Loading...
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11/*
12 * This file contains functions dealing with S+tree
13 *
14 * B_IS_IN_TREE
15 * copy_item_head
16 * comp_short_keys
17 * comp_keys
18 * comp_short_le_keys
19 * le_key2cpu_key
20 * comp_le_keys
21 * bin_search
22 * get_lkey
23 * get_rkey
24 * key_in_buffer
25 * decrement_bcount
26 * reiserfs_check_path
27 * pathrelse_and_restore
28 * pathrelse
29 * search_by_key_reada
30 * search_by_key
31 * search_for_position_by_key
32 * comp_items
33 * prepare_for_direct_item
34 * prepare_for_direntry_item
35 * prepare_for_delete_or_cut
36 * calc_deleted_bytes_number
37 * init_tb_struct
38 * padd_item
39 * reiserfs_delete_item
40 * reiserfs_delete_solid_item
41 * reiserfs_delete_object
42 * maybe_indirect_to_direct
43 * indirect_to_direct_roll_back
44 * reiserfs_cut_from_item
45 * truncate_directory
46 * reiserfs_do_truncate
47 * reiserfs_paste_into_item
48 * reiserfs_insert_item
49 */
50
51#include <linux/time.h>
52#include <linux/string.h>
53#include <linux/pagemap.h>
54#include <linux/reiserfs_fs.h>
55#include <linux/buffer_head.h>
56#include <linux/quotaops.h>
57
58/* Does the buffer contain a disk block which is in the tree. */
59inline int B_IS_IN_TREE(const struct buffer_head *bh)
60{
61
62 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
63 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
64
65 return (B_LEVEL(bh) != FREE_LEVEL);
66}
67
68//
69// to gets item head in le form
70//
71inline void copy_item_head(struct item_head *to,
72 const struct item_head *from)
73{
74 memcpy(to, from, IH_SIZE);
75}
76
77/* k1 is pointer to on-disk structure which is stored in little-endian
78 form. k2 is pointer to cpu variable. For key of items of the same
79 object this returns 0.
80 Returns: -1 if key1 < key2
81 0 if key1 == key2
82 1 if key1 > key2 */
83inline int comp_short_keys(const struct reiserfs_key *le_key,
84 const struct cpu_key *cpu_key)
85{
86 __u32 n;
87 n = le32_to_cpu(le_key->k_dir_id);
88 if (n < cpu_key->on_disk_key.k_dir_id)
89 return -1;
90 if (n > cpu_key->on_disk_key.k_dir_id)
91 return 1;
92 n = le32_to_cpu(le_key->k_objectid);
93 if (n < cpu_key->on_disk_key.k_objectid)
94 return -1;
95 if (n > cpu_key->on_disk_key.k_objectid)
96 return 1;
97 return 0;
98}
99
100/* k1 is pointer to on-disk structure which is stored in little-endian
101 form. k2 is pointer to cpu variable.
102 Compare keys using all 4 key fields.
103 Returns: -1 if key1 < key2 0
104 if key1 = key2 1 if key1 > key2 */
105static inline int comp_keys(const struct reiserfs_key *le_key,
106 const struct cpu_key *cpu_key)
107{
108 int retval;
109
110 retval = comp_short_keys(le_key, cpu_key);
111 if (retval)
112 return retval;
113 if (le_key_k_offset(le_key_version(le_key), le_key) <
114 cpu_key_k_offset(cpu_key))
115 return -1;
116 if (le_key_k_offset(le_key_version(le_key), le_key) >
117 cpu_key_k_offset(cpu_key))
118 return 1;
119
120 if (cpu_key->key_length == 3)
121 return 0;
122
123 /* this part is needed only when tail conversion is in progress */
124 if (le_key_k_type(le_key_version(le_key), le_key) <
125 cpu_key_k_type(cpu_key))
126 return -1;
127
128 if (le_key_k_type(le_key_version(le_key), le_key) >
129 cpu_key_k_type(cpu_key))
130 return 1;
131
132 return 0;
133}
134
135inline int comp_short_le_keys(const struct reiserfs_key *key1,
136 const struct reiserfs_key *key2)
137{
138 __u32 *k1_u32, *k2_u32;
139 int key_length = REISERFS_SHORT_KEY_LEN;
140
141 k1_u32 = (__u32 *) key1;
142 k2_u32 = (__u32 *) key2;
143 for (; key_length--; ++k1_u32, ++k2_u32) {
144 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
145 return -1;
146 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
147 return 1;
148 }
149 return 0;
150}
151
152inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
153{
154 int version;
155 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
156 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
157
158 // find out version of the key
159 version = le_key_version(from);
160 to->version = version;
161 to->on_disk_key.k_offset = le_key_k_offset(version, from);
162 to->on_disk_key.k_type = le_key_k_type(version, from);
163}
164
165// this does not say which one is bigger, it only returns 1 if keys
166// are not equal, 0 otherwise
167inline int comp_le_keys(const struct reiserfs_key *k1,
168 const struct reiserfs_key *k2)
169{
170 return memcmp(k1, k2, sizeof(struct reiserfs_key));
171}
172
173/**************************************************************************
174 * Binary search toolkit function *
175 * Search for an item in the array by the item key *
176 * Returns: 1 if found, 0 if not found; *
177 * *pos = number of the searched element if found, else the *
178 * number of the first element that is larger than key. *
179 **************************************************************************/
180/* For those not familiar with binary search: lbound is the leftmost item that it
181 could be, rbound the rightmost item that it could be. We examine the item
182 halfway between lbound and rbound, and that tells us either that we can increase
183 lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that
184 there are no possible items, and we have not found it. With each examination we
185 cut the number of possible items it could be by one more than half rounded down,
186 or we find it. */
187static inline int bin_search(const void *key, /* Key to search for. */
188 const void *base, /* First item in the array. */
189 int num, /* Number of items in the array. */
190 int width, /* Item size in the array.
