Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Handle the memory map.
   3 * The functions here do the job until bootmem takes over.
   4 *
   5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
   6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
   7 *     Alex Achenbach <xela@slit.de>, December 2002.
   8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   9 *
 
 
 
  10 */
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/init.h>
  14#include <linux/crash_dump.h>
  15#include <linux/bootmem.h>
  16#include <linux/pfn.h>
  17#include <linux/suspend.h>
  18#include <linux/acpi.h>
  19#include <linux/firmware-map.h>
  20#include <linux/memblock.h>
 
  21
  22#include <asm/e820.h>
  23#include <asm/proto.h>
  24#include <asm/setup.h>
  25
  26/*
  27 * The e820 map is the map that gets modified e.g. with command line parameters
  28 * and that is also registered with modifications in the kernel resource tree
  29 * with the iomem_resource as parent.
  30 *
  31 * The e820_saved is directly saved after the BIOS-provided memory map is
  32 * copied. It doesn't get modified afterwards. It's registered for the
  33 * /sys/firmware/memmap interface.
  34 *
  35 * That memory map is not modified and is used as base for kexec. The kexec'd
  36 * kernel should get the same memory map as the firmware provides. Then the
  37 * user can e.g. boot the original kernel with mem=1G while still booting the
  38 * next kernel with full memory.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39 */
  40struct e820map e820;
  41struct e820map e820_saved;
 
 
 
 
 
  42
  43/* For PCI or other memory-mapped resources */
  44unsigned long pci_mem_start = 0xaeedbabe;
  45#ifdef CONFIG_PCI
  46EXPORT_SYMBOL(pci_mem_start);
  47#endif
  48
  49/*
  50 * This function checks if any part of the range <start,end> is mapped
  51 * with type.
  52 */
  53int
  54e820_any_mapped(u64 start, u64 end, unsigned type)
  55{
  56	int i;
  57
  58	for (i = 0; i < e820.nr_map; i++) {
  59		struct e820entry *ei = &e820.map[i];
  60
  61		if (type && ei->type != type)
  62			continue;
  63		if (ei->addr >= end || ei->addr + ei->size <= start)
  64			continue;
  65		return 1;
  66	}
  67	return 0;
  68}
  69EXPORT_SYMBOL_GPL(e820_any_mapped);
 
 
 
 
 
 
 
 
 
 
 
  70
  71/*
  72 * This function checks if the entire range <start,end> is mapped with type.
  73 *
  74 * Note: this function only works correct if the e820 table is sorted and
  75 * not-overlapping, which is the case
  76 */
  77int __init e820_all_mapped(u64 start, u64 end, unsigned type)
 
  78{
  79	int i;
  80
  81	for (i = 0; i < e820.nr_map; i++) {
  82		struct e820entry *ei = &e820.map[i];
  83
  84		if (type && ei->type != type)
  85			continue;
  86		/* is the region (part) in overlap with the current region ?*/
  87		if (ei->addr >= end || ei->addr + ei->size <= start)
 
  88			continue;
  89
  90		/* if the region is at the beginning of <start,end> we move
  91		 * start to the end of the region since it's ok until there
 
  92		 */
  93		if (ei->addr <= start)
  94			start = ei->addr + ei->size;
 
  95		/*
  96		 * if start is now at or beyond end, we're done, full
  97		 * coverage
  98		 */
  99		if (start >= end)
 100			return 1;
 101	}
 102	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103}
 104
 105/*
 106 * Add a memory region to the kernel e820 map.
 107 */
 108static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
 109					 int type)
 110{
 111	int x = e820x->nr_map;
 112
 113	if (x >= ARRAY_SIZE(e820x->map)) {
 114		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
 
 115		return;
 116	}
 117
 118	e820x->map[x].addr = start;
 119	e820x->map[x].size = size;
 120	e820x->map[x].type = type;
 121	e820x->nr_map++;
 122}
 123
 124void __init e820_add_region(u64 start, u64 size, int type)
 125{
 126	__e820_add_region(&e820, start, size, type);
 127}
 128
 129static void __init e820_print_type(u32 type)
 130{
 131	switch (type) {
 132	case E820_RAM:
 133	case E820_RESERVED_KERN:
 134		printk(KERN_CONT "(usable)");
 135		break;
 136	case E820_RESERVED:
 137		printk(KERN_CONT "(reserved)");
 138		break;
 139	case E820_ACPI:
 140		printk(KERN_CONT "(ACPI data)");
 141		break;
 142	case E820_NVS:
 143		printk(KERN_CONT "(ACPI NVS)");
 144		break;
 145	case E820_UNUSABLE:
 146		printk(KERN_CONT "(unusable)");
 147		break;
 148	default:
 149		printk(KERN_CONT "type %u", type);
 150		break;
 151	}
 152}
 153
 154void __init e820_print_map(char *who)
 155{
 156	int i;
 157
 158	for (i = 0; i < e820.nr_map; i++) {
 159		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
 160		       (unsigned long long) e820.map[i].addr,
 161		       (unsigned long long)
 162		       (e820.map[i].addr + e820.map[i].size));
 163		e820_print_type(e820.map[i].type);
 164		printk(KERN_CONT "\n");
 
 165	}
 166}
 167
 168/*
 169 * Sanitize the BIOS e820 map.
 170 *
 171 * Some e820 responses include overlapping entries. The following
 172 * replaces the original e820 map with a new one, removing overlaps,
 173 * and resolving conflicting memory types in favor of highest
 174 * numbered type.
 175 *
 176 * The input parameter biosmap points to an array of 'struct
 177 * e820entry' which on entry has elements in the range [0, *pnr_map)
 178 * valid, and which has space for up to max_nr_map entries.
 179 * On return, the resulting sanitized e820 map entries will be in
 180 * overwritten in the same location, starting at biosmap.
 181 *
 182 * The integer pointed to by pnr_map must be valid on entry (the
 183 * current number of valid entries located at biosmap) and will
 184 * be updated on return, with the new number of valid entries
 185 * (something no more than max_nr_map.)
 186 *
 187 * The return value from sanitize_e820_map() is zero if it
 188 * successfully 'sanitized' the map entries passed in, and is -1
 189 * if it did nothing, which can happen if either of (1) it was
 190 * only passed one map entry, or (2) any of the input map entries
 191 * were invalid (start + size < start, meaning that the size was
 192 * so big the described memory range wrapped around through zero.)
 193 *
 194 *	Visually we're performing the following
 195 *	(1,2,3,4 = memory types)...
 196 *
 197 *	Sample memory map (w/overlaps):
 198 *	   ____22__________________
 199 *	   ______________________4_
 200 *	   ____1111________________
 201 *	   _44_____________________
 202 *	   11111111________________
 203 *	   ____________________33__
 204 *	   ___________44___________
 205 *	   __________33333_________
 206 *	   ______________22________
 207 *	   ___________________2222_
 208 *	   _________111111111______
 209 *	   _____________________11_
 210 *	   _________________4______
 211 *
 212 *	Sanitized equivalent (no overlap):
 213 *	   1_______________________
 214 *	   _44_____________________
 215 *	   ___1____________________
 216 *	   ____22__________________
 217 *	   ______11________________
 218 *	   _________1______________
 219 *	   __________3_____________
 220 *	   ___________44___________
 221 *	   _____________33_________
 222 *	   _______________2________
 223 *	   ________________1_______
 224 *	   _________________4______
 225 *	   ___________________2____
 226 *	   ____________________33__
 227 *	   ______________________4_
 228 */
 
 
 
 
 
 
 
 
 
 
 
 229
 230int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
 231			     u32 *pnr_map)
 232{
 233	struct change_member {
 234		struct e820entry *pbios; /* pointer to original bios entry */
 235		unsigned long long addr; /* address for this change point */
 236	};
 237	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
 238	static struct change_member *change_point[2*E820_X_MAX] __initdata;
 239	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
 240	static struct e820entry new_bios[E820_X_MAX] __initdata;
 241	struct change_member *change_tmp;
 242	unsigned long current_type, last_type;
 
 
 
 
 
 
 
 
 
 
 243	unsigned long long last_addr;
 244	int chgidx, still_changing;
 245	int overlap_entries;
 246	int new_bios_entry;
 247	int old_nr, new_nr, chg_nr;
 248	int i;
 249
 250	/* if there's only one memory region, don't bother */
 251	if (*pnr_map < 2)
 252		return -1;
 253
 254	old_nr = *pnr_map;
 255	BUG_ON(old_nr > max_nr_map);
 256
 257	/* bail out if we find any unreasonable addresses in bios map */
 258	for (i = 0; i < old_nr; i++)
 259		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
 260			return -1;
 
 261
 262	/* create pointers for initial change-point information (for sorting) */
 263	for (i = 0; i < 2 * old_nr; i++)
 264		change_point[i] = &change_point_list[i];
 265
 266	/* record all known change-points (starting and ending addresses),
 267	   omitting those that are for empty memory regions */
 268	chgidx = 0;
 269	for (i = 0; i < old_nr; i++)	{
 270		if (biosmap[i].size != 0) {
 271			change_point[chgidx]->addr = biosmap[i].addr;
 272			change_point[chgidx++]->pbios = &biosmap[i];
 273			change_point[chgidx]->addr = biosmap[i].addr +
 274				biosmap[i].size;
 275			change_point[chgidx++]->pbios = &biosmap[i];
 
