if (HAS_FW_BLC(dev)) {
1547		if (enabled) {
1548			if (IS_I945G(dev) || IS_I945GM(dev))
1549				I915_WRITE(FW_BLC_SELF,
1550					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1551			else if (IS_I915GM(dev))
1552				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1553			DRM_DEBUG_KMS("memory self refresh enabled\n");
1554		} else
1555			DRM_DEBUG_KMS("memory self refresh disabled\n");
1556	}
1557}
1558
1559static void i830_update_wm(struct drm_device *dev)
1560{
1561	struct drm_i915_private *dev_priv = dev->dev_private;
1562	struct drm_crtc *crtc;
1563	uint32_t fwater_lo;
1564	int planea_wm;
1565
1566	crtc = single_enabled_crtc(dev);
1567	if (crtc == NULL)
1568		return;
1569
1570	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1571				       dev_priv->display.get_fifo_size(dev, 0),
1572				       crtc->fb->bits_per_pixel / 8,
1573				       latency_ns);
1574	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1575	fwater_lo |= (3<<8) | planea_wm;
1576
1577	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1578
1579	I915_WRITE(FW_BLC, fwater_lo);
1580}
1581
1582#define ILK_LP0_PLANE_LATENCY		700
1583#define ILK_LP0_CURSOR_LATENCY		1300
1584
1585/*
1586 * Check the wm result.
1587 *
1588 * If any calculated watermark values is larger than the maximum value that
1589 * can be programmed into the associated watermark register, that watermark
1590 * must be disabled.
1591 */
1592static bool ironlake_check_srwm(struct drm_device *dev, int level,
1593				int fbc_wm, int display_wm, int cursor_wm,
1594				const struct intel_watermark_params *display,
1595				const struct intel_watermark_params *cursor)
1596{
1597	struct drm_i915_private *dev_priv = dev->dev_private;
1598
1599	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1600		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1601
1602	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1603		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1604			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1605
1606		/* fbc has it's own way to disable FBC WM */
1607		I915_WRITE(DISP_ARB_CTL,
1608			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1609		return false;
1610	}
1611
1612	if (display_wm > display->max_wm) {
1613		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1614			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1615		return false;
1616	}
1617
1618	if (cursor_wm > cursor->max_wm) {
1619		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1620			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1621		return false;
1622	}
1623
1624	if (!(fbc_wm || display_wm || cursor_wm)) {
1625		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1626		return false;
1627	}
1628
1629	return true;
1630}
1631
1632/*
1633 * Compute watermark values of WM[1-3],
1634 */
1635static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1636				  int latency_ns,
1637				  const struct intel_watermark_params *display,
1638				  const struct intel_watermark_params *cursor,
1639				  int *fbc_wm, int *display_wm, int *cursor_wm)
1640{
1641	struct drm_crtc *crtc;
1642	unsigned long line_time_us;
1643	int hdisplay, htotal, pixel_size, clock;
1644	int line_count, line_size;
1645	int small, large;
1646	int entries;
1647
1648	if (!latency_ns) {
1649		*fbc_wm = *display_wm = *cursor_wm = 0;
1650		return false;
1651	}
1652
1653	crtc = intel_get_crtc_for_plane(dev, plane);
1654	hdisplay = crtc->mode.hdisplay;
1655	htotal = crtc->mode.htotal;
1656	clock = crtc->mode.clock;
1657	pixel_size = crtc->fb->bits_per_pixel / 8;
1658
1659	line_time_us = (htotal * 1000) / clock;
1660	line_count = (latency_ns / line_time_us + 1000) / 1000;
1661	line_size = hdisplay * pixel_size;
1662
1663	/* Use the minimum of the small and large buffer method for primary */
1664	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1665	large = line_count * line_size;
1666
1667	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1668	*display_wm = entries + display->guard_size;
1669
1670	/*
1671	 * Spec says:
1672	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1673	 */
1674	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1675
1676	/* calculate the self-refresh watermark for display cursor */
1677	entries = line_count * pixel_size * 64;
1678	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1679	*cursor_wm = entries + cursor->guard_size;
1680
1681	return ironlake_check_srwm(dev, level,
1682				   *fbc_wm, *display_wm, *cursor_wm,
1683				   display, cursor);
1684}
1685
1686static void ironlake_update_wm(struct drm_device *dev)
1687{
1688	struct drm_i915_private *dev_priv = dev->dev_private;
1689	int fbc_wm, plane_wm, cursor_wm;
1690	unsigned int enabled;
1691
1692	enabled = 0;
1693	if (g4x_compute_wm0(dev, 0,
1694			    &ironlake_display_wm_info,
1695			    ILK_LP0_PLANE_LATENCY,
1696			    &ironlake_cursor_wm_info,
1697			    ILK_LP0_CURSOR_LATENCY,
1698			    &plane_wm, &cursor_wm)) {
1699		I915_WRITE(WM0_PIPEA_ILK,
1700			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1701		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1702			      " plane %d, " "cursor: %d\n",
1703			      plane_wm, cursor_wm);
1704		enabled |= 1;
1705	}
1706
1707	if (g4x_compute_wm0(dev, 1,
1708			    &ironlake_display_wm_info,
1709			    ILK_LP0_PLANE_LATENCY,
1710			    &ironlake_cursor_wm_info,
1711			    ILK_LP0_CURSOR_LATENCY,
1712			    &plane_wm, &cursor_wm)) {
1713		I915_WRITE(WM0_PIPEB_ILK,
1714			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1715		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1716			      " plane %d, cursor: %d\n",
1717			      plane_wm, cursor_wm);
1718		enabled |= 2;
1719	}
1720
1721	/*
1722	 * Calculate and update the self-refresh watermark only when one
1723	 * display plane is used.
1724	 */
1725	I915_WRITE(WM3_LP_ILK, 0);
1726	I915_WRITE(WM2_LP_ILK, 0);
1727	I915_WRITE(WM1_LP_ILK, 0);
1728
1729	if (!single_plane_enabled(enabled))
1730		return;
1731	enabled = ffs(enabled) - 1;
1732
1733	/* WM1 */
1734	if (!ironlake_compute_srwm(dev, 1, enabled,
1735				   ILK_READ_WM1_LATENCY() * 500,
1736				   &ironlake_display_srwm_info,
1737				   &ironlake_cursor_srwm_info,
1738				   &fbc_wm, &plane_wm, &cursor_wm))
1739		return;
1740
1741	I915_WRITE(WM1_LP_ILK,
1742		   WM1_LP_SR_EN |
1743		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1744		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1745		   (plane_wm << WM1_LP_SR_SHIFT) |
1746		   cursor_wm);
1747
1748	/* WM2 */
1749	if (!ironlake_compute_srwm(dev, 2, enabled,
1750				   ILK_READ_WM2_LATENCY() * 500,
1751				   &ironlake_display_srwm_info,
1752				   &ironlake_cursor_srwm_info,
1753				   &fbc_wm, &plane_wm, &cursor_wm))
1754		return;
1755
1756	I915_WRITE(WM2_LP_ILK,
1757		   WM2_LP_EN |
1758		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1759		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1760		   (plane_wm << WM1_LP_SR_SHIFT) |
1761		   cursor_wm);
1762
1763	/*
1764	 * WM3 is unsupported on ILK, probably because we don't have latency
1765	 * data for that power state
1766	 */
1767}
1768
1769static void sandybridge_update_wm(struct drm_device *dev)
1770{
1771	struct drm_i915_private *dev_priv = dev->dev_private;
1772	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1773	u32 val;
1774	int fbc_wm, plane_wm, cursor_wm;
1775	unsigned int enabled;
1776
1777	enabled = 0;
1778	if (g4x_compute_wm0(dev, 0,
1779			    &sandybridge_display_wm_info, latency,
1780			    &sandybridge_cursor_wm_info, latency,
1781			    &plane_wm, &cursor_wm)) {
1782		val = I915_READ(WM0_PIPEA_ILK);
1783		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1784		I915_WRITE(WM0_PIPEA_ILK, val |
1785			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1786		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1787			      " plane %d, " "cursor: %d\n",
1788			      plane_wm, cursor_wm);
1789		enabled |= 1;
1790	}
1791
1792	if (g4x_compute_wm0(dev, 1,
1793			    &sandybridge_display_wm_info, latency,
1794			    &sandybridge_cursor_wm_info, latency,
1795			    &plane_wm, &cursor_wm)) {
1796		val = I915_READ(WM0_PIPEB_ILK);
1797		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1798		I915_WRITE(WM0_PIPEB_ILK, val |
1799			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1800		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1801			      " plane %d, cursor: %d\n",
1802			      plane_wm, cursor_wm);
1803		enabled |= 2;
1804	}
1805
1806	if ((dev_priv->num_pipe == 3) &&
1807	    g4x_compute_wm0(dev, 2,
1808			    &sandybridge_display_wm_info, latency,
1809			    &sandybridge_cursor_wm_info, latency,
1810			    &plane_wm, &cursor_wm)) {
1811		val = I915_READ(WM0_PIPEC_IVB);
1812		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1813		I915_WRITE(WM0_PIPEC_IVB, val |
1814			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1815		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1816			      " plane %d, cursor: %d\n",
1817			      plane_wm, cursor_wm);
1818		enabled |= 3;
1819	}
1820
1821	/*
1822	 * Calculate and update the self-refresh watermark only when one
1823	 * display plane is used.
1824	 *
1825	 * SNB support 3 levels of watermark.
