Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Generation of main entry point for the guest, exception handling.
  7 *
  8 * Copyright (C) 2012  MIPS Technologies, Inc.
  9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 10 *
 11 * Copyright (C) 2016 Imagination Technologies Ltd.
 12 */
 13
 14#include <linux/kvm_host.h>
 15#include <linux/log2.h>
 16#include <asm/mmu_context.h>
 17#include <asm/msa.h>
 18#include <asm/setup.h>
 19#include <asm/tlbex.h>
 20#include <asm/uasm.h>
 21
 22/* Register names */
 23#define ZERO		0
 24#define AT		1
 25#define V0		2
 26#define V1		3
 27#define A0		4
 28#define A1		5
 29
 30#if _MIPS_SIM == _MIPS_SIM_ABI32
 31#define T0		8
 32#define T1		9
 33#define T2		10
 34#define T3		11
 35#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
 36
 37#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
 38#define T0		12
 39#define T1		13
 40#define T2		14
 41#define T3		15
 42#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
 43
 44#define S0		16
 45#define S1		17
 46#define T9		25
 47#define K0		26
 48#define K1		27
 49#define GP		28
 50#define SP		29
 51#define RA		31
 52
 53/* Some CP0 registers */
 54#define C0_PWBASE	5, 5
 55#define C0_HWRENA	7, 0
 56#define C0_BADVADDR	8, 0
 57#define C0_BADINSTR	8, 1
 58#define C0_BADINSTRP	8, 2
 59#define C0_PGD		9, 7
 60#define C0_ENTRYHI	10, 0
 61#define C0_GUESTCTL1	10, 4
 62#define C0_STATUS	12, 0
 63#define C0_GUESTCTL0	12, 6
 64#define C0_CAUSE	13, 0
 65#define C0_EPC		14, 0
 66#define C0_EBASE	15, 1
 67#define C0_CONFIG5	16, 5
 68#define C0_DDATA_LO	28, 3
 69#define C0_ERROREPC	30, 0
 70
 71#define CALLFRAME_SIZ   32
 72
 73#ifdef CONFIG_64BIT
 74#define ST0_KX_IF_64	ST0_KX
 75#else
 76#define ST0_KX_IF_64	0
 77#endif
 78
 79static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
 80static unsigned int scratch_tmp[2] = { C0_ERROREPC };
 81
 82enum label_id {
 83	label_fpu_1 = 1,
 84	label_msa_1,
 85	label_return_to_host,
 86	label_kernel_asid,
 87	label_exit_common,
 88};
 89
 90UASM_L_LA(_fpu_1)
 91UASM_L_LA(_msa_1)
 92UASM_L_LA(_return_to_host)
 93UASM_L_LA(_kernel_asid)
 94UASM_L_LA(_exit_common)
 95
 96static void *kvm_mips_build_enter_guest(void *addr);
 97static void *kvm_mips_build_ret_from_exit(void *addr);
 98static void *kvm_mips_build_ret_to_guest(void *addr);
 99static void *kvm_mips_build_ret_to_host(void *addr);
100
101/*
102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103 * we assume symmetry.
104 */
105static int c0_kscratch(void)
106{
107	switch (boot_cpu_type()) {
108	case CPU_XLP:
109	case CPU_XLR:
110		return 22;
111	default:
112		return 31;
113	}
114}
115
116/**
117 * kvm_mips_entry_setup() - Perform global setup for entry code.
118 *
119 * Perform global setup for entry code, such as choosing a scratch register.
120 *
121 * Returns:	0 on success.
122 *		-errno on failure.
123 */
124int kvm_mips_entry_setup(void)
125{
126	/*
127	 * We prefer to use KScratchN registers if they are available over the
128	 * defaults above, which may not work on all cores.
129	 */
130	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
131
132	if (pgd_reg != -1)
133		kscratch_mask &= ~BIT(pgd_reg);
134
135	/* Pick a scratch register for storing VCPU */
136	if (kscratch_mask) {
137		scratch_vcpu[0] = c0_kscratch();
138		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
139		kscratch_mask &= ~BIT(scratch_vcpu[1]);
140	}
141
142	/* Pick a scratch register to use as a temp for saving state */
143	if (kscratch_mask) {
144		scratch_tmp[0] = c0_kscratch();
145		scratch_tmp[1] = ffs(kscratch_mask) - 1;
146		kscratch_mask &= ~BIT(scratch_tmp[1]);
147	}
148
149	return 0;
150}
151
152static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
153					unsigned int frame)
154{
155	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
156	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
157	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
158
159	/* Save the temp scratch register value in cp0_cause of stack frame */
160	if (scratch_tmp[0] == c0_kscratch()) {
161		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
162		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
163	}
164}
165
166static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
167					   unsigned int frame)
168{
169	/*
170	 * Restore host scratch register values saved by
171	 * kvm_mips_build_save_scratch().
