Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
   4 * Copyright (C) 2019 Topic Embedded Products
   5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
   6 *
   7 * The Si5341 has 10 outputs and 5 synthesizers.
   8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
   9 * The Si5345 is similar to the Si5341, with the addition of fractional input
  10 * dividers and automatic input selection.
  11 * The Si5342 and Si5344 are smaller versions of the Si5345.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/clk-provider.h>
  16#include <linux/delay.h>
  17#include <linux/gcd.h>
  18#include <linux/math64.h>
  19#include <linux/i2c.h>
  20#include <linux/module.h>
  21#include <linux/regmap.h>
  22#include <linux/slab.h>
  23#include <asm/unaligned.h>
  24
  25#define SI5341_NUM_INPUTS 4
  26
  27#define SI5340_MAX_NUM_OUTPUTS 4
  28#define SI5341_MAX_NUM_OUTPUTS 10
  29#define SI5342_MAX_NUM_OUTPUTS 2
  30#define SI5344_MAX_NUM_OUTPUTS 4
  31#define SI5345_MAX_NUM_OUTPUTS 10
  32
  33#define SI5340_NUM_SYNTH 4
  34#define SI5341_NUM_SYNTH 5
  35#define SI5342_NUM_SYNTH 2
  36#define SI5344_NUM_SYNTH 4
  37#define SI5345_NUM_SYNTH 5
  38
  39/* Range of the synthesizer fractional divider */
  40#define SI5341_SYNTH_N_MIN	10
  41#define SI5341_SYNTH_N_MAX	4095
  42
  43/* The chip can get its input clock from 3 input pins or an XTAL */
  44
  45/* There is one PLL running at 13500–14256 MHz */
  46#define SI5341_PLL_VCO_MIN 13500000000ull
  47#define SI5341_PLL_VCO_MAX 14256000000ull
  48
  49/* The 5 frequency synthesizers obtain their input from the PLL */
  50struct clk_si5341_synth {
  51	struct clk_hw hw;
  52	struct clk_si5341 *data;
  53	u8 index;
  54};
  55#define to_clk_si5341_synth(_hw) \
  56	container_of(_hw, struct clk_si5341_synth, hw)
  57
  58/* The output stages can be connected to any synth (full mux) */
  59struct clk_si5341_output {
  60	struct clk_hw hw;
  61	struct clk_si5341 *data;
  62	u8 index;
  63};
  64#define to_clk_si5341_output(_hw) \
  65	container_of(_hw, struct clk_si5341_output, hw)
  66
  67struct clk_si5341 {
  68	struct clk_hw hw;
  69	struct regmap *regmap;
  70	struct i2c_client *i2c_client;
  71	struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
  72	struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
  73	struct clk *input_clk[SI5341_NUM_INPUTS];
  74	const char *input_clk_name[SI5341_NUM_INPUTS];
  75	const u16 *reg_output_offset;
  76	const u16 *reg_rdiv_offset;
  77	u64 freq_vco; /* 13500–14256 MHz */
  78	u8 num_outputs;
  79	u8 num_synth;
  80	u16 chip_id;
  81};
  82#define to_clk_si5341(_hw)	container_of(_hw, struct clk_si5341, hw)
  83
  84struct clk_si5341_output_config {
  85	u8 out_format_drv_bits;
  86	u8 out_cm_ampl_bits;
  87	bool synth_master;
  88	bool always_on;
  89};
  90
  91#define SI5341_PAGE		0x0001
  92#define SI5341_PN_BASE		0x0002
  93#define SI5341_DEVICE_REV	0x0005
  94#define SI5341_STATUS		0x000C
  95#define SI5341_SOFT_RST		0x001C
  96#define SI5341_IN_SEL		0x0021
  97#define SI5341_XAXB_CFG		0x090E
  98#define SI5341_IN_EN		0x0949
  99#define SI5341_INX_TO_PFD_EN	0x094A
 100
 101/* Input selection */
 102#define SI5341_IN_SEL_MASK	0x06
 103#define SI5341_IN_SEL_SHIFT	1
 104#define SI5341_IN_SEL_REGCTRL	0x01
 105#define SI5341_INX_TO_PFD_SHIFT	4
 106
 107/* XTAL config bits */
 108#define SI5341_XAXB_CFG_EXTCLK_EN	BIT(0)
 109#define SI5341_XAXB_CFG_PDNB		BIT(1)
 110
 111/* Input dividers (48-bit) */
 112#define SI5341_IN_PDIV(x)	(0x0208 + ((x) * 10))
 113#define SI5341_IN_PSET(x)	(0x020E + ((x) * 10))
 114#define SI5341_PX_UPD		0x0230
 115
 116/* PLL configuration */
 117#define SI5341_PLL_M_NUM	0x0235
 118#define SI5341_PLL_M_DEN	0x023B
 119
 120/* Output configuration */
 121#define SI5341_OUT_CONFIG(output)	\
 122			((output)->data->reg_output_offset[(output)->index])
 123#define SI5341_OUT_FORMAT(output)	(SI5341_OUT_CONFIG(output) + 1)
 124#define SI5341_OUT_CM(output)		(SI5341_OUT_CONFIG(output) + 2)
 125#define SI5341_OUT_MUX_SEL(output)	(SI5341_OUT_CONFIG(output) + 3)
 126#define SI5341_OUT_R_REG(output)	\
 127			((output)->data->reg_rdiv_offset[(output)->index])
 128
 129/* Synthesize N divider */
 130#define SI5341_SYNTH_N_NUM(x)	(0x0302 + ((x) * 11))
 131#define SI5341_SYNTH_N_DEN(x)	(0x0308 + ((x) * 11))
 132#define SI5341_SYNTH_N_UPD(x)	(0x030C + ((x) * 11))
 133
 134/* Synthesizer output enable, phase bypass, power mode */
 135#define SI5341_SYNTH_N_CLK_TO_OUTX_EN	0x0A03
 136#define SI5341_SYNTH_N_PIBYP		0x0A04
 137#define SI5341_SYNTH_N_PDNB		0x0A05
 138#define SI5341_SYNTH_N_CLK_DIS		0x0B4A
 139
 140#define SI5341_REGISTER_MAX	0xBFF
 141
 142/* SI5341_OUT_CONFIG bits */
 143#define SI5341_OUT_CFG_PDN		BIT(0)
 144#define SI5341_OUT_CFG_OE		BIT(1)
 145#define SI5341_OUT_CFG_RDIV_FORCE2	BIT(2)
 146
 147/* Static configuration (to be moved to firmware) */
 148struct si5341_reg_default {
 149	u16 address;
 150	u8 value;
 151};
 152
 153static const char * const si5341_input_clock_names[] = {
 154	"in0", "in1", "in2", "xtal"
 155};
 156
 157/* Output configuration registers 0..9 are not quite logically organized */
 158/* Also for si5345 */
 159static const u16 si5341_reg_output_offset[] = {
 160	0x0108,
 161	0x010D,
 162	0x0112,
 163	0x0117,
 164	0x011C,
 165	0x0121,
 166	0x0126,
 167	0x012B,
 168	0x0130,
 169	0x013A,
 170};
 171
 172/* for si5340, si5342 and si5344 */
 173static const u16 si5340_reg_output_offset[] = {
 174	0x0112,
 175	0x0117,
 176	0x0126,
 177	0x012B,
 178};
 179
 180/* The location of the R divider registers */
 181static const u16 si5341_reg_rdiv_offset[] = {
 182	0x024A,
 183	0x024D,
 184	0x0250,
 185	0x0253,
 186	0x0256,
 187	0x0259,
 188	0x025C,
 189	0x025F,
 190	0x0262,
 191	0x0268,
 192};
 193static const u16 si5340_reg_rdiv_offset[] = {
 194	0x0250,
 195	0x0253,
 196	0x025C,
 197	0x025F,
 198};
 199
 200/*
 201 * Programming sequence from ClockBuilder, settings to initialize the system
 202 * using only the XTAL input, without pre-divider.
