Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5/*
   6 *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
   7 *  Programm System Institute
   8 *  Pereslavl-Zalessky Russia
   9 */
  10
  11/*
  12 *  This file contains functions dealing with S+tree
  13 *
  14 * B_IS_IN_TREE
  15 * copy_item_head
  16 * comp_short_keys
  17 * comp_keys
  18 * comp_short_le_keys
  19 * le_key2cpu_key
  20 * comp_le_keys
  21 * bin_search
  22 * get_lkey
  23 * get_rkey
  24 * key_in_buffer
  25 * decrement_bcount
  26 * reiserfs_check_path
  27 * pathrelse_and_restore
  28 * pathrelse
  29 * search_by_key_reada
  30 * search_by_key
  31 * search_for_position_by_key
  32 * comp_items
  33 * prepare_for_direct_item
  34 * prepare_for_direntry_item
  35 * prepare_for_delete_or_cut
  36 * calc_deleted_bytes_number
  37 * init_tb_struct
  38 * padd_item
  39 * reiserfs_delete_item
  40 * reiserfs_delete_solid_item
  41 * reiserfs_delete_object
  42 * maybe_indirect_to_direct
  43 * indirect_to_direct_roll_back
  44 * reiserfs_cut_from_item
  45 * truncate_directory
  46 * reiserfs_do_truncate
  47 * reiserfs_paste_into_item
  48 * reiserfs_insert_item
  49 */
  50
  51#include <linux/time.h>
  52#include <linux/string.h>
  53#include <linux/pagemap.h>
  54#include <linux/reiserfs_fs.h>
 
  55#include <linux/buffer_head.h>
  56#include <linux/quotaops.h>
  57
  58/* Does the buffer contain a disk block which is in the tree. */
  59inline int B_IS_IN_TREE(const struct buffer_head *bh)
  60{
  61
  62	RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
  63	       "PAP-1010: block (%b) has too big level (%z)", bh, bh);
  64
  65	return (B_LEVEL(bh) != FREE_LEVEL);
  66}
  67
  68//
  69// to gets item head in le form
  70//
  71inline void copy_item_head(struct item_head *to,
  72			   const struct item_head *from)
  73{
  74	memcpy(to, from, IH_SIZE);
  75}
  76
  77/* k1 is pointer to on-disk structure which is stored in little-endian
  78   form. k2 is pointer to cpu variable. For key of items of the same
  79   object this returns 0.
  80   Returns: -1 if key1 < key2
  81   0 if key1 == key2
  82   1 if key1 > key2 */
 
 
  83inline int comp_short_keys(const struct reiserfs_key *le_key,
  84			   const struct cpu_key *cpu_key)
  85{
  86	__u32 n;
  87	n = le32_to_cpu(le_key->k_dir_id);
  88	if (n < cpu_key->on_disk_key.k_dir_id)
  89		return -1;
  90	if (n > cpu_key->on_disk_key.k_dir_id)
  91		return 1;
  92	n = le32_to_cpu(le_key->k_objectid);
  93	if (n < cpu_key->on_disk_key.k_objectid)
  94		return -1;
  95	if (n > cpu_key->on_disk_key.k_objectid)
  96		return 1;
  97	return 0;
  98}
  99
 100/* k1 is pointer to on-disk structure which is stored in little-endian
 101   form. k2 is pointer to cpu variable.
 102   Compare keys using all 4 key fields.
 103   Returns: -1 if key1 < key2 0
 104   if key1 = key2 1 if key1 > key2 */
 
 
 105static inline int comp_keys(const struct reiserfs_key *le_key,
 106			    const struct cpu_key *cpu_key)
 107{
 108	int retval;
 109
 110	retval = comp_short_keys(le_key, cpu_key);
 111	if (retval)
 112		return retval;
 113	if (le_key_k_offset(le_key_version(le_key), le_key) <
 114	    cpu_key_k_offset(cpu_key))
 115		return -1;
 116	if (le_key_k_offset(le_key_version(le_key), le_key) >
 117	    cpu_key_k_offset(cpu_key))
 118		return 1;
 119
 120	if (cpu_key->key_length == 3)
 121		return 0;
 122
 123	/* this part is needed only when tail conversion is in progress */
 124	if (le_key_k_type(le_key_version(le_key), le_key) <
 125	    cpu_key_k_type(cpu_key))
 126		return -1;
 127
 128	if (le_key_k_type(le_key_version(le_key), le_key) >
 129	    cpu_key_k_type(cpu_key))
 130		return 1;
 131
 132	return 0;
 133}
 134
 135inline int comp_short_le_keys(const struct reiserfs_key *key1,
 136			      const struct reiserfs_key *key2)
 137{
 138	__u32 *k1_u32, *k2_u32;
 139	int key_length = REISERFS_SHORT_KEY_LEN;
 140
 141	k1_u32 = (__u32 *) key1;
 142	k2_u32 = (__u32 *) key2;
 143	for (; key_length--; ++k1_u32, ++k2_u32) {
 144		if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
 145			return -1;
 146		if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
 147			return 1;
 148	}
 149	return 0;
 150}
 151
 152inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
 153{
 154	int version;
 155	to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
 156	to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
 157
 158	// find out version of the key
 159	version = le_key_version(from);
 160	to->version = version;
 161	to->on_disk_key.k_offset = le_key_k_offset(version, from);
 162	to->on_disk_key.k_type = le_key_k_type(version, from);
 163}
 164
 165// this does not say which one is bigger, it only returns 1 if keys
 166// are not equal, 0 otherwise
 
 
 167inline int comp_le_keys(const struct reiserfs_key *k1,
 168			const struct reiserfs_key *k2)
 169{
 170	return memcmp(k1, k2, sizeof(struct reiserfs_key));
 171}
 172
 173/**************************************************************************
 174 *  Binary search toolkit function                                        *
 175 *  Search for an item in the array by the item key                       *
 176 *  Returns:    1 if found,  0 if not found;                              *
 177 *        *pos = number of the searched element if found, else the        *
 178 *        number of the first element that is larger than key.            *
 179 **************************************************************************/
 180/* For those not familiar with binary search: lbound is the leftmost item that it
 181 could be, rbound the rightmost item that it could be.  We examine the item
 182 halfway between lbound and rbound, and that tells us either that we can increase
 183 lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that
 184 there are no possible items, and we have not found it. With each examination we
 185 cut the number of possible items it could be by one more than half rounded down,
 186 or we find it. */
 
 
 187static inline int bin_search(const void *key,	/* Key to search for. */
 188			     const void *base,	/* First item in the array. */
 189			     int num,	/* Number of items in the array. */
 190			     int width,	/* Item size in the array.
 191					   searched. Lest the reader be
 192					   confused, note that this is crafted
 193					   as a general function, and when it
 194					   is applied specifically to the array
 195					   of item headers in a node, width
 196					   is actually the item header size not
 197					   the item size. */
 
 198			     int *pos /* Number of the searched for element. */
 199    )
 200{
 201	int rbound, lbound, j;
 202
 203	for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
 204	     lbound <= rbound; j = (rbound + lbound) / 2)
 205		switch (comp_keys
 206			((struct reiserfs_key *)((char *)base + j * width),
 207			 (struct cpu_key *)key)) {
 208		case -1:
 209			lbound = j + 1;
 210			continue;
 211		case 1:
 212			rbound = j - 1;
 213			continue;
 214		case 0:
 215			*pos = j;
 216			return ITEM_FOUND;	/* Key found in the array.  */
 217		}
 218
 219	/* bin_search did not find given key, it returns position of key,
 220	   that is minimal and greater than the given one. */
 
 
 221	*pos = lbound;
 222	return ITEM_NOT_FOUND;
 223}
 224
 225
 226/* Minimal possible key. It is never in the tree. */
 227const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
 228
 229/* Maximal possible key. It is never in the tree. */
 230static const struct reiserfs_key MAX_KEY = {
 231	__constant_cpu_to_le32(0xffffffff),
 232	__constant_cpu_to_le32(0xffffffff),
 233	{{__constant_cpu_to_le32(0xffffffff),
 234	  __constant_cpu_to_le32(0xffffffff)},}
 235};
 236
 237/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
 238   of the path, and going upwards.  We must check the path's validity at each step.  If the key is not in
 239   the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
 240   case we return a special key, either MIN_KEY or MAX_KEY. */
 
 
 
 
 241static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
 242						  const struct super_block *sb)
 243{
 244	int position, path_offset = chk_path->path_length;
 245	struct buffer_head *parent;
 246
 247	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
 248	       "PAP-5010: invalid offset in the path");
 249
 250	/* While not higher in path than first element. */
 251	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 252
 253		RFALSE(!buffer_uptodate
 254		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
 255		       "PAP-5020: parent is not uptodate");
 256
 257		/* Parent at the path is not in the tree now. */
 258		if (!B_IS_IN_TREE
 259		    (parent =
 260		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
 261			return &MAX_KEY;
 262		/* Check whether position in the parent is correct. */
 263		if ((position =
 264		     PATH_OFFSET_POSITION(chk_path,
 265					  path_offset)) >
 266		    B_NR_ITEMS(parent))
 267			return &MAX_KEY;
 268		/* Check whether parent at the path really points to the child. */
 269		if (B_N_CHILD_NUM(parent, position) !=
 270		    PATH_OFFSET_PBUFFER(chk_path,
 271					path_offset + 1)->b_blocknr)
 272			return &MAX_KEY;
 273		/* Return delimiting key if position in the parent is not equal to zero. */
 
 
 
 274		if (position)
 275			return B_N_PDELIM_KEY(parent, position - 1);
 276	}
 277	/* Return MIN_KEY if we are in the root of the buffer tree. */
 278	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 279	    b_blocknr == SB_ROOT_BLOCK(sb))
 280		return &MIN_KEY;
 281	return &MAX_KEY;
 282}
 283
 284/* Get delimiting key of the buffer at the path and its right neighbor. */
 285inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
 286					   const struct super_block *sb)
 287{
 288	int position, path_offset = chk_path->path_length;
 289	struct buffer_head *parent;
 290
 291	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
 292	       "PAP-5030: invalid offset in the path");
 293
 294	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 295
 296		RFALSE(!buffer_uptodate
 297		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
 298		       "PAP-5040: parent is not uptodate");
 299
 300		/* Parent at the path is not in the tree now. */
 301		if (!B_IS_IN_TREE
 302		    (parent =
 303		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
 304			return &MIN_KEY;
 305		/* Check whether position in the parent is correct. */
 306		if ((position =
 307		     PATH_OFFSET_POSITION(chk_path,
 308					  path_offset)) >
 309		    B_NR_ITEMS(parent))
 310			return &MIN_KEY;
 311		/* Check whether parent at the path really points to the child. */
 
 
 
 312		if (B_N_CHILD_NUM(parent, position) !=
 313		    PATH_OFFSET_PBUFFER(chk_path,
 314					path_offset + 1)->b_blocknr)
 315			return &MIN_KEY;
 316		/* Return delimiting key if position in the parent is not the last one. */
 
 
 
 
 317		if (position != B_NR_ITEMS(parent))
 318			return B_N_PDELIM_KEY(parent, position);
 319	}
 
 320	/* Return MAX_KEY if we are in the root of the buffer tree. */
 321	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 322	    b_blocknr == SB_ROOT_BLOCK(sb))
 323		return &MAX_KEY;
 324	return &MIN_KEY;
 325}
 326
 327/* Check whether a key is contained in the tree rooted from a buffer at a path. */
 328/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
 329   the path.  These delimiting keys are stored at least one level above that buffer in the tree. If the
 330   buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
 331   this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
 332static inline int key_in_buffer(struct treepath *chk_path,	/* Path which should be checked.  */
 333				const struct cpu_key *key,	/* Key which should be checked.   */
 
 
 
 
 
 
 
 334				struct super_block *sb
 335    )
 336{
 337
 338	RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
 339	       || chk_path->path_length > MAX_HEIGHT,
 340	       "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
 341	       key, chk_path->path_length);
 342	RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
 343	       "PAP-5060: device must not be NODEV");
 344
 345	if (comp_keys(get_lkey(chk_path, sb), key) == 1)
 346		/* left delimiting key is bigger, that the key we look for */
 347		return 0;
 348	/*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
 349	if (comp_keys(get_rkey(chk_path, sb), key) != 1)
 350		/* key must be less than right delimitiing key */
 351		return 0;
 352	return 1;
 353}
 354
 355int reiserfs_check_path(struct treepath *p)
 356{
 357	RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
 358	       "path not properly relsed");
 359	return 0;
 360}
 361
 362/* Drop the reference to each buffer in a path and restore
 
 363 * dirty bits clean when preparing the buffer for the log.
 364 * This version should only be called from fix_nodes() */
 
 365void pathrelse_and_restore(struct super_block *sb,
 366			   struct treepath *search_path)
 367{
 368	int path_offset = search_path->path_length;
 369
 370	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 371	       "clm-4000: invalid path offset");
 372
 373	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
 374		struct buffer_head *bh;
 375		bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
 376		reiserfs_restore_prepared_buffer(sb, bh);
 377		brelse(bh);
 378	}
 379	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 380}
 381
 382/* Drop the reference to each buffer in a path */
 383void pathrelse(struct treepath *search_path)
 384{
 385	int path_offset = search_path->path_length;
 386
 387	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 388	       "PAP-5090: invalid path offset");
 389
 390	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
 391		brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
 392
 393	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 394}
 395
 396static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
 397{
 398	struct block_head *blkh;
 399	struct item_head *ih;
 400	int used_space;
 401	int prev_location;
 402	int i;
 403	int nr;
 404
 405	blkh = (struct block_head *)buf;
 406	if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
 407		reiserfs_warning(NULL, "reiserfs-5080",
 408				 "this should be caught earlier");
 409		return 0;
 410	}
 411
 412	nr = blkh_nr_item(blkh);
 413	if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
 414		/* item number is too big or too small */
 415		reiserfs_warning(NULL, "reiserfs-5081",
 416				 "nr_item seems wrong: %z", bh);
 417		return 0;
 418	}
 419	ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
 420	used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
 
 
 421	if (used_space != blocksize - blkh_free_space(blkh)) {
 422		/* free space does not match to calculated amount of use space */
 423		reiserfs_warning(NULL, "reiserfs-5082",
 424				 "free space seems wrong: %z", bh);
 425		return 0;
 426	}
 427	// FIXME: it is_leaf will hit performance too much - we may have
 428	// return 1 here
 
 
 429
 430	/* check tables of item heads */
 431	ih = (struct item_head *)(buf + BLKH_SIZE);
 432	prev_location = blocksize;
 433	for (i = 0; i < nr; i++, ih++) {
 434		if (le_ih_k_type(ih) == TYPE_ANY) {
 435			reiserfs_warning(NULL, "reiserfs-5083",
 436					 "wrong item type for item %h",
 437					 ih);
 438			return 0;
 439		}
 440		if (ih_location(ih) >= blocksize
 441		    || ih_location(ih) < IH_SIZE * nr) {
 442			reiserfs_warning(NULL, "reiserfs-5084",
 443					 "item location seems wrong: %h",
 444					 ih);
 445			return 0;
 446		}
 447		if (ih_item_len(ih) < 1
 448		    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
 449			reiserfs_warning(NULL, "reiserfs-5085",
 450					 "item length seems wrong: %h",
 451					 ih);
 452			return 0;
 453		}
 454		if (prev_location - ih_location(ih) != ih_item_len(ih)) {
 455			reiserfs_warning(NULL, "reiserfs-5086",
 456					 "item location seems wrong "
 457					 "(second one): %h", ih);
 458			return 0;
 459		}
 460		prev_location = ih_location(ih);
 461	}
 462
 463	// one may imagine much more checks
 464	return 1;
 465}
 466
 467/* returns 1 if buf looks like an internal node, 0 otherwise */
 468static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
 469{
 470	struct block_head *blkh;
 471	int nr;
 472	int used_space;
 473
 474	blkh = (struct block_head *)buf;
 475	nr = blkh_level(blkh);
 476	if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
 477		/* this level is not possible for internal nodes */
 478		reiserfs_warning(NULL, "reiserfs-5087",
 479				 "this should be caught earlier");
 480		return 0;
 481	}
 482
 483	nr = blkh_nr_item(blkh);
 
 484	if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
 485		/* for internal which is not root we might check min number of keys */
 486		reiserfs_warning(NULL, "reiserfs-5088",
 487				 "number of key seems wrong: %z", bh);
 488		return 0;
 489	}
 490
 491	used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
 492	if (used_space != blocksize - blkh_free_space(blkh)) {
 493		reiserfs_warning(NULL, "reiserfs-5089",
 494				 "free space seems wrong: %z", bh);
 495		return 0;
 496	}
 497	// one may imagine much more checks
 
 498	return 1;
 499}
 500
 501// make sure that bh contains formatted node of reiserfs tree of
 502// 'level'-th level
 
 
 503static int is_tree_node(struct buffer_head *bh, int level)
 504{
 505	if (B_LEVEL(bh) != level) {
 506		reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
 507				 "not match to the expected one %d",
 508				 B_LEVEL(bh), level);
 509		return 0;
 510	}
 511	if (level == DISK_LEAF_NODE_LEVEL)
 512		return is_leaf(bh->b_data, bh->b_size, bh);
 513
 514	return is_internal(bh->b_data, bh->b_size, bh);
 515}
 516
 517#define SEARCH_BY_KEY_READA 16
 518
 519/*
 520 * The function is NOT SCHEDULE-SAFE!
 521 * It might unlock the write lock if we needed to wait for a block
 522 * to be read. Note that in this case it won't recover the lock to avoid
 523 * high contention resulting from too much lock requests, especially
 524 * the caller (search_by_key) will perform other schedule-unsafe
 525 * operations just after calling this function.
 526 *
 527 * @return true if we have unlocked
 528 */
 529static bool search_by_key_reada(struct super_block *s,
 530				struct buffer_head **bh,
 531				b_blocknr_t *b, int num)
 532{
 533	int i, j;
 534	bool unlocked = false;
 535
 536	for (i = 0; i < num; i++) {
 537		bh[i] = sb_getblk(s, b[i]);
 538	}
 539	/*
 540	 * We are going to read some blocks on which we
 541	 * have a reference. It's safe, though we might be
 542	 * reading blocks concurrently changed if we release
 543	 * the lock. But it's still fine because we check later
 544	 * if the tree changed
 545	 */
 546	for (j = 0; j < i; j++) {
 547		/*
 548		 * note, this needs attention if we are getting rid of the BKL
 549		 * you have to make sure the prepared bit isn't set on this buffer
 