1826	 *
1827	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1828	 * and disabled in the descending order
1829	 *
1830	 */
1831	I915_WRITE(WM3_LP_ILK, 0);
1832	I915_WRITE(WM2_LP_ILK, 0);
1833	I915_WRITE(WM1_LP_ILK, 0);
1834
1835	if (!single_plane_enabled(enabled) ||
1836	    dev_priv->sprite_scaling_enabled)
1837		return;
1838	enabled = ffs(enabled) - 1;
1839
1840	/* WM1 */
1841	if (!ironlake_compute_srwm(dev, 1, enabled,
1842				   SNB_READ_WM1_LATENCY() * 500,
1843				   &sandybridge_display_srwm_info,
1844				   &sandybridge_cursor_srwm_info,
1845				   &fbc_wm, &plane_wm, &cursor_wm))
1846		return;
1847
1848	I915_WRITE(WM1_LP_ILK,
1849		   WM1_LP_SR_EN |
1850		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1852		   (plane_wm << WM1_LP_SR_SHIFT) |
1853		   cursor_wm);
1854
1855	/* WM2 */
1856	if (!ironlake_compute_srwm(dev, 2, enabled,
1857				   SNB_READ_WM2_LATENCY() * 500,
1858				   &sandybridge_display_srwm_info,
1859				   &sandybridge_cursor_srwm_info,
1860				   &fbc_wm, &plane_wm, &cursor_wm))
1861		return;
1862
1863	I915_WRITE(WM2_LP_ILK,
1864		   WM2_LP_EN |
1865		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1866		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1867		   (plane_wm << WM1_LP_SR_SHIFT) |
1868		   cursor_wm);
1869
1870	/* WM3 */
1871	if (!ironlake_compute_srwm(dev, 3, enabled,
1872				   SNB_READ_WM3_LATENCY() * 500,
1873				   &sandybridge_display_srwm_info,
1874				   &sandybridge_cursor_srwm_info,
1875				   &fbc_wm, &plane_wm, &cursor_wm))
1876		return;
1877
1878	I915_WRITE(WM3_LP_ILK,
1879		   WM3_LP_EN |
1880		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1881		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1882		   (plane_wm << WM1_LP_SR_SHIFT) |
1883		   cursor_wm);
1884}
1885
1886static void
1887haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1888				 struct drm_display_mode *mode)
1889{
1890	struct drm_i915_private *dev_priv = dev->dev_private;
1891	u32 temp;
1892
1893	temp = I915_READ(PIPE_WM_LINETIME(pipe));
1894	temp &= ~PIPE_WM_LINETIME_MASK;
1895
1896	/* The WM are computed with base on how long it takes to fill a single
1897	 * row at the given clock rate, multiplied by 8.
1898	 * */
1899	temp |= PIPE_WM_LINETIME_TIME(
1900		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1901
1902	/* IPS watermarks are only used by pipe A, and are ignored by
1903	 * pipes B and C.  They are calculated similarly to the common
1904	 * linetime values, except that we are using CD clock frequency
1905	 * in MHz instead of pixel rate for the division.
1906	 *
1907	 * This is a placeholder for the IPS watermark calculation code.
1908	 */
1909
1910	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1911}
1912
1913static bool
1914sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1915			      uint32_t sprite_width, int pixel_size,
1916			      const struct intel_watermark_params *display,
1917			      int display_latency_ns, int *sprite_wm)
1918{
1919	struct drm_crtc *crtc;
1920	int clock;
1921	int entries, tlb_miss;
1922
1923	crtc = intel_get_crtc_for_plane(dev, plane);
1924	if (crtc->fb == NULL || !crtc->enabled) {
1925		*sprite_wm = display->guard_size;
1926		return false;
1927	}
1928
1929	clock = crtc->mode.clock;
1930
1931	/* Use the small buffer method to calculate the sprite watermark */
1932	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1933	tlb_miss = display->fifo_size*display->cacheline_size -
1934		sprite_width * 8;
1935	if (tlb_miss > 0)
1936		entries += tlb_miss;
1937	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1938	*sprite_wm = entries + display->guard_size;
1939	if (*sprite_wm > (int)display->max_wm)
1940		*sprite_wm = display->max_wm;
1941
1942	return true;
1943}
1944
1945static bool
1946sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1947				uint32_t sprite_width, int pixel_size,
1948				const struct intel_watermark_params *display,
1949				int latency_ns, int *sprite_wm)
1950{
1951	struct drm_crtc *crtc;
1952	unsigned long line_time_us;
1953	int clock;
1954	int line_count, line_size;
1955	int small, large;
1956	int entries;
1957
1958	if (!latency_ns) {
1959		*sprite_wm = 0;
1960		return false;
1961	}
1962
1963	crtc = intel_get_crtc_for_plane(dev, plane);
1964	clock = crtc->mode.clock;
1965	if (!clock) {
1966		*sprite_wm = 0;
1967		return false;
1968	}
1969
1970	line_time_us = (sprite_width * 1000) / clock;
1971	if (!line_time_us) {
1972		*sprite_wm = 0;
1973		return false;
1974	}
1975
1976	line_count = (latency_ns / line_time_us + 1000) / 1000;
1977	line_size = sprite_width * pixel_size;
1978
1979	/* Use the minimum of the small and large buffer method for primary */
1980	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1981	large = line_count * line_size;
1982
1983	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1984	*sprite_wm = entries + display->guard_size;
1985
1986	return *sprite_wm > 0x3ff ? false : true;
1987}
1988
1989static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
1990					 uint32_t sprite_width, int pixel_size)
1991{
1992	struct drm_i915_private *dev_priv = dev->dev_private;
1993	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1994	u32 val;
1995	int sprite_wm, reg;
1996	int ret;
1997
1998	switch (pipe) {
1999	case 0:
2000		reg = WM0_PIPEA_ILK;
2001		break;
2002	case 1:
2003		reg = WM0_PIPEB_ILK;
2004		break;
2005	case 2:
2006		reg = WM0_PIPEC_IVB;
2007		break;
2008	default:
2009		return; /* bad pipe */
2010	}
2011
2012	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2013					    &sandybridge_display_wm_info,
2014					    latency, &sprite_wm);
2015	if (!ret) {
2016		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2017			      pipe);
2018		return;
2019	}
2020
2021	val = I915_READ(reg);
2022	val &= ~WM0_PIPE_SPRITE_MASK;
2023	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2024	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2025
2026
2027	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2028					      pixel_size,
2029					      &sandybridge_display_srwm_info,
2030					      SNB_READ_WM1_LATENCY() * 500,
2031					      &sprite_wm);
2032	if (!ret) {
2033		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2034			      pipe);
2035		return;
2036	}
2037	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2038
2039	/* Only IVB has two more LP watermarks for sprite */
2040	if (!IS_IVYBRIDGE(dev))
2041		return;
2042
2043	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2044					      pixel_size,
2045					      &sandybridge_display_srwm_info,
2046					      SNB_READ_WM2_LATENCY() * 500,
2047					      &sprite_wm);
2048	if (!ret) {
2049		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2050			      pipe);
2051		return;
2052	}
2053	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2054
2055	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2056					      pixel_size,
2057					      &sandybridge_display_srwm_info,
2058					      SNB_READ_WM3_LATENCY() * 500,
2059					      &sprite_wm);
2060	if (!ret) {
2061		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2062			      pipe);
2063		return;
2064	}
2065	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2066}
2067
2068/**
2069 * intel_update_watermarks - update FIFO watermark values based on current modes
2070 *
2071 * Calculate watermark values for the various WM regs based on current mode
2072 * and plane configuration.
2073 *
2074 * There are several cases to deal with here:
2075 *   - normal (i.e. non-self-refresh)
2076 *   - self-refresh (SR) mode
2077 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2078 *   - lines are small relative to FIFO size (buffer can hold more than 2
2079 *     lines), so need to account for TLB latency
2080 *
2081 *   The normal calculation is:
2082 *     watermark = dotclock * bytes per pixel * latency
2083 *   where latency is platform & configuration dependent (we assume pessimal
2084 *   values here).
2085 *
2086 *   The SR calculation is:
2087 *     watermark = (trunc(latency/line time)+1) * surface width *
2088 *       bytes per pixel
2089 *   where
2090 *     line time = htotal / dotclock
2091 *     surface width = hdisplay for normal plane and 64 for cursor
2092 *   and latency is assumed to be high, as above.
2093 *
2094 * The final value programmed to the register should always be rounded up,
2095 * and include an extra 2 entries to account for clock crossings.
2096 *
2097 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2098 * to set the non-SR watermarks to 8.
