Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Silicon Labs Si5341/Si5340 Clock generator
   4 * Copyright (C) 2019 Topic Embedded Products
   5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clk-provider.h>
  10#include <linux/delay.h>
  11#include <linux/gcd.h>
  12#include <linux/math64.h>
  13#include <linux/i2c.h>
  14#include <linux/module.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17#include <asm/unaligned.h>
  18
  19#define SI5341_MAX_NUM_OUTPUTS 10
  20#define SI5340_MAX_NUM_OUTPUTS 4
  21
  22#define SI5341_NUM_SYNTH 5
  23#define SI5340_NUM_SYNTH 4
  24
  25/* Range of the synthesizer fractional divider */
  26#define SI5341_SYNTH_N_MIN	10
  27#define SI5341_SYNTH_N_MAX	4095
  28
  29/* The chip can get its input clock from 3 input pins or an XTAL */
  30
  31/* There is one PLL running at 13500–14256 MHz */
  32#define SI5341_PLL_VCO_MIN 13500000000ull
  33#define SI5341_PLL_VCO_MAX 14256000000ull
  34
  35/* The 5 frequency synthesizers obtain their input from the PLL */
  36struct clk_si5341_synth {
  37	struct clk_hw hw;
  38	struct clk_si5341 *data;
  39	u8 index;
  40};
  41#define to_clk_si5341_synth(_hw) \
  42	container_of(_hw, struct clk_si5341_synth, hw)
  43
  44/* The output stages can be connected to any synth (full mux) */
  45struct clk_si5341_output {
  46	struct clk_hw hw;
  47	struct clk_si5341 *data;
  48	u8 index;
  49};
  50#define to_clk_si5341_output(_hw) \
  51	container_of(_hw, struct clk_si5341_output, hw)
  52
  53struct clk_si5341 {
  54	struct clk_hw hw;
  55	struct regmap *regmap;
  56	struct i2c_client *i2c_client;
  57	struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
  58	struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
  59	struct clk *pxtal;
  60	const char *pxtal_name;
  61	const u16 *reg_output_offset;
  62	const u16 *reg_rdiv_offset;
  63	u64 freq_vco; /* 13500–14256 MHz */
  64	u8 num_outputs;
  65	u8 num_synth;
  66};
  67#define to_clk_si5341(_hw)	container_of(_hw, struct clk_si5341, hw)
  68
  69struct clk_si5341_output_config {
  70	u8 out_format_drv_bits;
  71	u8 out_cm_ampl_bits;
  72	bool synth_master;
  73	bool always_on;
  74};
  75
  76#define SI5341_PAGE		0x0001
  77#define SI5341_PN_BASE		0x0002
  78#define SI5341_DEVICE_REV	0x0005
  79#define SI5341_STATUS		0x000C
  80#define SI5341_SOFT_RST		0x001C
  81
  82/* Input dividers (48-bit) */
  83#define SI5341_IN_PDIV(x)	(0x0208 + ((x) * 10))
  84#define SI5341_IN_PSET(x)	(0x020E + ((x) * 10))
  85
  86/* PLL configuration */
  87#define SI5341_PLL_M_NUM	0x0235
  88#define SI5341_PLL_M_DEN	0x023B
  89
  90/* Output configuration */
  91#define SI5341_OUT_CONFIG(output)	\
  92			((output)->data->reg_output_offset[(output)->index])
  93#define SI5341_OUT_FORMAT(output)	(SI5341_OUT_CONFIG(output) + 1)
  94#define SI5341_OUT_CM(output)		(SI5341_OUT_CONFIG(output) + 2)
  95#define SI5341_OUT_MUX_SEL(output)	(SI5341_OUT_CONFIG(output) + 3)
  96#define SI5341_OUT_R_REG(output)	\
  97			((output)->data->reg_rdiv_offset[(output)->index])
  98
  99/* Synthesize N divider */
 100#define SI5341_SYNTH_N_NUM(x)	(0x0302 + ((x) * 11))
 101#define SI5341_SYNTH_N_DEN(x)	(0x0308 + ((x) * 11))
 102#define SI5341_SYNTH_N_UPD(x)	(0x030C + ((x) * 11))
 103
 104/* Synthesizer output enable, phase bypass, power mode */
 105#define SI5341_SYNTH_N_CLK_TO_OUTX_EN	0x0A03
 106#define SI5341_SYNTH_N_PIBYP		0x0A04
 107#define SI5341_SYNTH_N_PDNB		0x0A05
 108#define SI5341_SYNTH_N_CLK_DIS		0x0B4A
 109
 110#define SI5341_REGISTER_MAX	0xBFF
 111
 112/* SI5341_OUT_CONFIG bits */
 113#define SI5341_OUT_CFG_PDN		BIT(0)
 114#define SI5341_OUT_CFG_OE		BIT(1)
 115#define SI5341_OUT_CFG_RDIV_FORCE2	BIT(2)
 116
 117/* Static configuration (to be moved to firmware) */
 118struct si5341_reg_default {
 119	u16 address;
 120	u8 value;
 121};
 122
 123/* Output configuration registers 0..9 are not quite logically organized */
 124static const u16 si5341_reg_output_offset[] = {
 125	0x0108,
 126	0x010D,
 127	0x0112,
 128	0x0117,
 129	0x011C,
 130	0x0121,
 131	0x0126,
 132	0x012B,
 133	0x0130,
 134	0x013A,
 135};
 136
 137static const u16 si5340_reg_output_offset[] = {
 138	0x0112,
 139	0x0117,
 140	0x0126,
 141	0x012B,
 142};
 143
 144/* The location of the R divider registers */
 145static const u16 si5341_reg_rdiv_offset[] = {
 146	0x024A,
 147	0x024D,
 148	0x0250,
 149	0x0253,
 150	0x0256,
 151	0x0259,
 152	0x025C,
 153	0x025F,
 154	0x0262,
 155	0x0268,
 156};
 157static const u16 si5340_reg_rdiv_offset[] = {
 158	0x0250,
 159	0x0253,
 160	0x025C,
 161	0x025F,
 162};
 163
 164/*
 165 * Programming sequence from ClockBuilder, settings to initialize the system
 166 * using only the XTAL input, without pre-divider.