 550		 */
 551		if (!buffer_uptodate(bh[j])) {
 552			if (!unlocked) {
 553				reiserfs_write_unlock(s);
 554				unlocked = true;
 555			}
 556			ll_rw_block(READA, 1, bh + j);
 557		}
 558		brelse(bh[j]);
 559	}
 560	return unlocked;
 561}
 562
 563/**************************************************************************
 564 * Algorithm   SearchByKey                                                *
 565 *             look for item in the Disk S+Tree by its key                *
 566 * Input:  sb   -  super block                                            *
 567 *         key  - pointer to the key to search                            *
 568 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR                         *
 569 *         search_path - path from the root to the needed leaf            *
 570 **************************************************************************/
 571
 572/* This function fills up the path from the root to the leaf as it
 573   descends the tree looking for the key.  It uses reiserfs_bread to
 574   try to find buffers in the cache given their block number.  If it
 575   does not find them in the cache it reads them from disk.  For each
 576   node search_by_key finds using reiserfs_bread it then uses
 577   bin_search to look through that node.  bin_search will find the
 578   position of the block_number of the next node if it is looking
 579   through an internal node.  If it is looking through a leaf node
 580   bin_search will find the position of the item which has key either
 581   equal to given key, or which is the maximal key less than the given
 582   key.  search_by_key returns a path that must be checked for the
 583   correctness of the top of the path but need not be checked for the
 584   correctness of the bottom of the path */
 585/* The function is NOT SCHEDULE-SAFE! */
 586int search_by_key(struct super_block *sb, const struct cpu_key *key,	/* Key to search. */
 587		  struct treepath *search_path,/* This structure was
 588						   allocated and initialized
 589						   by the calling
 590						   function. It is filled up
 591						   by this function.  */
 592		  int stop_level	/* How far down the tree to search. To
 593					   stop at leaf level - set to
 594					   DISK_LEAF_NODE_LEVEL */
 595    )
 596{
 597	b_blocknr_t block_number;
 598	int expected_level;
 599	struct buffer_head *bh;
 600	struct path_element *last_element;
 601	int node_level, retval;
 602	int right_neighbor_of_leaf_node;
 603	int fs_gen;
 604	struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
 605	b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
 606	int reada_count = 0;
 607
 608#ifdef CONFIG_REISERFS_CHECK
 609	int repeat_counter = 0;
 610#endif
 611
 612	PROC_INFO_INC(sb, search_by_key);
 613
 614	/* As we add each node to a path we increase its count.  This means that
 615	   we must be careful to release all nodes in a path before we either
 616	   discard the path struct or re-use the path struct, as we do here. */
 
 
 
 617
 618	pathrelse(search_path);
 619
 620	right_neighbor_of_leaf_node = 0;
 621
 622	/* With each iteration of this loop we search through the items in the
 623	   current node, and calculate the next current node(next path element)
 624	   for the next iteration of this loop.. */
 625	block_number = SB_ROOT_BLOCK(sb);
 626	expected_level = -1;
 627	while (1) {
 628
 629#ifdef CONFIG_REISERFS_CHECK
 630		if (!(++repeat_counter % 50000))
 631			reiserfs_warning(sb, "PAP-5100",
 632					 "%s: there were %d iterations of "
 633					 "while loop looking for key %K",
 634					 current->comm, repeat_counter,
 635					 key);
 636#endif
 637
 638		/* prep path to have another element added to it. */
 639		last_element =
 640		    PATH_OFFSET_PELEMENT(search_path,
 641					 ++search_path->path_length);
 642		fs_gen = get_generation(sb);
 643
 644		/* Read the next tree node, and set the last element in the path to
 645		   have a pointer to it. */
 
 
 646		if ((bh = last_element->pe_buffer =
 647		     sb_getblk(sb, block_number))) {
 648			bool unlocked = false;
 649
 650			if (!buffer_uptodate(bh) && reada_count > 1)
 651				/* may unlock the write lock */
 652				unlocked = search_by_key_reada(sb, reada_bh,
 653						    reada_blocks, reada_count);
 654			/*
 655			 * If we haven't already unlocked the write lock,
 656			 * then we need to do that here before reading
 657			 * the current block
 658			 */
 659			if (!buffer_uptodate(bh) && !unlocked) {
 660				reiserfs_write_unlock(sb);
 661				unlocked = true;
 662			}
 663			ll_rw_block(READ, 1, &bh);
 
 
 
 
 
 664			wait_on_buffer(bh);
 665
 666			if (unlocked)
 667				reiserfs_write_lock(sb);
 668			if (!buffer_uptodate(bh))
 669				goto io_error;
 670		} else {
 671		      io_error:
 672			search_path->path_length--;
 673			pathrelse(search_path);
 674			return IO_ERROR;
 675		}
 676		reada_count = 0;
 677		if (expected_level == -1)
 678			expected_level = SB_TREE_HEIGHT(sb);
 679		expected_level--;
 680
 681		/* It is possible that schedule occurred. We must check whether the key
 682		   to search is still in the tree rooted from the current buffer. If
 683		   not then repeat search from the root. */
 
 
 
 684		if (fs_changed(fs_gen, sb) &&
 685		    (!B_IS_IN_TREE(bh) ||
 686		     B_LEVEL(bh) != expected_level ||
 687		     !key_in_buffer(search_path, key, sb))) {
 688			PROC_INFO_INC(sb, search_by_key_fs_changed);
 689			PROC_INFO_INC(sb, search_by_key_restarted);
 690			PROC_INFO_INC(sb,
 691				      sbk_restarted[expected_level - 1]);
 692			pathrelse(search_path);
 693
 694			/* Get the root block number so that we can repeat the search
 695			   starting from the root. */
 
 
 696			block_number = SB_ROOT_BLOCK(sb);
 697			expected_level = -1;
 698			right_neighbor_of_leaf_node = 0;
 699
 700			/* repeat search from the root */
 701			continue;
 702		}
 703
 704		/* only check that the key is in the buffer if key is not
 705		   equal to the MAX_KEY. Latter case is only possible in
 706		   "finish_unfinished()" processing during mount. */
 
 
 707		RFALSE(comp_keys(&MAX_KEY, key) &&
 708		       !key_in_buffer(search_path, key, sb),
 709		       "PAP-5130: key is not in the buffer");
 710#ifdef CONFIG_REISERFS_CHECK
 711		if (REISERFS_SB(sb)->cur_tb) {
 712			print_cur_tb("5140");
 713			reiserfs_panic(sb, "PAP-5140",
 714				       "schedule occurred in do_balance!");
 715		}
 716#endif
 717
 718		// make sure, that the node contents look like a node of
 719		// certain level
 
 
 720		if (!is_tree_node(bh, expected_level)) {
 721			reiserfs_error(sb, "vs-5150",
 722				       "invalid format found in block %ld. "
 723				       "Fsck?", bh->b_blocknr);
 724			pathrelse(search_path);
 725			return IO_ERROR;
 726		}
 727
 728		/* ok, we have acquired next formatted node in the tree */
 729		node_level = B_LEVEL(bh);
 730
 731		PROC_INFO_BH_STAT(sb, bh, node_level - 1);
 732
 733		RFALSE(node_level < stop_level,
 734		       "vs-5152: tree level (%d) is less than stop level (%d)",
 735		       node_level, stop_level);
 736
 737		retval = bin_search(key, B_N_PITEM_HEAD(bh, 0),
 738				      B_NR_ITEMS(bh),
 739				      (node_level ==
 740				       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
 741				      KEY_SIZE,
 742				      &(last_element->pe_position));
 743		if (node_level == stop_level) {
 744			return retval;
 745		}
 746
 747		/* we are not in the stop level */
 
 
 
 
 748		if (retval == ITEM_FOUND)
 749			/* item has been found, so we choose the pointer which is to the right of the found one */
 750			last_element->pe_position++;
 751
 752		/* if item was not found we choose the position which is to
 753		   the left of the found item. This requires no code,
 754		   bin_search did it already. */
 755
 756		/* So we have chosen a position in the current node which is
 757		   an internal node.  Now we calculate child block number by
 758		   position in the node. */
 
 
 
 
 759		block_number =
 760		    B_N_CHILD_NUM(bh, last_element->pe_position);
 761
 762		/* if we are going to read leaf nodes, try for read ahead as well */
 
 
 
 763		if ((search_path->reada & PATH_READA) &&
 764		    node_level == DISK_LEAF_NODE_LEVEL + 1) {
 765			int pos = last_element->pe_position;
 766			int limit = B_NR_ITEMS(bh);
 767			struct reiserfs_key *le_key;
 768
 769			if (search_path->reada & PATH_READA_BACK)
 770				limit = 0;
 771			while (reada_count < SEARCH_BY_KEY_READA) {
 772				if (pos == limit)
 773					break;
 774				reada_blocks[reada_count++] =
 775				    B_N_CHILD_NUM(bh, pos);
 776				if (search_path->reada & PATH_READA_BACK)
 777					pos--;
 778				else
 779					pos++;
 780
 781				/*
 782				 * check to make sure we're in the same object
 783				 */
 784				le_key = B_N_PDELIM_KEY(bh, pos);
 785				if (le32_to_cpu(le_key->k_objectid) !=
 786				    key->on_disk_key.k_objectid) {
 787					break;
 788				}
 789			}
 790		}
 791	}
 792}
 793
 794/* Form the path to an item and position in this item which contains
 795   file byte defined by key. If there is no such item
 796   corresponding to the key, we point the path to the item with
 797   maximal key less than key, and *pos_in_item is set to one
 798   past the last entry/byte in the item.  If searching for entry in a
 799   directory item, and it is not found, *pos_in_item is set to one
 800   entry more than the entry with maximal key which is less than the
 801   sought key.
 802
 803   Note that if there is no entry in this same node which is one more,
 804   then we point to an imaginary entry.  for direct items, the
 805   position is in units of bytes, for indirect items the position is
 806   in units of blocknr entries, for directory items the position is in
 807   units of directory entries.  */
 808
 
 809/* The function is NOT SCHEDULE-SAFE! */
 810int search_for_position_by_key(struct super_block *sb,	/* Pointer to the super block.          */
 811			       const struct cpu_key *p_cpu_key,	/* Key to search (cpu variable)         */
 812			       struct treepath *search_path	/* Filled up by this function.          */
 813    )
 
 814{
 815	struct item_head *p_le_ih;	/* pointer to on-disk structure */
 816	int blk_size;
 817	loff_t item_offset, offset;
 818	struct reiserfs_dir_entry de;
 819	int retval;
 820
 821	/* If searching for directory entry. */
 822	if (is_direntry_cpu_key(p_cpu_key))
 823		return search_by_entry_key(sb, p_cpu_key, search_path,
 824					   &de);
 825
 826	/* If not searching for directory entry. */
 827
 828	/* If item is found. */
 829	retval = search_item(sb, p_cpu_key, search_path);
 830	if (retval == IO_ERROR)
 831		return retval;
 832	if (retval == ITEM_FOUND) {
 833
 834		RFALSE(!ih_item_len
 835		       (B_N_PITEM_HEAD
 836			(PATH_PLAST_BUFFER(search_path),
 837			 PATH_LAST_POSITION(search_path))),
 838		       "PAP-5165: item length equals zero");
 839
 840		pos_in_item(search_path) = 0;
 841		return POSITION_FOUND;
 842	}
 843
 844	RFALSE(!PATH_LAST_POSITION(search_path),
 845	       "PAP-5170: position equals zero");
 846
 847	/* Item is not found. Set path to the previous item. */
 848	p_le_ih =
 849	    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path),
 850			   --PATH_LAST_POSITION(search_path));
 851	blk_size = sb->s_blocksize;
 852
 853	if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
 854		return FILE_NOT_FOUND;
 855	}
 856	// FIXME: quite ugly this far
 857
 858	item_offset = le_ih_k_offset(p_le_ih);
 859	offset = cpu_key_k_offset(p_cpu_key);
 860
 861	/* Needed byte is contained in the item pointed to by the path. */
 862	if (item_offset <= offset &&
 863	    item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
 864		pos_in_item(search_path) = offset - item_offset;
 865		if (is_indirect_le_ih(p_le_ih)) {
 866			pos_in_item(search_path) /= blk_size;
 867		}
 868		return POSITION_FOUND;
 869	}
 870
 871	/* Needed byte is not contained in the item pointed to by the
 872	   path. Set pos_in_item out of the item. */
 
 
 873	if (is_indirect_le_ih(p_le_ih))
 874		pos_in_item(search_path) =
 875		    ih_item_len(p_le_ih) / UNFM_P_SIZE;
 876	else
 877		pos_in_item(search_path) = ih_item_len(p_le_ih);
 878
 879	return POSITION_NOT_FOUND;
 880}
 881
 882/* Compare given item and item pointed to by the path. */
 883int comp_items(const struct item_head *stored_ih, const struct treepath *path)
 884{
 885	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
 886	struct item_head *ih;
 887
 888	/* Last buffer at the path is not in the tree. */
 889	if (!B_IS_IN_TREE(bh))
 890		return 1;
 891
 892	/* Last path position is invalid. */
 893	if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
 894		return 1;
 895
 896	/* we need only to know, whether it is the same item */
 897	ih = get_ih(path);
 898	return memcmp(stored_ih, ih, IH_SIZE);
 899}
 900
 901/* unformatted nodes are not logged anymore, ever.  This is safe
 902** now
 903*/
 904#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
 905
 906// block can not be forgotten as it is in I/O or held by someone
 907#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
 908
 909// prepare for delete or cut of direct item
 910static inline int prepare_for_direct_item(struct treepath *path,
 911					  struct item_head *le_ih,
 912					  struct inode *inode,
 913					  loff_t new_file_length, int *cut_size)
 914{
 915	loff_t round_len;
 916
 917	if (new_file_length == max_reiserfs_offset(inode)) {
 918		/* item has to be deleted */
 919		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 920		return M_DELETE;
 921	}
 922	// new file gets truncated
 923	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
 924		//
 925		round_len = ROUND_UP(new_file_length);
 926		/* this was new_file_length < le_ih ... */
 927		if (round_len < le_ih_k_offset(le_ih)) {
 928			*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 929			return M_DELETE;	/* Delete this item. */
 930		}
 931		/* Calculate first position and size for cutting from item. */
 932		pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
 933		*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
 934
 935		return M_CUT;	/* Cut from this item. */
 936	}
 937
 938	// old file: items may have any length
 939
 940	if (new_file_length < le_ih_k_offset(le_ih)) {
 941		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 942		return M_DELETE;	/* Delete this item. */
 943	}
 
 944	/* Calculate first position and size for cutting from item. */
 945	*cut_size = -(ih_item_len(le_ih) -
 946		      (pos_in_item(path) =
 947		       new_file_length + 1 - le_ih_k_offset(le_ih)));
 948	return M_CUT;		/* Cut from this item. */
 949}
 950
 951static inline int prepare_for_direntry_item(struct treepath *path,
 952					    struct item_head *le_ih,
 953					    struct inode *inode,
 954					    loff_t new_file_length,
 955					    int *cut_size)
 956{
 957	if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
 958	    new_file_length == max_reiserfs_offset(inode)) {
 959		RFALSE(ih_entry_count(le_ih) != 2,
 960		       "PAP-5220: incorrect empty directory item (%h)", le_ih);
 961		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 962		return M_DELETE;	/* Delete the directory item containing "." and ".." entry. */
 
 963	}
 964
 965	if (ih_entry_count(le_ih) == 1) {
 966		/* Delete the directory item such as there is one record only
 967		   in this item */
 
 
 968		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 969		return M_DELETE;
 970	}
 971
 972	/* Cut one record from the directory item. */
 973	*cut_size =
 974	    -(DEH_SIZE +
 975	      entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
 976	return M_CUT;
 977}
 978
 979#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
 980
 981/*  If the path points to a directory or direct item, calculate mode and the size cut, for balance.
 982    If the path points to an indirect item, remove some number of its unformatted nodes.
 983    In case of file truncate calculate whether this item must be deleted/truncated or last
 984    unformatted node of this item will be converted to a direct item.
 985    This function returns a determination of what balance mode the calling function should employ. */
 986static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed,	/* Number of unformatted nodes which were removed
 987																						   from end of the file. */
 988				      int *cut_size, unsigned long long new_file_length	/* MAX_KEY_OFFSET in case of delete. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989    )
 990{
 991	struct super_block *sb = inode->i_sb;
 992	struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
 993	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
 994
 995	BUG_ON(!th->t_trans_id);
 996
 997	/* Stat_data item. */
 998	if (is_statdata_le_ih(p_le_ih)) {
 999
1000		RFALSE(new_file_length != max_reiserfs_offset(inode),
1001		       "PAP-5210: mode must be M_DELETE");
1002
1003		*cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1004		return M_DELETE;
1005	}
1006
1007	/* Directory item. */
1008	if (is_direntry_le_ih(p_le_ih))
1009		return prepare_for_direntry_item(path, p_le_ih, inode,
1010						 new_file_length,
1011						 cut_size);
1012
1013	/* Direct item. */
1014	if (is_direct_le_ih(p_le_ih))
1015		return prepare_for_direct_item(path, p_le_ih, inode,
1016					       new_file_length, cut_size);
1017
1018	/* Case of an indirect item. */
1019	{
1020	    int blk_size = sb->s_blocksize;
1021	    struct item_head s_ih;
1022	    int need_re_search;
1023	    int delete = 0;
1024	    int result = M_CUT;
1025	    int pos = 0;
1026
1027	    if ( new_file_length == max_reiserfs_offset (inode) ) {
1028		/* prepare_for_delete_or_cut() is called by
1029		 * reiserfs_delete_item() */
 
 
1030		new_file_length = 0;
1031		delete = 1;
1032	    }
1033
1034	    do {
1035		need_re_search = 0;
1036		*cut_size = 0;
1037		bh = PATH_PLAST_BUFFER(path);
1038		copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1039		pos = I_UNFM_NUM(&s_ih);
1040
1041		while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1042		    __le32 *unfm;
1043		    __u32 block;
1044
1045		    /* Each unformatted block deletion may involve one additional
1046		     * bitmap block into the transaction, thereby the initial
1047		     * journal space reservation might not be enough. */
 
 
 