2099 */
2100void intel_update_watermarks(struct drm_device *dev)
2101{
2102	struct drm_i915_private *dev_priv = dev->dev_private;
2103
2104	if (dev_priv->display.update_wm)
2105		dev_priv->display.update_wm(dev);
2106}
2107
2108void intel_update_linetime_watermarks(struct drm_device *dev,
2109		int pipe, struct drm_display_mode *mode)
2110{
2111	struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113	if (dev_priv->display.update_linetime_wm)
2114		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2115}
2116
2117void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2118				    uint32_t sprite_width, int pixel_size)
2119{
2120	struct drm_i915_private *dev_priv = dev->dev_private;
2121
2122	if (dev_priv->display.update_sprite_wm)
2123		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2124						   pixel_size);
2125}
2126
2127static struct drm_i915_gem_object *
2128intel_alloc_context_page(struct drm_device *dev)
2129{
2130	struct drm_i915_gem_object *ctx;
2131	int ret;
2132
2133	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2134
2135	ctx = i915_gem_alloc_object(dev, 4096);
2136	if (!ctx) {
2137		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2138		return NULL;
2139	}
2140
2141	ret = i915_gem_object_pin(ctx, 4096, true);
2142	if (ret) {
2143		DRM_ERROR("failed to pin power context: %d\n", ret);
2144		goto err_unref;
2145	}
2146
2147	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2148	if (ret) {
2149		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2150		goto err_unpin;
2151	}
2152
2153	return ctx;
2154
2155err_unpin:
2156	i915_gem_object_unpin(ctx);
2157err_unref:
2158	drm_gem_object_unreference(&ctx->base);
2159	mutex_unlock(&dev->struct_mutex);
2160	return NULL;
2161}
2162
2163bool ironlake_set_drps(struct drm_device *dev, u8 val)
2164{
2165	struct drm_i915_private *dev_priv = dev->dev_private;
2166	u16 rgvswctl;
2167
2168	rgvswctl = I915_READ16(MEMSWCTL);
2169	if (rgvswctl & MEMCTL_CMD_STS) {
2170		DRM_DEBUG("gpu busy, RCS change rejected\n");
2171		return false; /* still busy with another command */
2172	}
2173
2174	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2175		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2176	I915_WRITE16(MEMSWCTL, rgvswctl);
2177	POSTING_READ16(MEMSWCTL);
2178
2179	rgvswctl |= MEMCTL_CMD_STS;
2180	I915_WRITE16(MEMSWCTL, rgvswctl);
2181
2182	return true;
2183}
2184
2185void ironlake_enable_drps(struct drm_device *dev)
2186{
2187	struct drm_i915_private *dev_priv = dev->dev_private;
2188	u32 rgvmodectl = I915_READ(MEMMODECTL);
2189	u8 fmax, fmin, fstart, vstart;
2190
2191	/* Enable temp reporting */
2192	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2193	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2194
2195	/* 100ms RC evaluation intervals */
2196	I915_WRITE(RCUPEI, 100000);
2197	I915_WRITE(RCDNEI, 100000);
2198
2199	/* Set max/min thresholds to 90ms and 80ms respectively */
2200	I915_WRITE(RCBMAXAVG, 90000);
2201	I915_WRITE(RCBMINAVG, 80000);
2202
2203	I915_WRITE(MEMIHYST, 1);
2204
2205	/* Set up min, max, and cur for interrupt handling */
2206	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2207	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2208	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2209		MEMMODE_FSTART_SHIFT;
2210
2211	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2212		PXVFREQ_PX_SHIFT;
2213
2214	dev_priv->fmax = fmax; /* IPS callback will increase this */
2215	dev_priv->fstart = fstart;
2216
2217	dev_priv->max_delay = fstart;
2218	dev_priv->min_delay = fmin;
2219	dev_priv->cur_delay = fstart;
2220
2221	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2222			 fmax, fmin, fstart);
2223
2224	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2225
2226	/*
2227	 * Interrupts will be enabled in ironlake_irq_postinstall
2228	 */
2229
2230	I915_WRITE(VIDSTART, vstart);
2231	POSTING_READ(VIDSTART);
2232
2233	rgvmodectl |= MEMMODE_SWMODE_EN;
2234	I915_WRITE(MEMMODECTL, rgvmodectl);
2235
2236	if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2237		DRM_ERROR("stuck trying to change perf mode\n");
2238	msleep(1);
2239
2240	ironlake_set_drps(dev, fstart);
2241
2242	dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2243		I915_READ(0x112e0);
2244	dev_priv->last_time1 = jiffies_to_msecs(jiffies);
2245	dev_priv->last_count2 = I915_READ(0x112f4);
2246	getrawmonotonic(&dev_priv->last_time2);
2247}
2248
2249void ironlake_disable_drps(struct drm_device *dev)
2250{
2251	struct drm_i915_private *dev_priv = dev->dev_private;
2252	u16 rgvswctl = I915_READ16(MEMSWCTL);
2253
2254	/* Ack interrupts, disable EFC interrupt */
2255	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2256	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2257	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2258	I915_WRITE(DEIIR, DE_PCU_EVENT);
2259	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2260
2261	/* Go back to the starting frequency */
2262	ironlake_set_drps(dev, dev_priv->fstart);
2263	msleep(1);
2264	rgvswctl |= MEMCTL_CMD_STS;
2265	I915_WRITE(MEMSWCTL, rgvswctl);
2266	msleep(1);
2267
2268}
2269
2270void gen6_set_rps(struct drm_device *dev, u8 val)
2271{
2272	struct drm_i915_private *dev_priv = dev->dev_private;
2273	u32 limits;
2274
2275	limits = 0;
2276	if (val >= dev_priv->max_delay)
2277		val = dev_priv->max_delay;
2278	else
2279		limits |= dev_priv->max_delay << 24;
2280
2281	if (val <= dev_priv->min_delay)
2282		val = dev_priv->min_delay;
2283	else
2284		limits |= dev_priv->min_delay << 16;
2285
2286	if (val == dev_priv->cur_delay)
2287		return;
2288
2289	I915_WRITE(GEN6_RPNSWREQ,
2290		   GEN6_FREQUENCY(val) |
2291		   GEN6_OFFSET(0) |
2292		   GEN6_AGGRESSIVE_TURBO);
2293
2294	/* Make sure we continue to get interrupts
2295	 * until we hit the minimum or maximum frequencies.
2296	 */
2297	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2298
2299	dev_priv->cur_delay = val;
2300}
2301
2302void gen6_disable_rps(struct drm_device *dev)
2303{
2304	struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2307	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2308	I915_WRITE(GEN6_PMIER, 0);
2309	/* Complete PM interrupt masking here doesn't race with the rps work
2310	 * item again unmasking PM interrupts because that is using a different
2311	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2312	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2313
2314	spin_lock_irq(&dev_priv->rps_lock);
2315	dev_priv->pm_iir = 0;
2316	spin_unlock_irq(&dev_priv->rps_lock);
2317
2318	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2319}
2320
2321int intel_enable_rc6(const struct drm_device *dev)
2322{
2323	/*
2324	 * Respect the kernel parameter if it is set
2325	 */
2326	if (i915_enable_rc6 >= 0)
2327		return i915_enable_rc6;
2328
2329	/*
2330	 * Disable RC6 on Ironlake
2331	 */
2332	if (INTEL_INFO(dev)->gen == 5)
2333		return 0;
2334
2335	/* Sorry Haswell, no RC6 for you for now. */
2336	if (IS_HASWELL(dev))
2337		return 0;
2338
2339	/*
2340	 * Disable rc6 on Sandybridge
2341	 */
2342	if (INTEL_INFO(dev)->gen == 6) {
2343		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2344		return INTEL_RC6_ENABLE;
2345	}
2346	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2347	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2348}
2349
2350void gen6_enable_rps(struct drm_i915_private *dev_priv)
2351{
2352	struct intel_ring_buffer *ring;
2353	u32 rp_state_cap;
2354	u32 gt_perf_status;
2355	u32 pcu_mbox, rc6_mask = 0;
2356	u32 gtfifodbg;
2357	int rc6_mode;
2358	int i;
2359
2360	/* Here begins a magic sequence of register writes to enable
2361	 * auto-downclocking.
2362	 *
2363	 * Perhaps there might be some value in exposing these to
2364	 * userspace...