 276		}
 277	}
 278	chg_nr = chgidx;
 279
 280	/* sort change-point list by memory addresses (low -> high) */
 281	still_changing = 1;
 282	while (still_changing)	{
 283		still_changing = 0;
 284		for (i = 1; i < chg_nr; i++)  {
 285			unsigned long long curaddr, lastaddr;
 286			unsigned long long curpbaddr, lastpbaddr;
 287
 288			curaddr = change_point[i]->addr;
 289			lastaddr = change_point[i - 1]->addr;
 290			curpbaddr = change_point[i]->pbios->addr;
 291			lastpbaddr = change_point[i - 1]->pbios->addr;
 292
 293			/*
 294			 * swap entries, when:
 295			 *
 296			 * curaddr > lastaddr or
 297			 * curaddr == lastaddr and curaddr == curpbaddr and
 298			 * lastaddr != lastpbaddr
 299			 */
 300			if (curaddr < lastaddr ||
 301			    (curaddr == lastaddr && curaddr == curpbaddr &&
 302			     lastaddr != lastpbaddr)) {
 303				change_tmp = change_point[i];
 304				change_point[i] = change_point[i-1];
 305				change_point[i-1] = change_tmp;
 306				still_changing = 1;
 307			}
 308		}
 309	}
 310
 311	/* create a new bios memory map, removing overlaps */
 312	overlap_entries = 0;	 /* number of entries in the overlap table */
 313	new_bios_entry = 0;	 /* index for creating new bios map entries */
 314	last_type = 0;		 /* start with undefined memory type */
 315	last_addr = 0;		 /* start with 0 as last starting address */
 316
 317	/* loop through change-points, determining affect on the new bios map */
 318	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
 319		/* keep track of all overlapping bios entries */
 320		if (change_point[chgidx]->addr ==
 321		    change_point[chgidx]->pbios->addr) {
 322			/*
 323			 * add map entry to overlap list (> 1 entry
 324			 * implies an overlap)
 325			 */
 326			overlap_list[overlap_entries++] =
 327				change_point[chgidx]->pbios;
 328		} else {
 329			/*
 330			 * remove entry from list (order independent,
 331			 * so swap with last)
 332			 */
 333			for (i = 0; i < overlap_entries; i++) {
 334				if (overlap_list[i] ==
 335				    change_point[chgidx]->pbios)
 336					overlap_list[i] =
 337						overlap_list[overlap_entries-1];
 338			}
 339			overlap_entries--;
 340		}
 341		/*
 342		 * if there are overlapping entries, decide which
 343		 * "type" to use (larger value takes precedence --
 344		 * 1=usable, 2,3,4,4+=unusable)
 345		 */
 346		current_type = 0;
 347		for (i = 0; i < overlap_entries; i++)
 348			if (overlap_list[i]->type > current_type)
 349				current_type = overlap_list[i]->type;
 350		/*
 351		 * continue building up new bios map based on this
 352		 * information
 353		 */
 354		if (current_type != last_type)	{
 355			if (last_type != 0)	 {
 356				new_bios[new_bios_entry].size =
 357					change_point[chgidx]->addr - last_addr;
 358				/*
 359				 * move forward only if the new size
 360				 * was non-zero
 361				 */
 362				if (new_bios[new_bios_entry].size != 0)
 363					/*
 364					 * no more space left for new
 365					 * bios entries ?
 366					 */
 367					if (++new_bios_entry >= max_nr_map)
 368						break;
 369			}
 370			if (current_type != 0)	{
 371				new_bios[new_bios_entry].addr =
 372					change_point[chgidx]->addr;
 373				new_bios[new_bios_entry].type = current_type;
 374				last_addr = change_point[chgidx]->addr;
 375			}
 376			last_type = current_type;
 377		}
 378	}
 379	/* retain count for new bios entries */
 380	new_nr = new_bios_entry;
 381
 382	/* copy new bios mapping into original location */
 383	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
 384	*pnr_map = new_nr;
 385
 386	return 0;
 387}
 388
 389static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
 390{
 391	while (nr_map) {
 392		u64 start = biosmap->addr;
 393		u64 size = biosmap->size;
 394		u64 end = start + size;
 395		u32 type = biosmap->type;
 396
 397		/* Overflow in 64 bits? Ignore the memory map. */
 398		if (start > end)
 
 
 
 
 
 
 399			return -1;
 400
 401		e820_add_region(start, size, type);
 402
 403		biosmap++;
 404		nr_map--;
 405	}
 406	return 0;
 407}
 408
 409/*
 410 * Copy the BIOS e820 map into a safe place.
 411 *
 412 * Sanity-check it while we're at it..
 413 *
 414 * If we're lucky and live on a modern system, the setup code
 415 * will have given us a memory map that we can use to properly
 416 * set up memory.  If we aren't, we'll fake a memory map.
 417 */
 418static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
 419{
 420	/* Only one memory region (or negative)? Ignore it */
 421	if (nr_map < 2)
 422		return -1;
 423
 424	return __append_e820_map(biosmap, nr_map);
 425}
 426
 427static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
 428					u64 size, unsigned old_type,
 429					unsigned new_type)
 430{
 431	u64 end;
 432	unsigned int i;
 433	u64 real_updated_size = 0;
 434
 435	BUG_ON(old_type == new_type);
 436
 437	if (size > (ULLONG_MAX - start))
 438		size = ULLONG_MAX - start;
 439
 440	end = start + size;
 441	printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
 442		       (unsigned long long) start,
 443		       (unsigned long long) end);
 444	e820_print_type(old_type);
 445	printk(KERN_CONT " ==> ");
 446	e820_print_type(new_type);
 447	printk(KERN_CONT "\n");
 448
 449	for (i = 0; i < e820x->nr_map; i++) {
 450		struct e820entry *ei = &e820x->map[i];
 451		u64 final_start, final_end;
 452		u64 ei_end;
 453
 454		if (ei->type != old_type)
 455			continue;
 456
 457		ei_end = ei->addr + ei->size;
 458		/* totally covered by new range? */
 459		if (ei->addr >= start && ei_end <= end) {
 460			ei->type = new_type;
 461			real_updated_size += ei->size;
 
 462			continue;
 463		}
 464
 465		/* new range is totally covered? */
 466		if (ei->addr < start && ei_end > end) {
 467			__e820_add_region(e820x, start, size, new_type);
 468			__e820_add_region(e820x, end, ei_end - end, ei->type);
 469			ei->size = start - ei->addr;
 470			real_updated_size += size;
 471			continue;
 472		}
 473
 474		/* partially covered */
 475		final_start = max(start, ei->addr);
 476		final_end = min(end, ei_end);
 477		if (final_start >= final_end)
 478			continue;
 479
 480		__e820_add_region(e820x, final_start, final_end - final_start,
 481				  new_type);
 482
 483		real_updated_size += final_end - final_start;
 484
 485		/*
 486		 * left range could be head or tail, so need to update
 487		 * size at first.
 488		 */
 489		ei->size -= final_end - final_start;
 490		if (ei->addr < final_start)
 491			continue;
 492		ei->addr = final_end;
 
 493	}
 494	return real_updated_size;
 495}
 496
 497u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
 498			     unsigned new_type)
 499{
 500	return __e820_update_range(&e820, start, size, old_type, new_type);
 501}
 502
 503static u64 __init e820_update_range_saved(u64 start, u64 size,
 504					  unsigned old_type, unsigned new_type)
 505{
 506	return __e820_update_range(&e820_saved, start, size, old_type,
 507				     new_type);
 508}
 509
 510/* make e820 not cover the range */
 511u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
 512			     int checktype)
 513{
 514	int i;
 515	u64 end;
 516	u64 real_removed_size = 0;
 517
 518	if (size > (ULLONG_MAX - start))
 519		size = ULLONG_MAX - start;
 520
 521	end = start + size;
 522	printk(KERN_DEBUG "e820 remove range: %016Lx - %016Lx ",
 523		       (unsigned long long) start,
 524		       (unsigned long long) end);
 525	if (checktype)
 526		e820_print_type(old_type);
 527	printk(KERN_CONT "\n");
 528
 529	for (i = 0; i < e820.nr_map; i++) {
 530		struct e820entry *ei = &e820.map[i];
 531		u64 final_start, final_end;
 532		u64 ei_end;
 533
 534		if (checktype && ei->type != old_type)
 535			continue;
 536
 537		ei_end = ei->addr + ei->size;
 538		/* totally covered? */
 539		if (ei->addr >= start && ei_end <= end) {
 540			real_removed_size += ei->size;
 541			memset(ei, 0, sizeof(struct e820entry));
 
 542			continue;
 543		}
 544
 545		/* new range is totally covered? */
 546		if (ei->addr < start && ei_end > end) {
 547			e820_add_region(end, ei_end - end, ei->type);
 548			ei->size = start - ei->addr;
 549			real_removed_size += size;
 550			continue;
 551		}
 552
 553		/* partially covered */
 554		final_start = max(start, ei->addr);
 555		final_end = min(end, ei_end);
 556		if (final_start >= final_end)
 557			continue;
 
 558		real_removed_size += final_end - final_start;
 559
 560		/*
 561		 * left range could be head or tail, so need to update
 562		 * size at first.
 563		 */
 564		ei->size -= final_end - final_start;
 565		if (ei->addr < final_start)
 566			continue;
 567		ei->addr = final_end;
 