1048		    if (!delete && (*cut_size) != 0 &&
1049			reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1050			break;
1051
1052		    unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1;
1053		    block = get_block_num(unfm, 0);
1054
1055		    if (block != 0) {
1056			reiserfs_prepare_for_journal(sb, bh, 1);
1057			put_block_num(unfm, 0, 0);
1058			journal_mark_dirty(th, sb, bh);
1059			reiserfs_free_block(th, inode, block, 1);
1060		    }
1061
1062		    reiserfs_write_unlock(sb);
1063		    cond_resched();
1064		    reiserfs_write_lock(sb);
1065
1066		    if (item_moved (&s_ih, path))  {
1067			need_re_search = 1;
1068			break;
1069		    }
1070
1071		    pos --;
1072		    (*removed)++;
1073		    (*cut_size) -= UNFM_P_SIZE;
1074
1075		    if (pos == 0) {
1076			(*cut_size) -= IH_SIZE;
1077			result = M_DELETE;
1078			break;
1079		    }
1080		}
1081		/* a trick.  If the buffer has been logged, this will do nothing.  If
1082		** we've broken the loop without logging it, it will restore the
1083		** buffer */
 
 
1084		reiserfs_restore_prepared_buffer(sb, bh);
1085	    } while (need_re_search &&
1086		     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1087	    pos_in_item(path) = pos * UNFM_P_SIZE;
1088
1089	    if (*cut_size == 0) {
1090		/* Nothing were cut. maybe convert last unformatted node to the
1091		 * direct item? */
 
 
1092		result = M_CONVERT;
1093	    }
1094	    return result;
1095	}
1096}
1097
1098/* Calculate number of bytes which will be deleted or cut during balance */
1099static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1100{
1101	int del_size;
1102	struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path);
1103
1104	if (is_statdata_le_ih(p_le_ih))
1105		return 0;
1106
1107	del_size =
1108	    (mode ==
1109	     M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1110	if (is_direntry_le_ih(p_le_ih)) {
1111		/* return EMPTY_DIR_SIZE; We delete emty directoris only.
1112		 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1113		 * empty size.  ick. FIXME, is this right? */
 
 
1114		return del_size;
1115	}
1116
1117	if (is_indirect_le_ih(p_le_ih))
1118		del_size = (del_size / UNFM_P_SIZE) *
1119				(PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1120	return del_size;
1121}
1122
1123static void init_tb_struct(struct reiserfs_transaction_handle *th,
1124			   struct tree_balance *tb,
1125			   struct super_block *sb,
1126			   struct treepath *path, int size)
1127{
1128
1129	BUG_ON(!th->t_trans_id);
1130
1131	memset(tb, '\0', sizeof(struct tree_balance));
1132	tb->transaction_handle = th;
1133	tb->tb_sb = sb;
1134	tb->tb_path = path;
1135	PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1136	PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1137	tb->insert_size[0] = size;
1138}
1139
1140void padd_item(char *item, int total_length, int length)
1141{
1142	int i;
1143
1144	for (i = total_length; i > length;)
1145		item[--i] = 0;
1146}
1147
1148#ifdef REISERQUOTA_DEBUG
1149char key2type(struct reiserfs_key *ih)
1150{
1151	if (is_direntry_le_key(2, ih))
1152		return 'd';
1153	if (is_direct_le_key(2, ih))
1154		return 'D';
1155	if (is_indirect_le_key(2, ih))
1156		return 'i';
1157	if (is_statdata_le_key(2, ih))
1158		return 's';
1159	return 'u';
1160}
1161
1162char head2type(struct item_head *ih)
1163{
1164	if (is_direntry_le_ih(ih))
1165		return 'd';
1166	if (is_direct_le_ih(ih))
1167		return 'D';
1168	if (is_indirect_le_ih(ih))
1169		return 'i';
1170	if (is_statdata_le_ih(ih))
1171		return 's';
1172	return 'u';
1173}
1174#endif
1175
1176/* Delete object item.
 
1177 * th       - active transaction handle
1178 * path     - path to the deleted item
1179 * item_key - key to search for the deleted item
1180 * indode   - used for updating i_blocks and quotas
1181 * un_bh    - NULL or unformatted node pointer
1182 */
1183int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1184			 struct treepath *path, const struct cpu_key *item_key,
1185			 struct inode *inode, struct buffer_head *un_bh)
1186{
1187	struct super_block *sb = inode->i_sb;
1188	struct tree_balance s_del_balance;
1189	struct item_head s_ih;
1190	struct item_head *q_ih;
1191	int quota_cut_bytes;
1192	int ret_value, del_size, removed;
 
1193
1194#ifdef CONFIG_REISERFS_CHECK
1195	char mode;
1196	int iter = 0;
1197#endif
1198
1199	BUG_ON(!th->t_trans_id);
1200
1201	init_tb_struct(th, &s_del_balance, sb, path,
1202		       0 /*size is unknown */ );
1203
1204	while (1) {
1205		removed = 0;
1206
1207#ifdef CONFIG_REISERFS_CHECK
1208		iter++;
1209		mode =
1210#endif
1211		    prepare_for_delete_or_cut(th, inode, path,
1212					      item_key, &removed,
1213					      &del_size,
1214					      max_reiserfs_offset(inode));
1215
1216		RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1217
1218		copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1219		s_del_balance.insert_size[0] = del_size;
1220
1221		ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1222		if (ret_value != REPEAT_SEARCH)
1223			break;
1224
1225		PROC_INFO_INC(sb, delete_item_restarted);
1226
1227		// file system changed, repeat search
1228		ret_value =
1229		    search_for_position_by_key(sb, item_key, path);
1230		if (ret_value == IO_ERROR)
1231			break;
1232		if (ret_value == FILE_NOT_FOUND) {
1233			reiserfs_warning(sb, "vs-5340",
1234					 "no items of the file %K found",
1235					 item_key);
1236			break;
1237		}
1238	}			/* while (1) */
1239
1240	if (ret_value != CARRY_ON) {
1241		unfix_nodes(&s_del_balance);
1242		return 0;
1243	}
1244	// reiserfs_delete_item returns item length when success
 
1245	ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1246	q_ih = get_ih(path);
1247	quota_cut_bytes = ih_item_len(q_ih);
1248
1249	/* hack so the quota code doesn't have to guess if the file
1250	 ** has a tail.  On tail insert, we allocate quota for 1 unformatted node.
1251	 ** We test the offset because the tail might have been
1252	 ** split into multiple items, and we only want to decrement for
1253	 ** the unfm node once
 
1254	 */
1255	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1256		if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1257			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1258		} else {
1259			quota_cut_bytes = 0;
1260		}
1261	}
1262
1263	if (un_bh) {
1264		int off;
1265		char *data;
1266
1267		/* We are in direct2indirect conversion, so move tail contents
1268		   to the unformatted node */
1269		/* note, we do the copy before preparing the buffer because we
1270		 ** don't care about the contents of the unformatted node yet.
1271		 ** the only thing we really care about is the direct item's data
1272		 ** is in the unformatted node.
1273		 **
1274		 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1275		 ** the unformatted node, which might schedule, meaning we'd have to
1276		 ** loop all the way back up to the start of the while loop.
1277		 **
1278		 ** The unformatted node must be dirtied later on.  We can't be
1279		 ** sure here if the entire tail has been deleted yet.
1280		 **
1281		 ** un_bh is from the page cache (all unformatted nodes are
1282		 ** from the page cache) and might be a highmem page.  So, we
1283		 ** can't use un_bh->b_data.
1284		 ** -clm
 
 
 
 
1285		 */
1286
1287		data = kmap_atomic(un_bh->b_page, KM_USER0);
1288		off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1289		memcpy(data + off,
1290		       B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih),
1291		       ret_value);
1292		kunmap_atomic(data, KM_USER0);
1293	}
 
1294	/* Perform balancing after all resources have been collected at once. */
1295	do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1296
1297#ifdef REISERQUOTA_DEBUG
1298	reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1299		       "reiserquota delete_item(): freeing %u, id=%u type=%c",
1300		       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1301#endif
 
1302	dquot_free_space_nodirty(inode, quota_cut_bytes);
 
1303
1304	/* Return deleted body length */
1305	return ret_value;
1306}
1307
1308/* Summary Of Mechanisms For Handling Collisions Between Processes:
1309
1310 deletion of the body of the object is performed by iput(), with the
1311 result that if multiple processes are operating on a file, the
1312 deletion of the body of the file is deferred until the last process
1313 that has an open inode performs its iput().
1314
1315 writes and truncates are protected from collisions by use of
1316 semaphores.
1317
1318 creates, linking, and mknod are protected from collisions with other
1319 processes by making the reiserfs_add_entry() the last step in the
1320 creation, and then rolling back all changes if there was a collision.
1321 - Hans
 
1322*/
1323
1324/* this deletes item which never gets split */
1325void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1326				struct inode *inode, struct reiserfs_key *key)
1327{
 
1328	struct tree_balance tb;
1329	INITIALIZE_PATH(path);
1330	int item_len = 0;
1331	int tb_init = 0;
1332	struct cpu_key cpu_key;
1333	int retval;
1334	int quota_cut_bytes = 0;
1335
1336	BUG_ON(!th->t_trans_id);
1337
1338	le_key2cpu_key(&cpu_key, key);
1339
1340	while (1) {
1341		retval = search_item(th->t_super, &cpu_key, &path);
1342		if (retval == IO_ERROR) {
1343			reiserfs_error(th->t_super, "vs-5350",
1344				       "i/o failure occurred trying "
1345				       "to delete %K", &cpu_key);
1346			break;
1347		}
1348		if (retval != ITEM_FOUND) {
1349			pathrelse(&path);
1350			// No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
 
 
 
 
1351			if (!
1352			    ((unsigned long long)
1353			     GET_HASH_VALUE(le_key_k_offset
1354					    (le_key_version(key), key)) == 0
1355			     && (unsigned long long)
1356			     GET_GENERATION_NUMBER(le_key_k_offset
1357						   (le_key_version(key),
1358						    key)) == 1))
1359				reiserfs_warning(th->t_super, "vs-5355",
1360						 "%k not found", key);
1361			break;
1362		}
1363		if (!tb_init) {
1364			tb_init = 1;
1365			item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1366			init_tb_struct(th, &tb, th->t_super, &path,
1367				       -(IH_SIZE + item_len));
1368		}
1369		quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1370
1371		retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1372		if (retval == REPEAT_SEARCH) {
1373			PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1374			continue;
1375		}
1376
1377		if (retval == CARRY_ON) {
1378			do_balance(&tb, NULL, NULL, M_DELETE);
1379			if (inode) {	/* Should we count quota for item? (we don't count quotas for save-links) */
 
 
 
 
 
1380#ifdef REISERQUOTA_DEBUG
1381				reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1382					       "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1383					       quota_cut_bytes, inode->i_uid,
1384					       key2type(key));
1385#endif
 
1386				dquot_free_space_nodirty(inode,
1387							 quota_cut_bytes);
 
1388			}
1389			break;
1390		}
1391		// IO_ERROR, NO_DISK_SPACE, etc
 
1392		reiserfs_warning(th->t_super, "vs-5360",
1393				 "could not delete %K due to fix_nodes failure",
1394				 &cpu_key);
1395		unfix_nodes(&tb);
1396		break;
1397	}
1398
1399	reiserfs_check_path(&path);
1400}
1401
1402int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1403			   struct inode *inode)
1404{
1405	int err;
1406	inode->i_size = 0;
1407	BUG_ON(!th->t_trans_id);
1408
1409	/* for directory this deletes item containing "." and ".." */
1410	err =
1411	    reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1412	if (err)
1413		return err;
1414
1415#if defined( USE_INODE_GENERATION_COUNTER )
1416	if (!old_format_only(th->t_super)) {
1417		__le32 *inode_generation;
1418
1419		inode_generation =
1420		    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1421		le32_add_cpu(inode_generation, 1);
1422	}
1423/* USE_INODE_GENERATION_COUNTER */
1424#endif
1425	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1426
1427	return err;
1428}
1429
1430static void unmap_buffers(struct page *page, loff_t pos)
1431{
1432	struct buffer_head *bh;
1433	struct buffer_head *head;
1434	struct buffer_head *next;
1435	unsigned long tail_index;
1436	unsigned long cur_index;
1437
1438	if (page) {
1439		if (page_has_buffers(page)) {
1440			tail_index = pos & (PAGE_CACHE_SIZE - 1);
1441			cur_index = 0;
1442			head = page_buffers(page);
1443			bh = head;
1444			do {
1445				next = bh->b_this_page;
1446
1447				/* we want to unmap the buffers that contain the tail, and
1448				 ** all the buffers after it (since the tail must be at the
1449				 ** end of the file).  We don't want to unmap file data
1450				 ** before the tail, since it might be dirty and waiting to
1451				 ** reach disk
 
 
1452				 */
1453				cur_index += bh->b_size;
1454				if (cur_index > tail_index) {
1455					reiserfs_unmap_buffer(bh);
1456				}
1457				bh = next;
1458			} while (bh != head);
1459		}
1460	}
1461}
1462
1463static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1464				    struct inode *inode,
1465				    struct page *page,
1466				    struct treepath *path,
1467				    const struct cpu_key *item_key,
1468				    loff_t new_file_size, char *mode)
1469{
1470	struct super_block *sb = inode->i_sb;
1471	int block_size = sb->s_blocksize;
1472	int cut_bytes;
1473	BUG_ON(!th->t_trans_id);
1474	BUG_ON(new_file_size != inode->i_size);
1475
1476	/* the page being sent in could be NULL if there was an i/o error
1477	 ** reading in the last block.  The user will hit problems trying to
1478	 ** read the file, but for now we just skip the indirect2direct
 
1479	 */
1480	if (atomic_read(&inode->i_count) > 1 ||
1481	    !tail_has_to_be_packed(inode) ||
1482	    !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1483		/* leave tail in an unformatted node */
1484		*mode = M_SKIP_BALANCING;
1485		cut_bytes =
1486		    block_size - (new_file_size & (block_size - 1));
1487		pathrelse(path);
1488		return cut_bytes;
1489	}
 
1490	/* Perform the conversion to a direct_item. */
1491	/* return indirect_to_direct(inode, path, item_key,
1492				  new_file_size, mode); */
1493	return indirect2direct(th, inode, page, path, item_key,
1494			       new_file_size, mode);
1495}
1496
1497/* we did indirect_to_direct conversion. And we have inserted direct
1498   item successesfully, but there were no disk space to cut unfm
1499   pointer being converted. Therefore we have to delete inserted
1500   direct item(s) */
 
 
1501static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1502					 struct inode *inode, struct treepath *path)
1503{
1504	struct cpu_key tail_key;
1505	int tail_len;
1506	int removed;
1507	BUG_ON(!th->t_trans_id);
1508
1509	make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);	// !!!!
1510	tail_key.key_length = 4;
1511
1512	tail_len =
1513	    (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1514	while (tail_len) {
1515		/* look for the last byte of the tail */
1516		if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1517		    POSITION_NOT_FOUND)
1518			reiserfs_panic(inode->i_sb, "vs-5615",
1519				       "found invalid item");
1520		RFALSE(path->pos_in_item !=
1521		       ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1522		       "vs-5616: appended bytes found");
1523		PATH_LAST_POSITION(path)--;
1524
1525		removed =
1526		    reiserfs_delete_item(th, path, &tail_key, inode,
1527					 NULL /*unbh not needed */ );
1528		RFALSE(removed <= 0
1529		       || removed > tail_len,
1530		       "vs-5617: there was tail %d bytes, removed item length %d bytes",
1531		       tail_len, removed);
1532		tail_len -= removed;
1533		set_cpu_key_k_offset(&tail_key,
1534				     cpu_key_k_offset(&tail_key) - removed);
1535	}
1536	reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1537			 "conversion has been rolled back due to "
1538			 "lack of disk space");
1539	//mark_file_without_tail (inode);
1540	mark_inode_dirty(inode);
1541}
1542
1543/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1544int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1545			   struct treepath *path,
1546			   struct cpu_key *item_key,
1547			   struct inode *inode,
1548			   struct page *page, loff_t new_file_size)
1549{
1550	struct super_block *sb = inode->i_sb;
1551	/* Every function which is going to call do_balance must first
1552	   create a tree_balance structure.  Then it must fill up this
1553	   structure by using the init_tb_struct and fix_nodes functions.
1554	   After that we can make tree balancing. */
 
 
1555	struct tree_balance s_cut_balance;
1556	struct item_head *p_le_ih;
1557	int cut_size = 0,	/* Amount to be cut. */
1558	    ret_value = CARRY_ON, removed = 0,	/* Number of the removed unformatted nodes. */
1559	    is_inode_locked = 0;
 
1560	char mode;		/* Mode of the balance. */
1561	int retval2 = -1;
1562	int quota_cut_bytes;
1563	loff_t tail_pos = 0;
 
1564
1565	BUG_ON(!th->t_trans_id);
1566
1567	init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1568		       cut_size);
1569
1570	/* Repeat this loop until we either cut the item without needing
1571	   to balance, or we fix_nodes without schedule occurring */
 
 
1572	while (1) {
1573		/* Determine the balance mode, position of the first byte to
1574		   be cut, and size to be cut.  In case of the indirect item
1575		   free unformatted nodes which are pointed to by the cut
1576		   pointers. */
 
 
1577
1578		mode =
1579		    prepare_for_delete_or_cut(th, inode, path,
1580					      item_key, &removed,
1581					      &cut_size, new_file_size);
1582		if (mode == M_CONVERT) {
1583			/* convert last unformatted node to direct item or leave
1584			   tail in the unformatted node */
 
 
1585			RFALSE(ret_value != CARRY_ON,
1586			       "PAP-5570: can not convert twice");
1587
1588			ret_value =
1589			    maybe_indirect_to_direct(th, inode, page,
1590						     path, item_key,
1591						     new_file_size, &mode);
1592			if (mode == M_SKIP_BALANCING)
1593				/* tail has been left in the unformatted node */
1594				return ret_value;
1595
1596			is_inode_locked = 1;
1597
1598			/* removing of last unformatted node will change value we
1599			   have to return to truncate. Save it */
 
 
 
1600			retval2 = ret_value;
1601			/*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */
1602
1603			/* So, we have performed the first part of the conversion:
1604			   inserting the new direct item.  Now we are removing the
1605			   last unformatted node pointer. Set key to search for
1606			   it. */
 
 
 
1607			set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1608			item_key->key_length = 4;
1609			new_file_size -=
1610			    (new_file_size & (sb->s_blocksize - 1));
1611			tail_pos = new_file_size;
1612			set_cpu_key_k_offset(item_key, new_file_size + 1);
1613			if (search_for_position_by_key
1614			    (sb, item_key,
1615			     path) == POSITION_NOT_FOUND) {
1616				print_block(PATH_PLAST_BUFFER(path), 3,
1617					    PATH_LAST_POSITION(path) - 1,
1618					    PATH_LAST_POSITION(path) + 1);
1619				reiserfs_panic(sb, "PAP-5580", "item to "
1620					       "convert does not exist (%K)",
1621					       item_key);
1622			}
1623			continue;
1624		}
1625		if (cut_size == 0) {
1626			pathrelse(path);
1627			return 0;
1628		}
1629
1630		s_cut_balance.insert_size[0] = cut_size;
1631
1632		ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1633		if (ret_value != REPEAT_SEARCH)
1634			break;
1635
1636		PROC_INFO_INC(sb, cut_from_item_restarted);
1637
1638		ret_value =
1639		    search_for_position_by_key(sb, item_key, path);
1640		if (ret_value == POSITION_FOUND)
1641			continue;
1642
1643		reiserfs_warning(sb, "PAP-5610", "item %K not found",
1644				 item_key);
1645		unfix_nodes(&s_cut_balance);
1646		return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1647	}			/* while */
1648
1649	// check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1650	if (ret_value != CARRY_ON) {
1651		if (is_inode_locked) {
1652			// FIXME: this seems to be not needed: we are always able
1653			// to cut item
 
 
1654			indirect_to_direct_roll_back(th, inode, path);
1655		}
1656		if (ret_value == NO_DISK_SPACE)
1657			reiserfs_warning(sb, "reiserfs-5092",
1658					 "NO_DISK_SPACE");
1659		unfix_nodes(&s_cut_balance);
1660		return -EIO;
1661	}
1662
1663	/* go ahead and perform balancing */
1664
1665	RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1666
1667	/* Calculate number of bytes that need to be cut from the item. */
1668	quota_cut_bytes =
1669	    (mode ==
1670	     M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance.
1671	    insert_size[0];
1672	if (retval2 == -1)
1673		ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1674	else
1675		ret_value = retval2;
1676
1677	/* For direct items, we only change the quota when deleting the last
1678	 ** item.
 