172	 */
173	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
174	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
175
176	if (scratch_tmp[0] == c0_kscratch()) {
177		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
178		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
179	}
180}
181
182/**
183 * build_set_exc_base() - Assemble code to write exception base address.
184 * @p:		Code buffer pointer.
185 * @reg:	Source register (generated code may set WG bit in @reg).
186 *
187 * Assemble code to modify the exception base address in the EBase register,
188 * using the appropriately sized access and setting the WG bit if necessary.
189 */
190static inline void build_set_exc_base(u32 **p, unsigned int reg)
191{
192	if (cpu_has_ebase_wg) {
193		/* Set WG so that all the bits get written */
194		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
195		UASM_i_MTC0(p, reg, C0_EBASE);
196	} else {
197		uasm_i_mtc0(p, reg, C0_EBASE);
198	}
199}
200
201/**
202 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
203 * @addr:	Address to start writing code.
204 *
205 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
206 * conforms to the following prototype:
207 *
208 * int vcpu_run(struct kvm_vcpu *vcpu);
209 *
210 * The exit from the guest and return to the caller is handled by the code
211 * generated by kvm_mips_build_ret_to_host().
212 *
213 * Returns:	Next address after end of written function.
214 */
215void *kvm_mips_build_vcpu_run(void *addr)
216{
217	u32 *p = addr;
218	unsigned int i;
219
220	/*
221	 * A0: vcpu
222	 */
223
224	/* k0/k1 not being used in host kernel context */
225	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
226	for (i = 16; i < 32; ++i) {
227		if (i == 24)
228			i = 28;
229		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
230	}
231
232	/* Save host status */
233	uasm_i_mfc0(&p, V0, C0_STATUS);
234	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
235
236	/* Save scratch registers, will be used to store pointer to vcpu etc */
237	kvm_mips_build_save_scratch(&p, V1, K1);
238
239	/* VCPU scratch register has pointer to vcpu */
240	UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
241
242	/* Offset into vcpu->arch */
243	UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
244
245	/*
246	 * Save the host stack to VCPU, used for exception processing
247	 * when we exit from the Guest
248	 */
249	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
250
251	/* Save the kernel gp as well */
252	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
253
254	/*
255	 * Setup status register for running the guest in UM, interrupts
256	 * are disabled
257	 */
258	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
259	uasm_i_mtc0(&p, K0, C0_STATUS);
260	uasm_i_ehb(&p);
261
262	/* load up the new EBASE */
263	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
264	build_set_exc_base(&p, K0);
265
266	/*
267	 * Now that the new EBASE has been loaded, unset BEV, set
268	 * interrupt mask as it was but make sure that timer interrupts
269	 * are enabled
270	 */
271	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
272	uasm_i_andi(&p, V0, V0, ST0_IM);
273	uasm_i_or(&p, K0, K0, V0);
274	uasm_i_mtc0(&p, K0, C0_STATUS);
275	uasm_i_ehb(&p);
276
277	p = kvm_mips_build_enter_guest(p);
278
279	return p;
280}
281
282/**
283 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
284 * @addr:	Address to start writing code.
285 *
286 * Assemble the code to resume guest execution. This code is common between the
287 * initial entry into the guest from the host, and returning from the exit
288 * handler back to the guest.
289 *
290 * Returns:	Next address after end of written function.
291 */
292static void *kvm_mips_build_enter_guest(void *addr)
293{
294	u32 *p = addr;
295	unsigned int i;
296	struct uasm_label labels[2];
297	struct uasm_reloc relocs[2];
298	struct uasm_label __maybe_unused *l = labels;
299	struct uasm_reloc __maybe_unused *r = relocs;
300
301	memset(labels, 0, sizeof(labels));
302	memset(relocs, 0, sizeof(relocs));
303
304	/* Set Guest EPC */
305	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
306	UASM_i_MTC0(&p, T0, C0_EPC);
307
308	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
309	if (cpu_has_ldpte)
310		UASM_i_MFC0(&p, K0, C0_PWBASE);
311	else
312		UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
313	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
314
315	/*
316	 * Set up KVM GPA pgd.
