Loading...
Note: File does not exist in v3.1.
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Generation of main entry point for the guest, exception handling.
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 *
11 * Copyright (C) 2016 Imagination Technologies Ltd.
12 */
13
14#include <linux/kvm_host.h>
15#include <linux/log2.h>
16#include <asm/mmu_context.h>
17#include <asm/msa.h>
18#include <asm/setup.h>
19#include <asm/tlbex.h>
20#include <asm/uasm.h>
21
22/* Register names */
23#define ZERO 0
24#define AT 1
25#define V0 2
26#define V1 3
27#define A0 4
28#define A1 5
29
30#if _MIPS_SIM == _MIPS_SIM_ABI32
31#define T0 8
32#define T1 9
33#define T2 10
34#define T3 11
35#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36
37#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38#define T0 12
39#define T1 13
40#define T2 14
41#define T3 15
42#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43
44#define S0 16
45#define S1 17
46#define T9 25
47#define K0 26
48#define K1 27
49#define GP 28
50#define SP 29
51#define RA 31
52
53/* Some CP0 registers */
54#define C0_PWBASE 5, 5
55#define C0_HWRENA 7, 0
56#define C0_BADVADDR 8, 0
57#define C0_BADINSTR 8, 1
58#define C0_BADINSTRP 8, 2
59#define C0_PGD 9, 7
60#define C0_ENTRYHI 10, 0
61#define C0_GUESTCTL1 10, 4
62#define C0_STATUS 12, 0
63#define C0_GUESTCTL0 12, 6
64#define C0_CAUSE 13, 0
65#define C0_EPC 14, 0
66#define C0_EBASE 15, 1
67#define C0_CONFIG5 16, 5
68#define C0_DDATA_LO 28, 3
69#define C0_ERROREPC 30, 0
70
71#define CALLFRAME_SIZ 32
72
73#ifdef CONFIG_64BIT
74#define ST0_KX_IF_64 ST0_KX
75#else
76#define ST0_KX_IF_64 0
77#endif
78
79static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
80static unsigned int scratch_tmp[2] = { C0_ERROREPC };
81
82enum label_id {
83 label_fpu_1 = 1,
84 label_msa_1,
85 label_return_to_host,
86 label_kernel_asid,
87 label_exit_common,
88};
89
90UASM_L_LA(_fpu_1)
91UASM_L_LA(_msa_1)
92UASM_L_LA(_return_to_host)
93UASM_L_LA(_kernel_asid)
94UASM_L_LA(_exit_common)
95
96static void *kvm_mips_build_enter_guest(void *addr);
97static void *kvm_mips_build_ret_from_exit(void *addr);
98static void *kvm_mips_build_ret_to_guest(void *addr);
99static void *kvm_mips_build_ret_to_host(void *addr);
100
101/*
102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103 * we assume symmetry.
104 */
105static int c0_kscratch(void)
106{
107 switch (boot_cpu_type()) {
108 case CPU_XLP:
109 case CPU_XLR:
110 return 22;
111 default:
112 return 31;
113 }
114}
115
116/**
117 * kvm_mips_entry_setup() - Perform global setup for entry code.
118 *
119 * Perform global setup for entry code, such as choosing a scratch register.
120 *
121 * Returns: 0 on success.
122 * -errno on failure.
123 */
124int kvm_mips_entry_setup(void)
125{
126 /*
127 * We prefer to use KScratchN registers if they are available over the
128 * defaults above, which may not work on all cores.