2365	 */
2366	I915_WRITE(GEN6_RC_STATE, 0);
2367	mutex_lock(&dev_priv->dev->struct_mutex);
2368
2369	/* Clear the DBG now so we don't confuse earlier errors */
2370	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2371		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2372		I915_WRITE(GTFIFODBG, gtfifodbg);
2373	}
2374
2375	gen6_gt_force_wake_get(dev_priv);
2376
2377	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2378	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2379
2380	/* In units of 100MHz */
2381	dev_priv->max_delay = rp_state_cap & 0xff;
2382	dev_priv->min_delay = (rp_state_cap & 0xff0000) >> 16;
2383	dev_priv->cur_delay = 0;
2384
2385	/* disable the counters and set deterministic thresholds */
2386	I915_WRITE(GEN6_RC_CONTROL, 0);
2387
2388	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2389	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2390	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2391	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2392	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2393
2394	for_each_ring(ring, dev_priv, i)
2395		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2396
2397	I915_WRITE(GEN6_RC_SLEEP, 0);
2398	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2399	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2400	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2401	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2402
2403	rc6_mode = intel_enable_rc6(dev_priv->dev);
2404	if (rc6_mode & INTEL_RC6_ENABLE)
2405		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2406
2407	if (rc6_mode & INTEL_RC6p_ENABLE)
2408		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2409
2410	if (rc6_mode & INTEL_RC6pp_ENABLE)
2411		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2412
2413	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2414			(rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
2415			(rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
2416			(rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
2417
2418	I915_WRITE(GEN6_RC_CONTROL,
2419		   rc6_mask |
2420		   GEN6_RC_CTL_EI_MODE(1) |
2421		   GEN6_RC_CTL_HW_ENABLE);
2422
2423	I915_WRITE(GEN6_RPNSWREQ,
2424		   GEN6_FREQUENCY(10) |
2425		   GEN6_OFFSET(0) |
2426		   GEN6_AGGRESSIVE_TURBO);
2427	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2428		   GEN6_FREQUENCY(12));
2429
2430	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2431	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2432		   dev_priv->max_delay << 24 |
2433		   dev_priv->min_delay << 16);
2434	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2435	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2436	I915_WRITE(GEN6_RP_UP_EI, 66000);
2437	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2438	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2439	I915_WRITE(GEN6_RP_CONTROL,
2440		   GEN6_RP_MEDIA_TURBO |
2441		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2442		   GEN6_RP_MEDIA_IS_GFX |
2443		   GEN6_RP_ENABLE |
2444		   GEN6_RP_UP_BUSY_AVG |
2445		   GEN6_RP_DOWN_IDLE_CONT);
2446
2447	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2448		     500))
2449		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2450
2451	I915_WRITE(GEN6_PCODE_DATA, 0);
2452	I915_WRITE(GEN6_PCODE_MAILBOX,
2453		   GEN6_PCODE_READY |
2454		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2455	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2456		     500))
2457		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2458
2459	/* Check for overclock support */
2460	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2461		     500))
2462		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2463	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2464	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2465	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2466		     500))
2467		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2468	if (pcu_mbox & (1<<31)) { /* OC supported */
2469		dev_priv->max_delay = pcu_mbox & 0xff;
2470		DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2471	}
2472
2473	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2474
2475	/* requires MSI enabled */
2476	I915_WRITE(GEN6_PMIER,
2477		   GEN6_PM_MBOX_EVENT |
2478		   GEN6_PM_THERMAL_EVENT |
2479		   GEN6_PM_RP_DOWN_TIMEOUT |
2480		   GEN6_PM_RP_UP_THRESHOLD |
2481		   GEN6_PM_RP_DOWN_THRESHOLD |
2482		   GEN6_PM_RP_UP_EI_EXPIRED |
2483		   GEN6_PM_RP_DOWN_EI_EXPIRED);
2484	spin_lock_irq(&dev_priv->rps_lock);
2485	WARN_ON(dev_priv->pm_iir != 0);
2486	I915_WRITE(GEN6_PMIMR, 0);
2487	spin_unlock_irq(&dev_priv->rps_lock);
2488	/* enable all PM interrupts */
2489	I915_WRITE(GEN6_PMINTRMSK, 0);
2490
2491	gen6_gt_force_wake_put(dev_priv);
2492	mutex_unlock(&dev_priv->dev->struct_mutex);
2493}
2494
2495void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
2496{
2497	int min_freq = 15;
2498	int gpu_freq, ia_freq, max_ia_freq;
2499	int scaling_factor = 180;
2500
2501	max_ia_freq = cpufreq_quick_get_max(0);
2502	/*
2503	 * Default to measured freq if none found, PCU will ensure we don't go
2504	 * over
2505	 */
2506	if (!max_ia_freq)
2507		max_ia_freq = tsc_khz;
2508
2509	/* Convert from kHz to MHz */
2510	max_ia_freq /= 1000;
2511
2512	mutex_lock(&dev_priv->dev->struct_mutex);
2513
2514	/*
2515	 * For each potential GPU frequency, load a ring frequency we'd like
2516	 * to use for memory access.  We do this by specifying the IA frequency
2517	 * the PCU should use as a reference to determine the ring frequency.
2518	 */
2519	for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
2520	     gpu_freq--) {
2521		int diff = dev_priv->max_delay - gpu_freq;
2522
2523		/*
2524		 * For GPU frequencies less than 750MHz, just use the lowest
2525		 * ring freq.
2526		 */
2527		if (gpu_freq < min_freq)
2528			ia_freq = 800;
2529		else
2530			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2531		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2532
2533		I915_WRITE(GEN6_PCODE_DATA,
2534			   (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2535			   gpu_freq);
2536		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2537			   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2538		if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2539			      GEN6_PCODE_READY) == 0, 10)) {
2540			DRM_ERROR("pcode write of freq table timed out\n");
2541			continue;
2542		}
2543	}
2544
2545	mutex_unlock(&dev_priv->dev->struct_mutex);
2546}
2547
2548static void ironlake_teardown_rc6(struct drm_device *dev)
2549{
2550	struct drm_i915_private *dev_priv = dev->dev_private;
2551
2552	if (dev_priv->renderctx) {
2553		i915_gem_object_unpin(dev_priv->renderctx);
2554		drm_gem_object_unreference(&dev_priv->renderctx->base);
2555		dev_priv->renderctx = NULL;
2556	}
2557
2558	if (dev_priv->pwrctx) {
2559		i915_gem_object_unpin(dev_priv->pwrctx);
2560		drm_gem_object_unreference(&dev_priv->pwrctx->base);
2561		dev_priv->pwrctx = NULL;
2562	}
2563}
2564
2565void ironlake_disable_rc6(struct drm_device *dev)
2566{
2567	struct drm_i915_private *dev_priv = dev->dev_private;
2568
2569	if (I915_READ(PWRCTXA)) {
2570		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2571		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2572		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2573			 50);
2574
2575		I915_WRITE(PWRCTXA, 0);
2576		POSTING_READ(PWRCTXA);
2577
2578		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2579		POSTING_READ(RSTDBYCTL);
2580	}
2581
2582	ironlake_teardown_rc6(dev);
2583}
2584
2585static int ironlake_setup_rc6(struct drm_device *dev)
2586{
2587	struct drm_i915_private *dev_priv = dev->dev_private;
2588
2589	if (dev_priv->renderctx == NULL)
2590		dev_priv->renderctx = intel_alloc_context_page(dev);
2591	if (!dev_priv->renderctx)
2592		return -ENOMEM;
2593
2594	if (dev_priv->pwrctx == NULL)
2595		dev_priv->pwrctx = intel_alloc_context_page(dev);
2596	if (!dev_priv->pwrctx) {
2597		ironlake_teardown_rc6(dev);
2598		return -ENOMEM;
2599	}
2600
2601	return 0;
2602}
2603
2604void ironlake_enable_rc6(struct drm_device *dev)
2605{
2606	struct drm_i915_private *dev_priv = dev->dev_private;
2607	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2608	int ret;
2609
2610	/* rc6 disabled by default due to repeated reports of hanging during
2611	 * boot and resume.
2612	 */
2613	if (!intel_enable_rc6(dev))
2614		return;
2615
2616	mutex_lock(&dev->struct_mutex);
2617	ret = ironlake_setup_rc6(dev);
2618	if (ret) {
2619		mutex_unlock(&dev->struct_mutex);
2620		return;
2621	}
2622
2623	/*
2624	 * GPU can automatically power down the render unit if given a page
2625	 * to save state.
2626	 */
2627	ret = intel_ring_begin(ring, 6);
2628	if (ret) {
2629		ironlake_teardown_rc6(dev);
2630		mutex_unlock(&dev->struct_mutex);
2631		return;
2632	}
2633
2634	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2635	intel_ring_emit(ring, MI_SET_CONTEXT);
2636	intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2637			MI_MM_SPACE_GTT |
2638			MI_SAVE_EXT_STATE_EN |
2639			MI_RESTORE_EXT_STATE_EN |
2640			MI_RESTORE_INHIBIT);
2641	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2642	intel_ring_emit(ring, MI_NOOP);
2643	intel_ring_emit(ring, MI_FLUSH);
2644	intel_ring_advance(ring);
2645
2646	/*
2647	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2648	 * does an implicit flush, combined with MI_FLUSH above, it should be
2649	 * safe to assume that renderctx is valid
2650	 */
2651	ret = intel_wait_ring_idle(ring);
2652	if (ret) {
2653		DRM_ERROR("failed to enable ironlake power power savings\n");
2654		ironlake_teardown_rc6(dev);
2655		mutex_unlock(&dev->struct_mutex);
2656		return;
2657	}
2658
2659	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2660	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2661	mutex_unlock(&dev->struct_mutex);
2662}
2663
2664static unsigned long intel_pxfreq(u32 vidfreq)
2665{
2666	unsigned long freq;
2667	int div = (vidfreq & 0x3f0000) >> 16;
2668	int post = (vidfreq & 0x3000) >> 12;
2669	int pre = (vidfreq & 0x7);
2670
2671	if (!pre)
2672		return 0;
2673
2674	freq = ((div * 133333) / ((1<<post) * pre));
2675
2676	return freq;
2677}
2678
2679static const struct cparams {
2680	u16 i;
2681	u16 t;
2682	u16 m;
2683	u16 c;
2684} cparams[] = {
2685	{ 1, 1333, 301, 28664 },
2686	{ 1, 1066, 294, 24460 },
2687	{ 1, 800, 294, 25192 },
2688	{ 0, 1333, 276, 27605 },
2689	{ 0, 1066, 276, 27605 },
2690	{ 0, 800, 231, 23784 },
2691};
2692
2693unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2694{
2695	u64 total_count, diff, ret;
2696	u32 count1, count2, count3, m = 0, c = 0;
2697	unsigned long now = jiffies_to_msecs(jiffies), diff1;
2698	int i;
2699
2700	diff1 = now - dev_priv->last_time1;
2701
2702	/* Prevent division-by-zero if we are asking too fast.
2703	 * Also, we don't get interesting results if we are polling
2704	 * faster than once in 10ms, so just return the saved value
2705	 * in such cases.