 167 * This also contains settings that aren't mentioned anywhere in the datasheet.
 168 * The "known" settings like synth and output configuration are done later.
 169 */
 170static const struct si5341_reg_default si5341_reg_defaults[] = {
 171	{ 0x0017, 0x3A }, /* INT mask (disable interrupts) */
 172	{ 0x0018, 0xFF }, /* INT mask */
 173	{ 0x0021, 0x0F }, /* Select XTAL as input */
 174	{ 0x0022, 0x00 }, /* Not in datasheet */
 175	{ 0x002B, 0x02 }, /* SPI config */
 176	{ 0x002C, 0x20 }, /* LOS enable for XTAL */
 177	{ 0x002D, 0x00 }, /* LOS timing */
 178	{ 0x002E, 0x00 },
 179	{ 0x002F, 0x00 },
 180	{ 0x0030, 0x00 },
 181	{ 0x0031, 0x00 },
 182	{ 0x0032, 0x00 },
 183	{ 0x0033, 0x00 },
 184	{ 0x0034, 0x00 },
 185	{ 0x0035, 0x00 },
 186	{ 0x0036, 0x00 },
 187	{ 0x0037, 0x00 },
 188	{ 0x0038, 0x00 }, /* LOS setting (thresholds) */
 189	{ 0x0039, 0x00 },
 190	{ 0x003A, 0x00 },
 191	{ 0x003B, 0x00 },
 192	{ 0x003C, 0x00 },
 193	{ 0x003D, 0x00 }, /* LOS setting (thresholds) end */
 194	{ 0x0041, 0x00 }, /* LOS0_DIV_SEL */
 195	{ 0x0042, 0x00 }, /* LOS1_DIV_SEL */
 196	{ 0x0043, 0x00 }, /* LOS2_DIV_SEL */
 197	{ 0x0044, 0x00 }, /* LOS3_DIV_SEL */
 198	{ 0x009E, 0x00 }, /* Not in datasheet */
 199	{ 0x0102, 0x01 }, /* Enable outputs */
 200	{ 0x013F, 0x00 }, /* Not in datasheet */
 201	{ 0x0140, 0x00 }, /* Not in datasheet */
 202	{ 0x0141, 0x40 }, /* OUT LOS */
 203	{ 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
 204	{ 0x0203, 0x00 },
 205	{ 0x0204, 0x00 },
 206	{ 0x0205, 0x00 },
 207	{ 0x0206, 0x00 }, /* PXAXB (2^x) */
 208	{ 0x0208, 0x00 }, /* Px divider setting (usually 0) */
 209	{ 0x0209, 0x00 },
 210	{ 0x020A, 0x00 },
 211	{ 0x020B, 0x00 },
 212	{ 0x020C, 0x00 },
 213	{ 0x020D, 0x00 },
 214	{ 0x020E, 0x00 },
 215	{ 0x020F, 0x00 },
 216	{ 0x0210, 0x00 },
 217	{ 0x0211, 0x00 },
 218	{ 0x0212, 0x00 },
 219	{ 0x0213, 0x00 },
 220	{ 0x0214, 0x00 },
 221	{ 0x0215, 0x00 },
 222	{ 0x0216, 0x00 },
 223	{ 0x0217, 0x00 },
 224	{ 0x0218, 0x00 },
 225	{ 0x0219, 0x00 },
 226	{ 0x021A, 0x00 },
 227	{ 0x021B, 0x00 },
 228	{ 0x021C, 0x00 },
 229	{ 0x021D, 0x00 },
 230	{ 0x021E, 0x00 },
 231	{ 0x021F, 0x00 },
 232	{ 0x0220, 0x00 },
 233	{ 0x0221, 0x00 },
 234	{ 0x0222, 0x00 },
 235	{ 0x0223, 0x00 },
 236	{ 0x0224, 0x00 },
 237	{ 0x0225, 0x00 },
 238	{ 0x0226, 0x00 },
 239	{ 0x0227, 0x00 },
 240	{ 0x0228, 0x00 },
 241	{ 0x0229, 0x00 },
 242	{ 0x022A, 0x00 },
 243	{ 0x022B, 0x00 },
 244	{ 0x022C, 0x00 },
 245	{ 0x022D, 0x00 },
 246	{ 0x022E, 0x00 },
 247	{ 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
 248	{ 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
 249	{ 0x026C, 0x00 },
 250	{ 0x026D, 0x00 },
 251	{ 0x026E, 0x00 },
 252	{ 0x026F, 0x00 },
 253	{ 0x0270, 0x00 },
 254	{ 0x0271, 0x00 },
 255	{ 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
 256	{ 0x0339, 0x1F }, /* N_FSTEP_MSK */
 257	{ 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
 258	{ 0x033C, 0x00 },
 259	{ 0x033D, 0x00 },
 260	{ 0x033E, 0x00 },
 261	{ 0x033F, 0x00 },
 262	{ 0x0340, 0x00 },
 263	{ 0x0341, 0x00 },
 264	{ 0x0342, 0x00 },
 265	{ 0x0343, 0x00 },
 266	{ 0x0344, 0x00 },
 267	{ 0x0345, 0x00 },
 268	{ 0x0346, 0x00 },
 269	{ 0x0347, 0x00 },
 270	{ 0x0348, 0x00 },
 271	{ 0x0349, 0x00 },
 272	{ 0x034A, 0x00 },
 273	{ 0x034B, 0x00 },
 274	{ 0x034C, 0x00 },
 275	{ 0x034D, 0x00 },
 276	{ 0x034E, 0x00 },
 277	{ 0x034F, 0x00 },
 278	{ 0x0350, 0x00 },
 279	{ 0x0351, 0x00 },
 280	{ 0x0352, 0x00 },
 281	{ 0x0353, 0x00 },
 282	{ 0x0354, 0x00 },
 283	{ 0x0355, 0x00 },
 284	{ 0x0356, 0x00 },
 285	{ 0x0357, 0x00 },
 286	{ 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
 287	{ 0x0359, 0x00 }, /* Nx_DELAY */
 288	{ 0x035A, 0x00 },
 289	{ 0x035B, 0x00 },
 290	{ 0x035C, 0x00 },
 291	{ 0x035D, 0x00 },
 292	{ 0x035E, 0x00 },
 293	{ 0x035F, 0x00 },
 294	{ 0x0360, 0x00 },
 295	{ 0x0361, 0x00 },
 296	{ 0x0362, 0x00 }, /* Nx_DELAY end */
 297	{ 0x0802, 0x00 }, /* Not in datasheet */
 298	{ 0x0803, 0x00 }, /* Not in datasheet */
 299	{ 0x0804, 0x00 }, /* Not in datasheet */
 300	{ 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
 301	{ 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
 302	{ 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
 303	{ 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
 304	{ 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
 305	{ 0x0A02, 0x00 }, /* Not in datasheet */