191 searched. Lest the reader be
192 confused, note that this is crafted
193 as a general function, and when it
194 is applied specifically to the array
195 of item headers in a node, width
196 is actually the item header size not
197 the item size. */
198 int *pos /* Number of the searched for element. */
199 )
200{
201 int rbound, lbound, j;
202
203 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
204 lbound <= rbound; j = (rbound + lbound) / 2)
205 switch (comp_keys
206 ((struct reiserfs_key *)((char *)base + j * width),
207 (struct cpu_key *)key)) {
208 case -1:
209 lbound = j + 1;
210 continue;
211 case 1:
212 rbound = j - 1;
213 continue;
214 case 0:
215 *pos = j;
216 return ITEM_FOUND; /* Key found in the array. */
217 }
218
219 /* bin_search did not find given key, it returns position of key,
220 that is minimal and greater than the given one. */
221 *pos = lbound;
222 return ITEM_NOT_FOUND;
223}
224
225
226/* Minimal possible key. It is never in the tree. */
227const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
228
229/* Maximal possible key. It is never in the tree. */
230static const struct reiserfs_key MAX_KEY = {
231 __constant_cpu_to_le32(0xffffffff),
232 __constant_cpu_to_le32(0xffffffff),
233 {{__constant_cpu_to_le32(0xffffffff),
234 __constant_cpu_to_le32(0xffffffff)},}
235};
236
237/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
238 of the path, and going upwards. We must check the path's validity at each step. If the key is not in
239 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
240 case we return a special key, either MIN_KEY or MAX_KEY. */
241static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
242 const struct super_block *sb)
243{
244 int position, path_offset = chk_path->path_length;
245 struct buffer_head *parent;
246
247 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
248 "PAP-5010: invalid offset in the path");
249
250 /* While not higher in path than first element. */
251 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
252
253 RFALSE(!buffer_uptodate
254 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
255 "PAP-5020: parent is not uptodate");
256
257 /* Parent at the path is not in the tree now. */
258 if (!B_IS_IN_TREE
259 (parent =
260 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
261 return &MAX_KEY;
262 /* Check whether position in the parent is correct. */
263 if ((position =
264 PATH_OFFSET_POSITION(chk_path,
265 path_offset)) >
266 B_NR_ITEMS(parent))
267 return &MAX_KEY;
268 /* Check whether parent at the path really points to the child. */
269 if (B_N_CHILD_NUM(parent, position) !=
270 PATH_OFFSET_PBUFFER(chk_path,
271 path_offset + 1)->b_blocknr)
272 return &MAX_KEY;
273 /* Return delimiting key if position in the parent is not equal to zero. */
274 if (position)
275 return B_N_PDELIM_KEY(parent, position - 1);
276 }
277 /* Return MIN_KEY if we are in the root of the buffer tree. */
278 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
279 b_blocknr == SB_ROOT_BLOCK(sb))
280 return &MIN_KEY;
281 return &MAX_KEY;
282}
283
284/* Get delimiting key of the buffer at the path and its right neighbor. */
285inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
286 const struct super_block *sb)
287{
288 int position, path_offset = chk_path->path_length;
289 struct buffer_head *parent;
290
291 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
292 "PAP-5030: invalid offset in the path");
293
294 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
295
296 RFALSE(!buffer_uptodate
297 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
298 "PAP-5040: parent is not uptodate");
299
300 /* Parent at the path is not in the tree now. */
301 if (!B_IS_IN_TREE
302 (parent =
303 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
304 return &MIN_KEY;
305 /* Check whether position in the parent is correct. */
306 if ((position =
307 PATH_OFFSET_POSITION(chk_path,
308 path_offset)) >
309 B_NR_ITEMS(parent))
310 return &MIN_KEY;
311 /* Check whether parent at the path really points to the child. */
312 if (B_N_CHILD_NUM(parent, position) !=
313 PATH_OFFSET_PBUFFER(chk_path,
314 path_offset + 1)->b_blocknr)
315 return &MIN_KEY;
316 /* Return delimiting key if position in the parent is not the last one. */
317 if (position != B_NR_ITEMS(parent))
318 return B_N_PDELIM_KEY(parent, position);
319 }
320 /* Return MAX_KEY if we are in the root of the buffer tree. */
321 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
322 b_blocknr == SB_ROOT_BLOCK(sb))
323 return &MAX_KEY;
324 return &MIN_KEY;
325}
326
327/* Check whether a key is contained in the tree rooted from a buffer at a path. */
328/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
329 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
330 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
331 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
332static inline int key_in_buffer(struct treepath *chk_path, /* Path which should be checked. */
333 const struct cpu_key *key, /* Key which should be checked. */
334 struct super_block *sb
335 )
336{
337
338 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
339 || chk_path->path_length > MAX_HEIGHT,
340 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
341 key, chk_path->path_length);
342 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
343 "PAP-5060: device must not be NODEV");
344
345 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
346 /* left delimiting key is bigger, that the key we look for */
347 return 0;
348 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
349 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
350 /* key must be less than right delimitiing key */
351 return 0;
352 return 1;
353}
354
355int reiserfs_check_path(struct treepath *p)
356{
357 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
358 "path not properly relsed");
359 return 0;
360}
361
362/* Drop the reference to each buffer in a path and restore
363 * dirty bits clean when preparing the buffer for the log.
364 * This version should only be called from fix_nodes() */
365void pathrelse_and_restore(struct super_block *sb,
366 struct treepath *search_path)
367{
368 int path_offset = search_path->path_length;
369
370 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
371 "clm-4000: invalid path offset");
372
373 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
374 struct buffer_head *bh;
375 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
376 reiserfs_restore_prepared_buffer(sb, bh);
377 brelse(bh);
378 }
379 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
380}
381
382/* Drop the reference to each buffer in a path */
383void pathrelse(struct treepath *search_path)
384{
385 int path_offset = search_path->path_length;
386
387 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
388 "PAP-5090: invalid path offset");
389
390 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
391 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
392
393 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
394}
395
396static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
397{
398 struct block_head *blkh;
399 struct item_head *ih;
400 int used_space;
401 int prev_location;
402 int i;
403 int nr;
404
405 blkh = (struct block_head *)buf;
406 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
407 reiserfs_warning(NULL, "reiserfs-5080",
408 "this should be caught earlier");
409 return 0;
410 }
411
412 nr = blkh_nr_item(blkh);
413 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
414 /* item number is too big or too small */
415 reiserfs_warning(NULL, "reiserfs-5081",
416 "nr_item seems wrong: %z", bh);
417 return 0;
418 }
419 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
420 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
421 if (used_space != blocksize - blkh_free_space(blkh)) {
422 /* free space does not match to calculated amount of use space */
423 reiserfs_warning(NULL, "reiserfs-5082",
424 "free space seems wrong: %z", bh);
425 return 0;
426 }
427 // FIXME: it is_leaf will hit performance too much - we may have
428 // return 1 here
429
430 /* check tables of item heads */
431 ih = (struct item_head *)(buf + BLKH_SIZE);
432 prev_location = blocksize;
433 for (i = 0; i < nr; i++, ih++) {
434 if (le_ih_k_type(ih) == TYPE_ANY) {
435 reiserfs_warning(NULL, "reiserfs-5083",
436 "wrong item type for item %h",
437 ih);
438 return 0;
439 }
440 if (ih_location(ih) >= blocksize
441 || ih_location(ih) < IH_SIZE * nr) {
442 reiserfs_warning(NULL, "reiserfs-5084",
443 "item location seems wrong: %h",
444 ih);
445 return 0;
446 }
447 if (ih_item_len(ih) < 1
448 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
449 reiserfs_warning(NULL, "reiserfs-5085",
450 "item length seems wrong: %h",
451 ih);
452 return 0;
453 }
454 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
455 reiserfs_warning(NULL, "reiserfs-5086",
456 "item location seems wrong "
457 "(second one): %h", ih);
458 return 0;
459 }
460 prev_location = ih_location(ih);
461 }
462
463 // one may imagine much more checks
464 return 1;
465}
466
467/* returns 1 if buf looks like an internal node, 0 otherwise */
468static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
469{
470 struct block_head *blkh;
471 int nr;
472 int used_space;
473
474 blkh = (struct block_head *)buf;
475 nr = blkh_level(blkh);
476 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
477 /* this level is not possible for internal nodes */
478 reiserfs_warning(NULL, "reiserfs-5087",
479 "this should be caught earlier");
480 return 0;
481 }
482
483 nr = blkh_nr_item(blkh);
484 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
485 /* for internal which is not root we might check min number of keys */
486 reiserfs_warning(NULL, "reiserfs-5088",
487 "number of key seems wrong: %z", bh);
488 return 0;
489 }
490
491 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
492 if (used_space != blocksize - blkh_free_space(blkh)) {
493 reiserfs_warning(NULL, "reiserfs-5089",
494 "free space seems wrong: %z", bh);
495 return 0;
496 }
497 // one may imagine much more checks
498 return 1;
499}
500
501// make sure that bh contains formatted node of reiserfs tree of
502// 'level'-th level
503static int is_tree_node(struct buffer_head *bh, int level)
504{
505 if (B_LEVEL(bh) != level) {
506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
507 "not match to the expected one %d",
508 B_LEVEL(bh), level);
509 return 0;
510 }
511 if (level == DISK_LEAF_NODE_LEVEL)
512 return is_leaf(bh->b_data, bh->b_size, bh);
513
514 return is_internal(bh->b_data, bh->b_size, bh);
515}
516
517#define SEARCH_BY_KEY_READA 16
518
519/*
520 * The function is NOT SCHEDULE-SAFE!