1679	 */
1680	p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1681	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1682		if (mode == M_DELETE &&
1683		    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1684		    1) {
1685			// FIXME: this is to keep 3.5 happy
1686			REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1687			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1688		} else {
1689			quota_cut_bytes = 0;
1690		}
1691	}
1692#ifdef CONFIG_REISERFS_CHECK
1693	if (is_inode_locked) {
1694		struct item_head *le_ih =
1695		    PATH_PITEM_HEAD(s_cut_balance.tb_path);
1696		/* we are going to complete indirect2direct conversion. Make
1697		   sure, that we exactly remove last unformatted node pointer
1698		   of the item */
 
 
1699		if (!is_indirect_le_ih(le_ih))
1700			reiserfs_panic(sb, "vs-5652",
1701				       "item must be indirect %h", le_ih);
1702
1703		if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1704			reiserfs_panic(sb, "vs-5653", "completing "
1705				       "indirect2direct conversion indirect "
1706				       "item %h being deleted must be of "
1707				       "4 byte long", le_ih);
1708
1709		if (mode == M_CUT
1710		    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1711			reiserfs_panic(sb, "vs-5654", "can not complete "
1712				       "indirect2direct conversion of %h "
1713				       "(CUT, insert_size==%d)",
1714				       le_ih, s_cut_balance.insert_size[0]);
1715		}
1716		/* it would be useful to make sure, that right neighboring
1717		   item is direct item of this file */
 
 
1718	}
1719#endif
1720
1721	do_balance(&s_cut_balance, NULL, NULL, mode);
1722	if (is_inode_locked) {
1723		/* we've done an indirect->direct conversion.  when the data block
1724		 ** was freed, it was removed from the list of blocks that must
1725		 ** be flushed before the transaction commits, make sure to
1726		 ** unmap and invalidate it
 
1727		 */
1728		unmap_buffers(page, tail_pos);
1729		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1730	}
1731#ifdef REISERQUOTA_DEBUG
1732	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1733		       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1734		       quota_cut_bytes, inode->i_uid, '?');
1735#endif
 
1736	dquot_free_space_nodirty(inode, quota_cut_bytes);
 
1737	return ret_value;
1738}
1739
1740static void truncate_directory(struct reiserfs_transaction_handle *th,
1741			       struct inode *inode)
1742{
1743	BUG_ON(!th->t_trans_id);
1744	if (inode->i_nlink)
1745		reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1746
1747	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1748	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1749	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1750	reiserfs_update_sd(th, inode);
1751	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1752	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1753}
1754
1755/* Truncate file to the new size. Note, this must be called with a transaction
1756   already started */
 
 
1757int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1758			  struct inode *inode,	/* ->i_size contains new size */
1759			 struct page *page,	/* up to date for last block */
1760			 int update_timestamps	/* when it is called by
1761						   file_release to convert
1762						   the tail - no timestamps
1763						   should be updated */
 
1764    )
1765{
1766	INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */
1767	struct item_head *p_le_ih;	/* Pointer to an item header. */
1768	struct cpu_key s_item_key;	/* Key to search for a previous file item. */
 
 
1769	loff_t file_size,	/* Old file size. */
1770	 new_file_size;	/* New file size. */
1771	int deleted;		/* Number of deleted or truncated bytes. */
1772	int retval;
1773	int err = 0;
1774
1775	BUG_ON(!th->t_trans_id);
1776	if (!
1777	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1778	     || S_ISLNK(inode->i_mode)))
1779		return 0;
1780
 
1781	if (S_ISDIR(inode->i_mode)) {
1782		// deletion of directory - no need to update timestamps
1783		truncate_directory(th, inode);
1784		return 0;
1785	}
1786
1787	/* Get new file size. */
1788	new_file_size = inode->i_size;
1789
1790	// FIXME: note, that key type is unimportant here
1791	make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1792		     TYPE_DIRECT, 3);
1793
1794	retval =
1795	    search_for_position_by_key(inode->i_sb, &s_item_key,
1796				       &s_search_path);
1797	if (retval == IO_ERROR) {
1798		reiserfs_error(inode->i_sb, "vs-5657",
1799			       "i/o failure occurred trying to truncate %K",
1800			       &s_item_key);
1801		err = -EIO;
1802		goto out;
1803	}
1804	if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1805		reiserfs_error(inode->i_sb, "PAP-5660",
1806			       "wrong result %d of search for %K", retval,
1807			       &s_item_key);
1808
1809		err = -EIO;
1810		goto out;
1811	}
1812
1813	s_search_path.pos_in_item--;
1814
1815	/* Get real file size (total length of all file items) */
1816	p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1817	if (is_statdata_le_ih(p_le_ih))
1818		file_size = 0;
1819	else {
1820		loff_t offset = le_ih_k_offset(p_le_ih);
1821		int bytes =
1822		    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1823
1824		/* this may mismatch with real file size: if last direct item
1825		   had no padding zeros and last unformatted node had no free
1826		   space, this file would have this file size */
 
 
1827		file_size = offset + bytes - 1;
1828	}
1829	/*
1830	 * are we doing a full truncate or delete, if so
1831	 * kick in the reada code
1832	 */
1833	if (new_file_size == 0)
1834		s_search_path.reada = PATH_READA | PATH_READA_BACK;
1835
1836	if (file_size == 0 || file_size < new_file_size) {
1837		goto update_and_out;
1838	}
1839
1840	/* Update key to search for the last file item. */
1841	set_cpu_key_k_offset(&s_item_key, file_size);
1842
1843	do {
1844		/* Cut or delete file item. */
1845		deleted =
1846		    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1847					   inode, page, new_file_size);
1848		if (deleted < 0) {
1849			reiserfs_warning(inode->i_sb, "vs-5665",
1850					 "reiserfs_cut_from_item failed");
1851			reiserfs_check_path(&s_search_path);
1852			return 0;
1853		}
1854
1855		RFALSE(deleted > file_size,
1856		       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1857		       deleted, file_size, &s_item_key);
1858
1859		/* Change key to search the last file item. */
1860		file_size -= deleted;
1861
1862		set_cpu_key_k_offset(&s_item_key, file_size);
1863
1864		/* While there are bytes to truncate and previous file item is presented in the tree. */
 
 
 
1865
1866		/*
1867		 ** This loop could take a really long time, and could log
1868		 ** many more blocks than a transaction can hold.  So, we do a polite
1869		 ** journal end here, and if the transaction needs ending, we make
1870		 ** sure the file is consistent before ending the current trans
1871		 ** and starting a new one
1872		 */
1873		if (journal_transaction_should_end(th, 0) ||
1874		    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1875			int orig_len_alloc = th->t_blocks_allocated;
1876			pathrelse(&s_search_path);
1877
1878			if (update_timestamps) {
1879				inode->i_mtime = CURRENT_TIME_SEC;
1880				inode->i_ctime = CURRENT_TIME_SEC;
1881			}
1882			reiserfs_update_sd(th, inode);
1883
1884			err = journal_end(th, inode->i_sb, orig_len_alloc);
1885			if (err)
1886				goto out;
1887			err = journal_begin(th, inode->i_sb,
1888					    JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1889			if (err)
1890				goto out;
1891			reiserfs_update_inode_transaction(inode);
1892		}
1893	} while (file_size > ROUND_UP(new_file_size) &&
1894		 search_for_position_by_key(inode->i_sb, &s_item_key,
1895					    &s_search_path) == POSITION_FOUND);
1896
1897	RFALSE(file_size > ROUND_UP(new_file_size),
1898	       "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1899	       new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
1900
1901      update_and_out:
1902	if (update_timestamps) {
1903		// this is truncate, not file closing
1904		inode->i_mtime = CURRENT_TIME_SEC;
1905		inode->i_ctime = CURRENT_TIME_SEC;
1906	}
1907	reiserfs_update_sd(th, inode);
1908
1909      out:
1910	pathrelse(&s_search_path);
1911	return err;
1912}
1913
1914#ifdef CONFIG_REISERFS_CHECK
1915// this makes sure, that we __append__, not overwrite or add holes
1916static void check_research_for_paste(struct treepath *path,
1917				     const struct cpu_key *key)
1918{
1919	struct item_head *found_ih = get_ih(path);
1920
1921	if (is_direct_le_ih(found_ih)) {
1922		if (le_ih_k_offset(found_ih) +
1923		    op_bytes_number(found_ih,
1924				    get_last_bh(path)->b_size) !=
1925		    cpu_key_k_offset(key)
1926		    || op_bytes_number(found_ih,
1927				       get_last_bh(path)->b_size) !=
1928		    pos_in_item(path))
1929			reiserfs_panic(NULL, "PAP-5720", "found direct item "
1930				       "%h or position (%d) does not match "
1931				       "to key %K", found_ih,
1932				       pos_in_item(path), key);
1933	}
1934	if (is_indirect_le_ih(found_ih)) {
1935		if (le_ih_k_offset(found_ih) +
1936		    op_bytes_number(found_ih,
1937				    get_last_bh(path)->b_size) !=
1938		    cpu_key_k_offset(key)
1939		    || I_UNFM_NUM(found_ih) != pos_in_item(path)
1940		    || get_ih_free_space(found_ih) != 0)
1941			reiserfs_panic(NULL, "PAP-5730", "found indirect "
1942				       "item (%h) or position (%d) does not "
1943				       "match to key (%K)",
1944				       found_ih, pos_in_item(path), key);
1945	}
1946}
1947#endif				/* config reiserfs check */
1948
1949/* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1950int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path,	/* Path to the pasted item.	  */
1951			     const struct cpu_key *key,	/* Key to search for the needed item. */
1952			     struct inode *inode,	/* Inode item belongs to */
1953			     const char *body,	/* Pointer to the bytes to paste.    */
 
 
 
 
 
 
 
 
 
1954			     int pasted_size)
1955{				/* Size of pasted bytes.             */
 
1956	struct tree_balance s_paste_balance;
1957	int retval;
1958	int fs_gen;
 
1959
1960	BUG_ON(!th->t_trans_id);
1961
1962	fs_gen = get_generation(inode->i_sb);
1963
1964#ifdef REISERQUOTA_DEBUG
1965	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1966		       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1967		       pasted_size, inode->i_uid,
1968		       key2type(&(key->on_disk_key)));
1969#endif
1970
 
1971	retval = dquot_alloc_space_nodirty(inode, pasted_size);
 
1972	if (retval) {
1973		pathrelse(search_path);
1974		return retval;
1975	}
1976	init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
1977		       pasted_size);
1978#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1979	s_paste_balance.key = key->on_disk_key;
1980#endif
1981
1982	/* DQUOT_* can schedule, must check before the fix_nodes */
1983	if (fs_changed(fs_gen, inode->i_sb)) {
1984		goto search_again;
1985	}
1986
1987	while ((retval =
1988		fix_nodes(M_PASTE, &s_paste_balance, NULL,
1989			  body)) == REPEAT_SEARCH) {
1990	      search_again:
1991		/* file system changed while we were in the fix_nodes */
1992		PROC_INFO_INC(th->t_super, paste_into_item_restarted);
1993		retval =
1994		    search_for_position_by_key(th->t_super, key,
1995					       search_path);
1996		if (retval == IO_ERROR) {
1997			retval = -EIO;
1998			goto error_out;
1999		}
2000		if (retval == POSITION_FOUND) {
2001			reiserfs_warning(inode->i_sb, "PAP-5710",
2002					 "entry or pasted byte (%K) exists",
2003					 key);
2004			retval = -EEXIST;
2005			goto error_out;
2006		}
2007#ifdef CONFIG_REISERFS_CHECK
2008		check_research_for_paste(search_path, key);
2009#endif
2010	}
2011
2012	/* Perform balancing after all resources are collected by fix_nodes, and
2013	   accessing them will not risk triggering schedule. */
 
 
2014	if (retval == CARRY_ON) {
2015		do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2016		return 0;
2017	}
2018	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2019      error_out:
2020	/* this also releases the path */
2021	unfix_nodes(&s_paste_balance);
2022#ifdef REISERQUOTA_DEBUG
2023	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2024		       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2025		       pasted_size, inode->i_uid,
2026		       key2type(&(key->on_disk_key)));
2027#endif
 
2028	dquot_free_space_nodirty(inode, pasted_size);
 
2029	return retval;
2030}
2031
2032/* Insert new item into the buffer at the path.
 
2033 * th   - active transaction handle
2034 * path - path to the inserted item
2035 * ih   - pointer to the item header to insert
2036 * body - pointer to the bytes to insert
2037 */
2038int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2039			 struct treepath *path, const struct cpu_key *key,
2040			 struct item_head *ih, struct inode *inode,
2041			 const char *body)
2042{
2043	struct tree_balance s_ins_balance;
2044	int retval;
2045	int fs_gen = 0;
2046	int quota_bytes = 0;
2047
2048	BUG_ON(!th->t_trans_id);
2049
2050	if (inode) {		/* Do we count quotas for item? */
 
2051		fs_gen = get_generation(inode->i_sb);
2052		quota_bytes = ih_item_len(ih);
2053
2054		/* hack so the quota code doesn't have to guess if the file has
2055		 ** a tail, links are always tails, so there's no guessing needed
 
 
2056		 */
2057		if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2058			quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2059#ifdef REISERQUOTA_DEBUG
2060		reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2061			       "reiserquota insert_item(): allocating %u id=%u type=%c",
2062			       quota_bytes, inode->i_uid, head2type(ih));
2063#endif
2064		/* We can't dirty inode here. It would be immediately written but
2065		 * appropriate stat item isn't inserted yet... */
 
 
 
2066		retval = dquot_alloc_space_nodirty(inode, quota_bytes);
 
2067		if (retval) {
2068			pathrelse(path);
2069			return retval;
2070		}
2071	}
2072	init_tb_struct(th, &s_ins_balance, th->t_super, path,
2073		       IH_SIZE + ih_item_len(ih));
2074#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2075	s_ins_balance.key = key->on_disk_key;
2076#endif
2077	/* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
 
 
 
2078	if (inode && fs_changed(fs_gen, inode->i_sb)) {
2079		goto search_again;
2080	}
2081
2082	while ((retval =
2083		fix_nodes(M_INSERT, &s_ins_balance, ih,
2084			  body)) == REPEAT_SEARCH) {
2085	      search_again:
2086		/* file system changed while we were in the fix_nodes */
2087		PROC_INFO_INC(th->t_super, insert_item_restarted);
2088		retval = search_item(th->t_super, key, path);
2089		if (retval == IO_ERROR) {
2090			retval = -EIO;
2091			goto error_out;
2092		}
2093		if (retval == ITEM_FOUND) {
2094			reiserfs_warning(th->t_super, "PAP-5760",
2095					 "key %K already exists in the tree",
2096					 key);
2097			retval = -EEXIST;
2098			goto error_out;
2099		}
2100	}
2101
2102	/* make balancing after all resources will be collected at a time */
2103	if (retval == CARRY_ON) {
2104		do_balance(&s_ins_balance, ih, body, M_INSERT);
2105		return 0;
2106	}
2107
2108	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2109      error_out:
2110	/* also releases the path */
2111	unfix_nodes(&s_ins_balance);
2112#ifdef REISERQUOTA_DEBUG
2113	reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2114		       "reiserquota insert_item(): freeing %u id=%u type=%c",
2115		       quota_bytes, inode->i_uid, head2type(ih));
2116#endif
2117	if (inode)
 
2118		dquot_free_space_nodirty(inode, quota_bytes);
 
 
2119	return retval;
2120}
v5.4
   1/*
   2 *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
   3 */
   4
   5/*
   6 *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
   7 *  Programm System Institute
   8 *  Pereslavl-Zalessky Russia
   9 */
  10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11#include <linux/time.h>
  12#include <linux/string.h>
  13#include <linux/pagemap.h>
  14#include <linux/bio.h>
  15#include "reiserfs.h"
  16#include <linux/buffer_head.h>
  17#include <linux/quotaops.h>
  18
  19/* Does the buffer contain a disk block which is in the tree. */
  20inline int B_IS_IN_TREE(const struct buffer_head *bh)
  21{
  22
  23	RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
  24	       "PAP-1010: block (%b) has too big level (%z)", bh, bh);
  25
  26	return (B_LEVEL(bh) != FREE_LEVEL);
  27}
  28
  29/* to get item head in le form */
 