 568	}
 569	return real_removed_size;
 570}
 571
 572void __init update_e820(void)
 573{
 574	u32 nr_map;
 575
 576	nr_map = e820.nr_map;
 577	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
 578		return;
 579	e820.nr_map = nr_map;
 580	printk(KERN_INFO "modified physical RAM map:\n");
 581	e820_print_map("modified");
 582}
 583static void __init update_e820_saved(void)
 584{
 585	u32 nr_map;
 586
 587	nr_map = e820_saved.nr_map;
 588	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
 589		return;
 590	e820_saved.nr_map = nr_map;
 591}
 
 592#define MAX_GAP_END 0x100000000ull
 
 593/*
 594 * Search for a gap in the e820 memory space from start_addr to end_addr.
 595 */
 596__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
 597		unsigned long start_addr, unsigned long long end_addr)
 598{
 599	unsigned long long last;
 600	int i = e820.nr_map;
 601	int found = 0;
 602
 603	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
 604
 605	while (--i >= 0) {
 606		unsigned long long start = e820.map[i].addr;
 607		unsigned long long end = start + e820.map[i].size;
 608
 609		if (end < start_addr)
 610			continue;
 611
 612		/*
 613		 * Since "last" is at most 4GB, we know we'll
 614		 * fit in 32 bits if this condition is true
 615		 */
 616		if (last > end) {
 617			unsigned long gap = last - end;
 618
 619			if (gap >= *gapsize) {
 620				*gapsize = gap;
 621				*gapstart = end;
 622				found = 1;
 623			}
 624		}
 625		if (start < last)
 626			last = start;
 627	}
 628	return found;
 629}
 630
 631/*
 632 * Search for the biggest gap in the low 32 bits of the e820
 633 * memory space.  We pass this space to PCI to assign MMIO resources
 634 * for hotplug or unconfigured devices in.
 
 
 635 * Hopefully the BIOS let enough space left.
 636 */
 637__init void e820_setup_gap(void)
 638{
 639	unsigned long gapstart, gapsize;
 640	int found;
 641
 642	gapstart = 0x10000000;
 643	gapsize = 0x400000;
 644	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
 645
 646#ifdef CONFIG_X86_64
 647	if (!found) {
 
 648		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 649		printk(KERN_ERR
 650	"PCI: Warning: Cannot find a gap in the 32bit address range\n"
 651	"PCI: Unassigned devices with 32bit resource registers may break!\n");
 652	}
 653#endif
 
 654
 655	/*
 656	 * e820_reserve_resources_late protect stolen RAM already
 657	 */
 658	pci_mem_start = gapstart;
 659
 660	printk(KERN_INFO
 661	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
 662	       pci_mem_start, gapstart, gapsize);
 663}
 664
 665/**
 666 * Because of the size limitation of struct boot_params, only first
 667 * 128 E820 memory entries are passed to kernel via
 668 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
 669 * linked list of struct setup_data, which is parsed here.
 
 
 
 
 
 
 670 */
 671void __init parse_e820_ext(struct setup_data *sdata)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672{
 673	int entries;
 674	struct e820entry *extmap;
 
 675
 676	entries = sdata->len / sizeof(struct e820entry);
 677	extmap = (struct e820entry *)(sdata->data);
 678	__append_e820_map(extmap, entries);
 679	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 680	printk(KERN_INFO "extended physical RAM map:\n");
 681	e820_print_map("extended");
 
 
 
 
 
 
 
 682}
 683
 684#if defined(CONFIG_X86_64) || \
 685	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
 686/**
 687 * Find the ranges of physical addresses that do not correspond to
 688 * e820 RAM areas and mark the corresponding pages as nosave for
 689 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
 690 *
 691 * This function requires the e820 map to be sorted and without any
 692 * overlapping entries and assumes the first e820 area to be RAM.
 693 */
 694void __init e820_mark_nosave_regions(unsigned long limit_pfn)
 695{
 696	int i;
 697	unsigned long pfn;
 
 
 
 
 
 
 698
 699	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
 700	for (i = 1; i < e820.nr_map; i++) {
 701		struct e820entry *ei = &e820.map[i];
 702
 703		if (pfn < PFN_UP(ei->addr))
 704			register_nosave_region(pfn, PFN_UP(ei->addr));
 705
 706		pfn = PFN_DOWN(ei->addr + ei->size);
 707		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 708			register_nosave_region(PFN_UP(ei->addr), pfn);
 709
 710		if (pfn >= limit_pfn)
 711			break;
 712	}
 713}
 714#endif
 715
 716#ifdef CONFIG_HIBERNATION
 717/**
 718 * Mark ACPI NVS memory region, so that we can save/restore it during
 719 * hibernation and the subsequent resume.
 720 */
 721static int __init e820_mark_nvs_memory(void)
 722{
 723	int i;
 724
 725	for (i = 0; i < e820.nr_map; i++) {
 726		struct e820entry *ei = &e820.map[i];
 727
 728		if (ei->type == E820_NVS)
 729			suspend_nvs_register(ei->addr, ei->size);
 730	}
 731
 732	return 0;
 733}
 734core_initcall(e820_mark_nvs_memory);
 735#endif
 736
 737/*
 738 * pre allocated 4k and reserved it in memblock and e820_saved
 
 
 
 
 
 739 */
 740u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
 741{
 742	u64 size = 0;
 743	u64 addr;
 744	u64 start;
 745
 746	for (start = startt; ; start += size) {
 747		start = memblock_x86_find_in_range_size(start, &size, align);
 748		if (start == MEMBLOCK_ERROR)
 749			return 0;
 750		if (size >= sizet)
 751			break;
 752	}
 753
 754#ifdef CONFIG_X86_32
 755	if (start >= MAXMEM)
 756		return 0;
 757	if (start + size > MAXMEM)
 758		size = MAXMEM - start;
 759#endif
 760
 761	addr = round_down(start + size - sizet, align);
 762	if (addr < start)
 763		return 0;
 764	memblock_x86_reserve_range(addr, addr + sizet, "new next");
 765	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
 766	printk(KERN_INFO "update e820_saved for early_reserve_e820\n");
 767	update_e820_saved();
 768
 769	return addr;
 770}
 771
 772#ifdef CONFIG_X86_32
 773# ifdef CONFIG_X86_PAE
 774#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 775# else
 776#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 777# endif
 778#else /* CONFIG_X86_32 */
 779# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 780#endif
 781
 782/*
 783 * Find the highest page frame number we have available
 784 */
 785static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
 786{
 787	int i;
 788	unsigned long last_pfn = 0;
 789	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 790
 791	for (i = 0; i < e820.nr_map; i++) {
 792		struct e820entry *ei = &e820.map[i];
 793		unsigned long start_pfn;
 794		unsigned long end_pfn;
 795
 796		if (ei->type != type)
 797			continue;
 798
 799		start_pfn = ei->addr >> PAGE_SHIFT;
 800		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
 801
 802		if (start_pfn >= limit_pfn)
 803			continue;
 804		if (end_pfn > limit_pfn) {
 805			last_pfn = limit_pfn;
 806			break;
 807		}
 808		if (end_pfn > last_pfn)
 809			last_pfn = end_pfn;
 810	}
 811
 812	if (last_pfn > max_arch_pfn)
 813		last_pfn = max_arch_pfn;
 814
 815	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
 816			 last_pfn, max_arch_pfn);
 817	return last_pfn;
 818}
 819unsigned long __init e820_end_of_ram_pfn(void)
 
 820{
 821	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
 822}
 823
 824unsigned long __init e820_end_of_low_ram_pfn(void)
 825{
 826	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
 827}
 828
 829static void early_panic(char *msg)
 830{
 831	early_printk(msg);
 832	panic(msg);
 833}
 834
 835static int userdef __initdata;
 836
 837/* "mem=nopentium" disables the 4MB page tables. */
 838static int __init parse_memopt(char *p)
 839{
 840	u64 mem_size;
 841
 842	if (!p)
 843		return -EINVAL;
 844
 845	if (!strcmp(p, "nopentium")) {
 846#ifdef CONFIG_X86_32
 847		setup_clear_cpu_cap(X86_FEATURE_PSE);
 848		return 0;
 849#else
 850		printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n");
 851		return -EINVAL;
 852#endif
 853	}
 854
 855	userdef = 1;
 856	mem_size = memparse(p, &p);
 857	/* don't remove all of memory when handling "mem={invalid}" param */
 
 858	if (mem_size == 0)
 859		return -EINVAL;
 860	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 
 
 
 
 861
 862	return 0;
 863}
 864early_param("mem", parse_memopt);
 865
 866static int __init parse_memmap_opt(char *p)
 867{
 868	char *oldp;
 869	u64 start_at, mem_size;
 870
 871	if (!p)
 872		return -EINVAL;
 873
 874	if (!strncmp(p, "exactmap", 8)) {
 875#ifdef CONFIG_CRASH_DUMP
 876		/*
 877		 * If we are doing a crash dump, we still need to know
 878		 * the real mem size before original memory map is
 879		 * reset.
 880		 */
 881		saved_max_pfn = e820_end_of_ram_pfn();
 882#endif
 883		e820.nr_map = 0;
 884		userdef = 1;
 885		return 0;
 886	}
 887
 888	oldp = p;
 889	mem_size = memparse(p, &p);
 890	if (p == oldp)
 891		return -EINVAL;
 892
 893	userdef = 1;
 894	if (*p == '@') {
 895		start_at = memparse(p+1, &p);
 896		e820_add_region(start_at, mem_size, E820_RAM);
 897	} else if (*p == '#') {
 898		start_at = memparse(p+1, &p);
 899		e820_add_region(start_at, mem_size, E820_ACPI);
 900	} else if (*p == '$') {
 901		start_at = memparse(p+1, &p);
 902		e820_add_region(start_at, mem_size, E820_RESERVED);
 903	} else
 904		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906	return *p == '\0' ? 0 : -EINVAL;
 907}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908early_param("memmap", parse_memmap_opt);
 909
 910void __init finish_e820_parsing(void)
 