521 * It might unlock the write lock if we needed to wait for a block
522 * to be read. Note that in this case it won't recover the lock to avoid
523 * high contention resulting from too much lock requests, especially
524 * the caller (search_by_key) will perform other schedule-unsafe
525 * operations just after calling this function.
526 *
527 * @return true if we have unlocked
528 */
529static bool search_by_key_reada(struct super_block *s,
530 struct buffer_head **bh,
531 b_blocknr_t *b, int num)
532{
533 int i, j;
534 bool unlocked = false;
535
536 for (i = 0; i < num; i++) {
537 bh[i] = sb_getblk(s, b[i]);
538 }
539 /*
540 * We are going to read some blocks on which we
541 * have a reference. It's safe, though we might be
542 * reading blocks concurrently changed if we release
543 * the lock. But it's still fine because we check later
544 * if the tree changed
545 */
546 for (j = 0; j < i; j++) {
547 /*
548 * note, this needs attention if we are getting rid of the BKL
549 * you have to make sure the prepared bit isn't set on this buffer
550 */
551 if (!buffer_uptodate(bh[j])) {
552 if (!unlocked) {
553 reiserfs_write_unlock(s);
554 unlocked = true;
555 }
556 ll_rw_block(READA, 1, bh + j);
557 }
558 brelse(bh[j]);
559 }
560 return unlocked;
561}
562
563/**************************************************************************
564 * Algorithm SearchByKey *
565 * look for item in the Disk S+Tree by its key *
566 * Input: sb - super block *
567 * key - pointer to the key to search *
568 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
569 * search_path - path from the root to the needed leaf *
570 **************************************************************************/
571
572/* This function fills up the path from the root to the leaf as it
573 descends the tree looking for the key. It uses reiserfs_bread to
574 try to find buffers in the cache given their block number. If it
575 does not find them in the cache it reads them from disk. For each
576 node search_by_key finds using reiserfs_bread it then uses
577 bin_search to look through that node. bin_search will find the
578 position of the block_number of the next node if it is looking
579 through an internal node. If it is looking through a leaf node
580 bin_search will find the position of the item which has key either
581 equal to given key, or which is the maximal key less than the given
582 key. search_by_key returns a path that must be checked for the
583 correctness of the top of the path but need not be checked for the
584 correctness of the bottom of the path */
585/* The function is NOT SCHEDULE-SAFE! */
586int search_by_key(struct super_block *sb, const struct cpu_key *key, /* Key to search. */
587 struct treepath *search_path,/* This structure was
588 allocated and initialized
589 by the calling
590 function. It is filled up
591 by this function. */
592 int stop_level /* How far down the tree to search. To
593 stop at leaf level - set to
594 DISK_LEAF_NODE_LEVEL */
595 )
596{
597 b_blocknr_t block_number;
598 int expected_level;
599 struct buffer_head *bh;
600 struct path_element *last_element;
601 int node_level, retval;
602 int right_neighbor_of_leaf_node;
603 int fs_gen;
604 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
605 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
606 int reada_count = 0;
607
608#ifdef CONFIG_REISERFS_CHECK
609 int repeat_counter = 0;
610#endif
611
612 PROC_INFO_INC(sb, search_by_key);
613
614 /* As we add each node to a path we increase its count. This means that
615 we must be careful to release all nodes in a path before we either
616 discard the path struct or re-use the path struct, as we do here. */
617
618 pathrelse(search_path);
619
620 right_neighbor_of_leaf_node = 0;
621
622 /* With each iteration of this loop we search through the items in the
623 current node, and calculate the next current node(next path element)
624 for the next iteration of this loop.. */
625 block_number = SB_ROOT_BLOCK(sb);
626 expected_level = -1;
627 while (1) {
628
629#ifdef CONFIG_REISERFS_CHECK
630 if (!(++repeat_counter % 50000))
631 reiserfs_warning(sb, "PAP-5100",
632 "%s: there were %d iterations of "
633 "while loop looking for key %K",
634 current->comm, repeat_counter,
635 key);
636#endif
637
638 /* prep path to have another element added to it. */
639 last_element =
640 PATH_OFFSET_PELEMENT(search_path,
641 ++search_path->path_length);
642 fs_gen = get_generation(sb);
643
644 /* Read the next tree node, and set the last element in the path to
645 have a pointer to it. */
646 if ((bh = last_element->pe_buffer =
647 sb_getblk(sb, block_number))) {
648 bool unlocked = false;
649
650 if (!buffer_uptodate(bh) && reada_count > 1)
651 /* may unlock the write lock */
652 unlocked = search_by_key_reada(sb, reada_bh,
653 reada_blocks, reada_count);
654 /*
655 * If we haven't already unlocked the write lock,
656 * then we need to do that here before reading
657 * the current block
658 */
659 if (!buffer_uptodate(bh) && !unlocked) {
660 reiserfs_write_unlock(sb);
661 unlocked = true;
662 }
663 ll_rw_block(READ, 1, &bh);
664 wait_on_buffer(bh);
665
666 if (unlocked)
667 reiserfs_write_lock(sb);
668 if (!buffer_uptodate(bh))
669 goto io_error;
670 } else {
671 io_error:
672 search_path->path_length--;
673 pathrelse(search_path);
674 return IO_ERROR;
675 }
676 reada_count = 0;
677 if (expected_level == -1)
678 expected_level = SB_TREE_HEIGHT(sb);
679 expected_level--;
680
681 /* It is possible that schedule occurred. We must check whether the key
682 to search is still in the tree rooted from the current buffer. If
683 not then repeat search from the root. */
684 if (fs_changed(fs_gen, sb) &&
685 (!B_IS_IN_TREE(bh) ||
686 B_LEVEL(bh) != expected_level ||
687 !key_in_buffer(search_path, key, sb))) {
688 PROC_INFO_INC(sb, search_by_key_fs_changed);
689 PROC_INFO_INC(sb, search_by_key_restarted);
690 PROC_INFO_INC(sb,
691 sbk_restarted[expected_level - 1]);
692 pathrelse(search_path);
693
694 /* Get the root block number so that we can repeat the search
695 starting from the root. */
696 block_number = SB_ROOT_BLOCK(sb);
697 expected_level = -1;
698 right_neighbor_of_leaf_node = 0;
699
700 /* repeat search from the root */
701 continue;
702 }
703
704 /* only check that the key is in the buffer if key is not
705 equal to the MAX_KEY. Latter case is only possible in
706 "finish_unfinished()" processing during mount. */
707 RFALSE(comp_keys(&MAX_KEY, key) &&
708 !key_in_buffer(search_path, key, sb),
709 "PAP-5130: key is not in the buffer");
710#ifdef CONFIG_REISERFS_CHECK
711 if (REISERFS_SB(sb)->cur_tb) {
712 print_cur_tb("5140");
713 reiserfs_panic(sb, "PAP-5140",
714 "schedule occurred in do_balance!");
715 }
716#endif
717
718 // make sure, that the node contents look like a node of
719 // certain level
720 if (!is_tree_node(bh, expected_level)) {
721 reiserfs_error(sb, "vs-5150",
722 "invalid format found in block %ld. "
723 "Fsck?", bh->b_blocknr);
724 pathrelse(search_path);
725 return IO_ERROR;
726 }
727
728 /* ok, we have acquired next formatted node in the tree */
729 node_level = B_LEVEL(bh);
730
731 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
732
733 RFALSE(node_level < stop_level,
734 "vs-5152: tree level (%d) is less than stop level (%d)",
735 node_level, stop_level);
736
737 retval = bin_search(key, B_N_PITEM_HEAD(bh, 0),
738 B_NR_ITEMS(bh),
739 (node_level ==
740 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
741 KEY_SIZE,
742 &(last_element->pe_position));
743 if (node_level == stop_level) {
744 return retval;
745 }
746
747 /* we are not in the stop level */
748 if (retval == ITEM_FOUND)
749 /* item has been found, so we choose the pointer which is to the right of the found one */
750 last_element->pe_position++;
751
752 /* if item was not found we choose the position which is to
753 the left of the found item. This requires no code,
754 bin_search did it already. */
755
756 /* So we have chosen a position in the current node which is
757 an internal node. Now we calculate child block number by
758 position in the node. */
759 block_number =
760 B_N_CHILD_NUM(bh, last_element->pe_position);
761
762 /* if we are going to read leaf nodes, try for read ahead as well */
763 if ((search_path->reada & PATH_READA) &&
764 node_level == DISK_LEAF_NODE_LEVEL + 1) {
765 int pos = last_element->pe_position;
766 int limit = B_NR_ITEMS(bh);
767 struct reiserfs_key *le_key;
768
769 if (search_path->reada & PATH_READA_BACK)
770 limit = 0;
771 while (reada_count < SEARCH_BY_KEY_READA) {
772 if (pos == limit)
773 break;
774 reada_blocks[reada_count++] =
775 B_N_CHILD_NUM(bh, pos);
776 if (search_path->reada & PATH_READA_BACK)
777 pos--;
778 else
779 pos++;
780
781 /*
782 * check to make sure we're in the same object
783 */
784 le_key = B_N_PDELIM_KEY(bh, pos);
785 if (le32_to_cpu(le_key->k_objectid) !=
786 key->on_disk_key.k_objectid) {
787 break;
788 }
789 }
790 }
791 }
792}
793
794/* Form the path to an item and position in this item which contains
795 file byte defined by key. If there is no such item
796 corresponding to the key, we point the path to the item with
797 maximal key less than key, and *pos_in_item is set to one
798 past the last entry/byte in the item. If searching for entry in a
799 directory item, and it is not found, *pos_in_item is set to one
800 entry more than the entry with maximal key which is less than the
801 sought key.
