Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * OpenRISC Linux
4 *
5 * Linux architectural port borrowing liberally from similar works of
6 * others. All original copyrights apply as per the original source
7 * declaration.
8 *
9 * OpenRISC implementation:
10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 * et al.
13 */
14
15/* or1k pgtable.h - macros and functions to manipulate page tables
16 *
17 * Based on:
18 * include/asm-cris/pgtable.h
19 */
20
21#ifndef __ASM_OPENRISC_PGTABLE_H
22#define __ASM_OPENRISC_PGTABLE_H
23
24#include <asm-generic/pgtable-nopmd.h>
25
26#ifndef __ASSEMBLY__
27#include <asm/mmu.h>
28#include <asm/fixmap.h>
29
30/*
31 * The Linux memory management assumes a three-level page table setup. On
32 * or1k, we use that, but "fold" the mid level into the top-level page
33 * table. Since the MMU TLB is software loaded through an interrupt, it
34 * supports any page table structure, so we could have used a three-level
35 * setup, but for the amounts of memory we normally use, a two-level is
36 * probably more efficient.
37 *
38 * This file contains the functions and defines necessary to modify and use
39 * the or1k page table tree.
40 */
41
42extern void paging_init(void);
43
44/* Certain architectures need to do special things when pte's
45 * within a page table are directly modified. Thus, the following
46 * hook is made available.
47 */
48#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
49
50/*
51 * (pmds are folded into pgds so this doesn't get actually called,
52 * but the define is needed for a generic inline function.)
53 */
54#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
55
56#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
57#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
58#define PGDIR_MASK (~(PGDIR_SIZE-1))
59
60/*
61 * entries per page directory level: we use a two-level, so
62 * we don't really have any PMD directory physically.
63 * pointers are 4 bytes so we can use the page size and
64 * divide it by 4 (shift by 2).
65 */
66#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
67
68#define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT))
69
70/* calculate how many PGD entries a user-level program can use
71 * the first mappable virtual address is 0
72 * (TASK_SIZE is the maximum virtual address space)
73 */
74
75#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
76
77/*
78 * Kernels own virtual memory area.
79 */
80
81/*
82 * The size and location of the vmalloc area are chosen so that modules
83 * placed in this area aren't more than a 28-bit signed offset from any
84 * kernel functions that they may need. This greatly simplifies handling
85 * of the relocations for l.j and l.jal instructions as we don't need to
86 * introduce any trampolines for reaching "distant" code.
87 *
88 * 64 MB of vmalloc area is comparable to what's available on other arches.
89 */
90
91#define VMALLOC_START (PAGE_OFFSET-0x04000000UL)
92#define VMALLOC_END (PAGE_OFFSET)
93#define VMALLOC_VMADDR(x) ((unsigned long)(x))
94
95/* Define some higher level generic page attributes.
96 *
97 * If you change _PAGE_CI definition be sure to change it in
98 * io.h for ioremap() too.
99 */
100
101/*
102 * An OR32 PTE looks like this:
103 *
104 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
105 * Phys pg.num L PP Index D A WOM WBC CI CC
106 *
107 * L : link
108 * PPI: Page protection index
109 * D : Dirty
110 * A : Accessed
111 * WOM: Weakly ordered memory
112 * WBC: Write-back cache
113 * CI : Cache inhibit
114 * CC : Cache coherent
115 *
116 * The protection bits below should correspond to the layout of the actual
117 * PTE as per above
118 */
119
120#define _PAGE_CC 0x001 /* software: pte contains a translation */
121#define _PAGE_CI 0x002 /* cache inhibit */
122#define _PAGE_WBC 0x004 /* write back cache */
123#define _PAGE_WOM 0x008 /* weakly ordered memory */
124
125#define _PAGE_A 0x010 /* accessed */
126#define _PAGE_D 0x020 /* dirty */
127#define _PAGE_URE 0x040 /* user read enable */
128#define _PAGE_UWE 0x080 /* user write enable */
129
130#define _PAGE_SRE 0x100 /* superuser read enable */
131#define _PAGE_SWE 0x200 /* superuser write enable */
132#define _PAGE_EXEC 0x400 /* software: page is executable */
133#define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
134
135/* 0x001 is cache coherency bit, which should always be set to
136 * 1 - for SMP (when we support it)
137 * 0 - otherwise
138 *
139 * we just reuse this bit in software for _PAGE_PRESENT and
140 * force it to 0 when loading it into TLB.