2706	 */
2707	if (diff1 <= 10)
2708		return dev_priv->chipset_power;
2709
2710	count1 = I915_READ(DMIEC);
2711	count2 = I915_READ(DDREC);
2712	count3 = I915_READ(CSIEC);
2713
2714	total_count = count1 + count2 + count3;
2715
2716	/* FIXME: handle per-counter overflow */
2717	if (total_count < dev_priv->last_count1) {
2718		diff = ~0UL - dev_priv->last_count1;
2719		diff += total_count;
2720	} else {
2721		diff = total_count - dev_priv->last_count1;
2722	}
2723
2724	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2725		if (cparams[i].i == dev_priv->c_m &&
2726		    cparams[i].t == dev_priv->r_t) {
2727			m = cparams[i].m;
2728			c = cparams[i].c;
2729			break;
2730		}
2731	}
2732
2733	diff = div_u64(diff, diff1);
2734	ret = ((m * diff) + c);
2735	ret = div_u64(ret, 10);
2736
2737	dev_priv->last_count1 = total_count;
2738	dev_priv->last_time1 = now;
2739
2740	dev_priv->chipset_power = ret;
2741
2742	return ret;
2743}
2744
2745unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2746{
2747	unsigned long m, x, b;
2748	u32 tsfs;
2749
2750	tsfs = I915_READ(TSFS);
2751
2752	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2753	x = I915_READ8(TR1);
2754
2755	b = tsfs & TSFS_INTR_MASK;
2756
2757	return ((m * x) / 127) - b;
2758}
2759
2760static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2761{
2762	static const struct v_table {
2763		u16 vd; /* in .1 mil */
2764		u16 vm; /* in .1 mil */
2765	} v_table[] = {
2766		{ 0, 0, },
2767		{ 375, 0, },
2768		{ 500, 0, },
2769		{ 625, 0, },
2770		{ 750, 0, },
2771		{ 875, 0, },
2772		{ 1000, 0, },
2773		{ 1125, 0, },
2774		{ 4125, 3000, },
2775		{ 4125, 3000, },
2776		{ 4125, 3000, },
2777		{ 4125, 3000, },
2778		{ 4125, 3000, },
2779		{ 4125, 3000, },
2780		{ 4125, 3000, },
2781		{ 4125, 3000, },
2782		{ 4125, 3000, },
2783		{ 4125, 3000, },
2784		{ 4125, 3000, },
2785		{ 4125, 3000, },
2786		{ 4125, 3000, },
2787		{ 4125, 3000, },
2788		{ 4125, 3000, },
2789		{ 4125, 3000, },
2790		{ 4125, 3000, },
2791		{ 4125, 3000, },
2792		{ 4125, 3000, },
2793		{ 4125, 3000, },
2794		{ 4125, 3000, },
2795		{ 4125, 3000, },
2796		{ 4125, 3000, },
2797		{ 4125, 3000, },
2798		{ 4250, 3125, },
2799		{ 4375, 3250, },
2800		{ 4500, 3375, },
2801		{ 4625, 3500, },
2802		{ 4750, 3625, },
2803		{ 4875, 3750, },
2804		{ 5000, 3875, },
2805		{ 5125, 4000, },
2806		{ 5250, 4125, },
2807		{ 5375, 4250, },
2808		{ 5500, 4375, },
2809		{ 5625, 4500, },
2810		{ 5750, 4625, },
2811		{ 5875, 4750, },
2812		{ 6000, 4875, },
2813		{ 6125, 5000, },
2814		{ 6250, 5125, },
2815		{ 6375, 5250, },
2816		{ 6500, 5375, },
2817		{ 6625, 5500, },
2818		{ 6750, 5625, },
2819		{ 6875, 5750, },
2820		{ 7000, 5875, },
2821		{ 7125, 6000, },
2822		{ 7250, 6125, },
2823		{ 7375, 6250, },
2824		{ 7500, 6375, },
2825		{ 7625, 6500, },
2826		{ 7750, 6625, },
2827		{ 7875, 6750, },
2828		{ 8000, 6875, },
2829		{ 8125, 7000, },
2830		{ 8250, 7125, },
2831		{ 8375, 7250, },
2832		{ 8500, 7375, },
2833		{ 8625, 7500, },
2834		{ 8750, 7625, },
2835		{ 8875, 7750, },
2836		{ 9000, 7875, },
2837		{ 9125, 8000, },
2838		{ 9250, 8125, },
2839		{ 9375, 8250, },
2840		{ 9500, 8375, },
2841		{ 9625, 8500, },
2842		{ 9750, 8625, },
2843		{ 9875, 8750, },
2844		{ 10000, 8875, },
2845		{ 10125, 9000, },
2846		{ 10250, 9125, },
2847		{ 10375, 9250, },
2848		{ 10500, 9375, },
2849		{ 10625, 9500, },
2850		{ 10750, 9625, },
2851		{ 10875, 9750, },
2852		{ 11000, 9875, },
2853		{ 11125, 10000, },
2854		{ 11250, 10125, },
2855		{ 11375, 10250, },
2856		{ 11500, 10375, },
2857		{ 11625, 10500, },
2858		{ 11750, 10625, },
2859		{ 11875, 10750, },
2860		{ 12000, 10875, },
2861		{ 12125, 11000, },
2862		{ 12250, 11125, },
2863		{ 12375, 11250, },
2864		{ 12500, 11375, },
2865		{ 12625, 11500, },
2866		{ 12750, 11625, },
2867		{ 12875, 11750, },
2868		{ 13000, 11875, },
2869		{ 13125, 12000, },
2870		{ 13250, 12125, },
2871		{ 13375, 12250, },
2872		{ 13500, 12375, },
2873		{ 13625, 12500, },
2874		{ 13750, 12625, },
2875		{ 13875, 12750, },
2876		{ 14000, 12875, },
2877		{ 14125, 13000, },
2878		{ 14250, 13125, },
2879		{ 14375, 13250, },
2880		{ 14500, 13375, },
2881		{ 14625, 13500, },
2882		{ 14750, 13625, },
2883		{ 14875, 13750, },
2884		{ 15000, 13875, },
2885		{ 15125, 14000, },
2886		{ 15250, 14125, },
2887		{ 15375, 14250, },
2888		{ 15500, 14375, },
2889		{ 15625, 14500, },
2890		{ 15750, 14625, },
2891		{ 15875, 14750, },
2892		{ 16000, 14875, },
2893		{ 16125, 15000, },
2894	};
2895	if (dev_priv->info->is_mobile)
2896		return v_table[pxvid].vm;
2897	else
2898		return v_table[pxvid].vd;
2899}
2900
2901void i915_update_gfx_val(struct drm_i915_private *dev_priv)
2902{
2903	struct timespec now, diff1;
2904	u64 diff;
2905	unsigned long diffms;
2906	u32 count;
2907
2908	if (dev_priv->info->gen != 5)
2909		return;
2910
2911	getrawmonotonic(&now);
2912	diff1 = timespec_sub(now, dev_priv->last_time2);
2913
2914	/* Don't divide by 0 */
2915	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2916	if (!diffms)
2917		return;
2918
2919	count = I915_READ(GFXEC);
2920
2921	if (count < dev_priv->last_count2) {
2922		diff = ~0UL - dev_priv->last_count2;
2923		diff += count;
2924	} else {
2925		diff = count - dev_priv->last_count2;
2926	}
2927
2928	dev_priv->last_count2 = count;
2929	dev_priv->last_time2 = now;
2930
2931	/* More magic constants... */
2932	diff = diff * 1181;
2933	diff = div_u64(diff, diffms * 10);
2934	dev_priv->gfx_power = diff;
2935}
2936
2937unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
2938{
2939	unsigned long t, corr, state1, corr2, state2;
2940	u32 pxvid, ext_v;
2941
2942	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4));
2943	pxvid = (pxvid >> 24) & 0x7f;
2944	ext_v = pvid_to_extvid(dev_priv, pxvid);
2945
2946	state1 = ext_v;
2947
2948	t = i915_mch_val(dev_priv);
2949
2950	/* Revel in the empirically derived constants */
2951
2952	/* Correction factor in 1/100000 units */
2953	if (t > 80)
2954		corr = ((t * 2349) + 135940);
2955	else if (t >= 50)
2956		corr = ((t * 964) + 29317);
2957	else /* < 50 */
2958		corr = ((t * 301) + 1004);
2959
2960	corr = corr * ((150142 * state1) / 10000 - 78642);
2961	corr /= 100000;
2962	corr2 = (corr * dev_priv->corr);
2963
2964	state2 = (corr2 * state1) / 10000;
2965	state2 /= 100; /* convert to mW */
2966
2967	i915_update_gfx_val(dev_priv);
2968
2969	return dev_priv->gfx_power + state2;
2970}
2971
2972/* Global for IPS driver to get at the current i915 device */
2973static struct drm_i915_private *i915_mch_dev;
2974/*
2975 * Lock protecting IPS related data structures
2976 *   - i915_mch_dev
2977 *   - dev_priv->max_delay
2978 *   - dev_priv->min_delay
2979 *   - dev_priv->fmax
2980 *   - dev_priv->gpu_busy
2981 */
2982static DEFINE_SPINLOCK(mchdev_lock);
2983
2984/**
2985 * i915_read_mch_val - return value for IPS use
2986 *
2987 * Calculate and return a value for the IPS driver to use when deciding whether
2988 * we have thermal and power headroom to increase CPU or GPU power budget.