 
 
 
 
 911{
 912	if (userdef) {
 913		u32 nr = e820.nr_map;
 
 
 
 
 914
 915		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916			early_panic("Invalid user supplied memory map");
 917		e820.nr_map = nr;
 918
 919		printk(KERN_INFO "user-defined physical RAM map:\n");
 920		e820_print_map("user");
 921	}
 922}
 923
 924static inline const char *e820_type_to_string(int e820_type)
 925{
 926	switch (e820_type) {
 927	case E820_RESERVED_KERN:
 928	case E820_RAM:	return "System RAM";
 929	case E820_ACPI:	return "ACPI Tables";
 930	case E820_NVS:	return "ACPI Non-volatile Storage";
 931	case E820_UNUSABLE:	return "Unusable memory";
 932	default:	return "reserved";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933	}
 934}
 935
 936/*
 937 * Mark e820 reserved areas as busy for the resource manager.
 938 */
 
 939static struct resource __initdata *e820_res;
 940void __init e820_reserve_resources(void)
 
 941{
 942	int i;
 943	struct resource *res;
 944	u64 end;
 945
 946	res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
 
 
 
 
 947	e820_res = res;
 948	for (i = 0; i < e820.nr_map; i++) {
 949		end = e820.map[i].addr + e820.map[i].size - 1;
 
 
 
 950		if (end != (resource_size_t)end) {
 951			res++;
 952			continue;
 953		}
 954		res->name = e820_type_to_string(e820.map[i].type);
 955		res->start = e820.map[i].addr;
 956		res->end = end;
 957
 958		res->flags = IORESOURCE_MEM;
 959
 960		/*
 961		 * don't register the region that could be conflicted with
 962		 * pci device BAR resource and insert them later in
 963		 * pcibios_resource_survey()
 964		 */
 965		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
 966			res->flags |= IORESOURCE_BUSY;
 967			insert_resource(&iomem_resource, res);
 968		}
 969		res++;
 970	}
 971
 972	for (i = 0; i < e820_saved.nr_map; i++) {
 973		struct e820entry *entry = &e820_saved.map[i];
 974		firmware_map_add_early(entry->addr,
 975			entry->addr + entry->size - 1,
 976			e820_type_to_string(entry->type));
 977	}
 978}
 979
 980/* How much should we pad RAM ending depending on where it is? */
 981static unsigned long ram_alignment(resource_size_t pos)
 
 
 982{
 983	unsigned long mb = pos >> 20;
 984
 985	/* To 64kB in the first megabyte */
 986	if (!mb)
 987		return 64*1024;
 988
 989	/* To 1MB in the first 16MB */
 990	if (mb < 16)
 991		return 1024*1024;
 992
 993	/* To 64MB for anything above that */
 994	return 64*1024*1024;
 995}
 996
 997#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
 998
 999void __init e820_reserve_resources_late(void)
1000{
1001	int i;
1002	struct resource *res;
1003
1004	res = e820_res;
1005	for (i = 0; i < e820.nr_map; i++) {
1006		if (!res->parent && res->end)
1007			insert_resource_expand_to_fit(&iomem_resource, res);
1008		res++;
1009	}
1010
1011	/*
1012	 * Try to bump up RAM regions to reasonable boundaries to
1013	 * avoid stolen RAM:
1014	 */
1015	for (i = 0; i < e820.nr_map; i++) {
1016		struct e820entry *entry = &e820.map[i];
1017		u64 start, end;
1018
1019		if (entry->type != E820_RAM)
1020			continue;
 
1021		start = entry->addr + entry->size;
1022		end = round_up(start, ram_alignment(start)) - 1;
1023		if (end > MAX_RESOURCE_SIZE)
1024			end = MAX_RESOURCE_SIZE;
1025		if (start >= end)
1026			continue;
1027		printk(KERN_DEBUG "reserve RAM buffer: %016llx - %016llx ",
1028			       start, end);
1029		reserve_region_with_split(&iomem_resource, start, end,
1030					  "RAM buffer");
1031	}
1032}
1033
1034char *__init default_machine_specific_memory_setup(void)
 
 
 
1035{
1036	char *who = "BIOS-e820";
1037	u32 new_nr;
1038	/*
1039	 * Try to copy the BIOS-supplied E820-map.
1040	 *
1041	 * Otherwise fake a memory map; one section from 0k->640k,
1042	 * the next section from 1mb->appropriate_mem_k
1043	 */
1044	new_nr = boot_params.e820_entries;
1045	sanitize_e820_map(boot_params.e820_map,
1046			ARRAY_SIZE(boot_params.e820_map),
1047			&new_nr);
1048	boot_params.e820_entries = new_nr;
1049	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1050	  < 0) {
1051		u64 mem_size;
1052
1053		/* compare results from other methods and take the greater */
1054		if (boot_params.alt_mem_k
1055		    < boot_params.screen_info.ext_mem_k) {
1056			mem_size = boot_params.screen_info.ext_mem_k;
1057			who = "BIOS-88";
1058		} else {
1059			mem_size = boot_params.alt_mem_k;
1060			who = "BIOS-e801";
1061		}
1062
1063		e820.nr_map = 0;
1064		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1065		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1066	}
1067
1068	/* In case someone cares... */
 
 
1069	return who;
1070}
1071
1072void __init setup_memory_map(void)
 
 
 
 
 
1073{
1074	char *who;
1075
 
 
 
1076	who = x86_init.resources.memory_setup();
1077	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1078	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1079	e820_print_map(who);
 
 
 
1080}
1081
1082void __init memblock_x86_fill(void)
1083{
1084	int i;
1085	u64 end;
1086
1087	/*
1088	 * EFI may have more than 128 entries
1089	 * We are safe to enable resizing, beause memblock_x86_fill()
1090	 * is rather later for x86
 
 
 
 
1091	 */
1092	memblock_can_resize = 1;
1093
1094	for (i = 0; i < e820.nr_map; i++) {
1095		struct e820entry *ei = &e820.map[i];
1096
1097		end = ei->addr + ei->size;
1098		if (end != (resource_size_t)end)
1099			continue;
1100
1101		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
 
 
 
1102			continue;
1103
1104		memblock_add(ei->addr, ei->size);
1105	}
1106
1107	memblock_analyze();
1108	memblock_dump_all();
1109}
1110
1111void __init memblock_find_dma_reserve(void)
1112{
1113#ifdef CONFIG_X86_64
1114	u64 free_size_pfn;
1115	u64 mem_size_pfn;
1116	/*
1117	 * need to find out used area below MAX_DMA_PFN
1118	 * need to use memblock to get free size in [0, MAX_DMA_PFN]
1119	 * at first, and assume boot_mem will not take below MAX_DMA_PFN
1120	 */
1121	mem_size_pfn = memblock_x86_memory_in_range(0, MAX_DMA_PFN << PAGE_SHIFT) >> PAGE_SHIFT;
1122	free_size_pfn = memblock_x86_free_memory_in_range(0, MAX_DMA_PFN << PAGE_SHIFT) >> PAGE_SHIFT;
1123	set_dma_reserve(mem_size_pfn - free_size_pfn);
1124#endif
1125}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Low level x86 E820 memory map handling functions.
 
   4 *
   5 * The firmware and bootloader passes us the "E820 table", which is the primary
   6 * physical memory layout description available about x86 systems.
 
 
   7 *
   8 * The kernel takes the E820 memory layout and optionally modifies it with
   9 * quirks and other tweaks, and feeds that into the generic Linux memory
  10 * allocation code routines via a platform independent interface (memblock, etc.).
  11 */
 
 
 
  12#include <linux/crash_dump.h>
  13#include <linux/memblock.h>
 
  14#include <linux/suspend.h>
  15#include <linux/acpi.h>
  16#include <linux/firmware-map.h>
  17#include <linux/sort.h>
  18#include <linux/memory_hotplug.h>
  19
  20#include <asm/e820/api.h>
 