 306	{ 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
 307};
 308
 309/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
 310static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
 311	u64 *val1, u32 *val2)
 312{
 313	int err;
 314	u8 r[10];
 315
 316	err = regmap_bulk_read(regmap, reg, r, 10);
 317	if (err < 0)
 318		return err;
 319
 320	*val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
 321		 (get_unaligned_le32(r));
 322	*val2 = get_unaligned_le32(&r[6]);
 323
 324	return 0;
 325}
 326
 327static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
 328	u64 n_num, u32 n_den)
 329{
 330	u8 r[10];
 331
 332	/* Shift left as far as possible without overflowing */
 333	while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
 334		n_num <<= 1;
 335		n_den <<= 1;
 336	}
 337
 338	/* 44 bits (6 bytes) numerator */
 339	put_unaligned_le32(n_num, r);
 340	r[4] = (n_num >> 32) & 0xff;
 341	r[5] = (n_num >> 40) & 0x0f;
 342	/* 32 bits denominator */
 343	put_unaligned_le32(n_den, &r[6]);
 344
 345	/* Program the fraction */
 346	return regmap_bulk_write(regmap, reg, r, sizeof(r));
 347}
 348
 349/* VCO, we assume it runs at a constant frequency */
 350static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
 351		unsigned long parent_rate)
 352{
 353	struct clk_si5341 *data = to_clk_si5341(hw);
 354	int err;
 355	u64 res;
 356	u64 m_num;
 357	u32 m_den;
 358	unsigned int shift;
 359
 360	/* Assume that PDIV is not being used, just read the PLL setting */
 361	err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
 362				&m_num, &m_den);
 363	if (err < 0)
 364		return 0;
 365
 366	if (!m_num || !m_den)
 367		return 0;
 368
 369	/*
 370	 * Though m_num is 64-bit, only the upper bits are actually used. While
 371	 * calculating m_num and m_den, they are shifted as far as possible to
 372	 * the left. To avoid 96-bit division here, we just shift them back so
 373	 * we can do with just 64 bits.
 374	 */
 375	shift = 0;
 376	res = m_num;
 377	while (res & 0xffff00000000ULL) {
 378		++shift;
 379		res >>= 1;
 380	}
 381	res *= parent_rate;
 382	do_div(res, (m_den >> shift));
 383
 384	/* We cannot return the actual frequency in 32 bit, store it locally */
 385	data->freq_vco = res;
 386
 387	/* Report kHz since the value is out of range */
 388	do_div(res, 1000);
 389
 390	return (unsigned long)res;
 391}
 392
 393static const struct clk_ops si5341_clk_ops = {
 394	.recalc_rate = si5341_clk_recalc_rate,
 395};
 396
 397/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
 398
 399/* The synthesizer is on if all power and enable bits are set */
 400static int si5341_synth_clk_is_on(struct clk_hw *hw)
 401{
 402	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 403	int err;
 404	u32 val;
 405	u8 index = synth->index;
 406
 407	err = regmap_read(synth->data->regmap,
 408			SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
 409	if (err < 0)
 410		return 0;
 411
 412	if (!(val & BIT(index)))
 413		return 0;
 414
 415	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
 416	if (err < 0)
 417		return 0;
 418
 419	if (!(val & BIT(index)))
 420		return 0;
 421
 422	/* This bit must be 0 for the synthesizer to receive clock input */
 423	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
 424	if (err < 0)
 425		return 0;
 426
 427	return !(val & BIT(index));
 428}
 429
 430static void si5341_synth_clk_unprepare(struct clk_hw *hw)
 431{
 432	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 433	u8 index = synth->index; /* In range 0..5 */
 434	u8 mask = BIT(index);
 435
 436	/* Disable output */
 437	regmap_update_bits(synth->data->regmap,
 438		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
 439	/* Power down */
 440	regmap_update_bits(synth->data->regmap,
 441		SI5341_SYNTH_N_PDNB, mask, 0);
 442	/* Disable clock input to synth (set to 1 to disable) */
 443	regmap_update_bits(synth->data->regmap,
 444		SI5341_SYNTH_N_CLK_DIS, mask, mask);
 445}
 446
 447static int si5341_synth_clk_prepare(struct clk_hw *hw)
 448{
 449	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 450	int err;
 451	u8 index = synth->index;
 452	u8 mask = BIT(index);
 453
 454	/* Power up */
 455	err = regmap_update_bits(synth->data->regmap,
 456		SI5341_SYNTH_N_PDNB, mask, mask);
 457	if (err < 0)
 458		return err;
 459
 460	/* Enable clock input to synth (set bit to 0 to enable) */
 461	err = regmap_update_bits(synth->data->regmap,