317	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
318	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
319	 * - write mm->pgd into CP0_PWBase
320	 *
321	 * We keep S0 pointing at struct kvm so we can load the ASID below.
322	 */
323	UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
324			  (int)offsetof(struct kvm_vcpu, arch), K1);
325	UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
326	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
327	uasm_i_jalr(&p, RA, T9);
328	/* delay slot */
329	if (cpu_has_htw)
330		UASM_i_MTC0(&p, A0, C0_PWBASE);
331	else
332		uasm_i_nop(&p);
333
334	/* Set GM bit to setup eret to VZ guest context */
335	uasm_i_addiu(&p, V1, ZERO, 1);
336	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
337	uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
338	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
339
340	if (cpu_has_guestid) {
341		/*
342		 * Set root mode GuestID, so that root TLB refill handler can
343		 * use the correct GuestID in the root TLB.
344		 */
345
346		/* Get current GuestID */
347		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
348		/* Set GuestCtl1.RID = GuestCtl1.ID */
349		uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
350			   MIPS_GCTL1_ID_WIDTH);
351		uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
352			   MIPS_GCTL1_RID_WIDTH);
353		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
354
355		/* GuestID handles dealiasing so we don't need to touch ASID */
356		goto skip_asid_restore;
357	}
358
359	/* Root ASID Dealias (RAD) */
360
361	/* Save host ASID */
362	UASM_i_MFC0(&p, K0, C0_ENTRYHI);
363	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
364		  K1);
365
366	/* Set the root ASID for the Guest */
367	UASM_i_ADDIU(&p, T1, S0,
368		     offsetof(struct kvm, arch.gpa_mm.context.asid));
369
370	/* t1: contains the base of the ASID array, need to get the cpu id  */
371	/* smp_processor_id */
372	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
373	/* index the ASID array */
374	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
375	UASM_i_ADDU(&p, T3, T1, T2);
376	UASM_i_LW(&p, K0, 0, T3);
377#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
378	/*
379	 * reuse ASID array offset
380	 * cpuinfo_mips is a multiple of sizeof(long)
381	 */
382	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
383	uasm_i_mul(&p, T2, T2, T3);
384
385	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
386	UASM_i_ADDU(&p, AT, AT, T2);
387	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
388	uasm_i_and(&p, K0, K0, T2);
389#else
390	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
391#endif
392
393	/* Set up KVM VZ root ASID (!guestid) */
394	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
395skip_asid_restore:
396	uasm_i_ehb(&p);
397
398	/* Disable RDHWR access */
399	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
400
401	/* load the guest context from VCPU and return */
402	for (i = 1; i < 32; ++i) {
403		/* Guest k0/k1 loaded later */
404		if (i == K0 || i == K1)
405			continue;
406		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
407	}
408
409#ifndef CONFIG_CPU_MIPSR6
410	/* Restore hi/lo */
411	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
412	uasm_i_mthi(&p, K0);
413
414	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
415	uasm_i_mtlo(&p, K0);
416#endif
417
418	/* Restore the guest's k0/k1 registers */
419	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
420	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
421
422	/* Jump to guest */
423	uasm_i_eret(&p);
424
425	uasm_resolve_relocs(relocs, labels);
426
427	return p;
428}
429
430/**
431 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
432 * @addr:	Address to start writing code.
433 * @handler:	Address of common handler (within range of @addr).
434 *
435 * Assemble TLB refill exception fast path handler for guest execution.
436 *
437 * Returns:	Next address after end of written function.
438 */
439void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
440{
441	u32 *p = addr;
442	struct uasm_label labels[2];
443	struct uasm_reloc relocs[2];
444#ifndef CONFIG_CPU_LOONGSON64
445	struct uasm_label *l = labels;
446	struct uasm_reloc *r = relocs;
447#endif
448
449	memset(labels, 0, sizeof(labels));
450	memset(relocs, 0, sizeof(relocs));
451
452	/* Save guest k1 into scratch register */
453	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
454
455	/* Get the VCPU pointer from the VCPU scratch register */
456	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
457
458	/* Save guest k0 into VCPU structure */
459	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
460
461	/*
462	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
463	 * assume symmetry and just disable preemption to silence the warning.