 
  30inline void copy_item_head(struct item_head *to,
  31			   const struct item_head *from)
  32{
  33	memcpy(to, from, IH_SIZE);
  34}
  35
  36/*
  37 * k1 is pointer to on-disk structure which is stored in little-endian
  38 * form. k2 is pointer to cpu variable. For key of items of the same
  39 * object this returns 0.
  40 * Returns: -1 if key1 < key2
  41 * 0 if key1 == key2
  42 * 1 if key1 > key2
  43 */
  44inline int comp_short_keys(const struct reiserfs_key *le_key,
  45			   const struct cpu_key *cpu_key)
  46{
  47	__u32 n;
  48	n = le32_to_cpu(le_key->k_dir_id);
  49	if (n < cpu_key->on_disk_key.k_dir_id)
  50		return -1;
  51	if (n > cpu_key->on_disk_key.k_dir_id)
  52		return 1;
  53	n = le32_to_cpu(le_key->k_objectid);
  54	if (n < cpu_key->on_disk_key.k_objectid)
  55		return -1;
  56	if (n > cpu_key->on_disk_key.k_objectid)
  57		return 1;
  58	return 0;
  59}
  60
  61/*
  62 * k1 is pointer to on-disk structure which is stored in little-endian
  63 * form. k2 is pointer to cpu variable.
  64 * Compare keys using all 4 key fields.
  65 * Returns: -1 if key1 < key2 0
  66 * if key1 = key2 1 if key1 > key2
  67 */
  68static inline int comp_keys(const struct reiserfs_key *le_key,
  69			    const struct cpu_key *cpu_key)
  70{
  71	int retval;
  72
  73	retval = comp_short_keys(le_key, cpu_key);
  74	if (retval)
  75		return retval;
  76	if (le_key_k_offset(le_key_version(le_key), le_key) <
  77	    cpu_key_k_offset(cpu_key))
  78		return -1;
  79	if (le_key_k_offset(le_key_version(le_key), le_key) >
  80	    cpu_key_k_offset(cpu_key))
  81		return 1;
  82
  83	if (cpu_key->key_length == 3)
  84		return 0;
  85
  86	/* this part is needed only when tail conversion is in progress */
  87	if (le_key_k_type(le_key_version(le_key), le_key) <
  88	    cpu_key_k_type(cpu_key))
  89		return -1;
  90
  91	if (le_key_k_type(le_key_version(le_key), le_key) >
  92	    cpu_key_k_type(cpu_key))
  93		return 1;
  94
  95	return 0;
  96}
  97
  98inline int comp_short_le_keys(const struct reiserfs_key *key1,
  99			      const struct reiserfs_key *key2)
 100{
 101	__u32 *k1_u32, *k2_u32;
 102	int key_length = REISERFS_SHORT_KEY_LEN;
 103
 104	k1_u32 = (__u32 *) key1;
 105	k2_u32 = (__u32 *) key2;
 106	for (; key_length--; ++k1_u32, ++k2_u32) {
 107		if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
 108			return -1;
 109		if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
 110			return 1;
 111	}
 112	return 0;
 113}
 114
 115inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
 116{
 117	int version;
 118	to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
 119	to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
 120
 121	/* find out version of the key */
 122	version = le_key_version(from);
 123	to->version = version;
 124	to->on_disk_key.k_offset = le_key_k_offset(version, from);
 125	to->on_disk_key.k_type = le_key_k_type(version, from);
 126}
 127
 128/*
 129 * this does not say which one is bigger, it only returns 1 if keys
 130 * are not equal, 0 otherwise
 131 */
 132inline int comp_le_keys(const struct reiserfs_key *k1,
 133			const struct reiserfs_key *k2)
 134{
 135	return memcmp(k1, k2, sizeof(struct reiserfs_key));
 136}
 137
 138/**************************************************************************
 139 *  Binary search toolkit function                                        *
 140 *  Search for an item in the array by the item key                       *
 141 *  Returns:    1 if found,  0 if not found;                              *
 142 *        *pos = number of the searched element if found, else the        *
 143 *        number of the first element that is larger than key.            *
 144 **************************************************************************/
 145/*
 146 * For those not familiar with binary search: lbound is the leftmost item
 147 * that it could be, rbound the rightmost item that it could be.  We examine
 148 * the item halfway between lbound and rbound, and that tells us either
 149 * that we can increase lbound, or decrease rbound, or that we have found it,
 150 * or if lbound <= rbound that there are no possible items, and we have not
 151 * found it. With each examination we cut the number of possible items it
 152 * could be by one more than half rounded down, or we find it.
 153 */
 154static inline int bin_search(const void *key,	/* Key to search for. */
 155			     const void *base,	/* First item in the array. */
 156			     int num,	/* Number of items in the array. */
 157			     /*
 158			      * Item size in the array.  searched. Lest the
 159			      * reader be confused, note that this is crafted
 160			      * as a general function, and when it is applied
 161			      * specifically to the array of item headers in a
 162			      * node, width is actually the item header size
 163			      * not the item size.
 164			      */
 165			     int width,
 166			     int *pos /* Number of the searched for element. */
 167    )
 168{
 169	int rbound, lbound, j;
 170
 171	for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
 172	     lbound <= rbound; j = (rbound + lbound) / 2)
 173		switch (comp_keys
 174			((struct reiserfs_key *)((char *)base + j * width),
 175			 (struct cpu_key *)key)) {
 176		case -1:
 177			lbound = j + 1;
 178			continue;
 179		case 1:
 180			rbound = j - 1;
 181			continue;
 182		case 0:
 183			*pos = j;
 184			return ITEM_FOUND;	/* Key found in the array.  */
 185		}
 186
 187	/*
 188	 * bin_search did not find given key, it returns position of key,
 189	 * that is minimal and greater than the given one.
 190	 */
 191	*pos = lbound;
 192	return ITEM_NOT_FOUND;
 193}
 194
 195
 196/* Minimal possible key. It is never in the tree. */
 197const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
 198
 199/* Maximal possible key. It is never in the tree. */
 200static const struct reiserfs_key MAX_KEY = {
 201	cpu_to_le32(0xffffffff),
 202	cpu_to_le32(0xffffffff),
 203	{{cpu_to_le32(0xffffffff),
 204	  cpu_to_le32(0xffffffff)},}
 205};
 206
 207/*
 208 * Get delimiting key of the buffer by looking for it in the buffers in the
 209 * path, starting from the bottom of the path, and going upwards.  We must
 210 * check the path's validity at each step.  If the key is not in the path,
 211 * there is no delimiting key in the tree (buffer is first or last buffer
 212 * in tree), and in this case we return a special key, either MIN_KEY or
 213 * MAX_KEY.
 214 */
 215static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
 216						  const struct super_block *sb)
 217{
 218	int position, path_offset = chk_path->path_length;
 219	struct buffer_head *parent;
 220
 221	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
 222	       "PAP-5010: invalid offset in the path");
 223
 224	/* While not higher in path than first element. */
 225	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 226
 227		RFALSE(!buffer_uptodate
 228		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
 229		       "PAP-5020: parent is not uptodate");
 230
 231		/* Parent at the path is not in the tree now. */
 232		if (!B_IS_IN_TREE
 233		    (parent =
 234		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
 235			return &MAX_KEY;
 236		/* Check whether position in the parent is correct. */
 237		if ((position =
 238		     PATH_OFFSET_POSITION(chk_path,
 239					  path_offset)) >
 240		    B_NR_ITEMS(parent))
 241			return &MAX_KEY;
 242		/* Check whether parent at the path really points to the child. */
 243		if (B_N_CHILD_NUM(parent, position) !=
 244		    PATH_OFFSET_PBUFFER(chk_path,
 245					path_offset + 1)->b_blocknr)
 246			return &MAX_KEY;
 247		/*
 248		 * Return delimiting key if position in the parent
 249		 * is not equal to zero.
 250		 */
 251		if (position)
 252			return internal_key(parent, position - 1);
 253	}
 254	/* Return MIN_KEY if we are in the root of the buffer tree. */
 255	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 256	    b_blocknr == SB_ROOT_BLOCK(sb))
 257		return &MIN_KEY;
 258	return &MAX_KEY;
 259}
 260
 261/* Get delimiting key of the buffer at the path and its right neighbor. */
 262inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
 263					   const struct super_block *sb)
 264{
 265	int position, path_offset = chk_path->path_length;
 266	struct buffer_head *parent;
 267
 268	RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
 269	       "PAP-5030: invalid offset in the path");
 270
 271	while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
 272
 273		RFALSE(!buffer_uptodate
 274		       (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
 275		       "PAP-5040: parent is not uptodate");
 276
 277		/* Parent at the path is not in the tree now. */
 278		if (!B_IS_IN_TREE
 279		    (parent =
 280		     PATH_OFFSET_PBUFFER(chk_path, path_offset)))
 281			return &MIN_KEY;
 282		/* Check whether position in the parent is correct. */
 283		if ((position =
 284		     PATH_OFFSET_POSITION(chk_path,
 285					  path_offset)) >
 286		    B_NR_ITEMS(parent))
 287			return &MIN_KEY;
 288		/*
 289		 * Check whether parent at the path really points
 290		 * to the child.
 291		 */
 292		if (B_N_CHILD_NUM(parent, position) !=
 293		    PATH_OFFSET_PBUFFER(chk_path,
 294					path_offset + 1)->b_blocknr)
 295			return &MIN_KEY;
 296
 297		/*
 298		 * Return delimiting key if position in the parent
 299		 * is not the last one.
 300		 */
 301		if (position != B_NR_ITEMS(parent))
 302			return internal_key(parent, position);
 303	}
 304
 305	/* Return MAX_KEY if we are in the root of the buffer tree. */
 306	if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
 307	    b_blocknr == SB_ROOT_BLOCK(sb))
 308		return &MAX_KEY;
 309	return &MIN_KEY;
 310}
 311
 312/*
 313 * Check whether a key is contained in the tree rooted from a buffer at a path.
 314 * This works by looking at the left and right delimiting keys for the buffer
 315 * in the last path_element in the path.  These delimiting keys are stored
 316 * at least one level above that buffer in the tree. If the buffer is the
 317 * first or last node in the tree order then one of the delimiting keys may
 318 * be absent, and in this case get_lkey and get_rkey return a special key
 319 * which is MIN_KEY or MAX_KEY.
 320 */
 321static inline int key_in_buffer(
 322				/* Path which should be checked. */
 323				struct treepath *chk_path,
 324				/* Key which should be checked. */
 325				const struct cpu_key *key,
 326				struct super_block *sb
 327    )
 328{
 329
 330	RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
 331	       || chk_path->path_length > MAX_HEIGHT,
 332	       "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
 333	       key, chk_path->path_length);
 334	RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
 335	       "PAP-5060: device must not be NODEV");
 336
 337	if (comp_keys(get_lkey(chk_path, sb), key) == 1)
 338		/* left delimiting key is bigger, that the key we look for */
 339		return 0;
 340	/*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
 341	if (comp_keys(get_rkey(chk_path, sb), key) != 1)
 342		/* key must be less than right delimitiing key */
 343		return 0;
 344	return 1;
 345}
 346
 347int reiserfs_check_path(struct treepath *p)
 348{
 349	RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
 350	       "path not properly relsed");
 351	return 0;
 352}
 353
 354/*
 355 * Drop the reference to each buffer in a path and restore
 356 * dirty bits clean when preparing the buffer for the log.
 357 * This version should only be called from fix_nodes()
 358 */
 359void pathrelse_and_restore(struct super_block *sb,
 360			   struct treepath *search_path)
 361{
 362	int path_offset = search_path->path_length;
 363
 364	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 365	       "clm-4000: invalid path offset");
 366
 367	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
 368		struct buffer_head *bh;
 369		bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
 370		reiserfs_restore_prepared_buffer(sb, bh);
 371		brelse(bh);
 372	}
 373	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 374}
 375
 376/* Drop the reference to each buffer in a path */
 377void pathrelse(struct treepath *search_path)
 378{
 379	int path_offset = search_path->path_length;
 380
 381	RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
 382	       "PAP-5090: invalid path offset");
 383
 384	while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
 385		brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
 386
 387	search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
 388}
 389
 390static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
 391{
 392	struct block_head *blkh;
 393	struct item_head *ih;
 394	int used_space;
 395	int prev_location;
 396	int i;
 397	int nr;
 398
 399	blkh = (struct block_head *)buf;
 400	if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
 401		reiserfs_warning(NULL, "reiserfs-5080",
 402				 "this should be caught earlier");
 403		return 0;
 404	}
 405
 406	nr = blkh_nr_item(blkh);
 407	if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
 408		/* item number is too big or too small */
 409		reiserfs_warning(NULL, "reiserfs-5081",
 410				 "nr_item seems wrong: %z", bh);
 411		return 0;
 412	}
 413	ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
 414	used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
 415
 416	/* free space does not match to calculated amount of use space */
 417	if (used_space != blocksize - blkh_free_space(blkh)) {
 
 418		reiserfs_warning(NULL, "reiserfs-5082",
 419				 "free space seems wrong: %z", bh);
 420		return 0;
 421	}
 422	/*
 423	 * FIXME: it is_leaf will hit performance too much - we may have
 424	 * return 1 here
 425	 */
 426
 427	/* check tables of item heads */
 428	ih = (struct item_head *)(buf + BLKH_SIZE);
 429	prev_location = blocksize;
 430	for (i = 0; i < nr; i++, ih++) {
 431		if (le_ih_k_type(ih) == TYPE_ANY) {
 432			reiserfs_warning(NULL, "reiserfs-5083",
 433					 "wrong item type for item %h",
 434					 ih);
 435			return 0;
 436		}
 437		if (ih_location(ih) >= blocksize
 438		    || ih_location(ih) < IH_SIZE * nr) {
 439			reiserfs_warning(NULL, "reiserfs-5084",
 440					 "item location seems wrong: %h",
 441					 ih);
 442			return 0;
 443		}
 444		if (ih_item_len(ih) < 1
 445		    || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
 446			reiserfs_warning(NULL, "reiserfs-5085",
 447					 "item length seems wrong: %h",
 448					 ih);
 449			return 0;
 450		}
 451		if (prev_location - ih_location(ih) != ih_item_len(ih)) {
 452			reiserfs_warning(NULL, "reiserfs-5086",
 453					 "item location seems wrong "
 454					 "(second one): %h", ih);
 455			return 0;
 456		}
 457		prev_location = ih_location(ih);
 458	}
 459
 460	/* one may imagine many more checks */
 461	return 1;
 462}
 463
 464/* returns 1 if buf looks like an internal node, 0 otherwise */
 465static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
 466{
 467	struct block_head *blkh;
 468	int nr;
 469	int used_space;
 470
 471	blkh = (struct block_head *)buf;
 472	nr = blkh_level(blkh);
 473	if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
 474		/* this level is not possible for internal nodes */
 475		reiserfs_warning(NULL, "reiserfs-5087",
 476				 "this should be caught earlier");
 477		return 0;
 478	}
 479
 480	nr = blkh_nr_item(blkh);
 481	/* for internal which is not root we might check min number of keys */
 482	if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
 
 483		reiserfs_warning(NULL, "reiserfs-5088",
 484				 "number of key seems wrong: %z", bh);
 485		return 0;
 486	}
 487
 488	used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
 489	if (used_space != blocksize - blkh_free_space(blkh)) {
 490		reiserfs_warning(NULL, "reiserfs-5089",
 491				 "free space seems wrong: %z", bh);
 492		return 0;
 493	}
 494
 495	/* one may imagine many more checks */
 496	return 1;
 497}
 498
 499/*
 500 * make sure that bh contains formatted node of reiserfs tree of
 501 * 'level'-th level
 502 */
 503static int is_tree_node(struct buffer_head *bh, int level)
 504{
 505	if (B_LEVEL(bh) != level) {
 506		reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
 507				 "not match to the expected one %d",
 508				 B_LEVEL(bh), level);
 509		return 0;
 510	}
 511	if (level == DISK_LEAF_NODE_LEVEL)
 512		return is_leaf(bh->b_data, bh->b_size, bh);
 513
 514	return is_internal(bh->b_data, bh->b_size, bh);
 515}
 516
 517#define SEARCH_BY_KEY_READA 16
 518
 519/*
 520 * The function is NOT SCHEDULE-SAFE!
 521 * It might unlock the write lock if we needed to wait for a block
 522 * to be read. Note that in this case it won't recover the lock to avoid
 523 * high contention resulting from too much lock requests, especially
 524 * the caller (search_by_key) will perform other schedule-unsafe
 525 * operations just after calling this function.
 526 *
 527 * @return depth of lock to be restored after read completes
 528 */
 529static int search_by_key_reada(struct super_block *s,
 530				struct buffer_head **bh,
 531				b_blocknr_t *b, int num)
 532{
 533	int i, j;
 534	int depth = -1;
 535
 536	for (i = 0; i < num; i++) {
 537		bh[i] = sb_getblk(s, b[i]);
 538	}
 539	/*
 540	 * We are going to read some blocks on which we
 541	 * have a reference. It's safe, though we might be
 542	 * reading blocks concurrently changed if we release
 543	 * the lock. But it's still fine because we check later
 544	 * if the tree changed
 545	 */
 546	for (j = 0; j < i; j++) {
 547		/*
 548		 * note, this needs attention if we are getting rid of the BKL
 549		 * you have to make sure the prepared bit isn't set on this
 550		 * buffer
 551		 */
 552		if (!buffer_uptodate(bh[j])) {
 553			if (depth == -1)
 554				depth = reiserfs_write_unlock_nested(s);
 555			ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
 
 
 556		}
 557		brelse(bh[j]);
 558	}
 559	return depth;
 560}
 561
 562/*
 563 * This function fills up the path from the root to the leaf as it
 564 * descends the tree looking for the key.  It uses reiserfs_bread to
 565 * try to find buffers in the cache given their block number.  If it
 566 * does not find them in the cache it reads them from disk.  For each
 567 * node search_by_key finds using reiserfs_bread it then uses
 568 * bin_search to look through that node.  bin_search will find the
 569 * position of the block_number of the next node if it is looking
 570 * through an internal node.  If it is looking through a leaf node
 571 * bin_search will find the position of the item which has key either
 572 * equal to given key, or which is the maximal key less than the given
 573 * key.  search_by_key returns a path that must be checked for the
 574 * correctness of the top of the path but need not be checked for the
 575 * correctness of the bottom of the path
 576 */
 577/*
 578 * search_by_key - search for key (and item) in stree
 579 * @sb: superblock
 580 * @key: pointer to key to search for
 581 * @search_path: Allocated and initialized struct treepath; Returned filled
 582 *		 on success.
 583 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
 584 *		stop at leaf level.
 585 *
 586 * The function is NOT SCHEDULE-SAFE!
 587 */
 588int search_by_key(struct super_block *sb, const struct cpu_key *key,
 589		  struct treepath *search_path, int stop_level)
 