141 */
142#define _PAGE_PRESENT _PAGE_CC
143#define _PAGE_USER _PAGE_URE
144#define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
145#define _PAGE_DIRTY _PAGE_D
146#define _PAGE_ACCESSED _PAGE_A
147#define _PAGE_NO_CACHE _PAGE_CI
148#define _PAGE_SHARED _PAGE_U_SHARED
149#define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
150
151#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
152#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
153#define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
154#define _KERNPG_TABLE \
155 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
156
157/* We borrow bit 11 to store the exclusive marker in swap PTEs. */
158#define _PAGE_SWP_EXCLUSIVE _PAGE_U_SHARED
159
160#define PAGE_NONE __pgprot(_PAGE_ALL)
161#define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
162#define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
163#define PAGE_SHARED \
164 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
165 | _PAGE_SHARED)
166#define PAGE_SHARED_X \
167 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
168 | _PAGE_SHARED | _PAGE_EXEC)
169#define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
170#define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
171
172#define PAGE_KERNEL \
173 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
174 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
175#define PAGE_KERNEL_RO \
176 __pgprot(_PAGE_ALL | _PAGE_SRE \
177 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
178#define PAGE_KERNEL_NOCACHE \
179 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
180 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
181
182/* zero page used for uninitialized stuff */
183extern unsigned long empty_zero_page[2048];
184#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
185
186/* number of bits that fit into a memory pointer */
187#define BITS_PER_PTR (8*sizeof(unsigned long))
188
189/* to align the pointer to a pointer address */
190#define PTR_MASK (~(sizeof(void *)-1))
191
192/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
193/* 64-bit machines, beware! SRB. */
194#define SIZEOF_PTR_LOG2 2
195
196/* to find an entry in a page-table */
197#define PAGE_PTR(address) \
198((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
199
200/* to set the page-dir */
201#define SET_PAGE_DIR(tsk, pgdir)
202
203#define pte_none(x) (!pte_val(x))
204#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
205#define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
206
207#define pmd_none(x) (!pmd_val(x))
208#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
209#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
210#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
211
212/*
213 * The following only work if pte_present() is true.
214 * Undefined behaviour if not..
215 */
216
217static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
218static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
219static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
220static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
221static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
222
223static inline pte_t pte_wrprotect(pte_t pte)
224{
225 pte_val(pte) &= ~(_PAGE_WRITE);
226 return pte;
227}
228
229static inline pte_t pte_rdprotect(pte_t pte)
230{
231 pte_val(pte) &= ~(_PAGE_READ);
232 return pte;
233}
234
235static inline pte_t pte_exprotect(pte_t pte)
236{
237 pte_val(pte) &= ~(_PAGE_EXEC);
238 return pte;
239}
240
241static inline pte_t pte_mkclean(pte_t pte)
242{
243 pte_val(pte) &= ~(_PAGE_DIRTY);
244 return pte;
245}
246
247static inline pte_t pte_mkold(pte_t pte)
248{
249 pte_val(pte) &= ~(_PAGE_ACCESSED);
250 return pte;
251}
252
253static inline pte_t pte_mkwrite_novma(pte_t pte)
254{
255 pte_val(pte) |= _PAGE_WRITE;
256 return pte;
257}
258
259static inline pte_t pte_mkread(pte_t pte)
260{
261 pte_val(pte) |= _PAGE_READ;
262 return pte;
263}
264
265static inline pte_t pte_mkexec(pte_t pte)
266{
267 pte_val(pte) |= _PAGE_EXEC;
268 return pte;
269}
270
271static inline pte_t pte_mkdirty(pte_t pte)
272{
273 pte_val(pte) |= _PAGE_DIRTY;
274 return pte;
275}
276
277static inline pte_t pte_mkyoung(pte_t pte)
278{
279 pte_val(pte) |= _PAGE_ACCESSED;
280 return pte;
281}
282
283/*
284 * Conversion functions: convert a page and protection to a page entry,
285 * and a page entry and page directory to the page they refer to.