802
803 Note that if there is no entry in this same node which is one more,
804 then we point to an imaginary entry. for direct items, the
805 position is in units of bytes, for indirect items the position is
806 in units of blocknr entries, for directory items the position is in
807 units of directory entries. */
808
809/* The function is NOT SCHEDULE-SAFE! */
810int search_for_position_by_key(struct super_block *sb, /* Pointer to the super block. */
811 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */
812 struct treepath *search_path /* Filled up by this function. */
813 )
814{
815 struct item_head *p_le_ih; /* pointer to on-disk structure */
816 int blk_size;
817 loff_t item_offset, offset;
818 struct reiserfs_dir_entry de;
819 int retval;
820
821 /* If searching for directory entry. */
822 if (is_direntry_cpu_key(p_cpu_key))
823 return search_by_entry_key(sb, p_cpu_key, search_path,
824 &de);
825
826 /* If not searching for directory entry. */
827
828 /* If item is found. */
829 retval = search_item(sb, p_cpu_key, search_path);
830 if (retval == IO_ERROR)
831 return retval;
832 if (retval == ITEM_FOUND) {
833
834 RFALSE(!ih_item_len
835 (B_N_PITEM_HEAD
836 (PATH_PLAST_BUFFER(search_path),
837 PATH_LAST_POSITION(search_path))),
838 "PAP-5165: item length equals zero");
839
840 pos_in_item(search_path) = 0;
841 return POSITION_FOUND;
842 }
843
844 RFALSE(!PATH_LAST_POSITION(search_path),
845 "PAP-5170: position equals zero");
846
847 /* Item is not found. Set path to the previous item. */
848 p_le_ih =
849 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path),
850 --PATH_LAST_POSITION(search_path));
851 blk_size = sb->s_blocksize;
852
853 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
854 return FILE_NOT_FOUND;
855 }
856 // FIXME: quite ugly this far
857
858 item_offset = le_ih_k_offset(p_le_ih);
859 offset = cpu_key_k_offset(p_cpu_key);
860
861 /* Needed byte is contained in the item pointed to by the path. */
862 if (item_offset <= offset &&
863 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
864 pos_in_item(search_path) = offset - item_offset;
865 if (is_indirect_le_ih(p_le_ih)) {
866 pos_in_item(search_path) /= blk_size;
867 }
868 return POSITION_FOUND;
869 }
870
871 /* Needed byte is not contained in the item pointed to by the
872 path. Set pos_in_item out of the item. */
873 if (is_indirect_le_ih(p_le_ih))
874 pos_in_item(search_path) =
875 ih_item_len(p_le_ih) / UNFM_P_SIZE;
876 else
877 pos_in_item(search_path) = ih_item_len(p_le_ih);
878
879 return POSITION_NOT_FOUND;
880}
881
882/* Compare given item and item pointed to by the path. */
883int comp_items(const struct item_head *stored_ih, const struct treepath *path)
884{
885 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
886 struct item_head *ih;
887
888 /* Last buffer at the path is not in the tree. */
889 if (!B_IS_IN_TREE(bh))
890 return 1;
891
892 /* Last path position is invalid. */
893 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
894 return 1;
895
896 /* we need only to know, whether it is the same item */
897 ih = get_ih(path);
898 return memcmp(stored_ih, ih, IH_SIZE);
899}
900
901/* unformatted nodes are not logged anymore, ever. This is safe
902** now
903*/
904#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
905
906// block can not be forgotten as it is in I/O or held by someone
907#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
908
909// prepare for delete or cut of direct item
910static inline int prepare_for_direct_item(struct treepath *path,
911 struct item_head *le_ih,
912 struct inode *inode,
913 loff_t new_file_length, int *cut_size)
914{
915 loff_t round_len;
916
917 if (new_file_length == max_reiserfs_offset(inode)) {
918 /* item has to be deleted */
919 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
920 return M_DELETE;
921 }
922 // new file gets truncated
923 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
924 //
925 round_len = ROUND_UP(new_file_length);
926 /* this was new_file_length < le_ih ... */
927 if (round_len < le_ih_k_offset(le_ih)) {
928 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
929 return M_DELETE; /* Delete this item. */
930 }
931 /* Calculate first position and size for cutting from item. */
932 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
933 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
934
935 return M_CUT; /* Cut from this item. */
936 }
937
938 // old file: items may have any length
939
940 if (new_file_length < le_ih_k_offset(le_ih)) {
941 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
942 return M_DELETE; /* Delete this item. */
943 }
944 /* Calculate first position and size for cutting from item. */
945 *cut_size = -(ih_item_len(le_ih) -
946 (pos_in_item(path) =
947 new_file_length + 1 - le_ih_k_offset(le_ih)));
948 return M_CUT; /* Cut from this item. */
949}
950
951static inline int prepare_for_direntry_item(struct treepath *path,
952 struct item_head *le_ih,