 462		SI5341_SYNTH_N_CLK_DIS, mask, 0);
 463	if (err < 0)
 464		return err;
 465
 466	/* Enable output */
 467	return regmap_update_bits(synth->data->regmap,
 468		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
 469}
 470
 471/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
 472static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
 473		unsigned long parent_rate)
 474{
 475	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 476	u64 f;
 477	u64 n_num;
 478	u32 n_den;
 479	int err;
 480
 481	err = si5341_decode_44_32(synth->data->regmap,
 482			SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
 483	if (err < 0)
 484		return err;
 485
 486	/*
 487	 * n_num and n_den are shifted left as much as possible, so to prevent
 488	 * overflow in 64-bit math, we shift n_den 4 bits to the right
 489	 */
 490	f = synth->data->freq_vco;
 491	f *= n_den >> 4;
 492
 493	/* Now we need to to 64-bit division: f/n_num */
 494	/* And compensate for the 4 bits we dropped */
 495	f = div64_u64(f, (n_num >> 4));
 496
 497	return f;
 498}
 499
 500static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 501		unsigned long *parent_rate)
 502{
 503	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 504	u64 f;
 505
 506	/* The synthesizer accuracy is such that anything in range will work */
 507	f = synth->data->freq_vco;
 508	do_div(f, SI5341_SYNTH_N_MAX);
 509	if (rate < f)
 510		return f;
 511
 512	f = synth->data->freq_vco;
 513	do_div(f, SI5341_SYNTH_N_MIN);
 514	if (rate > f)
 515		return f;
 516
 517	return rate;
 518}
 519
 520static int si5341_synth_program(struct clk_si5341_synth *synth,
 521	u64 n_num, u32 n_den, bool is_integer)
 522{
 523	int err;
 524	u8 index = synth->index;
 525
 526	err = si5341_encode_44_32(synth->data->regmap,
 527			SI5341_SYNTH_N_NUM(index), n_num, n_den);
 528
 529	err = regmap_update_bits(synth->data->regmap,
 530		SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
 531	if (err < 0)
 532		return err;
 533
 534	return regmap_write(synth->data->regmap,
 535		SI5341_SYNTH_N_UPD(index), 0x01);
 536}
 537
 538
 539static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 540		unsigned long parent_rate)
 541{
 542	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
 543	u64 n_num;
 544	u32 n_den;
 545	u32 r;
 546	u32 g;
 547	bool is_integer;
 548
 549	n_num = synth->data->freq_vco;
 550
 551	/* see if there's an integer solution */
 552	r = do_div(n_num, rate);
 553	is_integer = (r == 0);
 554	if (is_integer) {
 555		/* Integer divider equal to n_num */
 556		n_den = 1;
 557	} else {
 558		/* Calculate a fractional solution */
 559		g = gcd(r, rate);
 560		n_den = rate / g;
 561		n_num *= n_den;
 562		n_num += r / g;
 563	}
 564
 565	dev_dbg(&synth->data->i2c_client->dev,
 566			"%s(%u): n=0x%llx d=0x%x %s\n", __func__,
 567				synth->index, n_num, n_den,
 568				is_integer ? "int" : "frac");
 569
 570	return si5341_synth_program(synth, n_num, n_den, is_integer);
 571}
 572
 573static const struct clk_ops si5341_synth_clk_ops = {
 574	.is_prepared = si5341_synth_clk_is_on,
 575	.prepare = si5341_synth_clk_prepare,
 576	.unprepare = si5341_synth_clk_unprepare,
 577	.recalc_rate = si5341_synth_clk_recalc_rate,
 578	.round_rate = si5341_synth_clk_round_rate,
 579	.set_rate = si5341_synth_clk_set_rate,
 580};
 581
 582static int si5341_output_clk_is_on(struct clk_hw *hw)
 583{
 584	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 585	int err;
 586	u32 val;
 587
 588	err = regmap_read(output->data->regmap,
 589			SI5341_OUT_CONFIG(output), &val);
 590	if (err < 0)
 591		return err;
 592
 593	/* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
 594	return (val & 0x03) == SI5341_OUT_CFG_OE;
 595}
 596
 597/* Disables and then powers down the output */
 598static void si5341_output_clk_unprepare(struct clk_hw *hw)
 599{
 600	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 601
 602	regmap_update_bits(output->data->regmap,
 603			SI5341_OUT_CONFIG(output),
 604			SI5341_OUT_CFG_OE, 0);
 605	regmap_update_bits(output->data->regmap,
 606			SI5341_OUT_CONFIG(output),
 607			SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
 608}
 609
 610/* Powers up and then enables the output */
 611static int si5341_output_clk_prepare(struct clk_hw *hw)
 612{
 613	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 614	int err;
 615
 616	err = regmap_update_bits(output->data->regmap,