 203 * This also contains settings that aren't mentioned anywhere in the datasheet.
 204 * The "known" settings like synth and output configuration are done later.
 205 */
 206static const struct si5341_reg_default si5341_reg_defaults[] = {
 207	{ 0x0017, 0x3A }, /* INT mask (disable interrupts) */
 208	{ 0x0018, 0xFF }, /* INT mask */
 209	{ 0x0021, 0x0F }, /* Select XTAL as input */
 210	{ 0x0022, 0x00 }, /* Not in datasheet */
 211	{ 0x002B, 0x02 }, /* SPI config */
 212	{ 0x002C, 0x20 }, /* LOS enable for XTAL */
 213	{ 0x002D, 0x00 }, /* LOS timing */
 214	{ 0x002E, 0x00 },
 215	{ 0x002F, 0x00 },
 216	{ 0x0030, 0x00 },
 217	{ 0x0031, 0x00 },
 218	{ 0x0032, 0x00 },
 219	{ 0x0033, 0x00 },
 220	{ 0x0034, 0x00 },
 221	{ 0x0035, 0x00 },
 222	{ 0x0036, 0x00 },
 223	{ 0x0037, 0x00 },
 224	{ 0x0038, 0x00 }, /* LOS setting (thresholds) */
 225	{ 0x0039, 0x00 },
 226	{ 0x003A, 0x00 },
 227	{ 0x003B, 0x00 },
 228	{ 0x003C, 0x00 },
 229	{ 0x003D, 0x00 }, /* LOS setting (thresholds) end */
 230	{ 0x0041, 0x00 }, /* LOS0_DIV_SEL */
 231	{ 0x0042, 0x00 }, /* LOS1_DIV_SEL */
 232	{ 0x0043, 0x00 }, /* LOS2_DIV_SEL */
 233	{ 0x0044, 0x00 }, /* LOS3_DIV_SEL */
 234	{ 0x009E, 0x00 }, /* Not in datasheet */
 235	{ 0x0102, 0x01 }, /* Enable outputs */
 236	{ 0x013F, 0x00 }, /* Not in datasheet */
 237	{ 0x0140, 0x00 }, /* Not in datasheet */
 238	{ 0x0141, 0x40 }, /* OUT LOS */
 239	{ 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
 240	{ 0x0203, 0x00 },
 241	{ 0x0204, 0x00 },
 242	{ 0x0205, 0x00 },
 243	{ 0x0206, 0x00 }, /* PXAXB (2^x) */
 244	{ 0x0208, 0x00 }, /* Px divider setting (usually 0) */
 245	{ 0x0209, 0x00 },
 246	{ 0x020A, 0x00 },
 247	{ 0x020B, 0x00 },
 248	{ 0x020C, 0x00 },
 249	{ 0x020D, 0x00 },
 250	{ 0x020E, 0x00 },
 251	{ 0x020F, 0x00 },
 252	{ 0x0210, 0x00 },
 253	{ 0x0211, 0x00 },
 254	{ 0x0212, 0x00 },
 255	{ 0x0213, 0x00 },
 256	{ 0x0214, 0x00 },
 257	{ 0x0215, 0x00 },
 258	{ 0x0216, 0x00 },
 259	{ 0x0217, 0x00 },
 260	{ 0x0218, 0x00 },
 261	{ 0x0219, 0x00 },
 262	{ 0x021A, 0x00 },
 263	{ 0x021B, 0x00 },
 264	{ 0x021C, 0x00 },
 265	{ 0x021D, 0x00 },
 266	{ 0x021E, 0x00 },
 267	{ 0x021F, 0x00 },
 268	{ 0x0220, 0x00 },
 269	{ 0x0221, 0x00 },
 270	{ 0x0222, 0x00 },
 271	{ 0x0223, 0x00 },
 272	{ 0x0224, 0x00 },
 273	{ 0x0225, 0x00 },
 274	{ 0x0226, 0x00 },
 275	{ 0x0227, 0x00 },
 276	{ 0x0228, 0x00 },
 277	{ 0x0229, 0x00 },
 278	{ 0x022A, 0x00 },
 279	{ 0x022B, 0x00 },
 280	{ 0x022C, 0x00 },
 281	{ 0x022D, 0x00 },
 282	{ 0x022E, 0x00 },
 283	{ 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
 284	{ 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
 285	{ 0x026C, 0x00 },
 286	{ 0x026D, 0x00 },
 287	{ 0x026E, 0x00 },
 288	{ 0x026F, 0x00 },
 289	{ 0x0270, 0x00 },
 290	{ 0x0271, 0x00 },
 291	{ 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
 292	{ 0x0339, 0x1F }, /* N_FSTEP_MSK */
 293	{ 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
 294	{ 0x033C, 0x00 },
 295	{ 0x033D, 0x00 },
 296	{ 0x033E, 0x00 },
 297	{ 0x033F, 0x00 },
 298	{ 0x0340, 0x00 },
 299	{ 0x0341, 0x00 },
 300	{ 0x0342, 0x00 },
 301	{ 0x0343, 0x00 },
 302	{ 0x0344, 0x00 },
 303	{ 0x0345, 0x00 },
 304	{ 0x0346, 0x00 },
 305	{ 0x0347, 0x00 },
 306	{ 0x0348, 0x00 },
 307	{ 0x0349, 0x00 },
 308	{ 0x034A, 0x00 },
 309	{ 0x034B, 0x00 },
 310	{ 0x034C, 0x00 },
 311	{ 0x034D, 0x00 },
 312	{ 0x034E, 0x00 },
 313	{ 0x034F, 0x00 },
 314	{ 0x0350, 0x00 },
 315	{ 0x0351, 0x00 },
 316	{ 0x0352, 0x00 },
 317	{ 0x0353, 0x00 },
 318	{ 0x0354, 0x00 },
 319	{ 0x0355, 0x00 },
 320	{ 0x0356, 0x00 },
 321	{ 0x0357, 0x00 },
 322	{ 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
 323	{ 0x0359, 0x00 }, /* Nx_DELAY */
 324	{ 0x035A, 0x00 },
 325	{ 0x035B, 0x00 },
 326	{ 0x035C, 0x00 },
 327	{ 0x035D, 0x00 },
 328	{ 0x035E, 0x00 },
 329	{ 0x035F, 0x00 },
 330	{ 0x0360, 0x00 },
 331	{ 0x0361, 0x00 },
 332	{ 0x0362, 0x00 }, /* Nx_DELAY end */
 333	{ 0x0802, 0x00 }, /* Not in datasheet */
 334	{ 0x0803, 0x00 }, /* Not in datasheet */
 335	{ 0x0804, 0x00 }, /* Not in datasheet */
 336	{ 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
 337	{ 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
 338	{ 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
 339	{ 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