953 struct inode *inode,
954 loff_t new_file_length,
955 int *cut_size)
956{
957 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
958 new_file_length == max_reiserfs_offset(inode)) {
959 RFALSE(ih_entry_count(le_ih) != 2,
960 "PAP-5220: incorrect empty directory item (%h)", le_ih);
961 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
962 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
963 }
964
965 if (ih_entry_count(le_ih) == 1) {
966 /* Delete the directory item such as there is one record only
967 in this item */
968 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
969 return M_DELETE;
970 }
971
972 /* Cut one record from the directory item. */
973 *cut_size =
974 -(DEH_SIZE +
975 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
976 return M_CUT;
977}
978
979#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
980
981/* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
982 If the path points to an indirect item, remove some number of its unformatted nodes.
983 In case of file truncate calculate whether this item must be deleted/truncated or last
984 unformatted node of this item will be converted to a direct item.
985 This function returns a determination of what balance mode the calling function should employ. */
986static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed, /* Number of unformatted nodes which were removed
987 from end of the file. */
988 int *cut_size, unsigned long long new_file_length /* MAX_KEY_OFFSET in case of delete. */
989 )
990{
991 struct super_block *sb = inode->i_sb;
992 struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
993 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
994
995 BUG_ON(!th->t_trans_id);
996
997 /* Stat_data item. */
998 if (is_statdata_le_ih(p_le_ih)) {
999
1000 RFALSE(new_file_length != max_reiserfs_offset(inode),
1001 "PAP-5210: mode must be M_DELETE");
1002
1003 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1004 return M_DELETE;
1005 }
1006
1007 /* Directory item. */
1008 if (is_direntry_le_ih(p_le_ih))
1009 return prepare_for_direntry_item(path, p_le_ih, inode,
1010 new_file_length,
1011 cut_size);
1012
1013 /* Direct item. */
1014 if (is_direct_le_ih(p_le_ih))
1015 return prepare_for_direct_item(path, p_le_ih, inode,
1016 new_file_length, cut_size);
1017
1018 /* Case of an indirect item. */
1019 {
1020 int blk_size = sb->s_blocksize;
1021 struct item_head s_ih;
1022 int need_re_search;
1023 int delete = 0;
1024 int result = M_CUT;
1025 int pos = 0;
1026
1027 if ( new_file_length == max_reiserfs_offset (inode) ) {
1028 /* prepare_for_delete_or_cut() is called by
1029 * reiserfs_delete_item() */
1030 new_file_length = 0;
1031 delete = 1;
1032 }
1033
1034 do {
1035 need_re_search = 0;
1036 *cut_size = 0;
1037 bh = PATH_PLAST_BUFFER(path);
1038 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1039 pos = I_UNFM_NUM(&s_ih);
1040
1041 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1042 __le32 *unfm;
1043 __u32 block;
1044
1045 /* Each unformatted block deletion may involve one additional
1046 * bitmap block into the transaction, thereby the initial
1047 * journal space reservation might not be enough. */
1048 if (!delete && (*cut_size) != 0 &&
1049 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1050 break;
1051
1052 unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1;
1053 block = get_block_num(unfm, 0);
1054
1055 if (block != 0) {
1056 reiserfs_prepare_for_journal(sb, bh, 1);
1057 put_block_num(unfm, 0, 0);
1058 journal_mark_dirty(th, sb, bh);
1059 reiserfs_free_block(th, inode, block, 1);
1060 }
1061
1062 reiserfs_write_unlock(sb);
1063 cond_resched();
1064 reiserfs_write_lock(sb);
1065
1066 if (item_moved (&s_ih, path)) {
1067 need_re_search = 1;
1068 break;
1069 }
1070
1071 pos --;
1072 (*removed)++;
1073 (*cut_size) -= UNFM_P_SIZE;
1074
1075 if (pos == 0) {
1076 (*cut_size) -= IH_SIZE;
1077 result = M_DELETE;
1078 break;
1079 }
1080 }
1081 /* a trick. If the buffer has been logged, this will do nothing. If
1082 ** we've broken the loop without logging it, it will restore the
1083 ** buffer */
1084 reiserfs_restore_prepared_buffer(sb, bh);
1085 } while (need_re_search &&
1086 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1087 pos_in_item(path) = pos * UNFM_P_SIZE;
1088
1089 if (*cut_size == 0) {
1090 /* Nothing were cut. maybe convert last unformatted node to the
1091 * direct item? */
1092 result = M_CONVERT;
1093 }
1094 return result;
1095 }
1096}
1097
1098/* Calculate number of bytes which will be deleted or cut during balance */
1099static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1100{
1101 int del_size;
1102 struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path);
1103
1104 if (is_statdata_le_ih(p_le_ih))
1105 return 0;
1106
1107 del_size =
1108 (mode ==
1109 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1110 if (is_direntry_le_ih(p_le_ih)) {
1111 /* return EMPTY_DIR_SIZE; We delete emty directoris only.