2989 */
2990unsigned long i915_read_mch_val(void)
2991{
2992	struct drm_i915_private *dev_priv;
2993	unsigned long chipset_val, graphics_val, ret = 0;
2994
2995	spin_lock(&mchdev_lock);
2996	if (!i915_mch_dev)
2997		goto out_unlock;
2998	dev_priv = i915_mch_dev;
2999
3000	chipset_val = i915_chipset_val(dev_priv);
3001	graphics_val = i915_gfx_val(dev_priv);
3002
3003	ret = chipset_val + graphics_val;
3004
3005out_unlock:
3006	spin_unlock(&mchdev_lock);
3007
3008	return ret;
3009}
3010EXPORT_SYMBOL_GPL(i915_read_mch_val);
3011
3012/**
3013 * i915_gpu_raise - raise GPU frequency limit
3014 *
3015 * Raise the limit; IPS indicates we have thermal headroom.
3016 */
3017bool i915_gpu_raise(void)
3018{
3019	struct drm_i915_private *dev_priv;
3020	bool ret = true;
3021
3022	spin_lock(&mchdev_lock);
3023	if (!i915_mch_dev) {
3024		ret = false;
3025		goto out_unlock;
3026	}
3027	dev_priv = i915_mch_dev;
3028
3029	if (dev_priv->max_delay > dev_priv->fmax)
3030		dev_priv->max_delay--;
3031
3032out_unlock:
3033	spin_unlock(&mchdev_lock);
3034
3035	return ret;
3036}
3037EXPORT_SYMBOL_GPL(i915_gpu_raise);
3038
3039/**
3040 * i915_gpu_lower - lower GPU frequency limit
3041 *
3042 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3043 * frequency maximum.
3044 */
3045bool i915_gpu_lower(void)
3046{
3047	struct drm_i915_private *dev_priv;
3048	bool ret = true;
3049
3050	spin_lock(&mchdev_lock);
3051	if (!i915_mch_dev) {
3052		ret = false;
3053		goto out_unlock;
3054	}
3055	dev_priv = i915_mch_dev;
3056
3057	if (dev_priv->max_delay < dev_priv->min_delay)
3058		dev_priv->max_delay++;
3059
3060out_unlock:
3061	spin_unlock(&mchdev_lock);
3062
3063	return ret;
3064}
3065EXPORT_SYMBOL_GPL(i915_gpu_lower);
3066
3067/**
3068 * i915_gpu_busy - indicate GPU business to IPS
3069 *
3070 * Tell the IPS driver whether or not the GPU is busy.
3071 */
3072bool i915_gpu_busy(void)
3073{
3074	struct drm_i915_private *dev_priv;
3075	bool ret = false;
3076
3077	spin_lock(&mchdev_lock);
3078	if (!i915_mch_dev)
3079		goto out_unlock;
3080	dev_priv = i915_mch_dev;
3081
3082	ret = dev_priv->busy;
3083
3084out_unlock:
3085	spin_unlock(&mchdev_lock);
3086
3087	return ret;
3088}
3089EXPORT_SYMBOL_GPL(i915_gpu_busy);
3090
3091/**
3092 * i915_gpu_turbo_disable - disable graphics turbo
3093 *
3094 * Disable graphics turbo by resetting the max frequency and setting the
3095 * current frequency to the default.
3096 */
3097bool i915_gpu_turbo_disable(void)
3098{
3099	struct drm_i915_private *dev_priv;
3100	bool ret = true;
3101
3102	spin_lock(&mchdev_lock);
3103	if (!i915_mch_dev) {
3104		ret = false;
3105		goto out_unlock;
3106	}
3107	dev_priv = i915_mch_dev;
3108
3109	dev_priv->max_delay = dev_priv->fstart;
3110
3111	if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
3112		ret = false;
3113
3114out_unlock:
3115	spin_unlock(&mchdev_lock);
3116
3117	return ret;
3118}
3119EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3120
3121/**
3122 * Tells the intel_ips driver that the i915 driver is now loaded, if
3123 * IPS got loaded first.
3124 *
3125 * This awkward dance is so that neither module has to depend on the
3126 * other in order for IPS to do the appropriate communication of
3127 * GPU turbo limits to i915.
3128 */
3129static void
3130ips_ping_for_i915_load(void)
3131{
3132	void (*link)(void);
3133
3134	link = symbol_get(ips_link_to_i915_driver);
3135	if (link) {
3136		link();
3137		symbol_put(ips_link_to_i915_driver);
3138	}
3139}
3140
3141void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3142{
3143	spin_lock(&mchdev_lock);
3144	i915_mch_dev = dev_priv;
3145	dev_priv->mchdev_lock = &mchdev_lock;
3146	spin_unlock(&mchdev_lock);
3147
3148	ips_ping_for_i915_load();
3149}
3150
3151void intel_gpu_ips_teardown(void)
3152{
3153	spin_lock(&mchdev_lock);
3154	i915_mch_dev = NULL;
3155	spin_unlock(&mchdev_lock);
3156}
3157
3158void intel_init_emon(struct drm_device *dev)
3159{
3160	struct drm_i915_private *dev_priv = dev->dev_private;
3161	u32 lcfuse;
3162	u8 pxw[16];
3163	int i;
3164
3165	/* Disable to program */
3166	I915_WRITE(ECR, 0);
3167	POSTING_READ(ECR);
3168
3169	/* Program energy weights for various events */
3170	I915_WRITE(SDEW, 0x15040d00);
3171	I915_WRITE(CSIEW0, 0x007f0000);
3172	I915_WRITE(CSIEW1, 0x1e220004);
3173	I915_WRITE(CSIEW2, 0x04000004);
3174
3175	for (i = 0; i < 5; i++)
3176		I915_WRITE(PEW + (i * 4), 0);
3177	for (i = 0; i < 3; i++)
3178		I915_WRITE(DEW + (i * 4), 0);
3179
3180	/* Program P-state weights to account for frequency power adjustment */
3181	for (i = 0; i < 16; i++) {
3182		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3183		unsigned long freq = intel_pxfreq(pxvidfreq);
3184		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3185			PXVFREQ_PX_SHIFT;
3186		unsigned long val;
3187
3188		val = vid * vid;
3189		val *= (freq / 1000);
3190		val *= 255;
3191		val /= (127*127*900);
3192		if (val > 0xff)
3193			DRM_ERROR("bad pxval: %ld\n", val);
3194		pxw[i] = val;
3195	}
3196	/* Render standby states get 0 weight */
3197	pxw[14] = 0;
3198	pxw[15] = 0;
3199
3200	for (i = 0; i < 4; i++) {
3201		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3202			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3203		I915_WRITE(PXW + (i * 4), val);
3204	}
3205
3206	/* Adjust magic regs to magic values (more experimental results) */
3207	I915_WRITE(OGW0, 0);
3208	I915_WRITE(OGW1, 0);
3209	I915_WRITE(EG0, 0x00007f00);
3210	I915_WRITE(EG1, 0x0000000e);
3211	I915_WRITE(EG2, 0x000e0000);
3212	I915_WRITE(EG3, 0x68000300);
3213	I915_WRITE(EG4, 0x42000000);
3214	I915_WRITE(EG5, 0x00140031);
3215	I915_WRITE(EG6, 0);
3216	I915_WRITE(EG7, 0);
3217
3218	for (i = 0; i < 8; i++)
3219		I915_WRITE(PXWL + (i * 4), 0);
3220
3221	/* Enable PMON + select events */
3222	I915_WRITE(ECR, 0x80000019);
3223
3224	lcfuse = I915_READ(LCFUSE02);
3225
3226	dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
3227}
3228
3229static void ironlake_init_clock_gating(struct drm_device *dev)
3230{
3231	struct drm_i915_private *dev_priv = dev->dev_private;
3232	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3233
3234	/* Required for FBC */
3235	dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3236		DPFCRUNIT_CLOCK_GATE_DISABLE |
3237		DPFDUNIT_CLOCK_GATE_DISABLE;
3238	/* Required for CxSR */
3239	dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3240
3241	I915_WRITE(PCH_3DCGDIS0,
3242		   MARIUNIT_CLOCK_GATE_DISABLE |
3243		   SVSMUNIT_CLOCK_GATE_DISABLE);
3244	I915_WRITE(PCH_3DCGDIS1,
3245		   VFMUNIT_CLOCK_GATE_DISABLE);
3246
3247	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3248
3249	/*
3250	 * According to the spec the following bits should be set in
3251	 * order to enable memory self-refresh
3252	 * The bit 22/21 of 0x42004
3253	 * The bit 5 of 0x42020
3254	 * The bit 15 of 0x45000
3255	 */
3256	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3257		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3258		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3259	I915_WRITE(ILK_DSPCLK_GATE,
3260		   (I915_READ(ILK_DSPCLK_GATE) |
3261		    ILK_DPARB_CLK_GATE));
3262	I915_WRITE(DISP_ARB_CTL,
3263		   (I915_READ(DISP_ARB_CTL) |
3264		    DISP_FBC_WM_DIS));
3265	I915_WRITE(WM3_LP_ILK, 0);
3266	I915_WRITE(WM2_LP_ILK, 0);
3267	I915_WRITE(WM1_LP_ILK, 0);
3268
3269	/*
3270	 * Based on the document from hardware guys the following bits
3271	 * should be set unconditionally in order to enable FBC.
3272	 * The bit 22 of 0x42000
3273	 * The bit 22 of 0x42004
3274	 * The bit 7,8,9 of 0x42020.