 340	{ 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
 341	{ 0x0A02, 0x00 }, /* Not in datasheet */
 342	{ 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
 343};
 344
 345/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
 346static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
 347	u64 *val1, u32 *val2)
 348{
 349	int err;
 350	u8 r[10];
 351
 352	err = regmap_bulk_read(regmap, reg, r, 10);
 353	if (err < 0)
 354		return err;
 355
 356	*val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
 357		 (get_unaligned_le32(r));
 358	*val2 = get_unaligned_le32(&r[6]);
 359
 360	return 0;
 361}
 362
 363static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
 364	u64 n_num, u32 n_den)
 365{
 366	u8 r[10];
 367
 368	/* Shift left as far as possible without overflowing */
 369	while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
 370		n_num <<= 1;
 371		n_den <<= 1;
 372	}
 373
 374	/* 44 bits (6 bytes) numerator */
 375	put_unaligned_le32(n_num, r);
 376	r[4] = (n_num >> 32) & 0xff;
 377	r[5] = (n_num >> 40) & 0x0f;
 378	/* 32 bits denominator */
 379	put_unaligned_le32(n_den, &r[6]);
 380
 381	/* Program the fraction */
 382	return regmap_bulk_write(regmap, reg, r, sizeof(r));
 383}
 384
 385/* VCO, we assume it runs at a constant frequency */
 386static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
 387		unsigned long parent_rate)
 388{
 389	struct clk_si5341 *data = to_clk_si5341(hw);
 390	int err;
 391	u64 res;
 392	u64 m_num;
 393	u32 m_den;
 394	unsigned int shift;
 395
 396	/* Assume that PDIV is not being used, just read the PLL setting */
 397	err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
 398				&m_num, &m_den);
 399	if (err < 0)
 400		return 0;
 401
 402	if (!m_num || !m_den)
 403		return 0;
 404
 405	/*
 406	 * Though m_num is 64-bit, only the upper bits are actually used. While
 407	 * calculating m_num and m_den, they are shifted as far as possible to
 408	 * the left. To avoid 96-bit division here, we just shift them back so
 409	 * we can do with just 64 bits.
 410	 */
 411	shift = 0;
 412	res = m_num;
 413	while (res & 0xffff00000000ULL) {
 414		++shift;
 415		res >>= 1;
 416	}
 417	res *= parent_rate;
 418	do_div(res, (m_den >> shift));
 419
 420	/* We cannot return the actual frequency in 32 bit, store it locally */
 421	data->freq_vco = res;
 422
 423	/* Report kHz since the value is out of range */
 424	do_div(res, 1000);
 425
 426	return (unsigned long)res;
 427}
 428
 429static int si5341_clk_get_selected_input(struct clk_si5341 *data)
 430{
 431	int err;
 432	u32 val;
 433
 434	err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
 435	if (err < 0)
 436		return err;
 437
 438	return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
 439}
 440
 441static u8 si5341_clk_get_parent(struct clk_hw *hw)
 442{
 443	struct clk_si5341 *data = to_clk_si5341(hw);
 444	int res = si5341_clk_get_selected_input(data);
 445
 446	if (res < 0)
 447		return 0; /* Apparently we cannot report errors */
 448
 449	return res;
 450}
 451
 452static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
 453{
 454	int err;
 455	u8 val;
 456
 457	val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
 458	/* Enable register-based input selection */
 459	val |= SI5341_IN_SEL_REGCTRL;
 460
 461	err = regmap_update_bits(data->regmap,
 462		SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
 463	if (err < 0)
 464		return err;
 465
 466	if (index < 3) {
 467		/* Enable input buffer for selected input */
 468		err = regmap_update_bits(data->regmap,
 469				SI5341_IN_EN, 0x07, BIT(index));
 470		if (err < 0)
 471			return err;
 472
 473		/* Enables the input to phase detector */
 474		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
 475				0x7 << SI5341_INX_TO_PFD_SHIFT,
 476				BIT(index + SI5341_INX_TO_PFD_SHIFT));
 477		if (err < 0)
 478			return err;
 479
 480		/* Power down XTAL oscillator and buffer */
 481		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
 482				SI5341_XAXB_CFG_PDNB, 0);
 483		if (err < 0)
 484			return err;
 485
 486		/*
 487		 * Set the P divider to "1". There's no explanation in the
 488		 * datasheet of these registers, but the clockbuilder software
 489		 * programs a "1" when the input is being used.