286 */
287
288/* What actually goes as arguments to the various functions is less than
289 * obvious, but a rule of thumb is that struct page's goes as struct page *,
290 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
291 * addresses (the 0xc0xxxxxx's) goes as void *'s.
292 */
293
294static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
295{
296 pte_t pte;
297 /* the PTE needs a physical address */
298 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
299 return pte;
300}
301
302#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
303
304#define mk_pte_phys(physpage, pgprot) \
305({ \
306 pte_t __pte; \
307 \
308 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
309 __pte; \
310})
311
312static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
313{
314 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
315 return pte;
316}
317
318
319/*
320 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
321 * __pte_page(pte_val) refers to the "virtual" DRAM interval
322 * pte_pagenr refers to the page-number counted starting from the virtual
323 * DRAM start
324 */
325
326static inline unsigned long __pte_page(pte_t pte)
327{
328 /* the PTE contains a physical address */
329 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
330}
331
332#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
333
334/* permanent address of a page */
335
336#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
337#define pte_page(pte) (mem_map+pte_pagenr(pte))
338
339/*
340 * only the pte's themselves need to point to physical DRAM (see above)
341 * the pagetable links are purely handled within the kernel SW and thus
342 * don't need the __pa and __va transformations.
343 */
344static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
345{
346 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
347}
348
349#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
350#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
351
352static inline unsigned long pmd_page_vaddr(pmd_t pmd)
353{
354 return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK));
355}
356
357#define __pmd_offset(address) \
358 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
359
360#define PFN_PTE_SHIFT PAGE_SHIFT
361#define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
362#define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
363
364#define pte_ERROR(e) \
365 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
366 __FILE__, __LINE__, &(e), pte_val(e))
367#define pgd_ERROR(e) \
368 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
369 __FILE__, __LINE__, &(e), pgd_val(e))
370
371extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
372
373struct vm_area_struct;
374
375static inline void update_tlb(struct vm_area_struct *vma,
376 unsigned long address, pte_t *pte)
377{
378}
379
380extern void update_cache(struct vm_area_struct *vma,
381 unsigned long address, pte_t *pte);
382
383static inline void update_mmu_cache_range(struct vm_fault *vmf,
384 struct vm_area_struct *vma, unsigned long address,
385 pte_t *ptep, unsigned int nr)
386{
387 update_tlb(vma, address, ptep);
388 update_cache(vma, address, ptep);
389}
390
391#define update_mmu_cache(vma, addr, ptep) \
392 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
393
394/* __PHX__ FIXME, SWAP, this probably doesn't work */
395
396/*
397 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
398 * are !pte_none() && !pte_present().
399 *
400 * Format of swap PTEs:
401 *
402 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
403 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
404 * <-------------- offset ---------------> E <- type --> 0 0 0 0 0
405 *
406 * E is the exclusive marker that is not stored in swap entries.
407 * The zero'ed bits include _PAGE_PRESENT.
408 */
409#define __swp_type(x) (((x).val >> 5) & 0x3f)
410#define __swp_offset(x) ((x).val >> 12)
411#define __swp_entry(type, offset) \
412 ((swp_entry_t) { (((type) & 0x3f) << 5) | ((offset) << 12) })
413#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
414#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
415
416static inline int pte_swp_exclusive(pte_t pte)
417{
418 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
419}
420
421static inline pte_t pte_swp_mkexclusive(pte_t pte)
422{
423 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
424 return pte;
425}
426
427static inline pte_t pte_swp_clear_exclusive(pte_t pte)
428{
429 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
430 return pte;
431}
432
433typedef pte_t *pte_addr_t;
434
435#endif /* __ASSEMBLY__ */
436#endif /* __ASM_OPENRISC_PGTABLE_H */