 
 
 
 
 590{
 591	b_blocknr_t block_number;
 592	int expected_level;
 593	struct buffer_head *bh;
 594	struct path_element *last_element;
 595	int node_level, retval;
 
 596	int fs_gen;
 597	struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
 598	b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
 599	int reada_count = 0;
 600
 601#ifdef CONFIG_REISERFS_CHECK
 602	int repeat_counter = 0;
 603#endif
 604
 605	PROC_INFO_INC(sb, search_by_key);
 606
 607	/*
 608	 * As we add each node to a path we increase its count.  This means
 609	 * that we must be careful to release all nodes in a path before we
 610	 * either discard the path struct or re-use the path struct, as we
 611	 * do here.
 612	 */
 613
 614	pathrelse(search_path);
 615
 616	/*
 617	 * With each iteration of this loop we search through the items in the
 618	 * current node, and calculate the next current node(next path element)
 619	 * for the next iteration of this loop..
 620	 */
 621	block_number = SB_ROOT_BLOCK(sb);
 622	expected_level = -1;
 623	while (1) {
 624
 625#ifdef CONFIG_REISERFS_CHECK
 626		if (!(++repeat_counter % 50000))
 627			reiserfs_warning(sb, "PAP-5100",
 628					 "%s: there were %d iterations of "
 629					 "while loop looking for key %K",
 630					 current->comm, repeat_counter,
 631					 key);
 632#endif
 633
 634		/* prep path to have another element added to it. */
 635		last_element =
 636		    PATH_OFFSET_PELEMENT(search_path,
 637					 ++search_path->path_length);
 638		fs_gen = get_generation(sb);
 639
 640		/*
 641		 * Read the next tree node, and set the last element
 642		 * in the path to have a pointer to it.
 643		 */
 644		if ((bh = last_element->pe_buffer =
 645		     sb_getblk(sb, block_number))) {
 
 646
 
 
 
 
 647			/*
 648			 * We'll need to drop the lock if we encounter any
 649			 * buffers that need to be read. If all of them are
 650			 * already up to date, we don't need to drop the lock.
 651			 */
 652			int depth = -1;
 653
 654			if (!buffer_uptodate(bh) && reada_count > 1)
 655				depth = search_by_key_reada(sb, reada_bh,
 656						    reada_blocks, reada_count);
 657
 658			if (!buffer_uptodate(bh) && depth == -1)
 659				depth = reiserfs_write_unlock_nested(sb);
 660
 661			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 662			wait_on_buffer(bh);
 663
 664			if (depth != -1)
 665				reiserfs_write_lock_nested(sb, depth);
 666			if (!buffer_uptodate(bh))
 667				goto io_error;
 668		} else {
 669io_error:
 670			search_path->path_length--;
 671			pathrelse(search_path);
 672			return IO_ERROR;
 673		}
 674		reada_count = 0;
 675		if (expected_level == -1)
 676			expected_level = SB_TREE_HEIGHT(sb);
 677		expected_level--;
 678
 679		/*
 680		 * It is possible that schedule occurred. We must check
 681		 * whether the key to search is still in the tree rooted
 682		 * from the current buffer. If not then repeat search
 683		 * from the root.
 684		 */
 685		if (fs_changed(fs_gen, sb) &&
 686		    (!B_IS_IN_TREE(bh) ||
 687		     B_LEVEL(bh) != expected_level ||
 688		     !key_in_buffer(search_path, key, sb))) {
 689			PROC_INFO_INC(sb, search_by_key_fs_changed);
 690			PROC_INFO_INC(sb, search_by_key_restarted);
 691			PROC_INFO_INC(sb,
 692				      sbk_restarted[expected_level - 1]);
 693			pathrelse(search_path);
 694
 695			/*
 696			 * Get the root block number so that we can
 697			 * repeat the search starting from the root.
 698			 */
 699			block_number = SB_ROOT_BLOCK(sb);
 700			expected_level = -1;
 
 701
 702			/* repeat search from the root */
 703			continue;
 704		}
 705
 706		/*
 707		 * only check that the key is in the buffer if key is not
 708		 * equal to the MAX_KEY. Latter case is only possible in
 709		 * "finish_unfinished()" processing during mount.
 710		 */
 711		RFALSE(comp_keys(&MAX_KEY, key) &&
 712		       !key_in_buffer(search_path, key, sb),
 713		       "PAP-5130: key is not in the buffer");
 714#ifdef CONFIG_REISERFS_CHECK
 715		if (REISERFS_SB(sb)->cur_tb) {
 716			print_cur_tb("5140");
 717			reiserfs_panic(sb, "PAP-5140",
 718				       "schedule occurred in do_balance!");
 719		}
 720#endif
 721
 722		/*
 723		 * make sure, that the node contents look like a node of
 724		 * certain level
 725		 */
 726		if (!is_tree_node(bh, expected_level)) {
 727			reiserfs_error(sb, "vs-5150",
 728				       "invalid format found in block %ld. "
 729				       "Fsck?", bh->b_blocknr);
 730			pathrelse(search_path);
 731			return IO_ERROR;
 732		}
 733
 734		/* ok, we have acquired next formatted node in the tree */
 735		node_level = B_LEVEL(bh);
 736
 737		PROC_INFO_BH_STAT(sb, bh, node_level - 1);
 738
 739		RFALSE(node_level < stop_level,
 740		       "vs-5152: tree level (%d) is less than stop level (%d)",
 741		       node_level, stop_level);
 742
 743		retval = bin_search(key, item_head(bh, 0),
 744				      B_NR_ITEMS(bh),
 745				      (node_level ==
 746				       DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
 747				      KEY_SIZE,
 748				      &last_element->pe_position);
 749		if (node_level == stop_level) {
 750			return retval;
 751		}
 752
 753		/* we are not in the stop level */
 754		/*
 755		 * item has been found, so we choose the pointer which
 756		 * is to the right of the found one
 757		 */
 758		if (retval == ITEM_FOUND)
 
 759			last_element->pe_position++;
 760
 761		/*
 762		 * if item was not found we choose the position which is to
 763		 * the left of the found item. This requires no code,
 764		 * bin_search did it already.
 765		 */
 766
 767		/*
 768		 * So we have chosen a position in the current node which is
 769		 * an internal node.  Now we calculate child block number by
 770		 * position in the node.
 771		 */
 772		block_number =
 773		    B_N_CHILD_NUM(bh, last_element->pe_position);
 774
 775		/*
 776		 * if we are going to read leaf nodes, try for read
 777		 * ahead as well
 778		 */
 779		if ((search_path->reada & PATH_READA) &&
 780		    node_level == DISK_LEAF_NODE_LEVEL + 1) {
 781			int pos = last_element->pe_position;
 782			int limit = B_NR_ITEMS(bh);
 783			struct reiserfs_key *le_key;
 784
 785			if (search_path->reada & PATH_READA_BACK)
 786				limit = 0;
 787			while (reada_count < SEARCH_BY_KEY_READA) {
 788				if (pos == limit)
 789					break;
 790				reada_blocks[reada_count++] =
 791				    B_N_CHILD_NUM(bh, pos);
 792				if (search_path->reada & PATH_READA_BACK)
 793					pos--;
 794				else
 795					pos++;
 796
 797				/*
 798				 * check to make sure we're in the same object
 799				 */
 800				le_key = internal_key(bh, pos);
 801				if (le32_to_cpu(le_key->k_objectid) !=
 802				    key->on_disk_key.k_objectid) {
 803					break;
 804				}
 805			}
 806		}
 807	}
 808}
 809
 810/*
 811 * Form the path to an item and position in this item which contains
 812 * file byte defined by key. If there is no such item
 813 * corresponding to the key, we point the path to the item with
 814 * maximal key less than key, and *pos_in_item is set to one
 815 * past the last entry/byte in the item.  If searching for entry in a
 816 * directory item, and it is not found, *pos_in_item is set to one
 817 * entry more than the entry with maximal key which is less than the
 818 * sought key.
 819 *
 820 * Note that if there is no entry in this same node which is one more,
 821 * then we point to an imaginary entry.  for direct items, the
 822 * position is in units of bytes, for indirect items the position is
 823 * in units of blocknr entries, for directory items the position is in
 824 * units of directory entries.
 825 */
 826/* The function is NOT SCHEDULE-SAFE! */
 827int search_for_position_by_key(struct super_block *sb,
 828			       /* Key to search (cpu variable) */
 829			       const struct cpu_key *p_cpu_key,
 830			       /* Filled up by this function. */
 831			       struct treepath *search_path)
 832{
 833	struct item_head *p_le_ih;	/* pointer to on-disk structure */
 834	int blk_size;
 835	loff_t item_offset, offset;
 836	struct reiserfs_dir_entry de;
 837	int retval;
 838
 839	/* If searching for directory entry. */
 840	if (is_direntry_cpu_key(p_cpu_key))
 841		return search_by_entry_key(sb, p_cpu_key, search_path,
 842					   &de);
 843
 844	/* If not searching for directory entry. */
 845
 846	/* If item is found. */
 847	retval = search_item(sb, p_cpu_key, search_path);
 848	if (retval == IO_ERROR)
 849		return retval;
 850	if (retval == ITEM_FOUND) {
 851
 852		RFALSE(!ih_item_len
 853		       (item_head
 854			(PATH_PLAST_BUFFER(search_path),
 855			 PATH_LAST_POSITION(search_path))),
 856		       "PAP-5165: item length equals zero");
 857
 858		pos_in_item(search_path) = 0;
 859		return POSITION_FOUND;
 860	}
 861
 862	RFALSE(!PATH_LAST_POSITION(search_path),
 863	       "PAP-5170: position equals zero");
 864
 865	/* Item is not found. Set path to the previous item. */
 866	p_le_ih =
 867	    item_head(PATH_PLAST_BUFFER(search_path),
 868			   --PATH_LAST_POSITION(search_path));
 869	blk_size = sb->s_blocksize;
 870
 871	if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
 872		return FILE_NOT_FOUND;
 873
 874	/* FIXME: quite ugly this far */
 875
 876	item_offset = le_ih_k_offset(p_le_ih);
 877	offset = cpu_key_k_offset(p_cpu_key);
 878
 879	/* Needed byte is contained in the item pointed to by the path. */
 880	if (item_offset <= offset &&
 881	    item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
 882		pos_in_item(search_path) = offset - item_offset;
 883		if (is_indirect_le_ih(p_le_ih)) {
 884			pos_in_item(search_path) /= blk_size;
 885		}
 886		return POSITION_FOUND;
 887	}
 888
 889	/*
 890	 * Needed byte is not contained in the item pointed to by the
 891	 * path. Set pos_in_item out of the item.
 892	 */
 893	if (is_indirect_le_ih(p_le_ih))
 894		pos_in_item(search_path) =
 895		    ih_item_len(p_le_ih) / UNFM_P_SIZE;
 896	else
 897		pos_in_item(search_path) = ih_item_len(p_le_ih);
 898
 899	return POSITION_NOT_FOUND;
 900}
 901
 902/* Compare given item and item pointed to by the path. */
 903int comp_items(const struct item_head *stored_ih, const struct treepath *path)
 904{
 905	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
 906	struct item_head *ih;
 907
 908	/* Last buffer at the path is not in the tree. */
 909	if (!B_IS_IN_TREE(bh))
 910		return 1;
 911
 912	/* Last path position is invalid. */
 913	if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
 914		return 1;
 915
 916	/* we need only to know, whether it is the same item */
 917	ih = tp_item_head(path);
 918	return memcmp(stored_ih, ih, IH_SIZE);
 919}
 920
 921/* unformatted nodes are not logged anymore, ever.  This is safe now */
 
 
 922#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
 923
 924/* block can not be forgotten as it is in I/O or held by someone */
 925#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
 926
 927/* prepare for delete or cut of direct item */
 928static inline int prepare_for_direct_item(struct treepath *path,
 929					  struct item_head *le_ih,
 930					  struct inode *inode,
 931					  loff_t new_file_length, int *cut_size)
 932{
 933	loff_t round_len;
 934
 935	if (new_file_length == max_reiserfs_offset(inode)) {
 936		/* item has to be deleted */
 937		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 938		return M_DELETE;
 939	}
 940	/* new file gets truncated */
 941	if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
 
 942		round_len = ROUND_UP(new_file_length);
 943		/* this was new_file_length < le_ih ... */
 944		if (round_len < le_ih_k_offset(le_ih)) {
 945			*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 946			return M_DELETE;	/* Delete this item. */
 947		}
 948		/* Calculate first position and size for cutting from item. */
 949		pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
 950		*cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
 951
 952		return M_CUT;	/* Cut from this item. */
 953	}
 954
 955	/* old file: items may have any length */
 956
 957	if (new_file_length < le_ih_k_offset(le_ih)) {
 958		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 959		return M_DELETE;	/* Delete this item. */
 960	}
 961
 962	/* Calculate first position and size for cutting from item. */
 963	*cut_size = -(ih_item_len(le_ih) -
 964		      (pos_in_item(path) =
 965		       new_file_length + 1 - le_ih_k_offset(le_ih)));
 966	return M_CUT;		/* Cut from this item. */
 967}
 968
 969static inline int prepare_for_direntry_item(struct treepath *path,
 970					    struct item_head *le_ih,
 971					    struct inode *inode,
 972					    loff_t new_file_length,
 973					    int *cut_size)
 974{
 975	if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
 976	    new_file_length == max_reiserfs_offset(inode)) {
 977		RFALSE(ih_entry_count(le_ih) != 2,
 978		       "PAP-5220: incorrect empty directory item (%h)", le_ih);
 979		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 980		/* Delete the directory item containing "." and ".." entry. */
 981		return M_DELETE;
 982	}
 983
 984	if (ih_entry_count(le_ih) == 1) {
 985		/*
 986		 * Delete the directory item such as there is one record only
 987		 * in this item
 988		 */
 989		*cut_size = -(IH_SIZE + ih_item_len(le_ih));
 990		return M_DELETE;
 991	}
 992
 993	/* Cut one record from the directory item. */
 994	*cut_size =
 995	    -(DEH_SIZE +
 996	      entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
 997	return M_CUT;
 998}
 999
1000#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1001
1002/*
1003 * If the path points to a directory or direct item, calculate mode
1004 * and the size cut, for balance.
1005 * If the path points to an indirect item, remove some number of its
1006 * unformatted nodes.
1007 * In case of file truncate calculate whether this item must be
1008 * deleted/truncated or last unformatted node of this item will be
1009 * converted to a direct item.
1010 * This function returns a determination of what balance mode the
1011 * calling function should employ.
1012 */
1013static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1014				      struct inode *inode,
1015				      struct treepath *path,
1016				      const struct cpu_key *item_key,
1017				      /*
1018				       * Number of unformatted nodes
1019				       * which were removed from end
1020				       * of the file.
1021				       */
1022				      int *removed,
1023				      int *cut_size,
1024				      /* MAX_KEY_OFFSET in case of delete. */
1025				      unsigned long long new_file_length
1026    )
1027{
1028	struct super_block *sb = inode->i_sb;
1029	struct item_head *p_le_ih = tp_item_head(path);
1030	struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1031
1032	BUG_ON(!th->t_trans_id);
1033
1034	/* Stat_data item. */
1035	if (is_statdata_le_ih(p_le_ih)) {
1036
1037		RFALSE(new_file_length != max_reiserfs_offset(inode),
1038		       "PAP-5210: mode must be M_DELETE");
1039
1040		*cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1041		return M_DELETE;
1042	}
1043
1044	/* Directory item. */
1045	if (is_direntry_le_ih(p_le_ih))
1046		return prepare_for_direntry_item(path, p_le_ih, inode,
1047						 new_file_length,
1048						 cut_size);
1049
1050	/* Direct item. */
1051	if (is_direct_le_ih(p_le_ih))
1052		return prepare_for_direct_item(path, p_le_ih, inode,
1053					       new_file_length, cut_size);
1054
1055	/* Case of an indirect item. */
1056	{
1057	    int blk_size = sb->s_blocksize;
1058	    struct item_head s_ih;
1059	    int need_re_search;
1060	    int delete = 0;
1061	    int result = M_CUT;
1062	    int pos = 0;
1063
1064	    if ( new_file_length == max_reiserfs_offset (inode) ) {
1065		/*
1066		 * prepare_for_delete_or_cut() is called by
1067		 * reiserfs_delete_item()
1068		 */
1069		new_file_length = 0;
1070		delete = 1;
1071	    }
1072
1073	    do {
1074		need_re_search = 0;
1075		*cut_size = 0;
1076		bh = PATH_PLAST_BUFFER(path);
1077		copy_item_head(&s_ih, tp_item_head(path));
1078		pos = I_UNFM_NUM(&s_ih);
1079
1080		while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1081		    __le32 *unfm;
1082		    __u32 block;
1083
1084		    /*
1085		     * Each unformatted block deletion may involve
1086		     * one additional bitmap block into the transaction,
1087		     * thereby the initial journal space reservation
1088		     * might not be enough.
1089		     */
1090		    if (!delete && (*cut_size) != 0 &&
1091			reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1092			break;
1093
1094		    unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1095		    block = get_block_num(unfm, 0);
1096
1097		    if (block != 0) {
1098			reiserfs_prepare_for_journal(sb, bh, 1);
1099			put_block_num(unfm, 0, 0);
1100			journal_mark_dirty(th, bh);
1101			reiserfs_free_block(th, inode, block, 1);
1102		    }
1103
1104		    reiserfs_cond_resched(sb);
 