 490		 */
 491		err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
 492		if (err < 0)
 493			return err;
 494
 495		err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
 496		if (err < 0)
 497			return err;
 498
 499		/* Set update PDIV bit */
 500		err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
 501		if (err < 0)
 502			return err;
 503	} else {
 504		/* Disable all input buffers */
 505		err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
 506		if (err < 0)
 507			return err;
 508
 509		/* Disable input to phase detector */
 510		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
 511				0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
 512		if (err < 0)
 513			return err;
 514
 515		/* Power up XTAL oscillator and buffer */
 516		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
 517				SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB);
 518		if (err < 0)
 519			return err;
 520	}
 521
 522	return 0;
 523}
 524
 525static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
 526{
 527	struct clk_si5341 *data = to_clk_si5341(hw);
 528
 529	return si5341_clk_reparent(data, index);
 530}
 531
 532static const struct clk_ops si5341_clk_ops = {
 533	.set_parent = si5341_clk_set_parent,
 534	.get_parent = si5341_clk_get_parent,
 535	.recalc_rate = si5341_clk_recalc_rate,
 536};
 537
 538/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
 539
 540/* The synthesizer is on if all power and enable bits are set */
 541static int si5341_synth_clk_is_on(struct clk_hw *hw)
 542{
 543	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 544	int err;
 545	u32 val;
 546	u8 index = synth->index;
 547
 548	err = regmap_read(synth->data->regmap,
 549			SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
 550	if (err < 0)
 551		return 0;
 552
 553	if (!(val & BIT(index)))
 554		return 0;
 555
 556	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
 557	if (err < 0)
 558		return 0;
 559
 560	if (!(val & BIT(index)))
 561		return 0;
 562
 563	/* This bit must be 0 for the synthesizer to receive clock input */
 564	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
 565	if (err < 0)
 566		return 0;
 567
 568	return !(val & BIT(index));
 569}
 570
 571static void si5341_synth_clk_unprepare(struct clk_hw *hw)
 572{
 573	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 574	u8 index = synth->index; /* In range 0..5 */
 575	u8 mask = BIT(index);
 576
 577	/* Disable output */
 578	regmap_update_bits(synth->data->regmap,
 579		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
 580	/* Power down */
 581	regmap_update_bits(synth->data->regmap,
 582		SI5341_SYNTH_N_PDNB, mask, 0);
 583	/* Disable clock input to synth (set to 1 to disable) */
 584	regmap_update_bits(synth->data->regmap,
 585		SI5341_SYNTH_N_CLK_DIS, mask, mask);
 586}
 587
 588static int si5341_synth_clk_prepare(struct clk_hw *hw)
 589{
 590	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 591	int err;
 592	u8 index = synth->index;
 593	u8 mask = BIT(index);
 594
 595	/* Power up */
 596	err = regmap_update_bits(synth->data->regmap,
 597		SI5341_SYNTH_N_PDNB, mask, mask);
 598	if (err < 0)
 599		return err;
 600
 601	/* Enable clock input to synth (set bit to 0 to enable) */
 602	err = regmap_update_bits(synth->data->regmap,
 603		SI5341_SYNTH_N_CLK_DIS, mask, 0);
 604	if (err < 0)
 605		return err;
 606
 607	/* Enable output */
 608	return regmap_update_bits(synth->data->regmap,
 609		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
 610}
 611
 612/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
 613static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
 614		unsigned long parent_rate)
 615{
 616	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 617	u64 f;
 618	u64 n_num;
 619	u32 n_den;
 620	int err;
 621
 622	err = si5341_decode_44_32(synth->data->regmap,
 623			SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
 624	if (err < 0)
 625		return err;
 626
 627	/*
 628	 * n_num and n_den are shifted left as much as possible, so to prevent
 629	 * overflow in 64-bit math, we shift n_den 4 bits to the right
 630	 */
 631	f = synth->data->freq_vco;
 632	f *= n_den >> 4;
 633
 634	/* Now we need to to 64-bit division: f/n_num */
 635	/* And compensate for the 4 bits we dropped */
 636	f = div64_u64(f, (n_num >> 4));
 637
 638	return f;
 639}
 640
 641static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 642		unsigned long *parent_rate)
 643{
 644	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 645	u64 f;
 646
 647	/* The synthesizer accuracy is such that anything in range will work */
 648	f = synth->data->freq_vco;
 649	do_div(f, SI5341_SYNTH_N_MAX);
 650	if (rate < f)
 651		return f;
 652
 653	f = synth->data->freq_vco;
 654	do_div(f, SI5341_SYNTH_N_MIN);
 655	if (rate > f)
 656		return f;
 657
 658	return rate;
 659}
 660
 661static int si5341_synth_program(struct clk_si5341_synth *synth,
 662	u64 n_num, u32 n_den, bool is_integer)
 663{
 664	int err;
 665	u8 index = synth->index;
 666
 667	err = si5341_encode_44_32(synth->data->regmap,
 668			SI5341_SYNTH_N_NUM(index), n_num, n_den);
 669
 670	err = regmap_update_bits(synth->data->regmap,
 671		SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
 672	if (err < 0)
 673		return err;
 674
 675	return regmap_write(synth->data->regmap,
 676		SI5341_SYNTH_N_UPD(index), 0x01);
 677}
 678
 679
 680static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 681		unsigned long parent_rate)
 682{
 683	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 684	u64 n_num;
 685	u32 n_den;
 686	u32 r;
 687	u32 g;
 688	bool is_integer;
 689
 690	n_num = synth->data->freq_vco;
 691
 692	/* see if there's an integer solution */
 693	r = do_div(n_num, rate);
 694	is_integer = (r == 0);
 695	if (is_integer) {
 696		/* Integer divider equal to n_num */
 697		n_den = 1;
 698	} else {
 699		/* Calculate a fractional solution */
 700		g = gcd(r, rate);
 701		n_den = rate / g;
 702		n_num *= n_den;
 703		n_num += r / g;
 704	}
 705