3275	 */
3276	if (IS_IRONLAKE_M(dev)) {
3277		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3278			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3279			   ILK_FBCQ_DIS);
3280		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3281			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3282			   ILK_DPARB_GATE);
3283		I915_WRITE(ILK_DSPCLK_GATE,
3284			   I915_READ(ILK_DSPCLK_GATE) |
3285			   ILK_DPFC_DIS1 |
3286			   ILK_DPFC_DIS2 |
3287			   ILK_CLK_FBC);
3288	}
3289
3290	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3291		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3292		   ILK_ELPIN_409_SELECT);
3293	I915_WRITE(_3D_CHICKEN2,
3294		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3295		   _3D_CHICKEN2_WM_READ_PIPELINED);
3296}
3297
3298static void gen6_init_clock_gating(struct drm_device *dev)
3299{
3300	struct drm_i915_private *dev_priv = dev->dev_private;
3301	int pipe;
3302	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3303
3304	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3305
3306	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3307		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3308		   ILK_ELPIN_409_SELECT);
3309
3310	I915_WRITE(WM3_LP_ILK, 0);
3311	I915_WRITE(WM2_LP_ILK, 0);
3312	I915_WRITE(WM1_LP_ILK, 0);
3313
3314	I915_WRITE(CACHE_MODE_0,
3315		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3316
3317	I915_WRITE(GEN6_UCGCTL1,
3318		   I915_READ(GEN6_UCGCTL1) |
3319		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3320		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3321
3322	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3323	 * gating disable must be set.  Failure to set it results in
3324	 * flickering pixels due to Z write ordering failures after
3325	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3326	 * Sanctuary and Tropics, and apparently anything else with
3327	 * alpha test or pixel discard.
3328	 *
3329	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3330	 * but we didn't debug actual testcases to find it out.
3331	 */
3332	I915_WRITE(GEN6_UCGCTL2,
3333		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3334		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3335
3336	/* Bspec says we need to always set all mask bits. */
3337	I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
3338		   _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
3339
3340	/*
3341	 * According to the spec the following bits should be
3342	 * set in order to enable memory self-refresh and fbc:
3343	 * The bit21 and bit22 of 0x42000
3344	 * The bit21 and bit22 of 0x42004
3345	 * The bit5 and bit7 of 0x42020
3346	 * The bit14 of 0x70180
3347	 * The bit14 of 0x71180
3348	 */
3349	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3350		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3351		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3352	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3353		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3354		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3355	I915_WRITE(ILK_DSPCLK_GATE,
3356		   I915_READ(ILK_DSPCLK_GATE) |
3357		   ILK_DPARB_CLK_GATE  |
3358		   ILK_DPFD_CLK_GATE);
3359
3360	for_each_pipe(pipe) {
3361		I915_WRITE(DSPCNTR(pipe),
3362			   I915_READ(DSPCNTR(pipe)) |
3363			   DISPPLANE_TRICKLE_FEED_DISABLE);
3364		intel_flush_display_plane(dev_priv, pipe);
3365	}
3366}
3367
3368static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3369{
3370	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3371
3372	reg &= ~GEN7_FF_SCHED_MASK;
3373	reg |= GEN7_FF_TS_SCHED_HW;
3374	reg |= GEN7_FF_VS_SCHED_HW;
3375	reg |= GEN7_FF_DS_SCHED_HW;
3376
3377	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3378}
3379
3380static void ivybridge_init_clock_gating(struct drm_device *dev)
3381{
3382	struct drm_i915_private *dev_priv = dev->dev_private;
3383	int pipe;
3384	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3385
3386	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3387
3388	I915_WRITE(WM3_LP_ILK, 0);
3389	I915_WRITE(WM2_LP_ILK, 0);
3390	I915_WRITE(WM1_LP_ILK, 0);
3391
3392	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3393	 * This implements the WaDisableRCZUnitClockGating workaround.
3394	 */
3395	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3396
3397	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3398
3399	I915_WRITE(IVB_CHICKEN3,
3400		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3401		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3402
3403	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3404	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3405		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3406
3407	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3408	I915_WRITE(GEN7_L3CNTLREG1,
3409			GEN7_WA_FOR_GEN7_L3_CONTROL);
3410	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3411			GEN7_WA_L3_CHICKEN_MODE);
3412
3413	/* This is required by WaCatErrorRejectionIssue */
3414	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3415			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3416			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3417
3418	for_each_pipe(pipe) {
3419		I915_WRITE(DSPCNTR(pipe),
3420			   I915_READ(DSPCNTR(pipe)) |
3421			   DISPPLANE_TRICKLE_FEED_DISABLE);
3422		intel_flush_display_plane(dev_priv, pipe);
3423	}
3424
3425	gen7_setup_fixed_func_scheduler(dev_priv);
3426
3427	/* WaDisable4x2SubspanOptimization */
3428	I915_WRITE(CACHE_MODE_1,
3429		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3430}
3431
3432static void valleyview_init_clock_gating(struct drm_device *dev)
3433{
3434	struct drm_i915_private *dev_priv = dev->dev_private;
3435	int pipe;
3436	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3437
3438	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3439
3440	I915_WRITE(WM3_LP_ILK, 0);
3441	I915_WRITE(WM2_LP_ILK, 0);
3442	I915_WRITE(WM1_LP_ILK, 0);
3443
3444	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3445	 * This implements the WaDisableRCZUnitClockGating workaround.
3446	 */
3447	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3448
3449	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3450
3451	I915_WRITE(IVB_CHICKEN3,
3452		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3453		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3454
3455	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3456	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3457		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3458
3459	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3460	I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3461	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3462
3463	/* This is required by WaCatErrorRejectionIssue */
3464	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3465		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3466		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3467
3468	for_each_pipe(pipe) {
3469		I915_WRITE(DSPCNTR(pipe),
3470			   I915_READ(DSPCNTR(pipe)) |
3471			   DISPPLANE_TRICKLE_FEED_DISABLE);
3472		intel_flush_display_plane(dev_priv, pipe);
3473	}
3474
3475	I915_WRITE(CACHE_MODE_1,
3476		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3477}
3478
3479static void g4x_init_clock_gating(struct drm_device *dev)
3480{
3481	struct drm_i915_private *dev_priv = dev->dev_private;
3482	uint32_t dspclk_gate;
3483
3484	I915_WRITE(RENCLK_GATE_D1, 0);
3485	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3486		   GS_UNIT_CLOCK_GATE_DISABLE |
3487		   CL_UNIT_CLOCK_GATE_DISABLE);
3488	I915_WRITE(RAMCLK_GATE_D, 0);
3489	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3490		OVRUNIT_CLOCK_GATE_DISABLE |
3491		OVCUNIT_CLOCK_GATE_DISABLE;
3492	if (IS_GM45(dev))
3493		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3494	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3495}
3496
3497static void crestline_init_clock_gating(struct drm_device *dev)
3498{
3499	struct drm_i915_private *dev_priv = dev->dev_private;
3500
3501	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3502	I915_WRITE(RENCLK_GATE_D2, 0);
3503	I915_WRITE(DSPCLK_GATE_D, 0);
3504	I915_WRITE(RAMCLK_GATE_D, 0);
3505	I915_WRITE16(DEUC, 0);
3506}
3507
3508static void broadwater_init_clock_gating(struct drm_device *dev)
3509{
3510	struct drm_i915_private *dev_priv = dev->dev_private;
3511
3512	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3513		   I965_RCC_CLOCK_GATE_DISABLE |
3514		   I965_RCPB_CLOCK_GATE_DISABLE |
3515		   I965_ISC_CLOCK_GATE_DISABLE |
3516		   I965_FBC_CLOCK_GATE_DISABLE);
3517	I915_WRITE(RENCLK_GATE_D2, 0);
3518}
3519
3520static void gen3_init_clock_gating(struct drm_device *dev)
3521{
3522	struct drm_i915_private *dev_priv = dev->dev_private;
3523	u32 dstate = I915_READ(D_STATE);
3524
3525	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3526		DSTATE_DOT_CLOCK_GATING;
3527	I915_WRITE(D_STATE, dstate);
3528
3529	if (IS_PINEVIEW(dev))
3530		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3531
3532	/* IIR "flip pending" means done if this bit is set */
3533	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
3534}
3535
3536static void i85x_init_clock_gating(struct drm_device *dev)
3537{
3538	struct drm_i915_private *dev_priv = dev->dev_private;
3539
3540	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3541}
3542
3543static void i830_init_clock_gating(struct drm_device *dev)
3544{
3545	struct drm_i915_private *dev_priv = dev->dev_private;
3546
3547	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3548}
3549
3550static void ibx_init_clock_gating(struct drm_device *dev)
3551{
3552	struct drm_i915_private *dev_priv = dev->dev_private;
3553
3554	/*
3555	 * On Ibex Peak and Cougar Point, we need to disable clock
3556	 * gating for the panel power sequencer or it will fail to
3557	 * start up when no ports are active.
3558	 */
3559	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3560}
3561
3562static void cpt_init_clock_gating(struct drm_device *dev)
3563{
3564	struct drm_i915_private *dev_priv = dev->dev_private;
3565	int pipe;
3566
3567	/*
3568	 * On Ibex Peak and Cougar Point, we need to disable clock
3569	 * gating for the panel power sequencer or it will fail to
3570	 * start up when no ports are active.