 617			SI5341_OUT_CONFIG(output),
 618			SI5341_OUT_CFG_PDN, 0);
 619	if (err < 0)
 620		return err;
 621
 622	return regmap_update_bits(output->data->regmap,
 623			SI5341_OUT_CONFIG(output),
 624			SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
 625}
 626
 627static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
 628		unsigned long parent_rate)
 629{
 630	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 631	int err;
 632	u32 val;
 633	u32 r_divider;
 634	u8 r[3];
 635
 636	err = regmap_bulk_read(output->data->regmap,
 637			SI5341_OUT_R_REG(output), r, 3);
 638	if (err < 0)
 639		return err;
 640
 641	/* Calculate value as 24-bit integer*/
 642	r_divider = r[2] << 16 | r[1] << 8 | r[0];
 643
 644	/* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
 645	if (!r_divider)
 646		return 0;
 647
 648	/* Divider is 2*(Rx_REG+1) */
 649	r_divider += 1;
 650	r_divider <<= 1;
 651
 652	err = regmap_read(output->data->regmap,
 653			SI5341_OUT_CONFIG(output), &val);
 654	if (err < 0)
 655		return err;
 656
 657	if (val & SI5341_OUT_CFG_RDIV_FORCE2)
 658		r_divider = 2;
 659
 660	return parent_rate / r_divider;
 661}
 662
 663static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
 664		unsigned long *parent_rate)
 665{
 666	unsigned long r;
 667
 668	r = *parent_rate >> 1;
 669
 670	/* If rate is an even divisor, no changes to parent required */
 671	if (r && !(r % rate))
 672		return (long)rate;
 673
 674	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
 675		if (rate > 200000000) {
 676			/* minimum r-divider is 2 */
 677			r = 2;
 678		} else {
 679			/* Take a parent frequency near 400 MHz */
 680			r = (400000000u / rate) & ~1;
 681		}
 682		*parent_rate = r * rate;
 683	} else {
 684		/* We cannot change our parent's rate, report what we can do */
 685		r /= rate;
 686		rate = *parent_rate / (r << 1);
 687	}
 688
 689	return rate;
 690}
 691
 692static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
 693		unsigned long parent_rate)
 694{
 695	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 696	/* Frequency divider is (r_div + 1) * 2 */
 697	u32 r_div = (parent_rate / rate) >> 1;
 698	int err;
 699	u8 r[3];
 700
 701	if (r_div <= 1)
 702		r_div = 0;
 703	else if (r_div >= BIT(24))
 704		r_div = BIT(24) - 1;
 705	else
 706		--r_div;
 707
 708	/* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
 709	err = regmap_update_bits(output->data->regmap,
 710			SI5341_OUT_CONFIG(output),
 711			SI5341_OUT_CFG_RDIV_FORCE2,
 712			(r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
 713	if (err < 0)
 714		return err;
 715
 716	/* Always write Rx_REG, because a zero value disables the divider */
 717	r[0] = r_div ? (r_div & 0xff) : 1;
 718	r[1] = (r_div >> 8) & 0xff;
 719	r[2] = (r_div >> 16) & 0xff;
 720	err = regmap_bulk_write(output->data->regmap,
 721			SI5341_OUT_R_REG(output), r, 3);
 722
 723	return 0;
 724}
 725
 726static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
 727{
 728	return regmap_update_bits(output->data->regmap,
 729		SI5341_OUT_MUX_SEL(output), 0x07, index);
 730}
 731
 732static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
 733{
 734	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 735
 736	if (index >= output->data->num_synth)
 737		return -EINVAL;
 738
 739	return si5341_output_reparent(output, index);
 740}
 741
 742static u8 si5341_output_get_parent(struct clk_hw *hw)
 743{
 744	struct clk_si5341_output *output = to_clk_si5341_output(hw);
 745	int err;
 746	u32 val;
 747
 748	err = regmap_read(output->data->regmap,
 749			SI5341_OUT_MUX_SEL(output), &val);
 750
 751	return val & 0x7;
 752}
 753
 754static const struct clk_ops si5341_output_clk_ops = {
 755	.is_prepared = si5341_output_clk_is_on,
 756	.prepare = si5341_output_clk_prepare,
 757	.unprepare = si5341_output_clk_unprepare,
 758	.recalc_rate = si5341_output_clk_recalc_rate,
 759	.round_rate = si5341_output_clk_round_rate,
 760	.set_rate = si5341_output_clk_set_rate,
 761	.set_parent = si5341_output_set_parent,
 762	.get_parent = si5341_output_get_parent,
 763};
 764
 765/*
 766 * The chip can be bought in a pre-programmed version, or one can program the
 767 * NVM in the chip to boot up in a preset mode. This routine tries to determine
 768 * if that's the case, or if we need to reset and program everything from
 769 * scratch. Returns negative error, or true/false.