129 */
130 unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
131
132 if (pgd_reg != -1)
133 kscratch_mask &= ~BIT(pgd_reg);
134
135 /* Pick a scratch register for storing VCPU */
136 if (kscratch_mask) {
137 scratch_vcpu[0] = c0_kscratch();
138 scratch_vcpu[1] = ffs(kscratch_mask) - 1;
139 kscratch_mask &= ~BIT(scratch_vcpu[1]);
140 }
141
142 /* Pick a scratch register to use as a temp for saving state */
143 if (kscratch_mask) {
144 scratch_tmp[0] = c0_kscratch();
145 scratch_tmp[1] = ffs(kscratch_mask) - 1;
146 kscratch_mask &= ~BIT(scratch_tmp[1]);
147 }
148
149 return 0;
150}
151
152static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
153 unsigned int frame)
154{
155 /* Save the VCPU scratch register value in cp0_epc of the stack frame */
156 UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
157 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
158
159 /* Save the temp scratch register value in cp0_cause of stack frame */
160 if (scratch_tmp[0] == c0_kscratch()) {
161 UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
162 UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
163 }
164}
165
166static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
167 unsigned int frame)
168{
169 /*
170 * Restore host scratch register values saved by
171 * kvm_mips_build_save_scratch().
172 */
173 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
174 UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
175
176 if (scratch_tmp[0] == c0_kscratch()) {
177 UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
178 UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
179 }
180}
181
182/**
183 * build_set_exc_base() - Assemble code to write exception base address.
184 * @p: Code buffer pointer.
185 * @reg: Source register (generated code may set WG bit in @reg).
186 *
187 * Assemble code to modify the exception base address in the EBase register,
188 * using the appropriately sized access and setting the WG bit if necessary.
189 */
190static inline void build_set_exc_base(u32 **p, unsigned int reg)
191{
192 if (cpu_has_ebase_wg) {
193 /* Set WG so that all the bits get written */
194 uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
195 UASM_i_MTC0(p, reg, C0_EBASE);
196 } else {
197 uasm_i_mtc0(p, reg, C0_EBASE);
198 }
199}
200
201/**
202 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
203 * @addr: Address to start writing code.
204 *
205 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
206 * conforms to the following prototype:
207 *
208 * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
209 *
210 * The exit from the guest and return to the caller is handled by the code
211 * generated by kvm_mips_build_ret_to_host().
212 *
213 * Returns: Next address after end of written function.
214 */
215void *kvm_mips_build_vcpu_run(void *addr)
216{
217 u32 *p = addr;
218 unsigned int i;
219
220 /*
221 * A0: run
222 * A1: vcpu
223 */
224
225 /* k0/k1 not being used in host kernel context */
226 UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
227 for (i = 16; i < 32; ++i) {
228 if (i == 24)
229 i = 28;
230 UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
231 }
232
233 /* Save host status */
234 uasm_i_mfc0(&p, V0, C0_STATUS);
235 UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
236
237 /* Save scratch registers, will be used to store pointer to vcpu etc */
238 kvm_mips_build_save_scratch(&p, V1, K1);
239
240 /* VCPU scratch register has pointer to vcpu */
241 UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
242
243 /* Offset into vcpu->arch */
244 UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
245
246 /*
247 * Save the host stack to VCPU, used for exception processing
248 * when we exit from the Guest
249 */
250 UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
251
252 /* Save the kernel gp as well */
253 UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
254
255 /*
256 * Setup status register for running the guest in UM, interrupts
257 * are disabled
258 */
259 UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
260 uasm_i_mtc0(&p, K0, C0_STATUS);
261 uasm_i_ehb(&p);
262
263 /* load up the new EBASE */
264 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
265 build_set_exc_base(&p, K0);
266
267 /*
268 * Now that the new EBASE has been loaded, unset BEV, set
269 * interrupt mask as it was but make sure that timer interrupts
270 * are enabled
271 */
272 uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
273 uasm_i_andi(&p, V0, V0, ST0_IM);
274 uasm_i_or(&p, K0, K0, V0);
275 uasm_i_mtc0(&p, K0, C0_STATUS);
276 uasm_i_ehb(&p);
277
278 p = kvm_mips_build_enter_guest(p);
279
280 return p;
281}
282
283/**
284 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
285 * @addr: Address to start writing code.
286 *
287 * Assemble the code to resume guest execution. This code is common between the
288 * initial entry into the guest from the host, and returning from the exit
289 * handler back to the guest.
290 *
291 * Returns: Next address after end of written function.