3571	 */
3572	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3573	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3574		   DPLS_EDP_PPS_FIX_DIS);
3575	/* Without this, mode sets may fail silently on FDI */
3576	for_each_pipe(pipe)
3577		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3578}
3579
3580void intel_init_clock_gating(struct drm_device *dev)
3581{
3582	struct drm_i915_private *dev_priv = dev->dev_private;
3583
3584	dev_priv->display.init_clock_gating(dev);
3585
3586	if (dev_priv->display.init_pch_clock_gating)
3587		dev_priv->display.init_pch_clock_gating(dev);
3588}
3589
3590static void gen6_sanitize_pm(struct drm_device *dev)
3591{
3592	struct drm_i915_private *dev_priv = dev->dev_private;
3593	u32 limits, delay, old;
3594
3595	gen6_gt_force_wake_get(dev_priv);
3596
3597	old = limits = I915_READ(GEN6_RP_INTERRUPT_LIMITS);
3598	/* Make sure we continue to get interrupts
3599	 * until we hit the minimum or maximum frequencies.
3600	 */
3601	limits &= ~(0x3f << 16 | 0x3f << 24);
3602	delay = dev_priv->cur_delay;
3603	if (delay < dev_priv->max_delay)
3604		limits |= (dev_priv->max_delay & 0x3f) << 24;
3605	if (delay > dev_priv->min_delay)
3606		limits |= (dev_priv->min_delay & 0x3f) << 16;
3607
3608	if (old != limits) {
3609		/* Note that the known failure case is to read back 0. */
3610		DRM_DEBUG_DRIVER("Power management discrepancy: GEN6_RP_INTERRUPT_LIMITS "
3611				 "expected %08x, was %08x\n", limits, old);
3612		I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3613	}
3614
3615	gen6_gt_force_wake_put(dev_priv);
3616}
3617
3618void intel_sanitize_pm(struct drm_device *dev)
3619{
3620	struct drm_i915_private *dev_priv = dev->dev_private;
3621
3622	if (dev_priv->display.sanitize_pm)
3623		dev_priv->display.sanitize_pm(dev);
3624}
3625
3626/* Starting with Haswell, we have different power wells for
3627 * different parts of the GPU. This attempts to enable them all.
3628 */
3629void intel_init_power_wells(struct drm_device *dev)
3630{
3631	struct drm_i915_private *dev_priv = dev->dev_private;
3632	unsigned long power_wells[] = {
3633		HSW_PWR_WELL_CTL1,
3634		HSW_PWR_WELL_CTL2,
3635		HSW_PWR_WELL_CTL4
3636	};
3637	int i;
3638
3639	if (!IS_HASWELL(dev))
3640		return;
3641
3642	mutex_lock(&dev->struct_mutex);
3643
3644	for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3645		int well = I915_READ(power_wells[i]);
3646
3647		if ((well & HSW_PWR_WELL_STATE) == 0) {
3648			I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3649			if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
3650				DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3651		}
3652	}
3653
3654	mutex_unlock(&dev->struct_mutex);
3655}
3656
3657/* Set up chip specific power management-related functions */
3658void intel_init_pm(struct drm_device *dev)
3659{
3660	struct drm_i915_private *dev_priv = dev->dev_private;
3661
3662	if (I915_HAS_FBC(dev)) {
3663		if (HAS_PCH_SPLIT(dev)) {
3664			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3665			dev_priv->display.enable_fbc = ironlake_enable_fbc;
3666			dev_priv->display.disable_fbc = ironlake_disable_fbc;
3667		} else if (IS_GM45(dev)) {
3668			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3669			dev_priv->display.enable_fbc = g4x_enable_fbc;
3670			dev_priv->display.disable_fbc = g4x_disable_fbc;
3671		} else if (IS_CRESTLINE(dev)) {
3672			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3673			dev_priv->display.enable_fbc = i8xx_enable_fbc;
3674			dev_priv->display.disable_fbc = i8xx_disable_fbc;
3675		}
3676		/* 855GM needs testing */
3677	}
3678
3679	/* For cxsr */
3680	if (IS_PINEVIEW(dev))
3681		i915_pineview_get_mem_freq(dev);
3682	else if (IS_GEN5(dev))
3683		i915_ironlake_get_mem_freq(dev);
3684
3685	/* For FIFO watermark updates */
3686	if (HAS_PCH_SPLIT(dev)) {
3687		dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
3688		dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
3689
3690		/* IVB configs may use multi-threaded forcewake */
3691		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
3692			u32	ecobus;
3693
3694			/* A small trick here - if the bios hasn't configured MT forcewake,
3695			 * and if the device is in RC6, then force_wake_mt_get will not wake
3696			 * the device and the ECOBUS read will return zero. Which will be
3697			 * (correctly) interpreted by the test below as MT forcewake being
3698			 * disabled.
3699			 */
3700			mutex_lock(&dev->struct_mutex);
3701			__gen6_gt_force_wake_mt_get(dev_priv);
3702			ecobus = I915_READ_NOTRACE(ECOBUS);
3703			__gen6_gt_force_wake_mt_put(dev_priv);
3704			mutex_unlock(&dev->struct_mutex);
3705
3706			if (ecobus & FORCEWAKE_MT_ENABLE) {
3707				DRM_DEBUG_KMS("Using MT version of forcewake\n");
3708				dev_priv->display.force_wake_get =
3709					__gen6_gt_force_wake_mt_get;
3710				dev_priv->display.force_wake_put =
3711					__gen6_gt_force_wake_mt_put;
3712			}
3713		}
3714
3715		if (HAS_PCH_IBX(dev))
3716			dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3717		else if (HAS_PCH_CPT(dev))
3718			dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3719
3720		if (IS_GEN5(dev)) {
3721			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3722				dev_priv->display.update_wm = ironlake_update_wm;
3723			else {
3724				DRM_DEBUG_KMS("Failed to get proper latency. "
3725					      "Disable CxSR\n");
3726				dev_priv->display.update_wm = NULL;
3727			}
3728			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3729		} else if (IS_GEN6(dev)) {
3730			if (SNB_READ_WM0_LATENCY()) {
3731				dev_priv->display.update_wm = sandybridge_update_wm;
3732				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3733			} else {
3734				DRM_DEBUG_KMS("Failed to read display plane latency. "
3735					      "Disable CxSR\n");
3736				dev_priv->display.update_wm = NULL;
3737			}
3738			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3739			dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3740		} else if (IS_IVYBRIDGE(dev)) {
3741			/* FIXME: detect B0+ stepping and use auto training */
3742			if (SNB_READ_WM0_LATENCY()) {
3743				dev_priv->display.update_wm = sandybridge_update_wm;
3744				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3745			} else {
3746				DRM_DEBUG_KMS("Failed to read display plane latency. "
3747					      "Disable CxSR\n");
3748				dev_priv->display.update_wm = NULL;
3749			}
3750			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3751			dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3752		} else if (IS_HASWELL(dev)) {
3753			if (SNB_READ_WM0_LATENCY()) {
3754				dev_priv->display.update_wm = sandybridge_update_wm;
3755				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3756				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3757			} else {
3758				DRM_DEBUG_KMS("Failed to read display plane latency. "
3759					      "Disable CxSR\n");
3760				dev_priv->display.update_wm = NULL;
3761			}
3762			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3763			dev_priv->display.sanitize_pm = gen6_sanitize_pm;
3764		} else
3765			dev_priv->display.update_wm = NULL;
3766	} else if (IS_VALLEYVIEW(dev)) {
3767		dev_priv->display.update_wm = valleyview_update_wm;
3768		dev_priv->display.init_clock_gating =
3769			valleyview_init_clock_gating;
3770		dev_priv->display.force_wake_get = vlv_force_wake_get;
3771		dev_priv->display.force_wake_put = vlv_force_wake_put;
3772	} else if (IS_PINEVIEW(dev)) {
3773		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
3774					    dev_priv->is_ddr3,
3775					    dev_priv->fsb_freq,
3776					    dev_priv->mem_freq)) {
3777			DRM_INFO("failed to find known CxSR latency "
3778				 "(found ddr%s fsb freq %d, mem freq %d), "
3779				 "disabling CxSR\n",
3780				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
3781				 dev_priv->fsb_freq, dev_priv->mem_freq);
3782			/* Disable CxSR and never update its watermark again */
3783			pineview_disable_cxsr(dev);
3784			dev_priv->display.update_wm = NULL;
3785		} else
3786			dev_priv->display.update_wm = pineview_update_wm;
3787		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3788	} else if (IS_G4X(dev)) {
3789		dev_priv->display.update_wm = g4x_update_wm;
3790		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
3791	} else if (IS_GEN4(dev)) {
3792		dev_priv->display.update_wm = i965_update_wm;
3793		if (IS_CRESTLINE(dev))
3794			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
3795		else if (IS_BROADWATER(dev))
3796			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
3797	} else if (IS_GEN3(dev)) {
3798		dev_priv->display.update_wm = i9xx_update_wm;
3799		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
3800		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
3801	} else if (IS_I865G(dev)) {
3802		dev_priv->display.update_wm = i830_update_wm;
3803		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3804		dev_priv->display.get_fifo_size = i830_get_fifo_size;
3805	} else if (IS_I85X(dev)) {
3806		dev_priv->display.update_wm = i9xx_update_wm;
3807		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
3808		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
3809	} else {
3810		dev_priv->display.update_wm = i830_update_wm;
3811		dev_priv->display.init_clock_gating = i830_init_clock_gating;
3812		if (IS_845G(dev))
3813			dev_priv->display.get_fifo_size = i845_get_fifo_size;
3814		else
3815			dev_priv->display.get_fifo_size = i830_get_fifo_size;
3816	}
3817
3818	/* We attempt to init the necessary power wells early in the initialization
3819	 * time, so the subsystems that expect power to be enabled can work.
3820	 */
3821	intel_init_power_wells(dev);
3822}
3823