  21#include <asm/setup.h>
  22
  23/*
  24 * We organize the E820 table into three main data structures:
  25 *
  26 * - 'e820_table_firmware': the original firmware version passed to us by the
  27 *   bootloader - not modified by the kernel. It is composed of two parts:
  28 *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
  29 *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
  30 *
  31 *       - inform the user about the firmware's notion of memory layout
  32 *         via /sys/firmware/memmap
  33 *
  34 *       - the hibernation code uses it to generate a kernel-independent MD5
  35 *         fingerprint of the physical memory layout of a system.
  36 *
  37 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
  38 *   passed to us by the bootloader - the major difference between
  39 *   e820_table_firmware[] and this one is that, the latter marks the setup_data
  40 *   list created by the EFI boot stub as reserved, so that kexec can reuse the
  41 *   setup_data information in the second kernel. Besides, e820_table_kexec[]
  42 *   might also be modified by the kexec itself to fake a mptable.
  43 *   We use this to:
  44 *
  45 *       - kexec, which is a bootloader in disguise, uses the original E820
  46 *         layout to pass to the kexec-ed kernel. This way the original kernel
  47 *         can have a restricted E820 map while the kexec()-ed kexec-kernel
  48 *         can have access to full memory - etc.
  49 *
  50 * - 'e820_table': this is the main E820 table that is massaged by the
  51 *   low level x86 platform code, or modified by boot parameters, before
  52 *   passed on to higher level MM layers.
  53 *
  54 * Once the E820 map has been converted to the standard Linux memory layout
  55 * information its role stops - modifying it has no effect and does not get
  56 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
  57 * specific memory layout data during early bootup.
  58 */
  59static struct e820_table e820_table_init		__initdata;
  60static struct e820_table e820_table_kexec_init		__initdata;
  61static struct e820_table e820_table_firmware_init	__initdata;
  62
  63struct e820_table *e820_table __refdata			= &e820_table_init;
  64struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
  65struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
  66
  67/* For PCI or other memory-mapped resources */
  68unsigned long pci_mem_start = 0xaeedbabe;
  69#ifdef CONFIG_PCI
  70EXPORT_SYMBOL(pci_mem_start);
  71#endif
  72
  73/*
  74 * This function checks if any part of the range <start,end> is mapped
  75 * with type.
  76 */
  77static bool _e820__mapped_any(struct e820_table *table,
  78			      u64 start, u64 end, enum e820_type type)
  79{
  80	int i;
  81
  82	for (i = 0; i < table->nr_entries; i++) {
  83		struct e820_entry *entry = &table->entries[i];
  84
  85		if (type && entry->type != type)
  86			continue;
  87		if (entry->addr >= end || entry->addr + entry->size <= start)
  88			continue;
  89		return true;
  90	}
  91	return false;
  92}
  93
  94bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
  95{
  96	return _e820__mapped_any(e820_table_firmware, start, end, type);
  97}
  98EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
  99
 100bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
 101{
 102	return _e820__mapped_any(e820_table, start, end, type);
 103}
 104EXPORT_SYMBOL_GPL(e820__mapped_any);
 105
 106/*
 107 * This function checks if the entire <start,end> range is mapped with 'type'.
 108 *
 109 * Note: this function only works correctly once the E820 table is sorted and
 110 * not-overlapping (at least for the range specified), which is the case normally.
 111 */
 112static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
 113					     enum e820_type type)
 114{
 115	int i;
 116
 117	for (i = 0; i < e820_table->nr_entries; i++) {
 118		struct e820_entry *entry = &e820_table->entries[i];
 119
 120		if (type && entry->type != type)
 121			continue;
 122
 123		/* Is the region (part) in overlap with the current region? */
 124		if (entry->addr >= end || entry->addr + entry->size <= start)
 125			continue;
 126
 127		/*
 128		 * If the region is at the beginning of <start,end> we move
 129		 * 'start' to the end of the region since it's ok until there
 130		 */
 131		if (entry->addr <= start)
 132			start = entry->addr + entry->size;
 133
 134		/*
 135		 * If 'start' is now at or beyond 'end', we're done, full
 136		 * coverage of the desired range exists:
 137		 */
 138		if (start >= end)
 139			return entry;
 140	}
 141
 142	return NULL;
 143}
 144
 145/*
 146 * This function checks if the entire range <start,end> is mapped with type.
 147 */
 148bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
 149{
 150	return __e820__mapped_all(start, end, type);
 151}
 152
 153/*
 154 * This function returns the type associated with the range <start,end>.
 155 */
 156int e820__get_entry_type(u64 start, u64 end)
 157{
 158	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
 159
 160	return entry ? entry->type : -EINVAL;
 161}
 162
 163/*
 164 * Add a memory region to the kernel E820 map.
 165 */
 166static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
 
 167{
 168	int x = table->nr_entries;
 169
 170	if (x >= ARRAY_SIZE(table->entries)) {
 171		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
 172		       start, start + size - 1);
 173		return;
 174	}
 175
 176	table->entries[x].addr = start;
 177	table->entries[x].size = size;
 178	table->entries[x].type = type;
 179	table->nr_entries++;
 180}
 181
 182void __init e820__range_add(u64 start, u64 size, enum e820_type type)
 183{
 184	__e820__range_add(e820_table, start, size, type);
 185}
 186
 187static void __init e820_print_type(enum e820_type type)
 188{
 189	switch (type) {
 190	case E820_TYPE_RAM:		/* Fall through: */
 191	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
 192	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
 193	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
 194	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
 195	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
 196	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
 197	case E820_TYPE_PMEM:		/* Fall through: */
 198	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
 199	default:			pr_cont("type %u", type);		break;
 
 
 
 
 
 
 
 
 
 200	}
 201}
 202
 203void __init e820__print_table(char *who)
 204{
 205	int i;
 206
 207	for (i = 0; i < e820_table->nr_entries; i++) {
 208		pr_info("%s: [mem %#018Lx-%#018Lx] ",
 209			who,
 210			e820_table->entries[i].addr,
 211			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
 212
 213		e820_print_type(e820_table->entries[i].type);
 214		pr_cont("\n");
 215	}
 216}
 217
 218/*
 219 * Sanitize an E820 map.
 220 *
 221 * Some E820 layouts include overlapping entries. The following
 222 * replaces the original E820 map with a new one, removing overlaps,
 223 * and resolving conflicting memory types in favor of highest
 224 * numbered type.
 225 *
 226 * The input parameter 'entries' points to an array of 'struct
 227 * e820_entry' which on entry has elements in the range [0, *nr_entries)
 228 * valid, and which has space for up to max_nr_entries entries.
 229 * On return, the resulting sanitized E820 map entries will be in
 230 * overwritten in the same location, starting at 'entries'.
 231 *
 232 * The integer pointed to by nr_entries must be valid on entry (the
 233 * current number of valid entries located at 'entries'). If the
 234 * sanitizing succeeds the *nr_entries will be updated with the new
 235 * number of valid entries (something no more than max_nr_entries).
 236 *
 237 * The return value from e820__update_table() is zero if it
 238 * successfully 'sanitized' the map entries passed in, and is -1
 239 * if it did nothing, which can happen if either of (1) it was
 240 * only passed one map entry, or (2) any of the input map entries
 241 * were invalid (start + size < start, meaning that the size was
 242 * so big the described memory range wrapped around through zero.)
 243 *
 244 *	Visually we're performing the following
 245 *	(1,2,3,4 = memory types)...
 246 *
 247 *	Sample memory map (w/overlaps):
 248 *	   ____22__________________
 249 *	   ______________________4_
 250 *	   ____1111________________
 251 *	   _44_____________________
 252 *	   11111111________________
 253 *	   ____________________33__
 254 *	   ___________44___________
 255 *	   __________33333_________
 256 *	   ______________22________
 257 *	   ___________________2222_
 258 *	   _________111111111______
 259 *	   _____________________11_
 260 *	   _________________4______
 261 *
 262 *	Sanitized equivalent (no overlap):
 263 *	   1_______________________
 264 *	   _44_____________________
 265 *	   ___1____________________
 266 *	   ____22__________________
 267 *	   ______11________________
 268 *	   _________1______________
 269 *	   __________3_____________
 270 *	   ___________44___________
 271 *	   _____________33_________
 272 *	   _______________2________
 273 *	   ________________1_______
 274 *	   _________________4______
 275 *	   ___________________2____
 276 *	   ____________________33__
 277 *	   ______________________4_
 278 */
 279struct change_member {
 280	/* Pointer to the original entry: */
 281	struct e820_entry	*entry;
 282	/* Address for this change point: */
 283	unsigned long long	addr;
 284};
 285
 286static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
 287static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
 288static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
 289static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
 290
 291static int __init cpcompare(const void *a, const void *b)
 
 292{
 293	struct change_member * const *app = a, * const *bpp = b;
 294	const struct change_member *ap = *app, *bp = *bpp;
 295
 296	/*
 297	 * Inputs are pointers to two elements of change_point[].  If their
 298	 * addresses are not equal, their difference dominates.  If the addresses
 299	 * are equal, then consider one that represents the end of its region
 300	 * to be greater than one that does not.
 301	 */
 302	if (ap->addr != bp->addr)
 303		return ap->addr > bp->addr ? 1 : -1;
 304
 305	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
 306}
 307
 308int __init e820__update_table(struct e820_table *table)
 309{
 310	struct e820_entry *entries = table->entries;
 311	u32 max_nr_entries = ARRAY_SIZE(table->entries);
 312	enum e820_type current_type, last_type;
 313	unsigned long long last_addr;
 314	u32 new_nr_entries, overlap_entries;
 315	u32 i, chg_idx, chg_nr;
 
 
 
 316
 317	/* If there's only one memory region, don't bother: */
 318	if (table->nr_entries < 2)
 319		return -1;
 320
 321	BUG_ON(table->nr_entries > max_nr_entries);
 
 322
 323	/* Bail out if we find any unreasonable addresses in the map: */
 324	for (i = 0; i < table->nr_entries; i++) {
 325		if (entries[i].addr + entries[i].size < entries[i].addr)
 326			return -1;
 327	}
 328
 329	/* Create pointers for initial change-point information (for sorting): */
 330	for (i = 0; i < 2 * table->nr_entries; i++)
 331		change_point[i] = &change_point_list[i];
 332
 333	/*
 334	 * Record all known change-points (starting and ending addresses),
 335	 * omitting empty memory regions:
 336	 */
 337	chg_idx = 0;
 338	for (i = 0; i < table->nr_entries; i++)	{
 339		if (entries[i].size != 0) {
 340			change_point[chg_idx]->addr	= entries[i].addr;
 341			change_point[chg_idx++]->entry	= &entries[i];
 342			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
 343			change_point[chg_idx++]->entry	= &entries[i];
 344		}
 345	}
 346	chg_nr = chg_idx;
 347
 348	/* Sort change-point list by memory addresses (low -> high): */
 349	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350
 351	/* Create a new memory map, removing overlaps: */
 352	overlap_entries = 0;	 /* Number of entries in the overlap table */
 353	new_nr_entries = 0;	 /* Index for creating new map entries */
 354	last_type = 0;		 /* Start with undefined memory type */
 355	last_addr = 0;		 /* Start with 0 as last starting address */
 356
 357	/* Loop through change-points, determining effect on the new map: */
 358	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
 359		/* Keep track of all overlapping entries */
 360		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
 361			/* Add map entry to overlap list (> 1 entry implies an overlap) */
 362			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
 