1112 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1113 * empty size. ick. FIXME, is this right? */
1114 return del_size;
1115 }
1116
1117 if (is_indirect_le_ih(p_le_ih))
1118 del_size = (del_size / UNFM_P_SIZE) *
1119 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1120 return del_size;
1121}
1122
1123static void init_tb_struct(struct reiserfs_transaction_handle *th,
1124 struct tree_balance *tb,
1125 struct super_block *sb,
1126 struct treepath *path, int size)
1127{
1128
1129 BUG_ON(!th->t_trans_id);
1130
1131 memset(tb, '\0', sizeof(struct tree_balance));
1132 tb->transaction_handle = th;
1133 tb->tb_sb = sb;
1134 tb->tb_path = path;
1135 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1136 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1137 tb->insert_size[0] = size;
1138}
1139
1140void padd_item(char *item, int total_length, int length)
1141{
1142 int i;
1143
1144 for (i = total_length; i > length;)
1145 item[--i] = 0;
1146}
1147
1148#ifdef REISERQUOTA_DEBUG
1149char key2type(struct reiserfs_key *ih)
1150{
1151 if (is_direntry_le_key(2, ih))
1152 return 'd';
1153 if (is_direct_le_key(2, ih))
1154 return 'D';
1155 if (is_indirect_le_key(2, ih))
1156 return 'i';
1157 if (is_statdata_le_key(2, ih))
1158 return 's';
1159 return 'u';
1160}
1161
1162char head2type(struct item_head *ih)
1163{
1164 if (is_direntry_le_ih(ih))
1165 return 'd';
1166 if (is_direct_le_ih(ih))
1167 return 'D';
1168 if (is_indirect_le_ih(ih))
1169 return 'i';
1170 if (is_statdata_le_ih(ih))
1171 return 's';
1172 return 'u';
1173}
1174#endif
1175
1176/* Delete object item.
1177 * th - active transaction handle
1178 * path - path to the deleted item
1179 * item_key - key to search for the deleted item
1180 * indode - used for updating i_blocks and quotas
1181 * un_bh - NULL or unformatted node pointer
1182 */
1183int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1184 struct treepath *path, const struct cpu_key *item_key,
1185 struct inode *inode, struct buffer_head *un_bh)
1186{
1187 struct super_block *sb = inode->i_sb;
1188 struct tree_balance s_del_balance;
1189 struct item_head s_ih;
1190 struct item_head *q_ih;
1191 int quota_cut_bytes;
1192 int ret_value, del_size, removed;
1193
1194#ifdef CONFIG_REISERFS_CHECK
1195 char mode;
1196 int iter = 0;
1197#endif
1198
1199 BUG_ON(!th->t_trans_id);
1200
1201 init_tb_struct(th, &s_del_balance, sb, path,
1202 0 /*size is unknown */ );
1203
1204 while (1) {
1205 removed = 0;
1206
1207#ifdef CONFIG_REISERFS_CHECK
1208 iter++;
1209 mode =
1210#endif
1211 prepare_for_delete_or_cut(th, inode, path,
1212 item_key, &removed,
1213 &del_size,
1214 max_reiserfs_offset(inode));
1215
1216 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1217
1218 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1219 s_del_balance.insert_size[0] = del_size;
1220
1221 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1222 if (ret_value != REPEAT_SEARCH)
1223 break;
1224
1225 PROC_INFO_INC(sb, delete_item_restarted);
1226
1227 // file system changed, repeat search
1228 ret_value =
1229 search_for_position_by_key(sb, item_key, path);
1230 if (ret_value == IO_ERROR)
1231 break;
1232 if (ret_value == FILE_NOT_FOUND) {
1233 reiserfs_warning(sb, "vs-5340",
1234 "no items of the file %K found",
1235 item_key);
1236 break;
1237 }
1238 } /* while (1) */
1239
1240 if (ret_value != CARRY_ON) {
1241 unfix_nodes(&s_del_balance);
1242 return 0;
1243 }
1244 // reiserfs_delete_item returns item length when success
1245 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1246 q_ih = get_ih(path);
1247 quota_cut_bytes = ih_item_len(q_ih);
1248
1249 /* hack so the quota code doesn't have to guess if the file
1250 ** has a tail. On tail insert, we allocate quota for 1 unformatted node.
1251 ** We test the offset because the tail might have been
1252 ** split into multiple items, and we only want to decrement for
1253 ** the unfm node once
1254 */
1255 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1256 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1257 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1258 } else {
1259 quota_cut_bytes = 0;
1260 }
1261 }
1262
1263 if (un_bh) {
1264 int off;
1265 char *data;
1266
1267 /* We are in direct2indirect conversion, so move tail contents
1268 to the unformatted node */
1269 /* note, we do the copy before preparing the buffer because we
1270 ** don't care about the contents of the unformatted node yet.
1271 ** the only thing we really care about is the direct item's data
1272 ** is in the unformatted node.
1273 **
1274 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1275 ** the unformatted node, which might schedule, meaning we'd have to
1276 ** loop all the way back up to the start of the while loop.
1277 **
1278 ** The unformatted node must be dirtied later on. We can't be
1279 ** sure here if the entire tail has been deleted yet.
1280 **
1281 ** un_bh is from the page cache (all unformatted nodes are
1282 ** from the page cache) and might be a highmem page. So, we
1283 ** can't use un_bh->b_data.
1284 ** -clm
1285 */
1286
1287 data = kmap_atomic(un_bh->b_page, KM_USER0);
1288 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1289 memcpy(data + off,
1290 B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih),
1291 ret_value);
1292 kunmap_atomic(data, KM_USER0);
1293 }
1294 /* Perform balancing after all resources have been collected at once. */
1295 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1296
1297#ifdef REISERQUOTA_DEBUG
1298 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1299 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1300 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1301#endif
1302 dquot_free_space_nodirty(inode, quota_cut_bytes);
1303
1304 /* Return deleted body length */
1305 return ret_value;
1306}
1307
1308/* Summary Of Mechanisms For Handling Collisions Between Processes:
1309
1310 deletion of the body of the object is performed by iput(), with the
1311 result that if multiple processes are operating on a file, the
1312 deletion of the body of the file is deferred until the last process
1313 that has an open inode performs its iput().
