Loading...
1/*
2 * OpenRISC Linux
3 *
4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
6 * declaration.
7 *
8 * OpenRISC implementation:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11 * et al.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 */
18
19/* or32 pgtable.h - macros and functions to manipulate page tables
20 *
21 * Based on:
22 * include/asm-cris/pgtable.h
23 */
24
25#ifndef __ASM_OPENRISC_PGTABLE_H
26#define __ASM_OPENRISC_PGTABLE_H
27
28#include <asm-generic/pgtable-nopmd.h>
29
30#ifndef __ASSEMBLY__
31#include <asm/mmu.h>
32#include <asm/fixmap.h>
33
34/*
35 * The Linux memory management assumes a three-level page table setup. On
36 * or32, we use that, but "fold" the mid level into the top-level page
37 * table. Since the MMU TLB is software loaded through an interrupt, it
38 * supports any page table structure, so we could have used a three-level
39 * setup, but for the amounts of memory we normally use, a two-level is
40 * probably more efficient.
41 *
42 * This file contains the functions and defines necessary to modify and use
43 * the or32 page table tree.
44 */
45
46extern void paging_init(void);
47
48/* Certain architectures need to do special things when pte's
49 * within a page table are directly modified. Thus, the following
50 * hook is made available.
51 */
52#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
53#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
54/*
55 * (pmds are folded into pgds so this doesn't get actually called,
56 * but the define is needed for a generic inline function.)
57 */
58#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
59
60#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
61#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
62#define PGDIR_MASK (~(PGDIR_SIZE-1))
63
64/*
65 * entries per page directory level: we use a two-level, so
66 * we don't really have any PMD directory physically.
67 * pointers are 4 bytes so we can use the page size and
68 * divide it by 4 (shift by 2).
69 */
70#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
71
72#define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2))
73
74/* calculate how many PGD entries a user-level program can use
75 * the first mappable virtual address is 0
76 * (TASK_SIZE is the maximum virtual address space)
77 */
78
79#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
80#define FIRST_USER_ADDRESS 0
81
82/*
83 * Kernels own virtual memory area.
84 */
85
86/*
87 * The size and location of the vmalloc area are chosen so that modules
88 * placed in this area aren't more than a 28-bit signed offset from any
89 * kernel functions that they may need. This greatly simplifies handling
90 * of the relocations for l.j and l.jal instructions as we don't need to
91 * introduce any trampolines for reaching "distant" code.
92 *
93 * 64 MB of vmalloc area is comparable to what's available on other arches.
94 */
95
96#define VMALLOC_START (PAGE_OFFSET-0x04000000)
97#define VMALLOC_END (PAGE_OFFSET)
98#define VMALLOC_VMADDR(x) ((unsigned long)(x))
99
100/* Define some higher level generic page attributes.
101 *
102 * If you change _PAGE_CI definition be sure to change it in
103 * io.h for ioremap_nocache() too.
104 */
105
106/*
107 * An OR32 PTE looks like this:
108 *
109 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
110 * Phys pg.num L PP Index D A WOM WBC CI CC
111 *
112 * L : link
113 * PPI: Page protection index
114 * D : Dirty
115 * A : Accessed
116 * WOM: Weakly ordered memory
117 * WBC: Write-back cache
118 * CI : Cache inhibit
119 * CC : Cache coherent
120 *
121 * The protection bits below should correspond to the layout of the actual
122 * PTE as per above
123 */
124
125#define _PAGE_CC 0x001 /* software: pte contains a translation */
126#define _PAGE_CI 0x002 /* cache inhibit */
127#define _PAGE_WBC 0x004 /* write back cache */
128#define _PAGE_FILE 0x004 /* set: pagecache, unset: swap (when !PRESENT) */
129#define _PAGE_WOM 0x008 /* weakly ordered memory */
130
131#define _PAGE_A 0x010 /* accessed */
132#define _PAGE_D 0x020 /* dirty */
133#define _PAGE_URE 0x040 /* user read enable */
134#define _PAGE_UWE 0x080 /* user write enable */
135
136#define _PAGE_SRE 0x100 /* superuser read enable */
137#define _PAGE_SWE 0x200 /* superuser write enable */
138#define _PAGE_EXEC 0x400 /* software: page is executable */
139#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
140
141/* 0x001 is cache coherency bit, which should always be set to
142 * 1 - for SMP (when we support it)
143 * 0 - otherwise
144 *
145 * we just reuse this bit in software for _PAGE_PRESENT and
146 * force it to 0 when loading it into TLB.