 
 
 
 
 363		} else {
 364			/* Remove entry from list (order independent, so swap with last): */
 
 
 
 365			for (i = 0; i < overlap_entries; i++) {
 366				if (overlap_list[i] == change_point[chg_idx]->entry)
 367					overlap_list[i] = overlap_list[overlap_entries-1];
 
 
 368			}
 369			overlap_entries--;
 370		}
 371		/*
 372		 * If there are overlapping entries, decide which
 373		 * "type" to use (larger value takes precedence --
 374		 * 1=usable, 2,3,4,4+=unusable)
 375		 */
 376		current_type = 0;
 377		for (i = 0; i < overlap_entries; i++) {
 378			if (overlap_list[i]->type > current_type)
 379				current_type = overlap_list[i]->type;
 380		}
 381
 382		/* Continue building up new map based on this information: */
 383		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
 
 384			if (last_type != 0)	 {
 385				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
 386				/* Move forward only if the new size was non-zero: */
 387				if (new_entries[new_nr_entries].size != 0)
 388					/* No more space left for new entries? */
 389					if (++new_nr_entries >= max_nr_entries)
 
 
 
 
 
 
 
 390						break;
 391			}
 392			if (current_type != 0)	{
 393				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
 394				new_entries[new_nr_entries].type = current_type;
 395				last_addr = change_point[chg_idx]->addr;
 
 396			}
 397			last_type = current_type;
 398		}
 399	}
 
 
 400
 401	/* Copy the new entries into the original location: */
 402	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
 403	table->nr_entries = new_nr_entries;
 404
 405	return 0;
 406}
 407
 408static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 409{
 410	struct boot_e820_entry *entry = entries;
 
 
 
 
 411
 412	while (nr_entries) {
 413		u64 start = entry->addr;
 414		u64 size = entry->size;
 415		u64 end = start + size - 1;
 416		u32 type = entry->type;
 417
 418		/* Ignore the entry on 64-bit overflow: */
 419		if (start > end && likely(size))
 420			return -1;
 421
 422		e820__range_add(start, size, type);
 423
 424		entry++;
 425		nr_entries--;
 426	}
 427	return 0;
 428}
 429
 430/*
 431 * Copy the BIOS E820 map into a safe place.
 432 *
 433 * Sanity-check it while we're at it..
 434 *
 435 * If we're lucky and live on a modern system, the setup code
 436 * will have given us a memory map that we can use to properly
 437 * set up memory.  If we aren't, we'll fake a memory map.
 438 */
 439static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
 440{
 441	/* Only one memory region (or negative)? Ignore it */
 442	if (nr_entries < 2)
 443		return -1;
 444
 445	return __append_e820_table(entries, nr_entries);
 446}
 447
 448static u64 __init
 449__e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 450{
 451	u64 end;
 452	unsigned int i;
 453	u64 real_updated_size = 0;
 454
 455	BUG_ON(old_type == new_type);
 456
 457	if (size > (ULLONG_MAX - start))
 458		size = ULLONG_MAX - start;
 459
 460	end = start + size;
 461	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
 
 
 462	e820_print_type(old_type);
 463	pr_cont(" ==> ");
 464	e820_print_type(new_type);
 465	pr_cont("\n");
 466
 467	for (i = 0; i < table->nr_entries; i++) {
 468		struct e820_entry *entry = &table->entries[i];
 469		u64 final_start, final_end;
 470		u64 entry_end;
 471
 472		if (entry->type != old_type)
 473			continue;
 474
 475		entry_end = entry->addr + entry->size;
 476
 477		/* Completely covered by new range? */
 478		if (entry->addr >= start && entry_end <= end) {
 479			entry->type = new_type;
 480			real_updated_size += entry->size;
 481			continue;
 482		}
 483
 484		/* New range is completely covered? */
 485		if (entry->addr < start && entry_end > end) {
 486			__e820__range_add(table, start, size, new_type);
 487			__e820__range_add(table, end, entry_end - end, entry->type);
 488			entry->size = start - entry->addr;
 489			real_updated_size += size;
 490			continue;
 491		}
 492
 493		/* Partially covered: */
 494		final_start = max(start, entry->addr);
 495		final_end = min(end, entry_end);
 496		if (final_start >= final_end)
 497			continue;
 498
 499		__e820__range_add(table, final_start, final_end - final_start, new_type);
 
 500
 501		real_updated_size += final_end - final_start;
 502
 503		/*
 504		 * Left range could be head or tail, so need to update
 505		 * its size first:
 506		 */
 507		entry->size -= final_end - final_start;
 508		if (entry->addr < final_start)
 509			continue;
 510
 511		entry->addr = final_end;
 512	}
 513	return real_updated_size;
 514}
 515
 516u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
 
 517{
 518	return __e820__range_update(e820_table, start, size, old_type, new_type);
 519}
 520
 521static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
 
 522{
 523	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
 
 524}
 525
 526/* Remove a range of memory from the E820 table: */
 527u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
 
 528{
 529	int i;
 530	u64 end;
 531	u64 real_removed_size = 0;
 532
 533	if (size > (ULLONG_MAX - start))
 534		size = ULLONG_MAX - start;
 535
 536	end = start + size;
 537	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
 538	if (check_type)
 
 
 539		e820_print_type(old_type);
 540	pr_cont("\n");
 541
 542	for (i = 0; i < e820_table->nr_entries; i++) {
 543		struct e820_entry *entry = &e820_table->entries[i];
 544		u64 final_start, final_end;
 545		u64 entry_end;
 546
 547		if (check_type && entry->type != old_type)
 548			continue;
 549
 550		entry_end = entry->addr + entry->size;
 551
 552		/* Completely covered? */
 553		if (entry->addr >= start && entry_end <= end) {
 554			real_removed_size += entry->size;
 555			memset(entry, 0, sizeof(*entry));
 556			continue;
 557		}
 558
 559		/* Is the new range completely covered? */
 560		if (entry->addr < start && entry_end > end) {
 561			e820__range_add(end, entry_end - end, entry->type);
 562			entry->size = start - entry->addr;
 563			real_removed_size += size;
 564			continue;
 565		}
 566
 567		/* Partially covered: */
 568		final_start = max(start, entry->addr);
 569		final_end = min(end, entry_end);
 570		if (final_start >= final_end)
 571			continue;
 572
 573		real_removed_size += final_end - final_start;
 574
 575		/*
 576		 * Left range could be head or tail, so need to update
 577		 * the size first:
 578		 */
 579		entry->size -= final_end - final_start;
 580		if (entry->addr < final_start)
 581			continue;
 582
 583		entry->addr = final_end;
 584	}
 585	return real_removed_size;
 586}
 587
 588void __init e820__update_table_print(void)
 589{
 590	if (e820__update_table(e820_table))
 
 
 
 591		return;
 592
 593	pr_info("modified physical RAM map:\n");
 594	e820__print_table("modified");
 595}
 
 
 
 596
 597static void __init e820__update_table_kexec(void)
 598{
 599	e820__update_table(e820_table_kexec);
 
 600}
 601
 602#define MAX_GAP_END 0x100000000ull
 603
 604/*
 605 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
 606 */
 607static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
 
 608{
 609	unsigned long long last = MAX_GAP_END;
 610	int i = e820_table->nr_entries;
 611	int found = 0;
 612
 
 
 613	while (--i >= 0) {
 614		unsigned long long start = e820_table->entries[i].addr;
 615		unsigned long long end = start + e820_table->entries[i].size;
 
 
 
 616
 617		/*
 618		 * Since "last" is at most 4GB, we know we'll
 619		 * fit in 32 bits if this condition is true:
 620		 */
 621		if (last > end) {
 622			unsigned long gap = last - end;
 623
 624			if (gap >= *gapsize) {
 625				*gapsize = gap;
 626				*gapstart = end;
 627				found = 1;
 628			}
 629		}
 630		if (start < last)
 631			last = start;
 632	}
 633	return found;
 634}
 635
 636/*
 637 * Search for the biggest gap in the low 32 bits of the E820
 638 * memory space. We pass this space to the PCI subsystem, so
 639 * that it can assign MMIO resources for hotplug or
 640 * unconfigured devices in.
 641 *
 642 * Hopefully the BIOS let enough space left.
 643 */
 644__init void e820__setup_pci_gap(void)
 645{
 646	unsigned long gapstart, gapsize;
 647	int found;
 648
 
 649	gapsize = 0x400000;
 650	found  = e820_search_gap(&gapstart, &gapsize);
 651
 
 652	if (!found) {
 653#ifdef CONFIG_X86_64
 654		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
 655		pr_err("Cannot find an available gap in the 32-bit address range\n");
 656		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
 657#else
 658		gapstart = 0x10000000;
 659#endif
 660	}
 661
 662	/*
 663	 * e820__reserve_resources_late() protects stolen RAM already:
 664	 */
 665	pci_mem_start = gapstart;
 666
 667	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
 668		gapstart, gapstart + gapsize - 1);
 