1314
1315 writes and truncates are protected from collisions by use of
1316 semaphores.
1317
1318 creates, linking, and mknod are protected from collisions with other
1319 processes by making the reiserfs_add_entry() the last step in the
1320 creation, and then rolling back all changes if there was a collision.
1321 - Hans
1322*/
1323
1324/* this deletes item which never gets split */
1325void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1326 struct inode *inode, struct reiserfs_key *key)
1327{
1328 struct tree_balance tb;
1329 INITIALIZE_PATH(path);
1330 int item_len = 0;
1331 int tb_init = 0;
1332 struct cpu_key cpu_key;
1333 int retval;
1334 int quota_cut_bytes = 0;
1335
1336 BUG_ON(!th->t_trans_id);
1337
1338 le_key2cpu_key(&cpu_key, key);
1339
1340 while (1) {
1341 retval = search_item(th->t_super, &cpu_key, &path);
1342 if (retval == IO_ERROR) {
1343 reiserfs_error(th->t_super, "vs-5350",
1344 "i/o failure occurred trying "
1345 "to delete %K", &cpu_key);
1346 break;
1347 }
1348 if (retval != ITEM_FOUND) {
1349 pathrelse(&path);
1350 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1351 if (!
1352 ((unsigned long long)
1353 GET_HASH_VALUE(le_key_k_offset
1354 (le_key_version(key), key)) == 0
1355 && (unsigned long long)
1356 GET_GENERATION_NUMBER(le_key_k_offset
1357 (le_key_version(key),
1358 key)) == 1))
1359 reiserfs_warning(th->t_super, "vs-5355",
1360 "%k not found", key);
1361 break;
1362 }
1363 if (!tb_init) {
1364 tb_init = 1;
1365 item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1366 init_tb_struct(th, &tb, th->t_super, &path,
1367 -(IH_SIZE + item_len));
1368 }
1369 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1370
1371 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1372 if (retval == REPEAT_SEARCH) {
1373 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1374 continue;
1375 }
1376
1377 if (retval == CARRY_ON) {
1378 do_balance(&tb, NULL, NULL, M_DELETE);
1379 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
1380#ifdef REISERQUOTA_DEBUG
1381 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1382 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1383 quota_cut_bytes, inode->i_uid,
1384 key2type(key));
1385#endif
1386 dquot_free_space_nodirty(inode,
1387 quota_cut_bytes);
1388 }
1389 break;
1390 }
1391 // IO_ERROR, NO_DISK_SPACE, etc
1392 reiserfs_warning(th->t_super, "vs-5360",
1393 "could not delete %K due to fix_nodes failure",
1394 &cpu_key);
1395 unfix_nodes(&tb);
1396 break;
1397 }
1398
1399 reiserfs_check_path(&path);
1400}
1401
1402int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1403 struct inode *inode)
1404{
1405 int err;
1406 inode->i_size = 0;
1407 BUG_ON(!th->t_trans_id);
1408
1409 /* for directory this deletes item containing "." and ".." */
1410 err =
1411 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1412 if (err)
1413 return err;
1414
1415#if defined( USE_INODE_GENERATION_COUNTER )
1416 if (!old_format_only(th->t_super)) {
1417 __le32 *inode_generation;
1418
1419 inode_generation =
1420 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1421 le32_add_cpu(inode_generation, 1);
1422 }
1423/* USE_INODE_GENERATION_COUNTER */
1424#endif
1425 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1426
1427 return err;
1428}
1429
1430static void unmap_buffers(struct page *page, loff_t pos)
1431{
1432 struct buffer_head *bh;
1433 struct buffer_head *head;
1434 struct buffer_head *next;
1435 unsigned long tail_index;
1436 unsigned long cur_index;
1437
1438 if (page) {
1439 if (page_has_buffers(page)) {
1440 tail_index = pos & (PAGE_CACHE_SIZE - 1);
1441 cur_index = 0;
1442 head = page_buffers(page);
1443 bh = head;
1444 do {
1445 next = bh->b_this_page;
1446
1447 /* we want to unmap the buffers that contain the tail, and
1448 ** all the buffers after it (since the tail must be at the
1449 ** end of the file). We don't want to unmap file data
1450 ** before the tail, since it might be dirty and waiting to
1451 ** reach disk
1452 */
1453 cur_index += bh->b_size;
1454 if (cur_index > tail_index) {
1455 reiserfs_unmap_buffer(bh);
1456 }
1457 bh = next;
1458 } while (bh != head);
1459 }
1460 }
1461}
1462
1463static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1464 struct inode *inode,
1465 struct page *page,
1466 struct treepath *path,
1467 const struct cpu_key *item_key,
1468 loff_t new_file_size, char *mode)
1469{
1470 struct super_block *sb = inode->i_sb;
1471 int block_size = sb->s_blocksize;
1472 int cut_bytes;
1473 BUG_ON(!th->t_trans_id);
1474 BUG_ON(new_file_size != inode->i_size);
1475
1476 /* the page being sent in could be NULL if there was an i/o error
1477 ** reading in the last block. The user will hit problems trying to
1478 ** read the file, but for now we just skip the indirect2direct
1479 */
1480 if (atomic_read(&inode->i_count) > 1 ||
1481 !tail_has_to_be_packed(inode) ||
1482 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1483 /* leave tail in an unformatted node */
1484 *mode = M_SKIP_BALANCING;
1485 cut_bytes =
1486 block_size - (new_file_size & (block_size - 1));
1487 pathrelse(path);
1488 return cut_bytes;
1489 }
1490 /* Perform the conversion to a direct_item. */
1491 /* return indirect_to_direct(inode, path, item_key,
1492 new_file_size, mode); */
1493 return indirect2direct(th, inode, page, path, item_key,
1494 new_file_size, mode);
1495}
1496
1497/* we did indirect_to_direct conversion. And we have inserted direct
1498 item successesfully, but there were no disk space to cut unfm
1499 pointer being converted. Therefore we have to delete inserted
1500 direct item(s) */
1501static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1502 struct inode *inode, struct treepath *path)
1503{
1504 struct cpu_key tail_key;
1505 int tail_len;
1506 int removed;
1507 BUG_ON(!th->t_trans_id);
1508
1509 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!!