 770 */
 771static int si5341_is_programmed_already(struct clk_si5341 *data)
 772{
 773	int err;
 774	u8 r[4];
 775
 776	/* Read the PLL divider value, it must have a non-zero value */
 777	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
 778			r, ARRAY_SIZE(r));
 779	if (err < 0)
 780		return err;
 781
 782	return !!get_unaligned_le32(r);
 783}
 784
 785static struct clk_hw *
 786of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
 787{
 788	struct clk_si5341 *data = _data;
 789	unsigned int idx = clkspec->args[1];
 790	unsigned int group = clkspec->args[0];
 791
 792	switch (group) {
 793	case 0:
 794		if (idx >= data->num_outputs) {
 795			dev_err(&data->i2c_client->dev,
 796				"invalid output index %u\n", idx);
 797			return ERR_PTR(-EINVAL);
 798		}
 799		return &data->clk[idx].hw;
 800	case 1:
 801		if (idx >= data->num_synth) {
 802			dev_err(&data->i2c_client->dev,
 803				"invalid synthesizer index %u\n", idx);
 804			return ERR_PTR(-EINVAL);
 805		}
 806		return &data->synth[idx].hw;
 807	case 2:
 808		if (idx > 0) {
 809			dev_err(&data->i2c_client->dev,
 810				"invalid PLL index %u\n", idx);
 811			return ERR_PTR(-EINVAL);
 812		}
 813		return &data->hw;
 814	default:
 815		dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
 816		return ERR_PTR(-EINVAL);
 817	}
 818}
 819
 820static int si5341_probe_chip_id(struct clk_si5341 *data)
 821{
 822	int err;
 823	u8 reg[4];
 824	u16 model;
 825
 826	err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
 827				ARRAY_SIZE(reg));
 828	if (err < 0) {
 829		dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
 830		return err;
 831	}
 832
 833	model = get_unaligned_le16(reg);
 834
 835	dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
 836		 model, reg[2], reg[3]);
 837
 838	switch (model) {
 839	case 0x5340:
 840		data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
 841		data->num_synth = SI5340_NUM_SYNTH;
 842		data->reg_output_offset = si5340_reg_output_offset;
 843		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
 844		break;
 845	case 0x5341:
 846		data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
 847		data->num_synth = SI5341_NUM_SYNTH;
 848		data->reg_output_offset = si5341_reg_output_offset;
 849		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
 850		break;
 851	default:
 852		dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
 853			model);
 854		return -EINVAL;
 855	}
 856
 857	return 0;
 858}
 859
 860/* Read active settings into the regmap cache for later reference */
 861static int si5341_read_settings(struct clk_si5341 *data)
 862{
 863	int err;
 864	u8 i;
 865	u8 r[10];
 866
 867	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
 868	if (err < 0)
 869		return err;
 870
 871	err = regmap_bulk_read(data->regmap,
 872				SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
 873	if (err < 0)
 874		return err;
 875
 876	err = regmap_bulk_read(data->regmap,
 877				SI5341_SYNTH_N_CLK_DIS, r, 1);
 878	if (err < 0)
 879		return err;
 880
 881	for (i = 0; i < data->num_synth; ++i) {
 882		err = regmap_bulk_read(data->regmap,
 883					SI5341_SYNTH_N_NUM(i), r, 10);
 884		if (err < 0)
 885			return err;
 886	}
 887
 888	for (i = 0; i < data->num_outputs; ++i) {
 889		err = regmap_bulk_read(data->regmap,
 890					data->reg_output_offset[i], r, 4);
 891		if (err < 0)
 892			return err;
 893
 894		err = regmap_bulk_read(data->regmap,
 895					data->reg_rdiv_offset[i], r, 3);
 896		if (err < 0)
 897			return err;
 898	}
 899
 900	return 0;
 901}
 902
 903static int si5341_write_multiple(struct clk_si5341 *data,
 904	const struct si5341_reg_default *values, unsigned int num_values)
 905{
 906	unsigned int i;
 907	int res;
 908
 909	for (i = 0; i < num_values; ++i) {
 910		res = regmap_write(data->regmap,
 911			values[i].address, values[i].value);
 912		if (res < 0) {
 913			dev_err(&data->i2c_client->dev,
 914				"Failed to write %#x:%#x\n",
 915				values[i].address, values[i].value);
 916			return res;
 917		}
 918	}
 919
 920	return 0;
 921}
 922
 923static const struct si5341_reg_default si5341_preamble[] = {
 924	{ 0x0B25, 0x00 },
 925	{ 0x0502, 0x01 },
 926	{ 0x0505, 0x03 },
 927	{ 0x0957, 0x1F },
 928	{ 0x0B4E, 0x1A },
 929};
 930
 931static int si5341_send_preamble(struct clk_si5341 *data)
 932{
 933	int res;
 934	u32 revision;
 935
 936	/* For revision 2 and up, the values are slightly different */
 937	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
 938	if (res < 0)
 939		return res;
 940
 941	/* Write "preamble" as specified by datasheet */
 942	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
 943	if (res < 0)
 944		return res;
 945	res = si5341_write_multiple(data,
 946		si5341_preamble, ARRAY_SIZE(si5341_preamble));
 947	if (res < 0)
 948		return res;
 949
 950	/* Datasheet specifies a 300ms wait after sending the preamble */
 951	msleep(300);
 952
 953	return 0;
 954}
 955
 956/* Perform a soft reset and write post-amble */
 957static int si5341_finalize_defaults(struct clk_si5341 *data)
 958{
 959	int res;
 960	u32 revision;
 961
 962	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
 963	if (res < 0)
 964		return res;
 965
 966	dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
 967
 968	res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
 969	if (res < 0)
 970		return res;
 971
 972	/* Datasheet does not explain these nameless registers */
 973	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
 974	if (res < 0)
 975		return res;
 976	res = regmap_write(data->regmap, 0x0B25, 0x02);
 977	if (res < 0)
 978		return res;
 979
 980	return 0;
 981}
 982
 983
 984static const struct regmap_range si5341_regmap_volatile_range[] = {
 985	regmap_reg_range(0x000C, 0x0012), /* Status */
 986	regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
 987	regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
 988	/* Update bits for synth config */
 989	regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
 990	regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
 991	regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
 992	regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
 993	regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
 994};
 995
 996static const struct regmap_access_table si5341_regmap_volatile = {
 997	.yes_ranges = si5341_regmap_volatile_range,
 998	.n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
 999};
1000
1001/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1002static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1003	{