 
1105
1106		    if (item_moved (&s_ih, path))  {
1107			need_re_search = 1;
1108			break;
1109		    }
1110
1111		    pos --;
1112		    (*removed)++;
1113		    (*cut_size) -= UNFM_P_SIZE;
1114
1115		    if (pos == 0) {
1116			(*cut_size) -= IH_SIZE;
1117			result = M_DELETE;
1118			break;
1119		    }
1120		}
1121		/*
1122		 * a trick.  If the buffer has been logged, this will
1123		 * do nothing.  If we've broken the loop without logging
1124		 * it, it will restore the buffer
1125		 */
1126		reiserfs_restore_prepared_buffer(sb, bh);
1127	    } while (need_re_search &&
1128		     search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1129	    pos_in_item(path) = pos * UNFM_P_SIZE;
1130
1131	    if (*cut_size == 0) {
1132		/*
1133		 * Nothing was cut. maybe convert last unformatted node to the
1134		 * direct item?
1135		 */
1136		result = M_CONVERT;
1137	    }
1138	    return result;
1139	}
1140}
1141
1142/* Calculate number of bytes which will be deleted or cut during balance */
1143static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1144{
1145	int del_size;
1146	struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1147
1148	if (is_statdata_le_ih(p_le_ih))
1149		return 0;
1150
1151	del_size =
1152	    (mode ==
1153	     M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1154	if (is_direntry_le_ih(p_le_ih)) {
1155		/*
1156		 * return EMPTY_DIR_SIZE; We delete emty directories only.
1157		 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1158		 * different empty size.  ick. FIXME, is this right?
1159		 */
1160		return del_size;
1161	}
1162
1163	if (is_indirect_le_ih(p_le_ih))
1164		del_size = (del_size / UNFM_P_SIZE) *
1165				(PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1166	return del_size;
1167}
1168
1169static void init_tb_struct(struct reiserfs_transaction_handle *th,
1170			   struct tree_balance *tb,
1171			   struct super_block *sb,
1172			   struct treepath *path, int size)
1173{
1174
1175	BUG_ON(!th->t_trans_id);
1176
1177	memset(tb, '\0', sizeof(struct tree_balance));
1178	tb->transaction_handle = th;
1179	tb->tb_sb = sb;
1180	tb->tb_path = path;
1181	PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1182	PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1183	tb->insert_size[0] = size;
1184}
1185
1186void padd_item(char *item, int total_length, int length)
1187{
1188	int i;
1189
1190	for (i = total_length; i > length;)
1191		item[--i] = 0;
1192}
1193
1194#ifdef REISERQUOTA_DEBUG
1195char key2type(struct reiserfs_key *ih)
1196{
1197	if (is_direntry_le_key(2, ih))
1198		return 'd';
1199	if (is_direct_le_key(2, ih))
1200		return 'D';
1201	if (is_indirect_le_key(2, ih))
1202		return 'i';
1203	if (is_statdata_le_key(2, ih))
1204		return 's';
1205	return 'u';
1206}
1207
1208char head2type(struct item_head *ih)
1209{
1210	if (is_direntry_le_ih(ih))
1211		return 'd';
1212	if (is_direct_le_ih(ih))
1213		return 'D';
1214	if (is_indirect_le_ih(ih))
1215		return 'i';
1216	if (is_statdata_le_ih(ih))
1217		return 's';
1218	return 'u';
1219}
1220#endif
1221
1222/*
1223 * Delete object item.
1224 * th       - active transaction handle
1225 * path     - path to the deleted item
1226 * item_key - key to search for the deleted item
1227 * indode   - used for updating i_blocks and quotas
1228 * un_bh    - NULL or unformatted node pointer
1229 */
1230int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1231			 struct treepath *path, const struct cpu_key *item_key,
1232			 struct inode *inode, struct buffer_head *un_bh)
1233{
1234	struct super_block *sb = inode->i_sb;
1235	struct tree_balance s_del_balance;
1236	struct item_head s_ih;
1237	struct item_head *q_ih;
1238	int quota_cut_bytes;
1239	int ret_value, del_size, removed;
1240	int depth;
1241
1242#ifdef CONFIG_REISERFS_CHECK
1243	char mode;
1244	int iter = 0;
1245#endif
1246
1247	BUG_ON(!th->t_trans_id);
1248
1249	init_tb_struct(th, &s_del_balance, sb, path,
1250		       0 /*size is unknown */ );
1251
1252	while (1) {
1253		removed = 0;
1254
1255#ifdef CONFIG_REISERFS_CHECK
1256		iter++;
1257		mode =
1258#endif
1259		    prepare_for_delete_or_cut(th, inode, path,
1260					      item_key, &removed,
1261					      &del_size,
1262					      max_reiserfs_offset(inode));
1263
1264		RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1265
1266		copy_item_head(&s_ih, tp_item_head(path));
1267		s_del_balance.insert_size[0] = del_size;
1268
1269		ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1270		if (ret_value != REPEAT_SEARCH)
1271			break;
1272
1273		PROC_INFO_INC(sb, delete_item_restarted);
1274
1275		/* file system changed, repeat search */
1276		ret_value =
1277		    search_for_position_by_key(sb, item_key, path);
1278		if (ret_value == IO_ERROR)
1279			break;
1280		if (ret_value == FILE_NOT_FOUND) {
1281			reiserfs_warning(sb, "vs-5340",
1282					 "no items of the file %K found",
1283					 item_key);
1284			break;
1285		}
1286	}			/* while (1) */
1287
1288	if (ret_value != CARRY_ON) {
1289		unfix_nodes(&s_del_balance);
1290		return 0;
1291	}
1292
1293	/* reiserfs_delete_item returns item length when success */
1294	ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1295	q_ih = tp_item_head(path);
1296	quota_cut_bytes = ih_item_len(q_ih);
1297
1298	/*
1299	 * hack so the quota code doesn't have to guess if the file has a
1300	 * tail.  On tail insert, we allocate quota for 1 unformatted node.
1301	 * We test the offset because the tail might have been
1302	 * split into multiple items, and we only want to decrement for
1303	 * the unfm node once
1304	 */
1305	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1306		if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1307			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1308		} else {
1309			quota_cut_bytes = 0;
1310		}
1311	}
1312
1313	if (un_bh) {
1314		int off;
1315		char *data;
1316
1317		/*
1318		 * We are in direct2indirect conversion, so move tail contents
1319		 * to the unformatted node
1320		 */
1321		/*
1322		 * note, we do the copy before preparing the buffer because we
1323		 * don't care about the contents of the unformatted node yet.
1324		 * the only thing we really care about is the direct item's
1325		 * data is in the unformatted node.
1326		 *
1327		 * Otherwise, we would have to call
1328		 * reiserfs_prepare_for_journal on the unformatted node,
1329		 * which might schedule, meaning we'd have to loop all the
1330		 * way back up to the start of the while loop.
1331		 *
1332		 * The unformatted node must be dirtied later on.  We can't be
1333		 * sure here if the entire tail has been deleted yet.
1334		 *
1335		 * un_bh is from the page cache (all unformatted nodes are
1336		 * from the page cache) and might be a highmem page.  So, we
1337		 * can't use un_bh->b_data.
1338		 * -clm
1339		 */
1340
1341		data = kmap_atomic(un_bh->b_page);
1342		off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1343		memcpy(data + off,
1344		       ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1345		       ret_value);
1346		kunmap_atomic(data);
1347	}
1348
1349	/* Perform balancing after all resources have been collected at once. */
1350	do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1351
1352#ifdef REISERQUOTA_DEBUG
1353	reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1354		       "reiserquota delete_item(): freeing %u, id=%u type=%c",
1355		       quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1356#endif
1357	depth = reiserfs_write_unlock_nested(inode->i_sb);
1358	dquot_free_space_nodirty(inode, quota_cut_bytes);
1359	reiserfs_write_lock_nested(inode->i_sb, depth);
1360
1361	/* Return deleted body length */
1362	return ret_value;
1363}
1364
1365/*
1366 * Summary Of Mechanisms For Handling Collisions Between Processes:
1367 *
1368 *  deletion of the body of the object is performed by iput(), with the
1369 *  result that if multiple processes are operating on a file, the
1370 *  deletion of the body of the file is deferred until the last process
1371 *  that has an open inode performs its iput().
1372 *
1373 *  writes and truncates are protected from collisions by use of
1374 *  semaphores.
1375 *
1376 *  creates, linking, and mknod are protected from collisions with other
1377 *  processes by making the reiserfs_add_entry() the last step in the
1378 *  creation, and then rolling back all changes if there was a collision.
1379 *  - Hans
1380*/
1381
1382/* this deletes item which never gets split */
1383void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1384				struct inode *inode, struct reiserfs_key *key)
1385{
1386	struct super_block *sb = th->t_super;
1387	struct tree_balance tb;
1388	INITIALIZE_PATH(path);
1389	int item_len = 0;
1390	int tb_init = 0;
1391	struct cpu_key cpu_key;
1392	int retval;
1393	int quota_cut_bytes = 0;
1394
1395	BUG_ON(!th->t_trans_id);
1396
1397	le_key2cpu_key(&cpu_key, key);
1398
1399	while (1) {
1400		retval = search_item(th->t_super, &cpu_key, &path);
1401		if (retval == IO_ERROR) {
1402			reiserfs_error(th->t_super, "vs-5350",
1403				       "i/o failure occurred trying "
1404				       "to delete %K", &cpu_key);
1405			break;
1406		}
1407		if (retval != ITEM_FOUND) {
1408			pathrelse(&path);
1409			/*
1410			 * No need for a warning, if there is just no free
1411			 * space to insert '..' item into the
1412			 * newly-created subdir
1413			 */
1414			if (!
1415			    ((unsigned long long)
1416			     GET_HASH_VALUE(le_key_k_offset
1417					    (le_key_version(key), key)) == 0
1418			     && (unsigned long long)
1419			     GET_GENERATION_NUMBER(le_key_k_offset
1420						   (le_key_version(key),
1421						    key)) == 1))
1422				reiserfs_warning(th->t_super, "vs-5355",
1423						 "%k not found", key);
1424			break;
1425		}
1426		if (!tb_init) {
1427			tb_init = 1;
1428			item_len = ih_item_len(tp_item_head(&path));
1429			init_tb_struct(th, &tb, th->t_super, &path,
1430				       -(IH_SIZE + item_len));
1431		}
1432		quota_cut_bytes = ih_item_len(tp_item_head(&path));
1433
1434		retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1435		if (retval == REPEAT_SEARCH) {
1436			PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1437			continue;
1438		}
1439
1440		if (retval == CARRY_ON) {
1441			do_balance(&tb, NULL, NULL, M_DELETE);
1442			/*
1443			 * Should we count quota for item? (we don't
1444			 * count quotas for save-links)
1445			 */
1446			if (inode) {
1447				int depth;
1448#ifdef REISERQUOTA_DEBUG
1449				reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1450					       "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1451					       quota_cut_bytes, inode->i_uid,
1452					       key2type(key));
1453#endif
1454				depth = reiserfs_write_unlock_nested(sb);
1455				dquot_free_space_nodirty(inode,
1456							 quota_cut_bytes);
1457				reiserfs_write_lock_nested(sb, depth);
1458			}
1459			break;
1460		}
1461
1462		/* IO_ERROR, NO_DISK_SPACE, etc */
1463		reiserfs_warning(th->t_super, "vs-5360",
1464				 "could not delete %K due to fix_nodes failure",
1465				 &cpu_key);
1466		unfix_nodes(&tb);
1467		break;
1468	}
1469
1470	reiserfs_check_path(&path);
1471}
1472
1473int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1474			   struct inode *inode)
1475{
1476	int err;
1477	inode->i_size = 0;
1478	BUG_ON(!th->t_trans_id);
1479
1480	/* for directory this deletes item containing "." and ".." */
1481	err =
1482	    reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1483	if (err)
1484		return err;
1485
1486#if defined( USE_INODE_GENERATION_COUNTER )
1487	if (!old_format_only(th->t_super)) {
1488		__le32 *inode_generation;
1489
1490		inode_generation =
1491		    &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1492		le32_add_cpu(inode_generation, 1);
1493	}
1494/* USE_INODE_GENERATION_COUNTER */
1495#endif
1496	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1497
1498	return err;
1499}
1500
1501static void unmap_buffers(struct page *page, loff_t pos)
1502{
1503	struct buffer_head *bh;
1504	struct buffer_head *head;
1505	struct buffer_head *next;
1506	unsigned long tail_index;
1507	unsigned long cur_index;
1508
1509	if (page) {
1510		if (page_has_buffers(page)) {
1511			tail_index = pos & (PAGE_SIZE - 1);
1512			cur_index = 0;
1513			head = page_buffers(page);
1514			bh = head;
1515			do {
1516				next = bh->b_this_page;
1517
1518				/*
1519				 * we want to unmap the buffers that contain
1520				 * the tail, and all the buffers after it
1521				 * (since the tail must be at the end of the
1522				 * file).  We don't want to unmap file data
1523				 * before the tail, since it might be dirty
1524				 * and waiting to reach disk
1525				 */
1526				cur_index += bh->b_size;
1527				if (cur_index > tail_index) {
1528					reiserfs_unmap_buffer(bh);
1529				}
1530				bh = next;
1531			} while (bh != head);
1532		}
1533	}
1534}
1535
1536static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1537				    struct inode *inode,
1538				    struct page *page,
1539				    struct treepath *path,
1540				    const struct cpu_key *item_key,
1541				    loff_t new_file_size, char *mode)
1542{
1543	struct super_block *sb = inode->i_sb;
1544	int block_size = sb->s_blocksize;
1545	int cut_bytes;
1546	BUG_ON(!th->t_trans_id);
1547	BUG_ON(new_file_size != inode->i_size);
1548
1549	/*
1550	 * the page being sent in could be NULL if there was an i/o error
1551	 * reading in the last block.  The user will hit problems trying to
1552	 * read the file, but for now we just skip the indirect2direct
1553	 */
1554	if (atomic_read(&inode->i_count) > 1 ||
1555	    !tail_has_to_be_packed(inode) ||
1556	    !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1557		/* leave tail in an unformatted node */
1558		*mode = M_SKIP_BALANCING;
1559		cut_bytes =
1560		    block_size - (new_file_size & (block_size - 1));
1561		pathrelse(path);
1562		return cut_bytes;
1563	}
1564
1565	/* Perform the conversion to a direct_item. */
 
 
1566	return indirect2direct(th, inode, page, path, item_key,
1567			       new_file_size, mode);
1568}
1569
1570/*
1571 * we did indirect_to_direct conversion. And we have inserted direct
1572 * item successesfully, but there were no disk space to cut unfm
1573 * pointer being converted. Therefore we have to delete inserted
1574 * direct item(s)
1575 */
1576static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1577					 struct inode *inode, struct treepath *path)
1578{
1579	struct cpu_key tail_key;
1580	int tail_len;
1581	int removed;
1582	BUG_ON(!th->t_trans_id);
1583
1584	make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1585	tail_key.key_length = 4;
1586
1587	tail_len =
1588	    (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1589	while (tail_len) {
1590		/* look for the last byte of the tail */
1591		if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1592		    POSITION_NOT_FOUND)
1593			reiserfs_panic(inode->i_sb, "vs-5615",
1594				       "found invalid item");
1595		RFALSE(path->pos_in_item !=
1596		       ih_item_len(tp_item_head(path)) - 1,
1597		       "vs-5616: appended bytes found");
1598		PATH_LAST_POSITION(path)--;
1599
1600		removed =
1601		    reiserfs_delete_item(th, path, &tail_key, inode,
1602					 NULL /*unbh not needed */ );
1603		RFALSE(removed <= 0
1604		       || removed > tail_len,
1605		       "vs-5617: there was tail %d bytes, removed item length %d bytes",
1606		       tail_len, removed);
1607		tail_len -= removed;
1608		set_cpu_key_k_offset(&tail_key,
1609				     cpu_key_k_offset(&tail_key) - removed);
1610	}
1611	reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1612			 "conversion has been rolled back due to "
1613			 "lack of disk space");
 
1614	mark_inode_dirty(inode);
1615}
1616
1617/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1618int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1619			   struct treepath *path,
1620			   struct cpu_key *item_key,
1621			   struct inode *inode,
1622			   struct page *page, loff_t new_file_size)
1623{
1624	struct super_block *sb = inode->i_sb;
1625	/*
1626	 * Every function which is going to call do_balance must first
1627	 * create a tree_balance structure.  Then it must fill up this
1628	 * structure by using the init_tb_struct and fix_nodes functions.
1629	 * After that we can make tree balancing.
1630	 */
1631	struct tree_balance s_cut_balance;
1632	struct item_head *p_le_ih;
1633	int cut_size = 0;	/* Amount to be cut. */
1634	int ret_value = CARRY_ON;
1635	int removed = 0;	/* Number of the removed unformatted nodes. */
1636	int is_inode_locked = 0;
1637	char mode;		/* Mode of the balance. */
1638	int retval2 = -1;
1639	int quota_cut_bytes;
1640	loff_t tail_pos = 0;
1641	int depth;
1642
1643	BUG_ON(!th->t_trans_id);
1644
1645	init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1646		       cut_size);
1647
1648	/*
1649	 * Repeat this loop until we either cut the item without needing
1650	 * to balance, or we fix_nodes without schedule occurring
1651	 */
1652	while (1) {
1653		/*
1654		 * Determine the balance mode, position of the first byte to
1655		 * be cut, and size to be cut.  In case of the indirect item
1656		 * free unformatted nodes which are pointed to by the cut
1657		 * pointers.
1658		 */
1659
1660		mode =
1661		    prepare_for_delete_or_cut(th, inode, path,
1662					      item_key, &removed,
1663					      &cut_size, new_file_size);
1664		if (mode == M_CONVERT) {
1665			/*
1666			 * convert last unformatted node to direct item or
1667			 * leave tail in the unformatted node
1668			 */
1669			RFALSE(ret_value != CARRY_ON,
1670			       "PAP-5570: can not convert twice");
1671
1672			ret_value =
1673			    maybe_indirect_to_direct(th, inode, page,
1674						     path, item_key,
1675						     new_file_size, &mode);
1676			if (mode == M_SKIP_BALANCING)
1677				/* tail has been left in the unformatted node */
1678				return ret_value;
1679
1680			is_inode_locked = 1;
1681
1682			/*
1683			 * removing of last unformatted node will
1684			 * change value we have to return to truncate.
1685			 * Save it
1686			 */
1687			retval2 = ret_value;
 