147 */
148#define _PAGE_PRESENT _PAGE_CC
149#define _PAGE_USER _PAGE_URE
150#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
151#define _PAGE_DIRTY _PAGE_D
152#define _PAGE_ACCESSED _PAGE_A
153#define _PAGE_NO_CACHE _PAGE_CI
154#define _PAGE_SHARED _PAGE_U_SHARED
155#define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
156
157#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
158#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
159#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
160#define _KERNPG_TABLE \
161 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
162
163#define PAGE_NONE __pgprot(_PAGE_ALL)
164#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
165#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
166#define PAGE_SHARED \
167 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
168 | _PAGE_SHARED)
169#define PAGE_SHARED_X \
170 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
171 | _PAGE_SHARED | _PAGE_EXEC)
172#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
173#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
174
175#define PAGE_KERNEL \
176 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
177 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
178#define PAGE_KERNEL_RO \
179 __pgprot(_PAGE_ALL | _PAGE_SRE \
180 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
181#define PAGE_KERNEL_NOCACHE \
182 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
183 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
184
185#define __P000 PAGE_NONE
186#define __P001 PAGE_READONLY_X
187#define __P010 PAGE_COPY
188#define __P011 PAGE_COPY_X
189#define __P100 PAGE_READONLY
190#define __P101 PAGE_READONLY_X
191#define __P110 PAGE_COPY
192#define __P111 PAGE_COPY_X
193
194#define __S000 PAGE_NONE
195#define __S001 PAGE_READONLY_X
196#define __S010 PAGE_SHARED
197#define __S011 PAGE_SHARED_X
198#define __S100 PAGE_READONLY
199#define __S101 PAGE_READONLY_X
200#define __S110 PAGE_SHARED
201#define __S111 PAGE_SHARED_X
202
203/* zero page used for uninitialized stuff */
204extern unsigned long empty_zero_page[2048];
205#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
206
207/* number of bits that fit into a memory pointer */
208#define BITS_PER_PTR (8*sizeof(unsigned long))
209
210/* to align the pointer to a pointer address */
211#define PTR_MASK (~(sizeof(void *)-1))
212
213/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
214/* 64-bit machines, beware! SRB. */
215#define SIZEOF_PTR_LOG2 2
216
217/* to find an entry in a page-table */
218#define PAGE_PTR(address) \
219((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
220
221/* to set the page-dir */
222#define SET_PAGE_DIR(tsk, pgdir)
223
224#define pte_none(x) (!pte_val(x))
225#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
226#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
227
228#define pmd_none(x) (!pmd_val(x))
229#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
230#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
231#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
232
233/*
234 * The following only work if pte_present() is true.
235 * Undefined behaviour if not..
236 */
237
238static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
239static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
240static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
241static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
242static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
243static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
244static inline int pte_special(pte_t pte) { return 0; }
245static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
246
247static inline pte_t pte_wrprotect(pte_t pte)
248{
249 pte_val(pte) &= ~(_PAGE_WRITE);
250 return pte;
251}
252
253static inline pte_t pte_rdprotect(pte_t pte)
254{
255 pte_val(pte) &= ~(_PAGE_READ);
256 return pte;
257}
258
259static inline pte_t pte_exprotect(pte_t pte)
260{
261 pte_val(pte) &= ~(_PAGE_EXEC);
262 return pte;
263}
264
265static inline pte_t pte_mkclean(pte_t pte)
266{
267 pte_val(pte) &= ~(_PAGE_DIRTY);
268 return pte;
269}
270
271static inline pte_t pte_mkold(pte_t pte)
272{
273 pte_val(pte) &= ~(_PAGE_ACCESSED);
274 return pte;
275}
276
277static inline pte_t pte_mkwrite(pte_t pte)
278{
279 pte_val(pte) |= _PAGE_WRITE;
280 return pte;
281}
282
283static inline pte_t pte_mkread(pte_t pte)
284{
285 pte_val(pte) |= _PAGE_READ;
286 return pte;
287}
288
289static inline pte_t pte_mkexec(pte_t pte)
290{
291 pte_val(pte) |= _PAGE_EXEC;
292 return pte;
293}
294
295static inline pte_t pte_mkdirty(pte_t pte)
296{
297 pte_val(pte) |= _PAGE_DIRTY;
298 return pte;
299}
300
301static inline pte_t pte_mkyoung(pte_t pte)
302{
303 pte_val(pte) |= _PAGE_ACCESSED;
304 return pte;
305}
306
307/*
308 * Conversion functions: convert a page and protection to a page entry,
309 * and a page entry and page directory to the page they refer to.