464	 */
465	preempt_disable();
466
467#ifdef CONFIG_CPU_LOONGSON64
468	UASM_i_MFC0(&p, K1, C0_PGD);
469	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
470#ifndef __PAGETABLE_PMD_FOLDED
471	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
472#endif
473	uasm_i_ldpte(&p, K1, 0);      /* even */
474	uasm_i_ldpte(&p, K1, 1);      /* odd */
475	uasm_i_tlbwr(&p);
476#else
477	/*
478	 * Now for the actual refill bit. A lot of this can be common with the
479	 * Linux TLB refill handler, however we don't need to handle so many
480	 * cases. We only need to handle user mode refills, and user mode runs
481	 * with 32-bit addressing.
482	 *
483	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
484	 * that isn't resolved should never actually get taken and is harmless
485	 * to leave in place for now.
486	 */
487
488#ifdef CONFIG_64BIT
489	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
490#else
491	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
492#endif
493
494	/* we don't support huge pages yet */
495
496	build_get_ptep(&p, K0, K1);
497	build_update_entries(&p, K0, K1);
498	build_tlb_write_entry(&p, &l, &r, tlb_random);
499#endif
500
501	preempt_enable();
502
503	/* Get the VCPU pointer from the VCPU scratch register again */
504	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
505
506	/* Restore the guest's k0/k1 registers */
507	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
508	uasm_i_ehb(&p);
509	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
510
511	/* Jump to guest */
512	uasm_i_eret(&p);
513
514	return p;
515}
516
517/**
518 * kvm_mips_build_exception() - Assemble first level guest exception handler.
519 * @addr:	Address to start writing code.
520 * @handler:	Address of common handler (within range of @addr).
521 *
522 * Assemble exception vector code for guest execution. The generated vector will
523 * branch to the common exception handler generated by kvm_mips_build_exit().
524 *
525 * Returns:	Next address after end of written function.
526 */
527void *kvm_mips_build_exception(void *addr, void *handler)
528{
529	u32 *p = addr;
530	struct uasm_label labels[2];
531	struct uasm_reloc relocs[2];
532	struct uasm_label *l = labels;
533	struct uasm_reloc *r = relocs;
534
535	memset(labels, 0, sizeof(labels));
536	memset(relocs, 0, sizeof(relocs));
537
538	/* Save guest k1 into scratch register */
539	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
540
541	/* Get the VCPU pointer from the VCPU scratch register */
542	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
543	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
544
545	/* Save guest k0 into VCPU structure */
546	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
547
548	/* Branch to the common handler */
549	uasm_il_b(&p, &r, label_exit_common);
550	 uasm_i_nop(&p);
551
552	uasm_l_exit_common(&l, handler);
553	uasm_resolve_relocs(relocs, labels);
554
555	return p;
556}
557
558/**
559 * kvm_mips_build_exit() - Assemble common guest exit handler.
560 * @addr:	Address to start writing code.
561 *
562 * Assemble the generic guest exit handling code. This is called by the
563 * exception vectors (generated by kvm_mips_build_exception()), and calls
564 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
565 * depending on the return value.
566 *
567 * Returns:	Next address after end of written function.
568 */
569void *kvm_mips_build_exit(void *addr)
570{
571	u32 *p = addr;
572	unsigned int i;
573	struct uasm_label labels[3];
574	struct uasm_reloc relocs[3];
575	struct uasm_label *l = labels;
576	struct uasm_reloc *r = relocs;
577
578	memset(labels, 0, sizeof(labels));
579	memset(relocs, 0, sizeof(relocs));
580
581	/*
582	 * Generic Guest exception handler. We end up here when the guest
583	 * does something that causes a trap to kernel mode.
584	 *
585	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
586	 * structure, and k1 into the scratch_tmp register).
587	 *
588	 * The k1 register will already contain the kvm_vcpu_arch pointer.