1688
1689			/*
1690			 * So, we have performed the first part of the
1691			 * conversion:
1692			 * inserting the new direct item.  Now we are
1693			 * removing the last unformatted node pointer.
1694			 * Set key to search for it.
1695			 */
1696			set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1697			item_key->key_length = 4;
1698			new_file_size -=
1699			    (new_file_size & (sb->s_blocksize - 1));
1700			tail_pos = new_file_size;
1701			set_cpu_key_k_offset(item_key, new_file_size + 1);
1702			if (search_for_position_by_key
1703			    (sb, item_key,
1704			     path) == POSITION_NOT_FOUND) {
1705				print_block(PATH_PLAST_BUFFER(path), 3,
1706					    PATH_LAST_POSITION(path) - 1,
1707					    PATH_LAST_POSITION(path) + 1);
1708				reiserfs_panic(sb, "PAP-5580", "item to "
1709					       "convert does not exist (%K)",
1710					       item_key);
1711			}
1712			continue;
1713		}
1714		if (cut_size == 0) {
1715			pathrelse(path);
1716			return 0;
1717		}
1718
1719		s_cut_balance.insert_size[0] = cut_size;
1720
1721		ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1722		if (ret_value != REPEAT_SEARCH)
1723			break;
1724
1725		PROC_INFO_INC(sb, cut_from_item_restarted);
1726
1727		ret_value =
1728		    search_for_position_by_key(sb, item_key, path);
1729		if (ret_value == POSITION_FOUND)
1730			continue;
1731
1732		reiserfs_warning(sb, "PAP-5610", "item %K not found",
1733				 item_key);
1734		unfix_nodes(&s_cut_balance);
1735		return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1736	}			/* while */
1737
1738	/* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1739	if (ret_value != CARRY_ON) {
1740		if (is_inode_locked) {
1741			/*
1742			 * FIXME: this seems to be not needed: we are always
1743			 * able to cut item
1744			 */
1745			indirect_to_direct_roll_back(th, inode, path);
1746		}
1747		if (ret_value == NO_DISK_SPACE)
1748			reiserfs_warning(sb, "reiserfs-5092",
1749					 "NO_DISK_SPACE");
1750		unfix_nodes(&s_cut_balance);
1751		return -EIO;
1752	}
1753
1754	/* go ahead and perform balancing */
1755
1756	RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1757
1758	/* Calculate number of bytes that need to be cut from the item. */
1759	quota_cut_bytes =
1760	    (mode ==
1761	     M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1762	    insert_size[0];
1763	if (retval2 == -1)
1764		ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1765	else
1766		ret_value = retval2;
1767
1768	/*
1769	 * For direct items, we only change the quota when deleting the last
1770	 * item.
1771	 */
1772	p_le_ih = tp_item_head(s_cut_balance.tb_path);
1773	if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1774		if (mode == M_DELETE &&
1775		    (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1776		    1) {
1777			/* FIXME: this is to keep 3.5 happy */
1778			REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1779			quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1780		} else {
1781			quota_cut_bytes = 0;
1782		}
1783	}
1784#ifdef CONFIG_REISERFS_CHECK
1785	if (is_inode_locked) {
1786		struct item_head *le_ih =
1787		    tp_item_head(s_cut_balance.tb_path);
1788		/*
1789		 * we are going to complete indirect2direct conversion. Make
1790		 * sure, that we exactly remove last unformatted node pointer
1791		 * of the item
1792		 */
1793		if (!is_indirect_le_ih(le_ih))
1794			reiserfs_panic(sb, "vs-5652",
1795				       "item must be indirect %h", le_ih);
1796
1797		if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1798			reiserfs_panic(sb, "vs-5653", "completing "
1799				       "indirect2direct conversion indirect "
1800				       "item %h being deleted must be of "
1801				       "4 byte long", le_ih);
1802
1803		if (mode == M_CUT
1804		    && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1805			reiserfs_panic(sb, "vs-5654", "can not complete "
1806				       "indirect2direct conversion of %h "
1807				       "(CUT, insert_size==%d)",
1808				       le_ih, s_cut_balance.insert_size[0]);
1809		}
1810		/*
1811		 * it would be useful to make sure, that right neighboring
1812		 * item is direct item of this file
1813		 */
1814	}
1815#endif
1816
1817	do_balance(&s_cut_balance, NULL, NULL, mode);
1818	if (is_inode_locked) {
1819		/*
1820		 * we've done an indirect->direct conversion.  when the
1821		 * data block was freed, it was removed from the list of
1822		 * blocks that must be flushed before the transaction
1823		 * commits, make sure to unmap and invalidate it
1824		 */
1825		unmap_buffers(page, tail_pos);
1826		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1827	}
1828#ifdef REISERQUOTA_DEBUG
1829	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1830		       "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1831		       quota_cut_bytes, inode->i_uid, '?');
1832#endif
1833	depth = reiserfs_write_unlock_nested(sb);
1834	dquot_free_space_nodirty(inode, quota_cut_bytes);
1835	reiserfs_write_lock_nested(sb, depth);
1836	return ret_value;
1837}
1838
1839static void truncate_directory(struct reiserfs_transaction_handle *th,
1840			       struct inode *inode)
1841{
1842	BUG_ON(!th->t_trans_id);
1843	if (inode->i_nlink)
1844		reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1845
1846	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1847	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1848	reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1849	reiserfs_update_sd(th, inode);
1850	set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1851	set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1852}
1853
1854/*
1855 * Truncate file to the new size. Note, this must be called with a
1856 * transaction already started
1857 */
1858int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1859			 struct inode *inode,	/* ->i_size contains new size */
1860			 struct page *page,	/* up to date for last block */
1861			 /*
1862			  * when it is called by file_release to convert
1863			  * the tail - no timestamps should be updated
1864			  */
1865			 int update_timestamps
1866    )
1867{
1868	INITIALIZE_PATH(s_search_path);	/* Path to the current object item. */
1869	struct item_head *p_le_ih;	/* Pointer to an item header. */
1870
1871	/* Key to search for a previous file item. */
1872	struct cpu_key s_item_key;
1873	loff_t file_size,	/* Old file size. */
1874	 new_file_size;	/* New file size. */
1875	int deleted;		/* Number of deleted or truncated bytes. */
1876	int retval;
1877	int err = 0;
1878
1879	BUG_ON(!th->t_trans_id);
1880	if (!
1881	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1882	     || S_ISLNK(inode->i_mode)))
1883		return 0;
1884
1885	/* deletion of directory - no need to update timestamps */
1886	if (S_ISDIR(inode->i_mode)) {
 
1887		truncate_directory(th, inode);
1888		return 0;
1889	}
1890
1891	/* Get new file size. */
1892	new_file_size = inode->i_size;
1893
1894	/* FIXME: note, that key type is unimportant here */
1895	make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1896		     TYPE_DIRECT, 3);
1897
1898	retval =
1899	    search_for_position_by_key(inode->i_sb, &s_item_key,
1900				       &s_search_path);
1901	if (retval == IO_ERROR) {
1902		reiserfs_error(inode->i_sb, "vs-5657",
1903			       "i/o failure occurred trying to truncate %K",
1904			       &s_item_key);
1905		err = -EIO;
1906		goto out;
1907	}
1908	if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1909		reiserfs_error(inode->i_sb, "PAP-5660",
1910			       "wrong result %d of search for %K", retval,
1911			       &s_item_key);
1912
1913		err = -EIO;
1914		goto out;
1915	}
1916
1917	s_search_path.pos_in_item--;
1918
1919	/* Get real file size (total length of all file items) */
1920	p_le_ih = tp_item_head(&s_search_path);
1921	if (is_statdata_le_ih(p_le_ih))
1922		file_size = 0;
1923	else {
1924		loff_t offset = le_ih_k_offset(p_le_ih);
1925		int bytes =
1926		    op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1927
1928		/*
1929		 * this may mismatch with real file size: if last direct item
1930		 * had no padding zeros and last unformatted node had no free
1931		 * space, this file would have this file size
1932		 */
1933		file_size = offset + bytes - 1;
1934	}
1935	/*
1936	 * are we doing a full truncate or delete, if so
1937	 * kick in the reada code
1938	 */
1939	if (new_file_size == 0)
1940		s_search_path.reada = PATH_READA | PATH_READA_BACK;
1941
1942	if (file_size == 0 || file_size < new_file_size) {
1943		goto update_and_out;
1944	}
1945
1946	/* Update key to search for the last file item. */
1947	set_cpu_key_k_offset(&s_item_key, file_size);
1948
1949	do {
1950		/* Cut or delete file item. */
1951		deleted =
1952		    reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1953					   inode, page, new_file_size);
1954		if (deleted < 0) {
1955			reiserfs_warning(inode->i_sb, "vs-5665",
1956					 "reiserfs_cut_from_item failed");
1957			reiserfs_check_path(&s_search_path);
1958			return 0;
1959		}
1960
1961		RFALSE(deleted > file_size,
1962		       "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1963		       deleted, file_size, &s_item_key);
1964
1965		/* Change key to search the last file item. */
1966		file_size -= deleted;
1967
1968		set_cpu_key_k_offset(&s_item_key, file_size);
1969
1970		/*
1971		 * While there are bytes to truncate and previous
1972		 * file item is presented in the tree.
1973		 */
1974
1975		/*
1976		 * This loop could take a really long time, and could log
1977		 * many more blocks than a transaction can hold.  So, we do
1978		 * a polite journal end here, and if the transaction needs
1979		 * ending, we make sure the file is consistent before ending
1980		 * the current trans and starting a new one
1981		 */
1982		if (journal_transaction_should_end(th, 0) ||
1983		    reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
 
1984			pathrelse(&s_search_path);
1985
1986			if (update_timestamps) {
1987				inode->i_mtime = current_time(inode);
1988				inode->i_ctime = current_time(inode);
1989			}
1990			reiserfs_update_sd(th, inode);
1991
1992			err = journal_end(th);
1993			if (err)
1994				goto out;
1995			err = journal_begin(th, inode->i_sb,
1996					    JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1997			if (err)
1998				goto out;
1999			reiserfs_update_inode_transaction(inode);
2000		}
2001	} while (file_size > ROUND_UP(new_file_size) &&
2002		 search_for_position_by_key(inode->i_sb, &s_item_key,
2003					    &s_search_path) == POSITION_FOUND);
2004
2005	RFALSE(file_size > ROUND_UP(new_file_size),
2006	       "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2007	       new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2008
2009update_and_out:
2010	if (update_timestamps) {
2011		/* this is truncate, not file closing */
2012		inode->i_mtime = current_time(inode);
2013		inode->i_ctime = current_time(inode);
2014	}
2015	reiserfs_update_sd(th, inode);
2016
2017out:
2018	pathrelse(&s_search_path);
2019	return err;
2020}
2021
2022#ifdef CONFIG_REISERFS_CHECK
2023/* this makes sure, that we __append__, not overwrite or add holes */
2024static void check_research_for_paste(struct treepath *path,
2025				     const struct cpu_key *key)
2026{
2027	struct item_head *found_ih = tp_item_head(path);
2028
2029	if (is_direct_le_ih(found_ih)) {
2030		if (le_ih_k_offset(found_ih) +
2031		    op_bytes_number(found_ih,
2032				    get_last_bh(path)->b_size) !=
2033		    cpu_key_k_offset(key)
2034		    || op_bytes_number(found_ih,
2035				       get_last_bh(path)->b_size) !=
2036		    pos_in_item(path))
2037			reiserfs_panic(NULL, "PAP-5720", "found direct item "
2038				       "%h or position (%d) does not match "
2039				       "to key %K", found_ih,
2040				       pos_in_item(path), key);
2041	}
2042	if (is_indirect_le_ih(found_ih)) {
2043		if (le_ih_k_offset(found_ih) +
2044		    op_bytes_number(found_ih,
2045				    get_last_bh(path)->b_size) !=
2046		    cpu_key_k_offset(key)
2047		    || I_UNFM_NUM(found_ih) != pos_in_item(path)
2048		    || get_ih_free_space(found_ih) != 0)
2049			reiserfs_panic(NULL, "PAP-5730", "found indirect "
2050				       "item (%h) or position (%d) does not "
2051				       "match to key (%K)",
2052				       found_ih, pos_in_item(path), key);
2053	}
2054}
2055#endif				/* config reiserfs check */
2056
2057/*
2058 * Paste bytes to the existing item.
2059 * Returns bytes number pasted into the item.
2060 */
2061int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2062			     /* Path to the pasted item. */
2063			     struct treepath *search_path,
2064			     /* Key to search for the needed item. */
2065			     const struct cpu_key *key,
2066			     /* Inode item belongs to */
2067			     struct inode *inode,
2068			     /* Pointer to the bytes to paste. */
2069			     const char *body,
2070			     /* Size of pasted bytes. */
2071			     int pasted_size)
2072{
2073	struct super_block *sb = inode->i_sb;
2074	struct tree_balance s_paste_balance;
2075	int retval;
2076	int fs_gen;
2077	int depth;
2078
2079	BUG_ON(!th->t_trans_id);
2080
2081	fs_gen = get_generation(inode->i_sb);
2082
2083#ifdef REISERQUOTA_DEBUG
2084	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2085		       "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2086		       pasted_size, inode->i_uid,
2087		       key2type(&key->on_disk_key));
2088#endif
2089
2090	depth = reiserfs_write_unlock_nested(sb);
2091	retval = dquot_alloc_space_nodirty(inode, pasted_size);
2092	reiserfs_write_lock_nested(sb, depth);
2093	if (retval) {
2094		pathrelse(search_path);
2095		return retval;
2096	}
2097	init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2098		       pasted_size);
2099#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2100	s_paste_balance.key = key->on_disk_key;
2101#endif
2102
2103	/* DQUOT_* can schedule, must check before the fix_nodes */
2104	if (fs_changed(fs_gen, inode->i_sb)) {
2105		goto search_again;
2106	}
2107
2108	while ((retval =
2109		fix_nodes(M_PASTE, &s_paste_balance, NULL,
2110			  body)) == REPEAT_SEARCH) {
2111search_again:
2112		/* file system changed while we were in the fix_nodes */
2113		PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2114		retval =
2115		    search_for_position_by_key(th->t_super, key,
2116					       search_path);
2117		if (retval == IO_ERROR) {
2118			retval = -EIO;
2119			goto error_out;
2120		}
2121		if (retval == POSITION_FOUND) {
2122			reiserfs_warning(inode->i_sb, "PAP-5710",
2123					 "entry or pasted byte (%K) exists",
2124					 key);
2125			retval = -EEXIST;
2126			goto error_out;
2127		}
2128#ifdef CONFIG_REISERFS_CHECK
2129		check_research_for_paste(search_path, key);
2130#endif
2131	}
2132
2133	/*
2134	 * Perform balancing after all resources are collected by fix_nodes,
2135	 * and accessing them will not risk triggering schedule.
2136	 */
2137	if (retval == CARRY_ON) {
2138		do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2139		return 0;
2140	}
2141	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2142error_out:
2143	/* this also releases the path */
2144	unfix_nodes(&s_paste_balance);
2145#ifdef REISERQUOTA_DEBUG
2146	reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2147		       "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2148		       pasted_size, inode->i_uid,
2149		       key2type(&key->on_disk_key));
2150#endif
2151	depth = reiserfs_write_unlock_nested(sb);
2152	dquot_free_space_nodirty(inode, pasted_size);
2153	reiserfs_write_lock_nested(sb, depth);
2154	return retval;
2155}
2156
2157/*
2158 * Insert new item into the buffer at the path.
2159 * th   - active transaction handle
2160 * path - path to the inserted item
2161 * ih   - pointer to the item header to insert
2162 * body - pointer to the bytes to insert
2163 */
2164int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2165			 struct treepath *path, const struct cpu_key *key,
2166			 struct item_head *ih, struct inode *inode,
2167			 const char *body)
2168{
2169	struct tree_balance s_ins_balance;
2170	int retval;
2171	int fs_gen = 0;
2172	int quota_bytes = 0;
2173
2174	BUG_ON(!th->t_trans_id);
2175
2176	if (inode) {		/* Do we count quotas for item? */
2177		int depth;
2178		fs_gen = get_generation(inode->i_sb);
2179		quota_bytes = ih_item_len(ih);
2180
2181		/*
2182		 * hack so the quota code doesn't have to guess
2183		 * if the file has a tail, links are always tails,
2184		 * so there's no guessing needed
2185		 */
2186		if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2187			quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2188#ifdef REISERQUOTA_DEBUG
2189		reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2190			       "reiserquota insert_item(): allocating %u id=%u type=%c",
2191			       quota_bytes, inode->i_uid, head2type(ih));
2192#endif
2193		/*
2194		 * We can't dirty inode here. It would be immediately
2195		 * written but appropriate stat item isn't inserted yet...
2196		 */
2197		depth = reiserfs_write_unlock_nested(inode->i_sb);
2198		retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2199		reiserfs_write_lock_nested(inode->i_sb, depth);
2200		if (retval) {
2201			pathrelse(path);
2202			return retval;
2203		}
2204	}
2205	init_tb_struct(th, &s_ins_balance, th->t_super, path,
2206		       IH_SIZE + ih_item_len(ih));
2207#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2208	s_ins_balance.key = key->on_disk_key;
2209#endif
2210	/*
2211	 * DQUOT_* can schedule, must check to be sure calling
2212	 * fix_nodes is safe
2213	 */
2214	if (inode && fs_changed(fs_gen, inode->i_sb)) {
2215		goto search_again;
2216	}
2217
2218	while ((retval =
2219		fix_nodes(M_INSERT, &s_ins_balance, ih,
2220			  body)) == REPEAT_SEARCH) {
2221search_again:
2222		/* file system changed while we were in the fix_nodes */
2223		PROC_INFO_INC(th->t_super, insert_item_restarted);
2224		retval = search_item(th->t_super, key, path);
2225		if (retval == IO_ERROR) {
2226			retval = -EIO;
2227			goto error_out;
2228		}
2229		if (retval == ITEM_FOUND) {
2230			reiserfs_warning(th->t_super, "PAP-5760",
2231					 "key %K already exists in the tree",
2232					 key);
2233			retval = -EEXIST;
2234			goto error_out;
2235		}
2236	}
2237
2238	/* make balancing after all resources will be collected at a time */
2239	if (retval == CARRY_ON) {
2240		do_balance(&s_ins_balance, ih, body, M_INSERT);
2241		return 0;
2242	}
2243
2244	retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2245error_out:
2246	/* also releases the path */
2247	unfix_nodes(&s_ins_balance);
2248#ifdef REISERQUOTA_DEBUG
2249	reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2250		       "reiserquota insert_item(): freeing %u id=%u type=%c",
2251		       quota_bytes, inode->i_uid, head2type(ih));
2252#endif
2253	if (inode) {
2254		int depth = reiserfs_write_unlock_nested(inode->i_sb);
2255		dquot_free_space_nodirty(inode, quota_bytes);
2256		reiserfs_write_lock_nested(inode->i_sb, depth);
2257	}
2258	return retval;
2259}