 706	dev_dbg(&synth->data->i2c_client->dev,
 707			"%s(%u): n=0x%llx d=0x%x %s\n", __func__,
 708				synth->index, n_num, n_den,
 709				is_integer ? "int" : "frac");
 710
 711	return si5341_synth_program(synth, n_num, n_den, is_integer);
 712}
 713
 714static const struct clk_ops si5341_synth_clk_ops = {
 715	.is_prepared = si5341_synth_clk_is_on,
 716	.prepare = si5341_synth_clk_prepare,
 717	.unprepare = si5341_synth_clk_unprepare,
 718	.recalc_rate = si5341_synth_clk_recalc_rate,
 719	.round_rate = si5341_synth_clk_round_rate,
 720	.set_rate = si5341_synth_clk_set_rate,
 721};
 722
 723static int si5341_output_clk_is_on(struct clk_hw *hw)
 724{
 725	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 726	int err;
 727	u32 val;
 728
 729	err = regmap_read(output->data->regmap,
 730			SI5341_OUT_CONFIG(output), &val);
 731	if (err < 0)
 732		return err;
 733
 734	/* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
 735	return (val & 0x03) == SI5341_OUT_CFG_OE;
 736}
 737
 738/* Disables and then powers down the output */
 739static void si5341_output_clk_unprepare(struct clk_hw *hw)
 740{
 741	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 742
 743	regmap_update_bits(output->data->regmap,
 744			SI5341_OUT_CONFIG(output),
 745			SI5341_OUT_CFG_OE, 0);
 746	regmap_update_bits(output->data->regmap,
 747			SI5341_OUT_CONFIG(output),
 748			SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
 749}
 750
 751/* Powers up and then enables the output */
 752static int si5341_output_clk_prepare(struct clk_hw *hw)
 753{
 754	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 755	int err;
 756
 757	err = regmap_update_bits(output->data->regmap,
 758			SI5341_OUT_CONFIG(output),
 759			SI5341_OUT_CFG_PDN, 0);
 760	if (err < 0)
 761		return err;
 762
 763	return regmap_update_bits(output->data->regmap,
 764			SI5341_OUT_CONFIG(output),
 765			SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
 766}
 767
 768static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
 769		unsigned long parent_rate)
 770{
 771	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 772	int err;
 773	u32 val;
 774	u32 r_divider;
 775	u8 r[3];
 776
 777	err = regmap_bulk_read(output->data->regmap,
 778			SI5341_OUT_R_REG(output), r, 3);
 779	if (err < 0)
 780		return err;
 781
 782	/* Calculate value as 24-bit integer*/
 783	r_divider = r[2] << 16 | r[1] << 8 | r[0];
 784
 785	/* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
 786	if (!r_divider)
 787		return 0;
 788
 789	/* Divider is 2*(Rx_REG+1) */
 790	r_divider += 1;
 791	r_divider <<= 1;
 792
 793	err = regmap_read(output->data->regmap,
 794			SI5341_OUT_CONFIG(output), &val);
 795	if (err < 0)
 796		return err;
 797
 798	if (val & SI5341_OUT_CFG_RDIV_FORCE2)
 799		r_divider = 2;
 800
 801	return parent_rate / r_divider;
 802}
 803
 804static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 805		unsigned long *parent_rate)
 806{
 807	unsigned long r;
 808
 809	r = *parent_rate >> 1;
 810
 811	/* If rate is an even divisor, no changes to parent required */
 812	if (r && !(r % rate))
 813		return (long)rate;
 814
 815	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
 816		if (rate > 200000000) {
 817			/* minimum r-divider is 2 */
 818			r = 2;
 819		} else {
 820			/* Take a parent frequency near 400 MHz */
 821			r = (400000000u / rate) & ~1;
 822		}
 823		*parent_rate = r * rate;
 824	} else {
 825		/* We cannot change our parent's rate, report what we can do */
 826		r /= rate;
 827		rate = *parent_rate / (r << 1);
 828	}
 829
 830	return rate;
 831}
 832
 833static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 834		unsigned long parent_rate)
 835{
 836	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 837	/* Frequency divider is (r_div + 1) * 2 */
 838	u32 r_div = (parent_rate / rate) >> 1;
 839	int err;
 840	u8 r[3];
 841
 842	if (r_div <= 1)
 843		r_div = 0;
 844	else if (r_div >= BIT(24))
 845		r_div = BIT(24) - 1;
 846	else
 847		--r_div;
 848
 849	/* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
 850	err = regmap_update_bits(output->data->regmap,
 851			SI5341_OUT_CONFIG(output),
 852			SI5341_OUT_CFG_RDIV_FORCE2,
 853			(r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
 854	if (err < 0)
 855		return err;
 856
 857	/* Always write Rx_REG, because a zero value disables the divider */
 858	r[0] = r_div ? (r_div & 0xff) : 1;
 859	r[1] = (r_div >> 8) & 0xff;
 860	r[2] = (r_div >> 16) & 0xff;
 861	err = regmap_bulk_write(output->data->regmap,
 862			SI5341_OUT_R_REG(output), r, 3);
 863
 864	return 0;
 865}
 866
 867static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
 868{
 869	return regmap_update_bits(output->data->regmap,
 870		SI5341_OUT_MUX_SEL(output), 0x07, index);
 871}
 872
 873static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
 874{
 875	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 876
 877	if (index >= output->data->num_synth)
 878		return -EINVAL;
 879
 880	return si5341_output_reparent(output, index);
 881}
 882
 883static u8 si5341_output_get_parent(struct clk_hw *hw)
 884{
 885	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 886	int err;
 887	u32 val;
 888
 889	err = regmap_read(output->data->regmap,
 890			SI5341_OUT_MUX_SEL(output), &val);
 891
 892	return val & 0x7;
 893}
 894
 895static const struct clk_ops si5341_output_clk_ops = {
 896	.is_prepared = si5341_output_clk_is_on,
 897	.prepare = si5341_output_clk_prepare,
 898	.unprepare = si5341_output_clk_unprepare,
 899	.recalc_rate = si5341_output_clk_recalc_rate,
 900	.round_rate = si5341_output_clk_round_rate,
 901	.set_rate = si5341_output_clk_set_rate,
 902	.set_parent = si5341_output_set_parent,
 903	.get_parent = si5341_output_get_parent,
 904};
 905
 906/*
 907 * The chip can be bought in a pre-programmed version, or one can program the
 908 * NVM in the chip to boot up in a preset mode. This routine tries to determine
 909 * if that's the case, or if we need to reset and program everything from
 910 * scratch. Returns negative error, or true/false.