589	 */
590
591	/* Start saving Guest context to VCPU */
592	for (i = 0; i < 32; ++i) {
593		/* Guest k0/k1 saved later */
594		if (i == K0 || i == K1)
595			continue;
596		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
597	}
598
599#ifndef CONFIG_CPU_MIPSR6
600	/* We need to save hi/lo and restore them on the way out */
601	uasm_i_mfhi(&p, T0);
602	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
603
604	uasm_i_mflo(&p, T0);
605	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
606#endif
607
608	/* Finally save guest k1 to VCPU */
609	uasm_i_ehb(&p);
610	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
611	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
612
613	/* Now that context has been saved, we can use other registers */
614
615	/* Restore vcpu */
616	UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
617
618	/*
619	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
620	 * the exception
621	 */
622	UASM_i_MFC0(&p, K0, C0_EPC);
623	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
624
625	UASM_i_MFC0(&p, K0, C0_BADVADDR);
626	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
627		  K1);
628
629	uasm_i_mfc0(&p, K0, C0_CAUSE);
630	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
631
632	if (cpu_has_badinstr) {
633		uasm_i_mfc0(&p, K0, C0_BADINSTR);
634		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
635					   host_cp0_badinstr), K1);
636	}
637
638	if (cpu_has_badinstrp) {
639		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
640		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
641					   host_cp0_badinstrp), K1);
642	}
643
644	/* Now restore the host state just enough to run the handlers */
645
646	/* Switch EBASE to the one used by Linux */
647	/* load up the host EBASE */
648	uasm_i_mfc0(&p, V0, C0_STATUS);
649
650	uasm_i_lui(&p, AT, ST0_BEV >> 16);
651	uasm_i_or(&p, K0, V0, AT);
652
653	uasm_i_mtc0(&p, K0, C0_STATUS);
654	uasm_i_ehb(&p);
655
656	UASM_i_LA_mostly(&p, K0, (long)&ebase);
657	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
658	build_set_exc_base(&p, K0);
659
660	if (raw_cpu_has_fpu) {
661		/*
662		 * If FPU is enabled, save FCR31 and clear it so that later
663		 * ctc1's don't trigger FPE for pending exceptions.
664		 */
665		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
666		uasm_i_and(&p, V1, V0, AT);
667		uasm_il_beqz(&p, &r, V1, label_fpu_1);
668		 uasm_i_nop(&p);
669		uasm_i_cfc1(&p, T0, 31);
670		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
671			  K1);
672		uasm_i_ctc1(&p, ZERO, 31);
673		uasm_l_fpu_1(&l, p);
674	}
675
676	if (cpu_has_msa) {
677		/*
678		 * If MSA is enabled, save MSACSR and clear it so that later
679		 * instructions don't trigger MSAFPE for pending exceptions.
680		 */
681		uasm_i_mfc0(&p, T0, C0_CONFIG5);
682		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
683		uasm_il_beqz(&p, &r, T0, label_msa_1);
684		 uasm_i_nop(&p);
685		uasm_i_cfcmsa(&p, T0, MSA_CSR);
686		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
687			  K1);
688		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
689		uasm_l_msa_1(&l, p);
690	}
691
692	/* Restore host ASID */
693	if (!cpu_has_guestid) {
694		UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
695			  K1);
696		UASM_i_MTC0(&p, K0, C0_ENTRYHI);
697	}
698
699	/*
700	 * Set up normal Linux process pgd.
701	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
702	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
703	 * - write mm->pgd into CP0_PWBase
704	 */
705	UASM_i_LW(&p, A0,
706		  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
707	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
708	uasm_i_jalr(&p, RA, T9);
709	/* delay slot */
710	if (cpu_has_htw)
711		UASM_i_MTC0(&p, A0, C0_PWBASE);
712	else
713		uasm_i_nop(&p);
714
715	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
716	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
717	uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
718	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
719
720	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
721	uasm_i_sw(&p, K0,
722		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
723
724	if (cpu_has_guestid) {
725		/*
726		 * Clear root mode GuestID, so that root TLB operations use the
727		 * root GuestID in the root TLB.
728		 */
729		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
730		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
731		uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
732			   MIPS_GCTL1_RID_WIDTH);
733		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
734	}
735
736	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
737	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
738	uasm_i_and(&p, V0, V0, AT);
739	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
740	uasm_i_or(&p, V0, V0, AT);
741#ifdef CONFIG_64BIT
742	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
743#endif
744	uasm_i_mtc0(&p, V0, C0_STATUS);
745	uasm_i_ehb(&p);
746
747	/* Load up host GP */
748	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
749
750	/* Need a stack before we can jump to "C" */
751	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
752
753	/* Saved host state */
754	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
755
756	/*
757	 * XXXKYMA do we need to load the host ASID, maybe not because the
758	 * kernel entries are marked GLOBAL, need to verify
759	 */
760
761	/* Restore host scratch registers, as we'll have clobbered them */
762	kvm_mips_build_restore_scratch(&p, K0, SP);
763
764	/* Restore RDHWR access */
765	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
766	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
767	uasm_i_mtc0(&p, K0, C0_HWRENA);
768
769	/* Jump to handler */
770	/*
771	 * XXXKYMA: not sure if this is safe, how large is the stack??