292 */
293static void *kvm_mips_build_enter_guest(void *addr)
294{
295 u32 *p = addr;
296 unsigned int i;
297 struct uasm_label labels[2];
298 struct uasm_reloc relocs[2];
299 struct uasm_label __maybe_unused *l = labels;
300 struct uasm_reloc __maybe_unused *r = relocs;
301
302 memset(labels, 0, sizeof(labels));
303 memset(relocs, 0, sizeof(relocs));
304
305 /* Set Guest EPC */
306 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
307 UASM_i_MTC0(&p, T0, C0_EPC);
308
309#ifdef CONFIG_KVM_MIPS_VZ
310 /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
311 if (cpu_has_ldpte)
312 UASM_i_MFC0(&p, K0, C0_PWBASE);
313 else
314 UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
315 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
316
317 /*
318 * Set up KVM GPA pgd.
319 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
320 * - call tlbmiss_handler_setup_pgd(mm->pgd)
321 * - write mm->pgd into CP0_PWBase
322 *
323 * We keep S0 pointing at struct kvm so we can load the ASID below.
324 */
325 UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
326 (int)offsetof(struct kvm_vcpu, arch), K1);
327 UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
328 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
329 uasm_i_jalr(&p, RA, T9);
330 /* delay slot */
331 if (cpu_has_htw)
332 UASM_i_MTC0(&p, A0, C0_PWBASE);
333 else
334 uasm_i_nop(&p);
335
336 /* Set GM bit to setup eret to VZ guest context */
337 uasm_i_addiu(&p, V1, ZERO, 1);
338 uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
339 uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
340 uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
341
342 if (cpu_has_guestid) {
343 /*
344 * Set root mode GuestID, so that root TLB refill handler can
345 * use the correct GuestID in the root TLB.
346 */
347
348 /* Get current GuestID */
349 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
350 /* Set GuestCtl1.RID = GuestCtl1.ID */
351 uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
352 MIPS_GCTL1_ID_WIDTH);
353 uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
354 MIPS_GCTL1_RID_WIDTH);
355 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
356
357 /* GuestID handles dealiasing so we don't need to touch ASID */
358 goto skip_asid_restore;
359 }
360
361 /* Root ASID Dealias (RAD) */
362
363 /* Save host ASID */
364 UASM_i_MFC0(&p, K0, C0_ENTRYHI);
365 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
366 K1);
367
368 /* Set the root ASID for the Guest */
369 UASM_i_ADDIU(&p, T1, S0,
370 offsetof(struct kvm, arch.gpa_mm.context.asid));
371#else
372 /* Set the ASID for the Guest Kernel or User */
373 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
374 UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
375 T0);
376 uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
377 uasm_i_xori(&p, T0, T0, KSU_USER);
378 uasm_il_bnez(&p, &r, T0, label_kernel_asid);
379 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
380 guest_kernel_mm.context.asid));
381 /* else user */
382 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
383 guest_user_mm.context.asid));
384 uasm_l_kernel_asid(&l, p);
385#endif
386
387 /* t1: contains the base of the ASID array, need to get the cpu id */
388 /* smp_processor_id */
389 uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
390 /* index the ASID array */
391 uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
392 UASM_i_ADDU(&p, T3, T1, T2);
393 UASM_i_LW(&p, K0, 0, T3);
394#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
395 /*
396 * reuse ASID array offset
397 * cpuinfo_mips is a multiple of sizeof(long)
398 */
399 uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
400 uasm_i_mul(&p, T2, T2, T3);
401
402 UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
403 UASM_i_ADDU(&p, AT, AT, T2);
404 UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
405 uasm_i_and(&p, K0, K0, T2);
406#else
407 uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
408#endif
409
410#ifndef CONFIG_KVM_MIPS_VZ
411 /*
412 * Set up KVM T&E GVA pgd.