 911 */
 912static int si5341_is_programmed_already(struct clk_si5341 *data)
 913{
 914	int err;
 915	u8 r[4];
 916
 917	/* Read the PLL divider value, it must have a non-zero value */
 918	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
 919			r, ARRAY_SIZE(r));
 920	if (err < 0)
 921		return err;
 922
 923	return !!get_unaligned_le32(r);
 924}
 925
 926static struct clk_hw *
 927of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
 928{
 929	struct clk_si5341 *data = _data;
 930	unsigned int idx = clkspec->args[1];
 931	unsigned int group = clkspec->args[0];
 932
 933	switch (group) {
 934	case 0:
 935		if (idx >= data->num_outputs) {
 936			dev_err(&data->i2c_client->dev,
 937				"invalid output index %u\n", idx);
 938			return ERR_PTR(-EINVAL);
 939		}
 940		return &data->clk[idx].hw;
 941	case 1:
 942		if (idx >= data->num_synth) {
 943			dev_err(&data->i2c_client->dev,
 944				"invalid synthesizer index %u\n", idx);
 945			return ERR_PTR(-EINVAL);
 946		}
 947		return &data->synth[idx].hw;
 948	case 2:
 949		if (idx > 0) {
 950			dev_err(&data->i2c_client->dev,
 951				"invalid PLL index %u\n", idx);
 952			return ERR_PTR(-EINVAL);
 953		}
 954		return &data->hw;
 955	default:
 956		dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
 957		return ERR_PTR(-EINVAL);
 958	}
 959}
 960
 961static int si5341_probe_chip_id(struct clk_si5341 *data)
 962{
 963	int err;
 964	u8 reg[4];
 965	u16 model;
 966
 967	err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
 968				ARRAY_SIZE(reg));
 969	if (err < 0) {
 970		dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
 971		return err;
 972	}
 973
 974	model = get_unaligned_le16(reg);
 975
 976	dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
 977		 model, reg[2], reg[3]);
 978
 979	switch (model) {
 980	case 0x5340:
 981		data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
 982		data->num_synth = SI5340_NUM_SYNTH;
 983		data->reg_output_offset = si5340_reg_output_offset;
 984		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
 985		break;
 986	case 0x5341:
 987		data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
 988		data->num_synth = SI5341_NUM_SYNTH;
 989		data->reg_output_offset = si5341_reg_output_offset;
 990		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
 991		break;
 992	case 0x5342:
 993		data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
 994		data->num_synth = SI5342_NUM_SYNTH;
 995		data->reg_output_offset = si5340_reg_output_offset;
 996		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
 997		break;
 998	case 0x5344:
 999		data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1000		data->num_synth = SI5344_NUM_SYNTH;
1001		data->reg_output_offset = si5340_reg_output_offset;
1002		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1003		break;
1004	case 0x5345:
1005		data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1006		data->num_synth = SI5345_NUM_SYNTH;
1007		data->reg_output_offset = si5341_reg_output_offset;
1008		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1009		break;
1010	default:
1011		dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1012			model);
1013		return -EINVAL;
1014	}
1015
1016	data->chip_id = model;
1017
1018	return 0;
1019}
1020
1021/* Read active settings into the regmap cache for later reference */
1022static int si5341_read_settings(struct clk_si5341 *data)
1023{
1024	int err;
1025	u8 i;
1026	u8 r[10];
1027
1028	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1029	if (err < 0)
1030		return err;
1031
1032	err = regmap_bulk_read(data->regmap,
1033				SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1034	if (err < 0)
1035		return err;
1036
1037	err = regmap_bulk_read(data->regmap,
1038				SI5341_SYNTH_N_CLK_DIS, r, 1);
1039	if (err < 0)
1040		return err;
1041
1042	for (i = 0; i < data->num_synth; ++i) {
1043		err = regmap_bulk_read(data->regmap,
1044					SI5341_SYNTH_N_NUM(i), r, 10);
1045		if (err < 0)
1046			return err;
1047	}
1048
1049	for (i = 0; i < data->num_outputs; ++i) {
1050		err = regmap_bulk_read(data->regmap,
1051					data->reg_output_offset[i], r, 4);
1052		if (err < 0)
1053			return err;
1054
1055		err = regmap_bulk_read(data->regmap,
1056					data->reg_rdiv_offset[i], r, 3);
1057		if (err < 0)
1058			return err;
1059	}
1060
1061	return 0;
1062}
1063
1064static int si5341_write_multiple(struct clk_si5341 *data,
1065	const struct si5341_reg_default *values, unsigned int num_values)
1066{
1067	unsigned int i;
1068	int res;
1069
1070	for (i = 0; i < num_values; ++i) {
1071		res = regmap_write(data->regmap,
1072			values[i].address, values[i].value);
1073		if (res < 0) {
1074			dev_err(&data->i2c_client->dev,
1075				"Failed to write %#x:%#x\n",
1076				values[i].address, values[i].value);
1077			return res;
1078		}
1079	}
1080
1081	return 0;
1082}
1083
1084static const struct si5341_reg_default si5341_preamble[] = {
1085	{ 0x0B25, 0x00 },
1086	{ 0x0502, 0x01 },
1087	{ 0x0505, 0x03 },
1088	{ 0x0957, 0x1F },
1089	{ 0x0B4E, 0x1A },
1090};
1091
1092static const struct si5341_reg_default si5345_preamble[] = {
1093	{ 0x0B25, 0x00 },
1094	{ 0x0540, 0x01 },
1095};
1096
1097static int si5341_send_preamble(struct clk_si5341 *data)
1098{
1099	int res;
1100	u32 revision;
1101
1102	/* For revision 2 and up, the values are slightly different */
1103	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1104	if (res < 0)
1105		return res;
1106
1107	/* Write "preamble" as specified by datasheet */
1108	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1109	if (res < 0)
1110		return res;
1111
1112	/* The si5342..si5345 require a different preamble */
1113	if (data->chip_id > 0x5341)
1114		res = si5341_write_multiple(data,
1115			si5345_preamble, ARRAY_SIZE(si5345_preamble));
1116	else
1117		res = si5341_write_multiple(data,
1118			si5341_preamble, ARRAY_SIZE(si5341_preamble));
1119	if (res < 0)
1120		return res;
1121
1122	/* Datasheet specifies a 300ms wait after sending the preamble */
1123	msleep(300);
1124
1125	return 0;
1126}
1127
1128/* Perform a soft reset and write post-amble */
1129static int si5341_finalize_defaults(struct clk_si5341 *data)
1130{
1131	int res;
1132	u32 revision;
1133
1134	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1135	if (res < 0)
1136		return res;
1137
1138	dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1139
1140	res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1141	if (res < 0)
1142		return res;
1143
1144	/* The si5342..si5345 have an additional post-amble */
1145	if (data->chip_id > 0x5341) {
1146		res = regmap_write(data->regmap, 0x540, 0x0);
1147		if (res < 0)
1148			return res;
1149	}
1150
1151	/* Datasheet does not explain these nameless registers */
1152	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1153	if (res < 0)
1154		return res;
1155	res = regmap_write(data->regmap, 0x0B25, 0x02);
1156	if (res < 0)
1157		return res;
1158
1159	return 0;
1160}
1161
1162
1163static const struct regmap_range si5341_regmap_volatile_range[] = {
1164	regmap_reg_range(0x000C, 0x0012), /* Status */
1165	regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1166	regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1167	/* Update bits for P divider and synth config */
1168	regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1169	regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1170	regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1171	regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1172	regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1173	regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1174};
1175
1176static const struct regmap_access_table si5341_regmap_volatile = {
1177	.yes_ranges = si5341_regmap_volatile_range,
1178	.n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1179};