 669}
 670
 671/*
 672 * Called late during init, in free_initmem().
 673 *
 674 * Initial e820_table and e820_table_kexec are largish __initdata arrays.
 675 *
 676 * Copy them to a (usually much smaller) dynamically allocated area that is
 677 * sized precisely after the number of e820 entries.
 678 *
 679 * This is done after we've performed all the fixes and tweaks to the tables.
 680 * All functions which modify them are __init functions, which won't exist
 681 * after free_initmem().
 682 */
 683__init void e820__reallocate_tables(void)
 684{
 685	struct e820_table *n;
 686	int size;
 687
 688	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
 689	n = kmemdup(e820_table, size, GFP_KERNEL);
 690	BUG_ON(!n);
 691	e820_table = n;
 692
 693	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
 694	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
 695	BUG_ON(!n);
 696	e820_table_kexec = n;
 697
 698	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
 699	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
 700	BUG_ON(!n);
 701	e820_table_firmware = n;
 702}
 703
 704/*
 705 * Because of the small fixed size of struct boot_params, only the first
 706 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
 707 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
 708 * struct setup_data, which is parsed here.
 709 */
 710void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
 711{
 712	int entries;
 713	struct boot_e820_entry *extmap;
 714	struct setup_data *sdata;
 715
 716	sdata = early_memremap(phys_addr, data_len);
 717	entries = sdata->len / sizeof(*extmap);
 718	extmap = (struct boot_e820_entry *)(sdata->data);
 719
 720	__append_e820_table(extmap, entries);
 721	e820__update_table(e820_table);
 722
 723	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
 724	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
 725
 726	early_memunmap(sdata, data_len);
 727	pr_info("extended physical RAM map:\n");
 728	e820__print_table("extended");
 729}
 730
 731/*
 
 
 732 * Find the ranges of physical addresses that do not correspond to
 733 * E820 RAM areas and register the corresponding pages as 'nosave' for
 734 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
 735 *
 736 * This function requires the E820 map to be sorted and without any
 737 * overlapping entries.
 738 */
 739void __init e820__register_nosave_regions(unsigned long limit_pfn)
 740{
 741	int i;
 742	unsigned long pfn = 0;
 743
 744	for (i = 0; i < e820_table->nr_entries; i++) {
 745		struct e820_entry *entry = &e820_table->entries[i];
 746
 747		if (pfn < PFN_UP(entry->addr))
 748			register_nosave_region(pfn, PFN_UP(entry->addr));
 749
 750		pfn = PFN_DOWN(entry->addr + entry->size);
 751
 752		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
 753			register_nosave_region(PFN_UP(entry->addr), pfn);
 
 
 
 
 
 
 754
 755		if (pfn >= limit_pfn)
 756			break;
 757	}
 758}
 
 759
 760#ifdef CONFIG_ACPI
 761/*
 762 * Register ACPI NVS memory regions, so that we can save/restore them during
 763 * hibernation and the subsequent resume:
 764 */
 765static int __init e820__register_nvs_regions(void)
 766{
 767	int i;
 768
 769	for (i = 0; i < e820_table->nr_entries; i++) {
 770		struct e820_entry *entry = &e820_table->entries[i];
 771
 772		if (entry->type == E820_TYPE_NVS)
 773			acpi_nvs_register(entry->addr, entry->size);
 774	}
 775
 776	return 0;
 777}
 778core_initcall(e820__register_nvs_regions);
 779#endif
 780
 781/*
 782 * Allocate the requested number of bytes with the requsted alignment
 783 * and return (the physical address) to the caller. Also register this
 784 * range in the 'kexec' E820 table as a reserved range.
 785 *
 786 * This allows kexec to fake a new mptable, as if it came from the real
 787 * system.
 788 */
 789u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
 790{
 
 791	u64 addr;
 
 792
 793	addr = memblock_phys_alloc(size, align);
 794	if (addr) {
 795		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 796		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
 797		e820__update_table_kexec();
 
 798	}
 799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800	return addr;
 801}
 802
 803#ifdef CONFIG_X86_32
 804# ifdef CONFIG_X86_PAE
 805#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
 806# else
 807#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
 808# endif
 809#else /* CONFIG_X86_32 */
 810# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
 811#endif
 812
 813/*
 814 * Find the highest page frame number we have available
 815 */
 816static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
 817{
 818	int i;
 819	unsigned long last_pfn = 0;
 820	unsigned long max_arch_pfn = MAX_ARCH_PFN;
 821
 822	for (i = 0; i < e820_table->nr_entries; i++) {
 823		struct e820_entry *entry = &e820_table->entries[i];
 824		unsigned long start_pfn;
 825		unsigned long end_pfn;
 826
 827		if (entry->type != type)
 828			continue;
 829
 830		start_pfn = entry->addr >> PAGE_SHIFT;
 831		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
 832
 833		if (start_pfn >= limit_pfn)
 834			continue;
 835		if (end_pfn > limit_pfn) {
 836			last_pfn = limit_pfn;
 837			break;
 838		}
 839		if (end_pfn > last_pfn)
 840			last_pfn = end_pfn;
 841	}
 842
 843	if (last_pfn > max_arch_pfn)
 844		last_pfn = max_arch_pfn;
 845
 846	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
 847		last_pfn, max_arch_pfn);
 848	return last_pfn;
 849}
 850
 851unsigned long __init e820__end_of_ram_pfn(void)
 852{
 853	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
 854}
 855
 856unsigned long __init e820__end_of_low_ram_pfn(void)
 857{
 858	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
 859}
 860
 861static void __init early_panic(char *msg)
 862{
 863	early_printk(msg);
 864	panic(msg);
 865}
 866
 867static int userdef __initdata;
 868
 869/* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
 870static int __init parse_memopt(char *p)
 871{
 872	u64 mem_size;
 873
 874	if (!p)
 875		return -EINVAL;
 876
 877	if (!strcmp(p, "nopentium")) {
 878#ifdef CONFIG_X86_32
 879		setup_clear_cpu_cap(X86_FEATURE_PSE);
 880		return 0;
 881#else
 882		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
 883		return -EINVAL;
 884#endif
 885	}
 886
 887	userdef = 1;
 888	mem_size = memparse(p, &p);
 889
 890	/* Don't remove all memory when getting "mem={invalid}" parameter: */
 891	if (mem_size == 0)
 892		return -EINVAL;
 893
 894	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 895
 896#ifdef CONFIG_MEMORY_HOTPLUG
 897	max_mem_size = mem_size;
 898#endif
 899
 900	return 0;
 901}
 902early_param("mem", parse_memopt);
 903
 904static int __init parse_memmap_one(char *p)
 905{
 906	char *oldp;
 907	u64 start_at, mem_size;
 908
 909	if (!p)
 910		return -EINVAL;
 911
 912	if (!strncmp(p, "exactmap", 8)) {
 913		e820_table->nr_entries = 0;
 
 
 
 
 
 
 
 
 914		userdef = 1;
 915		return 0;
 916	}
 917
 918	oldp = p;
 919	mem_size = memparse(p, &p);
 920	if (p == oldp)
 921		return -EINVAL;
 922
 923	userdef = 1;
 924	if (*p == '@') {
 925		start_at = memparse(p+1, &p);
 926		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
 927	} else if (*p == '#') {
 928		start_at = memparse(p+1, &p);
 929		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
 930	} else if (*p == '$') {
 931		start_at = memparse(p+1, &p);
 932		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
 933	} else if (*p == '!') {
 934		start_at = memparse(p+1, &p);
 935		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
 936	} else if (*p == '%') {
 937		enum e820_type from = 0, to = 0;
 938
 939		start_at = memparse(p + 1, &p);
 940		if (*p == '-')
 941			from = simple_strtoull(p + 1, &p, 0);
 942		if (*p == '+')
 943			to = simple_strtoull(p + 1, &p, 0);
 944		if (*p != '\0')
 945			return -EINVAL;
 946		if (from && to)
 947			e820__range_update(start_at, mem_size, from, to);
 948		else if (to)
 949			e820__range_add(start_at, mem_size, to);
 950		else if (from)
 951			e820__range_remove(start_at, mem_size, from, 1);
 952		else
 953			e820__range_remove(start_at, mem_size, 0, 0);
 954	} else {
 955		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
 956	}
 957
 958	return *p == '\0' ? 0 : -EINVAL;
 959}
 960
 961static int __init parse_memmap_opt(char *str)
 962{
 963	while (str) {
 964		char *k = strchr(str, ',');
 965
 966		if (k)
 967			*k++ = 0;
 968
 969		parse_memmap_one(str);
 970		str = k;
 971	}
 972
 973	return 0;
 974}
 975early_param("memmap", parse_memmap_opt);
 976
 977/*
 978 * Reserve all entries from the bootloader's extensible data nodes list,
 979 * because if present we are going to use it later on to fetch e820
 980 * entries from it:
 981 */
 982void __init e820__reserve_setup_data(void)
 983{
 984	struct setup_data *data;
 985	u64 pa_data;
 986
 987	pa_data = boot_params.hdr.setup_data;
 988	if (!pa_data)
 989		return;
 990
 991	while (pa_data) {
 992		data = early_memremap(pa_data, sizeof(*data));
 993		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
 994
 995		/*
 996		 * SETUP_EFI is supplied by kexec and does not need to be
 997		 * reserved.
 998		 */
 999		if (data->type != SETUP_EFI)
1000			e820__range_update_kexec(pa_data,
1001						 sizeof(*data) + data->len,
1002						 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1003
1004		if (data->type == SETUP_INDIRECT &&
1005		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
1006			e820__range_update(((struct setup_indirect *)data->data)->addr,
1007					   ((struct setup_indirect *)data->data)->len,
1008					   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1009			e820__range_update_kexec(((struct setup_indirect *)data->data)->addr,
1010						 ((struct setup_indirect *)data->data)->len,
1011						 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1012		}
1013
1014		pa_data = data->next;
1015		early_memunmap(data, sizeof(*data));
1016	}
1017
1018	e820__update_table(e820_table);
1019	e820__update_table(e820_table_kexec);
1020
1021	pr_info("extended physical RAM map:\n");
1022	e820__print_table("reserve setup_data");
1023}
1024
1025/*
1026 * Called after parse_early_param(), after early parameters (such as mem=)
1027 * have been processed, in which case we already have an E820 table filled in
1028 * via the parameter callback function(s), but it's not sorted and printed yet:
1029 */
1030void __init e820__finish_early_params(void)
1031{
1032	if (userdef) {
1033		if (e820__update_table(e820_table) < 0)
1034			early_panic("Invalid user supplied memory map");
 