413 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
414 * - call tlbmiss_handler_setup_pgd(mm->pgd)
415 * - but skips write into CP0_PWBase for now
416 */
417 UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
418 (int)offsetof(struct mm_struct, context.asid), T1);
419
420 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
421 uasm_i_jalr(&p, RA, T9);
422 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
423#else
424 /* Set up KVM VZ root ASID (!guestid) */
425 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
426skip_asid_restore:
427#endif
428 uasm_i_ehb(&p);
429
430 /* Disable RDHWR access */
431 uasm_i_mtc0(&p, ZERO, C0_HWRENA);
432
433 /* load the guest context from VCPU and return */
434 for (i = 1; i < 32; ++i) {
435 /* Guest k0/k1 loaded later */
436 if (i == K0 || i == K1)
437 continue;
438 UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
439 }
440
441#ifndef CONFIG_CPU_MIPSR6
442 /* Restore hi/lo */
443 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
444 uasm_i_mthi(&p, K0);
445
446 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
447 uasm_i_mtlo(&p, K0);
448#endif
449
450 /* Restore the guest's k0/k1 registers */
451 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
452 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
453
454 /* Jump to guest */
455 uasm_i_eret(&p);
456
457 uasm_resolve_relocs(relocs, labels);
458
459 return p;
460}
461
462/**
463 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
464 * @addr: Address to start writing code.
465 * @handler: Address of common handler (within range of @addr).
466 *
467 * Assemble TLB refill exception fast path handler for guest execution.
468 *
469 * Returns: Next address after end of written function.
470 */
471void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
472{
473 u32 *p = addr;
474 struct uasm_label labels[2];
475 struct uasm_reloc relocs[2];
476#ifndef CONFIG_CPU_LOONGSON64
477 struct uasm_label *l = labels;
478 struct uasm_reloc *r = relocs;
479#endif
480
481 memset(labels, 0, sizeof(labels));
482 memset(relocs, 0, sizeof(relocs));
483
484 /* Save guest k1 into scratch register */
485 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
486
487 /* Get the VCPU pointer from the VCPU scratch register */
488 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
489
490 /* Save guest k0 into VCPU structure */
491 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
492
493 /*
494 * Some of the common tlbex code uses current_cpu_type(). For KVM we
495 * assume symmetry and just disable preemption to silence the warning.
496 */
497 preempt_disable();
498
499#ifdef CONFIG_CPU_LOONGSON64
500 UASM_i_MFC0(&p, K1, C0_PGD);
501 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
502#ifndef __PAGETABLE_PMD_FOLDED
503 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
504#endif
505 uasm_i_ldpte(&p, K1, 0); /* even */
506 uasm_i_ldpte(&p, K1, 1); /* odd */
507 uasm_i_tlbwr(&p);
508#else
509 /*
510 * Now for the actual refill bit. A lot of this can be common with the
511 * Linux TLB refill handler, however we don't need to handle so many
512 * cases. We only need to handle user mode refills, and user mode runs
513 * with 32-bit addressing.
514 *
515 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
516 * that isn't resolved should never actually get taken and is harmless
517 * to leave in place for now.
518 */
519
520#ifdef CONFIG_64BIT
521 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
522#else
523 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
524#endif
525
526 /* we don't support huge pages yet */
527
528 build_get_ptep(&p, K0, K1);
529 build_update_entries(&p, K0, K1);
530 build_tlb_write_entry(&p, &l, &r, tlb_random);
531#endif
532
533 preempt_enable();
534
535 /* Get the VCPU pointer from the VCPU scratch register again */
536 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
537
538 /* Restore the guest's k0/k1 registers */
539 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
540 uasm_i_ehb(&p);
541 UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
542
543 /* Jump to guest */
544 uasm_i_eret(&p);
545
546 return p;
547}
548
549/**
550 * kvm_mips_build_exception() - Assemble first level guest exception handler.
551 * @addr: Address to start writing code.
552 * @handler: Address of common handler (within range of @addr).
553 *
554 * Assemble exception vector code for guest execution. The generated vector will
555 * branch to the common exception handler generated by kvm_mips_build_exit().
556 *
557 * Returns: Next address after end of written function.