310 */
311
312/* What actually goes as arguments to the various functions is less than
313 * obvious, but a rule of thumb is that struct page's goes as struct page *,
314 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
315 * addresses (the 0xc0xxxxxx's) goes as void *'s.
316 */
317
318static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
319{
320 pte_t pte;
321 /* the PTE needs a physical address */
322 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
323 return pte;
324}
325
326#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
327
328#define mk_pte_phys(physpage, pgprot) \
329({ \
330 pte_t __pte; \
331 \
332 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
333 __pte; \
334})
335
336static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
337{
338 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
339 return pte;
340}
341
342
343/*
344 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
345 * __pte_page(pte_val) refers to the "virtual" DRAM interval
346 * pte_pagenr refers to the page-number counted starting from the virtual
347 * DRAM start
348 */
349
350static inline unsigned long __pte_page(pte_t pte)
351{
352 /* the PTE contains a physical address */
353 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
354}
355
356#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
357
358/* permanent address of a page */
359
360#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
361#define pte_page(pte) (mem_map+pte_pagenr(pte))
362
363/*
364 * only the pte's themselves need to point to physical DRAM (see above)
365 * the pagetable links are purely handled within the kernel SW and thus
366 * don't need the __pa and __va transformations.
367 */
368static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
369{
370 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
371}
372
373#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
374#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
375
376/* to find an entry in a page-table-directory. */
377#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
378
379#define __pgd_offset(address) pgd_index(address)
380
381#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
382
383/* to find an entry in a kernel page-table-directory */
384#define pgd_offset_k(address) pgd_offset(&init_mm, address)
385
386#define __pmd_offset(address) \
387 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
388
389/*
390 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
391 *
392 * this macro returns the index of the entry in the pte page which would
393 * control the given virtual address
394 */
395#define __pte_offset(address) \
396 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
397#define pte_offset_kernel(dir, address) \
398 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address))
399#define pte_offset_map(dir, address) \
400 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
401#define pte_offset_map_nested(dir, address) \
402 pte_offset_map(dir, address)
403
404#define pte_unmap(pte) do { } while (0)
405#define pte_unmap_nested(pte) do { } while (0)
406#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
407#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
408
409#define pte_ERROR(e) \
410 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
411 __FILE__, __LINE__, &(e), pte_val(e))
412#define pgd_ERROR(e) \
413 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
414 __FILE__, __LINE__, &(e), pgd_val(e))
415
416extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
417
418/*
419 * or32 doesn't have any external MMU info: the kernel page
420 * tables contain all the necessary information.
421 *
422 * Actually I am not sure on what this could be used for.