772	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
773	 * with this in the kernel
774	 */
775	uasm_i_move(&p, A0, S0);
776	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
777	uasm_i_jalr(&p, RA, T9);
778	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
779
780	uasm_resolve_relocs(relocs, labels);
781
782	p = kvm_mips_build_ret_from_exit(p);
783
784	return p;
785}
786
787/**
788 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
789 * @addr:	Address to start writing code.
790 *
791 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
792 * resuming the guest or returning to the host depending on the return value.
793 *
794 * Returns:	Next address after end of written function.
795 */
796static void *kvm_mips_build_ret_from_exit(void *addr)
797{
798	u32 *p = addr;
799	struct uasm_label labels[2];
800	struct uasm_reloc relocs[2];
801	struct uasm_label *l = labels;
802	struct uasm_reloc *r = relocs;
803
804	memset(labels, 0, sizeof(labels));
805	memset(relocs, 0, sizeof(relocs));
806
807	/* Return from handler Make sure interrupts are disabled */
808	uasm_i_di(&p, ZERO);
809	uasm_i_ehb(&p);
810
811	/*
812	 * XXXKYMA: k0/k1 could have been blown away if we processed
813	 * an exception while we were handling the exception from the
814	 * guest, reload k1
815	 */
816
817	uasm_i_move(&p, K1, S0);
818	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
819
820	/*
821	 * Check return value, should tell us if we are returning to the
822	 * host (handle I/O etc)or resuming the guest
823	 */
824	uasm_i_andi(&p, T0, V0, RESUME_HOST);
825	uasm_il_bnez(&p, &r, T0, label_return_to_host);
826	 uasm_i_nop(&p);
827
828	p = kvm_mips_build_ret_to_guest(p);
829
830	uasm_l_return_to_host(&l, p);
831	p = kvm_mips_build_ret_to_host(p);
832
833	uasm_resolve_relocs(relocs, labels);
834
835	return p;
836}
837
838/**
839 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
840 * @addr:	Address to start writing code.
841 *
842 * Assemble the code to handle return from the guest exit handler
843 * (kvm_mips_handle_exit()) back to the guest.
844 *
845 * Returns:	Next address after end of written function.
846 */
847static void *kvm_mips_build_ret_to_guest(void *addr)
848{
849	u32 *p = addr;
850
851	/* Put the saved pointer to vcpu (s0) back into the scratch register */
852	UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
853
854	/* Load up the Guest EBASE to minimize the window where BEV is set */
855	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
856
857	/* Switch EBASE back to the one used by KVM */
858	uasm_i_mfc0(&p, V1, C0_STATUS);
859	uasm_i_lui(&p, AT, ST0_BEV >> 16);
860	uasm_i_or(&p, K0, V1, AT);
861	uasm_i_mtc0(&p, K0, C0_STATUS);
862	uasm_i_ehb(&p);
863	build_set_exc_base(&p, T0);
864
865	/* Setup status register for running guest in UM */
866	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
867	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
868	uasm_i_and(&p, V1, V1, AT);
869	uasm_i_mtc0(&p, V1, C0_STATUS);
870	uasm_i_ehb(&p);
871
872	p = kvm_mips_build_enter_guest(p);
873
874	return p;
875}
876
877/**
878 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
879 * @addr:	Address to start writing code.
880 *
881 * Assemble the code to handle return from the guest exit handler
882 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
883 * function generated by kvm_mips_build_vcpu_run().
884 *
885 * Returns:	Next address after end of written function.
886 */
887static void *kvm_mips_build_ret_to_host(void *addr)
888{
889	u32 *p = addr;
890	unsigned int i;
891
892	/* EBASE is already pointing to Linux */
893	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
894	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
895
896	/*
897	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
898	 * to recover the err code
899	 */
900	uasm_i_sra(&p, K0, V0, 2);
901	uasm_i_move(&p, V0, K0);
902
903	/* Load context saved on the host stack */
904	for (i = 16; i < 31; ++i) {
905		if (i == 24)
906			i = 28;
907		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
908	}
909
910	/* Restore RDHWR access */
911	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
912	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
913	uasm_i_mtc0(&p, K0, C0_HWRENA);
914
915	/* Restore RA, which is the address we will return to */
916	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
917	uasm_i_jr(&p, RA);
918	 uasm_i_nop(&p);
919
920	return p;
921}
922