558 */
559void *kvm_mips_build_exception(void *addr, void *handler)
560{
561 u32 *p = addr;
562 struct uasm_label labels[2];
563 struct uasm_reloc relocs[2];
564 struct uasm_label *l = labels;
565 struct uasm_reloc *r = relocs;
566
567 memset(labels, 0, sizeof(labels));
568 memset(relocs, 0, sizeof(relocs));
569
570 /* Save guest k1 into scratch register */
571 UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
572
573 /* Get the VCPU pointer from the VCPU scratch register */
574 UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
575 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
576
577 /* Save guest k0 into VCPU structure */
578 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
579
580 /* Branch to the common handler */
581 uasm_il_b(&p, &r, label_exit_common);
582 uasm_i_nop(&p);
583
584 uasm_l_exit_common(&l, handler);
585 uasm_resolve_relocs(relocs, labels);
586
587 return p;
588}
589
590/**
591 * kvm_mips_build_exit() - Assemble common guest exit handler.
592 * @addr: Address to start writing code.
593 *
594 * Assemble the generic guest exit handling code. This is called by the
595 * exception vectors (generated by kvm_mips_build_exception()), and calls
596 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
597 * depending on the return value.
598 *
599 * Returns: Next address after end of written function.
600 */
601void *kvm_mips_build_exit(void *addr)
602{
603 u32 *p = addr;
604 unsigned int i;
605 struct uasm_label labels[3];
606 struct uasm_reloc relocs[3];
607 struct uasm_label *l = labels;
608 struct uasm_reloc *r = relocs;
609
610 memset(labels, 0, sizeof(labels));
611 memset(relocs, 0, sizeof(relocs));
612
613 /*
614 * Generic Guest exception handler. We end up here when the guest
615 * does something that causes a trap to kernel mode.
616 *
617 * Both k0/k1 registers will have already been saved (k0 into the vcpu
618 * structure, and k1 into the scratch_tmp register).
619 *
620 * The k1 register will already contain the kvm_vcpu_arch pointer.
621 */
622
623 /* Start saving Guest context to VCPU */
624 for (i = 0; i < 32; ++i) {
625 /* Guest k0/k1 saved later */
626 if (i == K0 || i == K1)
627 continue;
628 UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
629 }
630
631#ifndef CONFIG_CPU_MIPSR6
632 /* We need to save hi/lo and restore them on the way out */
633 uasm_i_mfhi(&p, T0);
634 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
635
636 uasm_i_mflo(&p, T0);
637 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
638#endif
639
640 /* Finally save guest k1 to VCPU */
641 uasm_i_ehb(&p);
642 UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
643 UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
644
645 /* Now that context has been saved, we can use other registers */
646
647 /* Restore vcpu */
648 UASM_i_MFC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
649
650 /* Restore run (vcpu->run) */
651 UASM_i_LW(&p, S0, offsetof(struct kvm_vcpu, run), S1);
652
653 /*
654 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
655 * the exception
656 */
657 UASM_i_MFC0(&p, K0, C0_EPC);
658 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
659
660 UASM_i_MFC0(&p, K0, C0_BADVADDR);
661 UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
662 K1);
663
664 uasm_i_mfc0(&p, K0, C0_CAUSE);
665 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
666
667 if (cpu_has_badinstr) {
668 uasm_i_mfc0(&p, K0, C0_BADINSTR);
669 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
670 host_cp0_badinstr), K1);
671 }
672
673 if (cpu_has_badinstrp) {
674 uasm_i_mfc0(&p, K0, C0_BADINSTRP);
675 uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
676 host_cp0_badinstrp), K1);
677 }
678
679 /* Now restore the host state just enough to run the handlers */
680
681 /* Switch EBASE to the one used by Linux */
682 /* load up the host EBASE */
683 uasm_i_mfc0(&p, V0, C0_STATUS);
684
685 uasm_i_lui(&p, AT, ST0_BEV >> 16);
686 uasm_i_or(&p, K0, V0, AT);
687
688 uasm_i_mtc0(&p, K0, C0_STATUS);
689 uasm_i_ehb(&p);
690
691 UASM_i_LA_mostly(&p, K0, (long)&ebase);
692 UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
693 build_set_exc_base(&p, K0);
694
695 if (raw_cpu_has_fpu) {
696 /*
697 * If FPU is enabled, save FCR31 and clear it so that later
698 * ctc1's don't trigger FPE for pending exceptions.