423 */
424static inline void update_mmu_cache(struct vm_area_struct *vma,
425 unsigned long address, pte_t *pte)
426{
427}
428
429/* __PHX__ FIXME, SWAP, this probably doesn't work */
430
431/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
432/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
433
434#define __swp_type(x) (((x).val >> 5) & 0x7f)
435#define __swp_offset(x) ((x).val >> 12)
436#define __swp_entry(type, offset) \
437 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
438#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
439#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
440
441/* Encode and decode a nonlinear file mapping entry */
442
443#define PTE_FILE_MAX_BITS 26
444#define pte_to_pgoff(x) (pte_val(x) >> 6)
445#define pgoff_to_pte(x) __pte(((x) << 6) | _PAGE_FILE)
446
447#define kern_addr_valid(addr) (1)
448
449#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
450 remap_pfn_range(vma, vaddr, pfn, size, prot)
451
452#include <asm-generic/pgtable.h>
453
454/*
455 * No page table caches to initialise
456 */
457#define pgtable_cache_init() do { } while (0)
458#define io_remap_page_range remap_page_range
459
460typedef pte_t *pte_addr_t;
461
462#endif /* __ASSEMBLY__ */
463#endif /* __ASM_OPENRISC_PGTABLE_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * OpenRISC Linux
4 *
5 * Linux architectural port borrowing liberally from similar works of
6 * others. All original copyrights apply as per the original source
7 * declaration.
8 *
9 * OpenRISC implementation:
10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 * et al.
13 */
14
15/* or32 pgtable.h - macros and functions to manipulate page tables
16 *
17 * Based on:
18 * include/asm-cris/pgtable.h
19 */
20
21#ifndef __ASM_OPENRISC_PGTABLE_H
22#define __ASM_OPENRISC_PGTABLE_H
23
24#include <asm-generic/pgtable-nopmd.h>
25
26#ifndef __ASSEMBLY__
27#include <asm/mmu.h>
28#include <asm/fixmap.h>
29
30/*
31 * The Linux memory management assumes a three-level page table setup. On
32 * or32, we use that, but "fold" the mid level into the top-level page
33 * table. Since the MMU TLB is software loaded through an interrupt, it
34 * supports any page table structure, so we could have used a three-level
35 * setup, but for the amounts of memory we normally use, a two-level is
36 * probably more efficient.
37 *
38 * This file contains the functions and defines necessary to modify and use
39 * the or32 page table tree.
40 */
41
42extern void paging_init(void);
43
44/* Certain architectures need to do special things when pte's
45 * within a page table are directly modified. Thus, the following
46 * hook is made available.
47 */
48#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
49#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
50/*
51 * (pmds are folded into pgds so this doesn't get actually called,
52 * but the define is needed for a generic inline function.)
53 */
54#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
55
56#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
57#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
58#define PGDIR_MASK (~(PGDIR_SIZE-1))
59
60/*
61 * entries per page directory level: we use a two-level, so
62 * we don't really have any PMD directory physically.
63 * pointers are 4 bytes so we can use the page size and
64 * divide it by 4 (shift by 2).
65 */
66#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
67
68#define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT))
69
70/* calculate how many PGD entries a user-level program can use
71 * the first mappable virtual address is 0
72 * (TASK_SIZE is the maximum virtual address space)
73 */
74
75#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
76#define FIRST_USER_ADDRESS 0UL
77
78/*
79 * Kernels own virtual memory area.
80 */
81
82/*
83 * The size and location of the vmalloc area are chosen so that modules
84 * placed in this area aren't more than a 28-bit signed offset from any
85 * kernel functions that they may need. This greatly simplifies handling
86 * of the relocations for l.j and l.jal instructions as we don't need to
87 * introduce any trampolines for reaching "distant" code.
88 *
89 * 64 MB of vmalloc area is comparable to what's available on other arches.
90 */
91
92#define VMALLOC_START (PAGE_OFFSET-0x04000000UL)
93#define VMALLOC_END (PAGE_OFFSET)
94#define VMALLOC_VMADDR(x) ((unsigned long)(x))
95
96/* Define some higher level generic page attributes.
97 *
98 * If you change _PAGE_CI definition be sure to change it in
99 * io.h for ioremap() too.