1035
1036		pr_info("user-defined physical RAM map:\n");
1037		e820__print_table("user");
1038	}
1039}
1040
1041static const char *__init e820_type_to_string(struct e820_entry *entry)
1042{
1043	switch (entry->type) {
1044	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1045	case E820_TYPE_RAM:		return "System RAM";
1046	case E820_TYPE_ACPI:		return "ACPI Tables";
1047	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1048	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1049	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1050	case E820_TYPE_PMEM:		return "Persistent Memory";
1051	case E820_TYPE_RESERVED:	return "Reserved";
1052	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1053	default:			return "Unknown E820 type";
1054	}
1055}
1056
1057static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1058{
1059	switch (entry->type) {
1060	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1061	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1062	case E820_TYPE_ACPI:		/* Fall-through: */
1063	case E820_TYPE_NVS:		/* Fall-through: */
1064	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1065	case E820_TYPE_PRAM:		/* Fall-through: */
1066	case E820_TYPE_PMEM:		/* Fall-through: */
1067	case E820_TYPE_RESERVED:	/* Fall-through: */
1068	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1069	default:			return IORESOURCE_MEM;
1070	}
1071}
1072
1073static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1074{
1075	switch (entry->type) {
1076	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1077	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1078	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1079	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1080	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1081	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1082	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1083	case E820_TYPE_RAM:		/* Fall-through: */
1084	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1085	default:			return IORES_DESC_NONE;
1086	}
1087}
1088
1089static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1090{
1091	/* this is the legacy bios/dos rom-shadow + mmio region */
1092	if (res->start < (1ULL<<20))
1093		return true;
1094
1095	/*
1096	 * Treat persistent memory and other special memory ranges like
1097	 * device memory, i.e. reserve it for exclusive use of a driver
1098	 */
1099	switch (type) {
1100	case E820_TYPE_RESERVED:
1101	case E820_TYPE_SOFT_RESERVED:
1102	case E820_TYPE_PRAM:
1103	case E820_TYPE_PMEM:
1104		return false;
1105	case E820_TYPE_RESERVED_KERN:
1106	case E820_TYPE_RAM:
1107	case E820_TYPE_ACPI:
1108	case E820_TYPE_NVS:
1109	case E820_TYPE_UNUSABLE:
1110	default:
1111		return true;
1112	}
1113}
1114
1115/*
1116 * Mark E820 reserved areas as busy for the resource manager:
1117 */
1118
1119static struct resource __initdata *e820_res;
1120
1121void __init e820__reserve_resources(void)
1122{
1123	int i;
1124	struct resource *res;
1125	u64 end;
1126
1127	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1128			     SMP_CACHE_BYTES);
1129	if (!res)
1130		panic("%s: Failed to allocate %zu bytes\n", __func__,
1131		      sizeof(*res) * e820_table->nr_entries);
1132	e820_res = res;
1133
1134	for (i = 0; i < e820_table->nr_entries; i++) {
1135		struct e820_entry *entry = e820_table->entries + i;
1136
1137		end = entry->addr + entry->size - 1;
1138		if (end != (resource_size_t)end) {
1139			res++;
1140			continue;
1141		}
1142		res->start = entry->addr;
1143		res->end   = end;
1144		res->name  = e820_type_to_string(entry);
1145		res->flags = e820_type_to_iomem_type(entry);
1146		res->desc  = e820_type_to_iores_desc(entry);
1147
1148		/*
1149		 * Don't register the region that could be conflicted with
1150		 * PCI device BAR resources and insert them later in
1151		 * pcibios_resource_survey():
1152		 */
1153		if (do_mark_busy(entry->type, res)) {
1154			res->flags |= IORESOURCE_BUSY;
1155			insert_resource(&iomem_resource, res);
1156		}
1157		res++;
1158	}
1159
1160	/* Expose the bootloader-provided memory layout to the sysfs. */
1161	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1162		struct e820_entry *entry = e820_table_firmware->entries + i;
1163
1164		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1165	}
1166}
1167
1168/*
1169 * How much should we pad the end of RAM, depending on where it is?
1170 */
1171static unsigned long __init ram_alignment(resource_size_t pos)
1172{
1173	unsigned long mb = pos >> 20;
1174
1175	/* To 64kB in the first megabyte */
1176	if (!mb)
1177		return 64*1024;
1178
1179	/* To 1MB in the first 16MB */
1180	if (mb < 16)
1181		return 1024*1024;
1182
1183	/* To 64MB for anything above that */
1184	return 64*1024*1024;
1185}
1186
1187#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1188
1189void __init e820__reserve_resources_late(void)
1190{
1191	int i;
1192	struct resource *res;
1193
1194	res = e820_res;
1195	for (i = 0; i < e820_table->nr_entries; i++) {
1196		if (!res->parent && res->end)
1197			insert_resource_expand_to_fit(&iomem_resource, res);
1198		res++;
1199	}
1200
1201	/*
1202	 * Try to bump up RAM regions to reasonable boundaries, to
1203	 * avoid stolen RAM:
1204	 */
1205	for (i = 0; i < e820_table->nr_entries; i++) {
1206		struct e820_entry *entry = &e820_table->entries[i];
1207		u64 start, end;
1208
1209		if (entry->type != E820_TYPE_RAM)
1210			continue;
1211
1212		start = entry->addr + entry->size;
1213		end = round_up(start, ram_alignment(start)) - 1;
1214		if (end > MAX_RESOURCE_SIZE)
1215			end = MAX_RESOURCE_SIZE;
1216		if (start >= end)
1217			continue;
1218
1219		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1220		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
 
1221	}
1222}
1223
1224/*
1225 * Pass the firmware (bootloader) E820 map to the kernel and process it:
1226 */
1227char *__init e820__memory_setup_default(void)
1228{
1229	char *who = "BIOS-e820";
1230
1231	/*
1232	 * Try to copy the BIOS-supplied E820-map.
1233	 *
1234	 * Otherwise fake a memory map; one section from 0k->640k,
1235	 * the next section from 1mb->appropriate_mem_k
1236	 */
1237	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
 
 
 
 
 
 
1238		u64 mem_size;
1239
1240		/* Compare results from other methods and take the one that gives more RAM: */
1241		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
 
1242			mem_size = boot_params.screen_info.ext_mem_k;
1243			who = "BIOS-88";
1244		} else {
1245			mem_size = boot_params.alt_mem_k;
1246			who = "BIOS-e801";
1247		}
1248
1249		e820_table->nr_entries = 0;
1250		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1251		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1252	}
1253
1254	/* We just appended a lot of ranges, sanitize the table: */
1255	e820__update_table(e820_table);
1256
1257	return who;
1258}
1259
1260/*
1261 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1262 * E820 map - with an optional platform quirk available for virtual platforms
1263 * to override this method of boot environment processing:
1264 */
1265void __init e820__memory_setup(void)
1266{
1267	char *who;
1268
1269	/* This is a firmware interface ABI - make sure we don't break it: */
1270	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1271
1272	who = x86_init.resources.memory_setup();
1273
1274	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1275	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1276
1277	pr_info("BIOS-provided physical RAM map:\n");
1278	e820__print_table(who);
1279}
1280
1281void __init e820__memblock_setup(void)
1282{
1283	int i;
1284	u64 end;
1285
1286	/*
1287	 * The bootstrap memblock region count maximum is 128 entries
1288	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1289	 * than that - so allow memblock resizing.
1290	 *
1291	 * This is safe, because this call happens pretty late during x86 setup,
1292	 * so we know about reserved memory regions already. (This is important
1293	 * so that memblock resizing does no stomp over reserved areas.)
1294	 */
1295	memblock_allow_resize();
1296
1297	for (i = 0; i < e820_table->nr_entries; i++) {
1298		struct e820_entry *entry = &e820_table->entries[i];
1299
1300		end = entry->addr + entry->size;
1301		if (end != (resource_size_t)end)
1302			continue;
1303
1304		if (entry->type == E820_TYPE_SOFT_RESERVED)
1305			memblock_reserve(entry->addr, entry->size);
1306
1307		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1308			continue;
1309
1310		memblock_add(entry->addr, entry->size);
1311	}
1312
1313	/* Throw away partial pages: */
1314	memblock_trim_memory(PAGE_SIZE);
 
1315
1316	memblock_dump_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
1317}