699 */
700 uasm_i_lui(&p, AT, ST0_CU1 >> 16);
701 uasm_i_and(&p, V1, V0, AT);
702 uasm_il_beqz(&p, &r, V1, label_fpu_1);
703 uasm_i_nop(&p);
704 uasm_i_cfc1(&p, T0, 31);
705 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
706 K1);
707 uasm_i_ctc1(&p, ZERO, 31);
708 uasm_l_fpu_1(&l, p);
709 }
710
711 if (cpu_has_msa) {
712 /*
713 * If MSA is enabled, save MSACSR and clear it so that later
714 * instructions don't trigger MSAFPE for pending exceptions.
715 */
716 uasm_i_mfc0(&p, T0, C0_CONFIG5);
717 uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
718 uasm_il_beqz(&p, &r, T0, label_msa_1);
719 uasm_i_nop(&p);
720 uasm_i_cfcmsa(&p, T0, MSA_CSR);
721 uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
722 K1);
723 uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
724 uasm_l_msa_1(&l, p);
725 }
726
727#ifdef CONFIG_KVM_MIPS_VZ
728 /* Restore host ASID */
729 if (!cpu_has_guestid) {
730 UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
731 K1);
732 UASM_i_MTC0(&p, K0, C0_ENTRYHI);
733 }
734
735 /*
736 * Set up normal Linux process pgd.
737 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
738 * - call tlbmiss_handler_setup_pgd(mm->pgd)
739 * - write mm->pgd into CP0_PWBase
740 */
741 UASM_i_LW(&p, A0,
742 offsetof(struct kvm_vcpu_arch, host_pgd), K1);
743 UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
744 uasm_i_jalr(&p, RA, T9);
745 /* delay slot */
746 if (cpu_has_htw)
747 UASM_i_MTC0(&p, A0, C0_PWBASE);
748 else
749 uasm_i_nop(&p);
750
751 /* Clear GM bit so we don't enter guest mode when EXL is cleared */
752 uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
753 uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
754 uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
755
756 /* Save GuestCtl0 so we can access GExcCode after CPU migration */
757 uasm_i_sw(&p, K0,
758 offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
759
760 if (cpu_has_guestid) {
761 /*
762 * Clear root mode GuestID, so that root TLB operations use the
763 * root GuestID in the root TLB.
764 */
765 uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
766 /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
767 uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
768 MIPS_GCTL1_RID_WIDTH);
769 uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
770 }
771#endif
772
773 /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
774 uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
775 uasm_i_and(&p, V0, V0, AT);
776 uasm_i_lui(&p, AT, ST0_CU0 >> 16);
777 uasm_i_or(&p, V0, V0, AT);
778#ifdef CONFIG_64BIT
779 uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
780#endif
781 uasm_i_mtc0(&p, V0, C0_STATUS);
782 uasm_i_ehb(&p);
783
784 /* Load up host GP */
785 UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
786
787 /* Need a stack before we can jump to "C" */
788 UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
789
790 /* Saved host state */
791 UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
792
793 /*
794 * XXXKYMA do we need to load the host ASID, maybe not because the
795 * kernel entries are marked GLOBAL, need to verify
796 */
797
798 /* Restore host scratch registers, as we'll have clobbered them */
799 kvm_mips_build_restore_scratch(&p, K0, SP);
800
801 /* Restore RDHWR access */
802 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
803 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
804 uasm_i_mtc0(&p, K0, C0_HWRENA);
805
806 /* Jump to handler */
807 /*
808 * XXXKYMA: not sure if this is safe, how large is the stack??
809 * Now jump to the kvm_mips_handle_exit() to see if we can deal
810 * with this in the kernel
811 */
812 uasm_i_move(&p, A0, S0);
813 uasm_i_move(&p, A1, S1);
814 UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
815 uasm_i_jalr(&p, RA, T9);
816 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
817
818 uasm_resolve_relocs(relocs, labels);
819
820 p = kvm_mips_build_ret_from_exit(p);
821
822 return p;
823}
824
825/**
826 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
827 * @addr: Address to start writing code.