100 */
101
102/*
103 * An OR32 PTE looks like this:
104 *
105 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
106 * Phys pg.num L PP Index D A WOM WBC CI CC
107 *
108 * L : link
109 * PPI: Page protection index
110 * D : Dirty
111 * A : Accessed
112 * WOM: Weakly ordered memory
113 * WBC: Write-back cache
114 * CI : Cache inhibit
115 * CC : Cache coherent
116 *
117 * The protection bits below should correspond to the layout of the actual
118 * PTE as per above
119 */
120
121#define _PAGE_CC 0x001 /* software: pte contains a translation */
122#define _PAGE_CI 0x002 /* cache inhibit */
123#define _PAGE_WBC 0x004 /* write back cache */
124#define _PAGE_WOM 0x008 /* weakly ordered memory */
125
126#define _PAGE_A 0x010 /* accessed */
127#define _PAGE_D 0x020 /* dirty */
128#define _PAGE_URE 0x040 /* user read enable */
129#define _PAGE_UWE 0x080 /* user write enable */
130
131#define _PAGE_SRE 0x100 /* superuser read enable */
132#define _PAGE_SWE 0x200 /* superuser write enable */
133#define _PAGE_EXEC 0x400 /* software: page is executable */
134#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
135
136/* 0x001 is cache coherency bit, which should always be set to
137 * 1 - for SMP (when we support it)
138 * 0 - otherwise
139 *
140 * we just reuse this bit in software for _PAGE_PRESENT and
141 * force it to 0 when loading it into TLB.
142 */
143#define _PAGE_PRESENT _PAGE_CC
144#define _PAGE_USER _PAGE_URE
145#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
146#define _PAGE_DIRTY _PAGE_D
147#define _PAGE_ACCESSED _PAGE_A
148#define _PAGE_NO_CACHE _PAGE_CI
149#define _PAGE_SHARED _PAGE_U_SHARED
150#define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
151
152#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
153#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
154#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
155#define _KERNPG_TABLE \
156 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
157
158#define PAGE_NONE __pgprot(_PAGE_ALL)
159#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
160#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
161#define PAGE_SHARED \
162 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
163 | _PAGE_SHARED)
164#define PAGE_SHARED_X \
165 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
166 | _PAGE_SHARED | _PAGE_EXEC)
167#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
168#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
169
170#define PAGE_KERNEL \
171 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
172 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
173#define PAGE_KERNEL_RO \
174 __pgprot(_PAGE_ALL | _PAGE_SRE \
175 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
176#define PAGE_KERNEL_NOCACHE \
177 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
178 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
179
180#define __P000 PAGE_NONE
181#define __P001 PAGE_READONLY_X
182#define __P010 PAGE_COPY
183#define __P011 PAGE_COPY_X
184#define __P100 PAGE_READONLY
185#define __P101 PAGE_READONLY_X
186#define __P110 PAGE_COPY
187#define __P111 PAGE_COPY_X
188
189#define __S000 PAGE_NONE
190#define __S001 PAGE_READONLY_X
191#define __S010 PAGE_SHARED
192#define __S011 PAGE_SHARED_X
193#define __S100 PAGE_READONLY
194#define __S101 PAGE_READONLY_X
195#define __S110 PAGE_SHARED
196#define __S111 PAGE_SHARED_X
197
198/* zero page used for uninitialized stuff */
199extern unsigned long empty_zero_page[2048];
200#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
201
202/* number of bits that fit into a memory pointer */
203#define BITS_PER_PTR (8*sizeof(unsigned long))
204
205/* to align the pointer to a pointer address */
206#define PTR_MASK (~(sizeof(void *)-1))
207
208/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
209/* 64-bit machines, beware! SRB. */
210#define SIZEOF_PTR_LOG2 2
211
212/* to find an entry in a page-table */
213#define PAGE_PTR(address) \
214((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
215
216/* to set the page-dir */
217#define SET_PAGE_DIR(tsk, pgdir)
218
219#define pte_none(x) (!pte_val(x))
220#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
221#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
222
223#define pmd_none(x) (!pmd_val(x))
224#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
225#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
226#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
227
228/*
229 * The following only work if pte_present() is true.
230 * Undefined behaviour if not..