1004		.range_min = 0,
1005		.range_max = SI5341_REGISTER_MAX,
1006		.selector_reg = SI5341_PAGE,
1007		.selector_mask = 0xff,
1008		.selector_shift = 0,
1009		.window_start = 0,
1010		.window_len = 256,
1011	},
1012};
1013
1014static const struct regmap_config si5341_regmap_config = {
1015	.reg_bits = 8,
1016	.val_bits = 8,
1017	.cache_type = REGCACHE_RBTREE,
1018	.ranges = si5341_regmap_ranges,
1019	.num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1020	.max_register = SI5341_REGISTER_MAX,
1021	.volatile_table = &si5341_regmap_volatile,
1022};
1023
1024static int si5341_dt_parse_dt(struct i2c_client *client,
1025	struct clk_si5341_output_config *config)
1026{
1027	struct device_node *child;
1028	struct device_node *np = client->dev.of_node;
1029	u32 num;
1030	u32 val;
1031
1032	memset(config, 0, sizeof(struct clk_si5341_output_config) *
1033				SI5341_MAX_NUM_OUTPUTS);
1034
1035	for_each_child_of_node(np, child) {
1036		if (of_property_read_u32(child, "reg", &num)) {
1037			dev_err(&client->dev, "missing reg property of %s\n",
1038				child->name);
1039			goto put_child;
1040		}
1041
1042		if (num >= SI5341_MAX_NUM_OUTPUTS) {
1043			dev_err(&client->dev, "invalid clkout %d\n", num);
1044			goto put_child;
1045		}
1046
1047		if (!of_property_read_u32(child, "silabs,format", &val)) {
1048			/* Set cm and ampl conservatively to 3v3 settings */
1049			switch (val) {
1050			case 1: /* normal differential */
1051				config[num].out_cm_ampl_bits = 0x33;
1052				break;
1053			case 2: /* low-power differential */
1054				config[num].out_cm_ampl_bits = 0x13;
1055				break;
1056			case 4: /* LVCMOS */
1057				config[num].out_cm_ampl_bits = 0x33;
1058				/* Set SI recommended impedance for LVCMOS */
1059				config[num].out_format_drv_bits |= 0xc0;
1060				break;
1061			default:
1062				dev_err(&client->dev,
1063					"invalid silabs,format %u for %u\n",
1064					val, num);
1065				goto put_child;
1066			}
1067			config[num].out_format_drv_bits &= ~0x07;
1068			config[num].out_format_drv_bits |= val & 0x07;
1069			/* Always enable the SYNC feature */
1070			config[num].out_format_drv_bits |= 0x08;
1071		}
1072
1073		if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1074			if (val > 0xf) {
1075				dev_err(&client->dev,
1076					"invalid silabs,common-mode %u\n",
1077					val);
1078				goto put_child;
1079			}
1080			config[num].out_cm_ampl_bits &= 0xf0;
1081			config[num].out_cm_ampl_bits |= val & 0x0f;
1082		}
1083
1084		if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1085			if (val > 0xf) {
1086				dev_err(&client->dev,
1087					"invalid silabs,amplitude %u\n",
1088					val);
1089				goto put_child;
1090			}
1091			config[num].out_cm_ampl_bits &= 0x0f;
1092			config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1093		}
1094
1095		if (of_property_read_bool(child, "silabs,disable-high"))
1096			config[num].out_format_drv_bits |= 0x10;
1097
1098		config[num].synth_master =
1099			of_property_read_bool(child, "silabs,synth-master");
1100
1101		config[num].always_on =
1102			of_property_read_bool(child, "always-on");
1103	}
1104
1105	return 0;
1106
1107put_child:
1108	of_node_put(child);
1109	return -EINVAL;
1110}
1111
1112/*
1113 * If not pre-configured, calculate and set the PLL configuration manually.
1114 * For low-jitter performance, the PLL should be set such that the synthesizers
1115 * only need integer division.
1116 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1117 * the chip to generate any frequency on its outputs, but jitter performance
1118 * may be sub-optimal.
1119 */
1120static int si5341_initialize_pll(struct clk_si5341 *data)
1121{
1122	struct device_node *np = data->i2c_client->dev.of_node;
1123	u32 m_num = 0;
1124	u32 m_den = 0;
1125
1126	if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1127		dev_err(&data->i2c_client->dev,
1128			"PLL configuration requires silabs,pll-m-num\n");
1129	}
1130	if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1131		dev_err(&data->i2c_client->dev,
1132			"PLL configuration requires silabs,pll-m-den\n");
1133	}
1134
1135	if (!m_num || !m_den) {
1136		dev_err(&data->i2c_client->dev,
1137			"PLL configuration invalid, assume 14GHz\n");
1138		m_den = clk_get_rate(data->pxtal) / 10;
1139		m_num = 1400000000;
1140	}
1141
1142	return si5341_encode_44_32(data->regmap,
1143			SI5341_PLL_M_NUM, m_num, m_den);
1144}
1145
1146static int si5341_probe(struct i2c_client *client,
1147		const struct i2c_device_id *id)
1148{
1149	struct clk_si5341 *data;
1150	struct clk_init_data init;
1151	const char *root_clock_name;
1152	const char *synth_clock_names[SI5341_NUM_SYNTH];
1153	int err;
1154	unsigned int i;
1155	struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1156	bool initialization_required;
1157
1158	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1159	if (!data)
1160		return -ENOMEM;
1161
1162	data->i2c_client = client;
1163
1164	data->pxtal = devm_clk_get(&client->dev, "xtal");
1165	if (IS_ERR(data->pxtal)) {
1166		if (PTR_ERR(data->pxtal) == -EPROBE_DEFER)
1167			return -EPROBE_DEFER;
1168
1169		dev_err(&client->dev, "Missing xtal clock input\n");
1170	}
1171
1172	err = si5341_dt_parse_dt(client, config);
1173	if (err)
1174		return err;
1175
1176	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1177			&init.name))
1178		init.name = client->dev.of_node->name;
1179	root_clock_name = init.name;
1180
1181	data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1182	if (IS_ERR(data->regmap))
1183		return PTR_ERR(data->regmap);
1184
1185	i2c_set_clientdata(client, data);
1186
1187	err = si5341_probe_chip_id(data);
1188	if (err < 0)
1189		return err;
1190
1191	/* "Activate" the xtal (usually a fixed clock) */
1192	clk_prepare_enable(data->pxtal);
1193
1194	if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1195		initialization_required = true;
1196	} else {
1197		err = si5341_is_programmed_already(data);
1198		if (err < 0)
1199			return err;
1200
1201		initialization_required = !err;
1202	}
1203
1204	if (initialization_required) {
1205		/* Populate the regmap cache in preparation for "cache only" */
1206		err = si5341_read_settings(data);
1207		if (err < 0)
1208			return err;
1209
1210		err = si5341_send_preamble(data);
1211		if (err < 0)
1212			return err;
1213
1214		/*
1215		 * We intend to send all 'final' register values in a single
1216		 * transaction. So cache all register writes until we're done
1217		 * configuring.