828 *
829 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
830 * resuming the guest or returning to the host depending on the return value.
831 *
832 * Returns: Next address after end of written function.
833 */
834static void *kvm_mips_build_ret_from_exit(void *addr)
835{
836 u32 *p = addr;
837 struct uasm_label labels[2];
838 struct uasm_reloc relocs[2];
839 struct uasm_label *l = labels;
840 struct uasm_reloc *r = relocs;
841
842 memset(labels, 0, sizeof(labels));
843 memset(relocs, 0, sizeof(relocs));
844
845 /* Return from handler Make sure interrupts are disabled */
846 uasm_i_di(&p, ZERO);
847 uasm_i_ehb(&p);
848
849 /*
850 * XXXKYMA: k0/k1 could have been blown away if we processed
851 * an exception while we were handling the exception from the
852 * guest, reload k1
853 */
854
855 uasm_i_move(&p, K1, S1);
856 UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
857
858 /*
859 * Check return value, should tell us if we are returning to the
860 * host (handle I/O etc)or resuming the guest
861 */
862 uasm_i_andi(&p, T0, V0, RESUME_HOST);
863 uasm_il_bnez(&p, &r, T0, label_return_to_host);
864 uasm_i_nop(&p);
865
866 p = kvm_mips_build_ret_to_guest(p);
867
868 uasm_l_return_to_host(&l, p);
869 p = kvm_mips_build_ret_to_host(p);
870
871 uasm_resolve_relocs(relocs, labels);
872
873 return p;
874}
875
876/**
877 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
878 * @addr: Address to start writing code.
879 *
880 * Assemble the code to handle return from the guest exit handler
881 * (kvm_mips_handle_exit()) back to the guest.
882 *
883 * Returns: Next address after end of written function.
884 */
885static void *kvm_mips_build_ret_to_guest(void *addr)
886{
887 u32 *p = addr;
888
889 /* Put the saved pointer to vcpu (s1) back into the scratch register */
890 UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
891
892 /* Load up the Guest EBASE to minimize the window where BEV is set */
893 UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
894
895 /* Switch EBASE back to the one used by KVM */
896 uasm_i_mfc0(&p, V1, C0_STATUS);
897 uasm_i_lui(&p, AT, ST0_BEV >> 16);
898 uasm_i_or(&p, K0, V1, AT);
899 uasm_i_mtc0(&p, K0, C0_STATUS);
900 uasm_i_ehb(&p);
901 build_set_exc_base(&p, T0);
902
903 /* Setup status register for running guest in UM */
904 uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
905 UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
906 uasm_i_and(&p, V1, V1, AT);
907 uasm_i_mtc0(&p, V1, C0_STATUS);
908 uasm_i_ehb(&p);
909
910 p = kvm_mips_build_enter_guest(p);
911
912 return p;
913}
914
915/**
916 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
917 * @addr: Address to start writing code.
918 *
919 * Assemble the code to handle return from the guest exit handler
920 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
921 * function generated by kvm_mips_build_vcpu_run().
922 *
923 * Returns: Next address after end of written function.
924 */
925static void *kvm_mips_build_ret_to_host(void *addr)
926{
927 u32 *p = addr;
928 unsigned int i;
929
930 /* EBASE is already pointing to Linux */
931 UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
932 UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
933
934 /*
935 * r2/v0 is the return code, shift it down by 2 (arithmetic)
936 * to recover the err code
937 */
938 uasm_i_sra(&p, K0, V0, 2);
939 uasm_i_move(&p, V0, K0);
940
941 /* Load context saved on the host stack */
942 for (i = 16; i < 31; ++i) {
943 if (i == 24)
944 i = 28;
945 UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
946 }
947
948 /* Restore RDHWR access */
949 UASM_i_LA_mostly(&p, K0, (long)&hwrena);
950 uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
951 uasm_i_mtc0(&p, K0, C0_HWRENA);
952
953 /* Restore RA, which is the address we will return to */
954 UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
955 uasm_i_jr(&p, RA);
956 uasm_i_nop(&p);
957
958 return p;
959}
960