231 */
232
233static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
234static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
235static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
236static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
237static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
238
239static inline pte_t pte_wrprotect(pte_t pte)
240{
241 pte_val(pte) &= ~(_PAGE_WRITE);
242 return pte;
243}
244
245static inline pte_t pte_rdprotect(pte_t pte)
246{
247 pte_val(pte) &= ~(_PAGE_READ);
248 return pte;
249}
250
251static inline pte_t pte_exprotect(pte_t pte)
252{
253 pte_val(pte) &= ~(_PAGE_EXEC);
254 return pte;
255}
256
257static inline pte_t pte_mkclean(pte_t pte)
258{
259 pte_val(pte) &= ~(_PAGE_DIRTY);
260 return pte;
261}
262
263static inline pte_t pte_mkold(pte_t pte)
264{
265 pte_val(pte) &= ~(_PAGE_ACCESSED);
266 return pte;
267}
268
269static inline pte_t pte_mkwrite(pte_t pte)
270{
271 pte_val(pte) |= _PAGE_WRITE;
272 return pte;
273}
274
275static inline pte_t pte_mkread(pte_t pte)
276{
277 pte_val(pte) |= _PAGE_READ;
278 return pte;
279}
280
281static inline pte_t pte_mkexec(pte_t pte)
282{
283 pte_val(pte) |= _PAGE_EXEC;
284 return pte;
285}
286
287static inline pte_t pte_mkdirty(pte_t pte)
288{
289 pte_val(pte) |= _PAGE_DIRTY;
290 return pte;
291}
292
293static inline pte_t pte_mkyoung(pte_t pte)
294{
295 pte_val(pte) |= _PAGE_ACCESSED;
296 return pte;
297}
298
299/*
300 * Conversion functions: convert a page and protection to a page entry,
301 * and a page entry and page directory to the page they refer to.
302 */
303
304/* What actually goes as arguments to the various functions is less than
305 * obvious, but a rule of thumb is that struct page's goes as struct page *,
306 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
307 * addresses (the 0xc0xxxxxx's) goes as void *'s.
308 */
309
310static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
311{
312 pte_t pte;
313 /* the PTE needs a physical address */
314 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
315 return pte;
316}
317
318#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
319
320#define mk_pte_phys(physpage, pgprot) \
321({ \
322 pte_t __pte; \
323 \
324 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
325 __pte; \
326})
327
328static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
329{
330 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
331 return pte;
332}
333
334
335/*
336 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
337 * __pte_page(pte_val) refers to the "virtual" DRAM interval
338 * pte_pagenr refers to the page-number counted starting from the virtual
339 * DRAM start
340 */
341
342static inline unsigned long __pte_page(pte_t pte)
343{
344 /* the PTE contains a physical address */
345 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
346}
347
348#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
349
350/* permanent address of a page */
351
352#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
353#define pte_page(pte) (mem_map+pte_pagenr(pte))
354
355/*
356 * only the pte's themselves need to point to physical DRAM (see above)
357 * the pagetable links are purely handled within the kernel SW and thus
358 * don't need the __pa and __va transformations.
359 */
360static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
361{
362 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
363}
364
365#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
366
367static inline unsigned long pmd_page_vaddr(pmd_t pmd)
368{
369 return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK));
370}
371
372#define __pmd_offset(address) \
373 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
374
375#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
376#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
377
378#define pte_ERROR(e) \
379 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
380 __FILE__, __LINE__, &(e), pte_val(e))
381#define pgd_ERROR(e) \
382 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
383 __FILE__, __LINE__, &(e), pgd_val(e))
384
385extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
386
387struct vm_area_struct;
388
389static inline void update_tlb(struct vm_area_struct *vma,
390 unsigned long address, pte_t *pte)
391{
392}
393
394extern void update_cache(struct vm_area_struct *vma,
395 unsigned long address, pte_t *pte);
396
397static inline void update_mmu_cache(struct vm_area_struct *vma,
398 unsigned long address, pte_t *pte)
399{
400 update_tlb(vma, address, pte);
401 update_cache(vma, address, pte);
402}
403
404/* __PHX__ FIXME, SWAP, this probably doesn't work */
405
406/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
407/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
408
409#define __swp_type(x) (((x).val >> 5) & 0x7f)
410#define __swp_offset(x) ((x).val >> 12)
411#define __swp_entry(type, offset) \
412 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
413#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
414#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
415
416#define kern_addr_valid(addr) (1)
417
418typedef pte_t *pte_addr_t;
419
420#endif /* __ASSEMBLY__ */
421#endif /* __ASM_OPENRISC_PGTABLE_H */