1180
1181/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1182static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1183	{
1184		.range_min = 0,
1185		.range_max = SI5341_REGISTER_MAX,
1186		.selector_reg = SI5341_PAGE,
1187		.selector_mask = 0xff,
1188		.selector_shift = 0,
1189		.window_start = 0,
1190		.window_len = 256,
1191	},
1192};
1193
1194static const struct regmap_config si5341_regmap_config = {
1195	.reg_bits = 8,
1196	.val_bits = 8,
1197	.cache_type = REGCACHE_RBTREE,
1198	.ranges = si5341_regmap_ranges,
1199	.num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1200	.max_register = SI5341_REGISTER_MAX,
1201	.volatile_table = &si5341_regmap_volatile,
1202};
1203
1204static int si5341_dt_parse_dt(struct i2c_client *client,
1205	struct clk_si5341_output_config *config)
1206{
1207	struct device_node *child;
1208	struct device_node *np = client->dev.of_node;
1209	u32 num;
1210	u32 val;
1211
1212	memset(config, 0, sizeof(struct clk_si5341_output_config) *
1213				SI5341_MAX_NUM_OUTPUTS);
1214
1215	for_each_child_of_node(np, child) {
1216		if (of_property_read_u32(child, "reg", &num)) {
1217			dev_err(&client->dev, "missing reg property of %s\n",
1218				child->name);
1219			goto put_child;
1220		}
1221
1222		if (num >= SI5341_MAX_NUM_OUTPUTS) {
1223			dev_err(&client->dev, "invalid clkout %d\n", num);
1224			goto put_child;
1225		}
1226
1227		if (!of_property_read_u32(child, "silabs,format", &val)) {
1228			/* Set cm and ampl conservatively to 3v3 settings */
1229			switch (val) {
1230			case 1: /* normal differential */
1231				config[num].out_cm_ampl_bits = 0x33;
1232				break;
1233			case 2: /* low-power differential */
1234				config[num].out_cm_ampl_bits = 0x13;
1235				break;
1236			case 4: /* LVCMOS */
1237				config[num].out_cm_ampl_bits = 0x33;
1238				/* Set SI recommended impedance for LVCMOS */
1239				config[num].out_format_drv_bits |= 0xc0;
1240				break;
1241			default:
1242				dev_err(&client->dev,
1243					"invalid silabs,format %u for %u\n",
1244					val, num);
1245				goto put_child;
1246			}
1247			config[num].out_format_drv_bits &= ~0x07;
1248			config[num].out_format_drv_bits |= val & 0x07;
1249			/* Always enable the SYNC feature */
1250			config[num].out_format_drv_bits |= 0x08;
1251		}
1252
1253		if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1254			if (val > 0xf) {
1255				dev_err(&client->dev,
1256					"invalid silabs,common-mode %u\n",
1257					val);
1258				goto put_child;
1259			}
1260			config[num].out_cm_ampl_bits &= 0xf0;
1261			config[num].out_cm_ampl_bits |= val & 0x0f;
1262		}
1263
1264		if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1265			if (val > 0xf) {
1266				dev_err(&client->dev,
1267					"invalid silabs,amplitude %u\n",
1268					val);
1269				goto put_child;
1270			}
1271			config[num].out_cm_ampl_bits &= 0x0f;
1272			config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1273		}
1274
1275		if (of_property_read_bool(child, "silabs,disable-high"))
1276			config[num].out_format_drv_bits |= 0x10;
1277
1278		config[num].synth_master =
1279			of_property_read_bool(child, "silabs,synth-master");
1280
1281		config[num].always_on =
1282			of_property_read_bool(child, "always-on");
1283	}
1284
1285	return 0;
1286
1287put_child:
1288	of_node_put(child);
1289	return -EINVAL;
1290}
1291
1292/*
1293 * If not pre-configured, calculate and set the PLL configuration manually.
1294 * For low-jitter performance, the PLL should be set such that the synthesizers
1295 * only need integer division.
1296 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1297 * the chip to generate any frequency on its outputs, but jitter performance
1298 * may be sub-optimal.
1299 */
1300static int si5341_initialize_pll(struct clk_si5341 *data)
1301{
1302	struct device_node *np = data->i2c_client->dev.of_node;
1303	u32 m_num = 0;
1304	u32 m_den = 0;
1305	int sel;
1306
1307	if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1308		dev_err(&data->i2c_client->dev,
1309			"PLL configuration requires silabs,pll-m-num\n");
1310	}
1311	if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1312		dev_err(&data->i2c_client->dev,
1313			"PLL configuration requires silabs,pll-m-den\n");
1314	}
1315
1316	if (!m_num || !m_den) {
1317		dev_err(&data->i2c_client->dev,
1318			"PLL configuration invalid, assume 14GHz\n");
1319		sel = si5341_clk_get_selected_input(data);
1320		if (sel < 0)
1321			return sel;
1322
1323		m_den = clk_get_rate(data->input_clk[sel]) / 10;
1324		m_num = 1400000000;
1325	}
1326
1327	return si5341_encode_44_32(data->regmap,
1328			SI5341_PLL_M_NUM, m_num, m_den);
1329}
1330
1331static int si5341_clk_select_active_input(struct clk_si5341 *data)
1332{
1333	int res;
1334	int err;
1335	int i;
1336
1337	res = si5341_clk_get_selected_input(data);
1338	if (res < 0)
1339		return res;
1340
1341	/* If the current register setting is invalid, pick the first input */
1342	if (!data->input_clk[res]) {
1343		dev_dbg(&data->i2c_client->dev,
1344			"Input %d not connected, rerouting\n", res);
1345		res = -ENODEV;
1346		for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1347			if (data->input_clk[i]) {
1348				res = i;
1349				break;
1350			}
1351		}
1352		if (res < 0) {
1353			dev_err(&data->i2c_client->dev,
1354				"No clock input available\n");
1355			return res;
1356		}
1357	}
1358
1359	/* Make sure the selected clock is also enabled and routed */
1360	err = si5341_clk_reparent(data, res);
1361	if (err < 0)
1362		return err;
1363
1364	err = clk_prepare_enable(data->input_clk[res]);
1365	if (err < 0)
1366		return err;
1367
1368	return res;
1369}
1370
1371static int si5341_probe(struct i2c_client *client,
1372		const struct i2c_device_id *id)
1373{
1374	struct clk_si5341 *data;
1375	struct clk_init_data init;
1376	struct clk *input;
1377	const char *root_clock_name;
1378	const char *synth_clock_names[SI5341_NUM_SYNTH];
1379	int err;
1380	unsigned int i;
1381	struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1382	bool initialization_required;
1383
1384	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1385	if (!data)
1386		return -ENOMEM;
1387
1388	data->i2c_client = client;
1389
1390	for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1391		input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1392		if (IS_ERR(input)) {
1393			if (PTR_ERR(input) == -EPROBE_DEFER)
1394				return -EPROBE_DEFER;
1395			data->input_clk_name[i] = si5341_input_clock_names[i];
1396		} else {
1397			data->input_clk[i] = input;
1398			data->input_clk_name[i] = __clk_get_name(input);
1399		}
1400	}
1401
1402	err = si5341_dt_parse_dt(client, config);
1403	if (err)
1404		return err;
1405
1406	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1407			&init.name))
1408		init.name = client->dev.of_node->name;
1409	root_clock_name = init.name;
1410
1411	data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1412	if (IS_ERR(data->regmap))
1413		return PTR_ERR(data->regmap);
1414
1415	i2c_set_clientdata(client, data);
1416
1417	err = si5341_probe_chip_id(data);
1418	if (err < 0)
1419		return err;
1420
1421	if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1422		initialization_required = true;
1423	} else {
1424		err = si5341_is_programmed_already(data);
1425		if (err < 0)
1426			return err;
1427
1428		initialization_required = !err;
1429	}
1430
1431	if (initialization_required) {
1432		/* Populate the regmap cache in preparation for "cache only" */
1433		err = si5341_read_settings(data);
1434		if (err < 0)
1435			return err;
1436
1437		err = si5341_send_preamble(data);
1438		if (err < 0)
1439			return err;
1440
1441		/*
1442		 * We intend to send all 'final' register values in a single
1443		 * transaction. So cache all register writes until we're done
1444		 * configuring.