1218		 */
1219		regcache_cache_only(data->regmap, true);
1220
1221		/* Write the configuration pairs from the firmware blob */
1222		err = si5341_write_multiple(data, si5341_reg_defaults,
1223					ARRAY_SIZE(si5341_reg_defaults));
1224		if (err < 0)
1225			return err;
1226
1227		/* PLL configuration is required */
1228		err = si5341_initialize_pll(data);
1229		if (err < 0)
1230			return err;
1231	}
1232
1233	/* Register the PLL */
1234	data->pxtal_name = __clk_get_name(data->pxtal);
1235	init.parent_names = &data->pxtal_name;
1236	init.num_parents = 1; /* For now, only XTAL input supported */
1237	init.ops = &si5341_clk_ops;
1238	init.flags = 0;
1239	data->hw.init = &init;
1240
1241	err = devm_clk_hw_register(&client->dev, &data->hw);
1242	if (err) {
1243		dev_err(&client->dev, "clock registration failed\n");
1244		return err;
1245	}
1246
1247	init.num_parents = 1;
1248	init.parent_names = &root_clock_name;
1249	init.ops = &si5341_synth_clk_ops;
1250	for (i = 0; i < data->num_synth; ++i) {
1251		synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1252				"%s.N%u", client->dev.of_node->name, i);
1253		init.name = synth_clock_names[i];
1254		data->synth[i].index = i;
1255		data->synth[i].data = data;
1256		data->synth[i].hw.init = &init;
1257		err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1258		if (err) {
1259			dev_err(&client->dev,
1260				"synth N%u registration failed\n", i);
1261		}
1262	}
1263
1264	init.num_parents = data->num_synth;
1265	init.parent_names = synth_clock_names;
1266	init.ops = &si5341_output_clk_ops;
1267	for (i = 0; i < data->num_outputs; ++i) {
1268		init.name = kasprintf(GFP_KERNEL, "%s.%d",
1269			client->dev.of_node->name, i);
1270		init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1271		data->clk[i].index = i;
1272		data->clk[i].data = data;
1273		data->clk[i].hw.init = &init;
1274		if (config[i].out_format_drv_bits & 0x07) {
1275			regmap_write(data->regmap,
1276				SI5341_OUT_FORMAT(&data->clk[i]),
1277				config[i].out_format_drv_bits);
1278			regmap_write(data->regmap,
1279				SI5341_OUT_CM(&data->clk[i]),
1280				config[i].out_cm_ampl_bits);
1281		}
1282		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1283		kfree(init.name); /* clock framework made a copy of the name */
1284		if (err) {
1285			dev_err(&client->dev,
1286				"output %u registration failed\n", i);
1287			return err;
1288		}
1289		if (config[i].always_on)
1290			clk_prepare(data->clk[i].hw.clk);
1291	}
1292
1293	err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
1294			data);
1295	if (err) {
1296		dev_err(&client->dev, "unable to add clk provider\n");
1297		return err;
1298	}
1299
1300	if (initialization_required) {
1301		/* Synchronize */
1302		regcache_cache_only(data->regmap, false);
1303		err = regcache_sync(data->regmap);
1304		if (err < 0)
1305			return err;
1306
1307		err = si5341_finalize_defaults(data);
1308		if (err < 0)
1309			return err;
1310	}
1311
1312	/* Free the names, clk framework makes copies */
1313	for (i = 0; i < data->num_synth; ++i)
1314		 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1315
1316	return 0;
1317}
1318
1319static const struct i2c_device_id si5341_id[] = {
1320	{ "si5340", 0 },
1321	{ "si5341", 1 },
1322	{ }
1323};
1324MODULE_DEVICE_TABLE(i2c, si5341_id);
1325
1326static const struct of_device_id clk_si5341_of_match[] = {
1327	{ .compatible = "silabs,si5340" },
1328	{ .compatible = "silabs,si5341" },
1329	{ }
1330};
1331MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1332
1333static struct i2c_driver si5341_driver = {
1334	.driver = {
1335		.name = "si5341",
1336		.of_match_table = clk_si5341_of_match,
1337	},
1338	.probe		= si5341_probe,
1339	.id_table	= si5341_id,
1340};
1341module_i2c_driver(si5341_driver);
1342
1343MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1344MODULE_DESCRIPTION("Si5341 driver");
1345MODULE_LICENSE("GPL");