1445		 */
1446		regcache_cache_only(data->regmap, true);
1447
1448		/* Write the configuration pairs from the firmware blob */
1449		err = si5341_write_multiple(data, si5341_reg_defaults,
1450					ARRAY_SIZE(si5341_reg_defaults));
1451		if (err < 0)
1452			return err;
1453	}
1454
1455	/* Input must be up and running at this point */
1456	err = si5341_clk_select_active_input(data);
1457	if (err < 0)
1458		return err;
1459
1460	if (initialization_required) {
1461		/* PLL configuration is required */
1462		err = si5341_initialize_pll(data);
1463		if (err < 0)
1464			return err;
1465	}
1466
1467	/* Register the PLL */
1468	init.parent_names = data->input_clk_name;
1469	init.num_parents = SI5341_NUM_INPUTS;
1470	init.ops = &si5341_clk_ops;
1471	init.flags = 0;
1472	data->hw.init = &init;
1473
1474	err = devm_clk_hw_register(&client->dev, &data->hw);
1475	if (err) {
1476		dev_err(&client->dev, "clock registration failed\n");
1477		return err;
1478	}
1479
1480	init.num_parents = 1;
1481	init.parent_names = &root_clock_name;
1482	init.ops = &si5341_synth_clk_ops;
1483	for (i = 0; i < data->num_synth; ++i) {
1484		synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1485				"%s.N%u", client->dev.of_node->name, i);
1486		init.name = synth_clock_names[i];
1487		data->synth[i].index = i;
1488		data->synth[i].data = data;
1489		data->synth[i].hw.init = &init;
1490		err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1491		if (err) {
1492			dev_err(&client->dev,
1493				"synth N%u registration failed\n", i);
1494		}
1495	}
1496
1497	init.num_parents = data->num_synth;
1498	init.parent_names = synth_clock_names;
1499	init.ops = &si5341_output_clk_ops;
1500	for (i = 0; i < data->num_outputs; ++i) {
1501		init.name = kasprintf(GFP_KERNEL, "%s.%d",
1502			client->dev.of_node->name, i);
1503		init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1504		data->clk[i].index = i;
1505		data->clk[i].data = data;
1506		data->clk[i].hw.init = &init;
1507		if (config[i].out_format_drv_bits & 0x07) {
1508			regmap_write(data->regmap,
1509				SI5341_OUT_FORMAT(&data->clk[i]),
1510				config[i].out_format_drv_bits);
1511			regmap_write(data->regmap,
1512				SI5341_OUT_CM(&data->clk[i]),
1513				config[i].out_cm_ampl_bits);
1514		}
1515		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1516		kfree(init.name); /* clock framework made a copy of the name */
1517		if (err) {
1518			dev_err(&client->dev,
1519				"output %u registration failed\n", i);
1520			return err;
1521		}
1522		if (config[i].always_on)
1523			clk_prepare(data->clk[i].hw.clk);
1524	}
1525
1526	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
1527			data);
1528	if (err) {
1529		dev_err(&client->dev, "unable to add clk provider\n");
1530		return err;
1531	}
1532
1533	if (initialization_required) {
1534		/* Synchronize */
1535		regcache_cache_only(data->regmap, false);
1536		err = regcache_sync(data->regmap);
1537		if (err < 0)
1538			return err;
1539
1540		err = si5341_finalize_defaults(data);
1541		if (err < 0)
1542			return err;
1543	}
1544
1545	/* Free the names, clk framework makes copies */
1546	for (i = 0; i < data->num_synth; ++i)
1547		 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1548
1549	return 0;
1550}
1551
1552static const struct i2c_device_id si5341_id[] = {
1553	{ "si5340", 0 },
1554	{ "si5341", 1 },
1555	{ "si5342", 2 },
1556	{ "si5344", 4 },
1557	{ "si5345", 5 },
1558	{ }
1559};
1560MODULE_DEVICE_TABLE(i2c, si5341_id);
1561
1562static const struct of_device_id clk_si5341_of_match[] = {
1563	{ .compatible = "silabs,si5340" },
1564	{ .compatible = "silabs,si5341" },
1565	{ .compatible = "silabs,si5342" },
1566	{ .compatible = "silabs,si5344" },
1567	{ .compatible = "silabs,si5345" },
1568	{ }
1569};
1570MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1571
1572static struct i2c_driver si5341_driver = {
1573	.driver = {
1574		.name = "si5341",
1575		.of_match_table = clk_si5341_of_match,
1576	},
1577	.probe		= si5341_probe,
1578	.id_table	= si5341_id,
1579};
1580module_i2c_driver(si5341_driver);
1581
1582MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1583MODULE_DESCRIPTION("Si5341 driver");
1584MODULE_LICENSE("GPL");