1510 tail_key.key_length = 4;
1511
1512 tail_len =
1513 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1514 while (tail_len) {
1515 /* look for the last byte of the tail */
1516 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1517 POSITION_NOT_FOUND)
1518 reiserfs_panic(inode->i_sb, "vs-5615",
1519 "found invalid item");
1520 RFALSE(path->pos_in_item !=
1521 ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1522 "vs-5616: appended bytes found");
1523 PATH_LAST_POSITION(path)--;
1524
1525 removed =
1526 reiserfs_delete_item(th, path, &tail_key, inode,
1527 NULL /*unbh not needed */ );
1528 RFALSE(removed <= 0
1529 || removed > tail_len,
1530 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1531 tail_len, removed);
1532 tail_len -= removed;
1533 set_cpu_key_k_offset(&tail_key,
1534 cpu_key_k_offset(&tail_key) - removed);
1535 }
1536 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1537 "conversion has been rolled back due to "
1538 "lack of disk space");
1539 //mark_file_without_tail (inode);
1540 mark_inode_dirty(inode);
1541}
1542
1543/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1544int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1545 struct treepath *path,
1546 struct cpu_key *item_key,
1547 struct inode *inode,
1548 struct page *page, loff_t new_file_size)
1549{
1550 struct super_block *sb = inode->i_sb;
1551 /* Every function which is going to call do_balance must first
1552 create a tree_balance structure. Then it must fill up this
1553 structure by using the init_tb_struct and fix_nodes functions.
1554 After that we can make tree balancing. */
1555 struct tree_balance s_cut_balance;
1556 struct item_head *p_le_ih;
1557 int cut_size = 0, /* Amount to be cut. */
1558 ret_value = CARRY_ON, removed = 0, /* Number of the removed unformatted nodes. */
1559 is_inode_locked = 0;
1560 char mode; /* Mode of the balance. */
1561 int retval2 = -1;
1562 int quota_cut_bytes;
1563 loff_t tail_pos = 0;
1564
1565 BUG_ON(!th->t_trans_id);
1566
1567 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1568 cut_size);
1569
1570 /* Repeat this loop until we either cut the item without needing
1571 to balance, or we fix_nodes without schedule occurring */
1572 while (1) {
1573 /* Determine the balance mode, position of the first byte to
1574 be cut, and size to be cut. In case of the indirect item
1575 free unformatted nodes which are pointed to by the cut
1576 pointers. */
1577
1578 mode =
1579 prepare_for_delete_or_cut(th, inode, path,
1580 item_key, &removed,
1581 &cut_size, new_file_size);
1582 if (mode == M_CONVERT) {
1583 /* convert last unformatted node to direct item or leave
1584 tail in the unformatted node */
1585 RFALSE(ret_value != CARRY_ON,
1586 "PAP-5570: can not convert twice");
1587
1588 ret_value =
1589 maybe_indirect_to_direct(th, inode, page,
1590 path, item_key,
1591 new_file_size, &mode);
1592 if (mode == M_SKIP_BALANCING)
1593 /* tail has been left in the unformatted node */
1594 return ret_value;
1595
1596 is_inode_locked = 1;
1597
1598 /* removing of last unformatted node will change value we
1599 have to return to truncate. Save it */
1600 retval2 = ret_value;
1601 /*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */
1602
1603 /* So, we have performed the first part of the conversion:
1604 inserting the new direct item. Now we are removing the
1605 last unformatted node pointer. Set key to search for
1606 it. */
1607 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1608 item_key->key_length = 4;
1609 new_file_size -=
1610 (new_file_size & (sb->s_blocksize - 1));
1611 tail_pos = new_file_size;
1612 set_cpu_key_k_offset(item_key, new_file_size + 1);
1613 if (search_for_position_by_key
1614 (sb, item_key,
1615 path) == POSITION_NOT_FOUND) {
1616 print_block(PATH_PLAST_BUFFER(path), 3,
1617 PATH_LAST_POSITION(path) - 1,
1618 PATH_LAST_POSITION(path) + 1);
1619 reiserfs_panic(sb, "PAP-5580", "item to "
1620 "convert does not exist (%K)",
1621 item_key);
1622 }
1623 continue;
1624 }
1625 if (cut_size == 0) {
1626 pathrelse(path);
1627 return 0;
1628 }
1629
1630 s_cut_balance.insert_size[0] = cut_size;
1631
1632 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1633 if (ret_value != REPEAT_SEARCH)
1634 break;
1635
1636 PROC_INFO_INC(sb, cut_from_item_restarted);
1637
1638 ret_value =
1639 search_for_position_by_key(sb, item_key, path);
1640 if (ret_value == POSITION_FOUND)
1641 continue;
1642
1643 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1644 item_key);
1645 unfix_nodes(&s_cut_balance);
1646 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1647 } /* while */
1648
1649 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1650 if (ret_value != CARRY_ON) {
1651 if (is_inode_locked) {
1652 // FIXME: this seems to be not needed: we are always able
1653 // to cut item
1654 indirect_to_direct_roll_back(th, inode, path);
1655 }
1656 if (ret_value == NO_DISK_SPACE)
1657 reiserfs_warning(sb, "reiserfs-5092",
1658 "NO_DISK_SPACE");
1659 unfix_nodes(&s_cut_balance);
1660 return -EIO;
1661 }
1662
1663 /* go ahead and perform balancing */
1664
1665 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1666
1667 /* Calculate number of bytes that need to be cut from the item. */
1668 quota_cut_bytes =
1669 (mode ==
1670 M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance.
1671 insert_size[0];
1672 if (retval2 == -1)
1673 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1674 else
1675 ret_value = retval2;
1676
1677 /* For direct items, we only change the quota when deleting the last
1678 ** item.
1679 */
1680 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1681 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1682 if (mode == M_DELETE &&
1683 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1684 1) {
1685 // FIXME: this is to keep 3.5 happy
1686 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1687 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1688 } else {
1689 quota_cut_bytes = 0;
1690 }
1691 }
1692#ifdef CONFIG_REISERFS_CHECK
1693 if (is_inode_locked) {
1694 struct item_head *le_ih =
1695 PATH_PITEM_HEAD(s_cut_balance.tb_path);
1696 /* we are going to complete indirect2direct conversion. Make
1697 sure, that we exactly remove last unformatted node pointer
1698 of the item */
1699 if (!is_indirect_le_ih(le_ih))
1700 reiserfs_panic(sb, "vs-5652",
1701 "item must be indirect %h", le_ih);
1702
1703 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1704 reiserfs_panic(sb, "vs-5653", "completing "
1705 "indirect2direct conversion indirect "
1706 "item %h being deleted must be of "
1707 "4 byte long", le_ih);
1708
1709 if (mode == M_CUT
1710 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1711 reiserfs_panic(sb, "vs-5654", "can not complete "
1712 "indirect2direct conversion of %h "
1713 "(CUT, insert_size==%d)",
1714 le_ih, s_cut_balance.insert_size[0]);
1715 }
1716 /* it would be useful to make sure, that right neighboring
1717 item is direct item of this file */
1718 }
1719#endif
1720
1721 do_balance(&s_cut_balance, NULL, NULL, mode);
1722 if (is_inode_locked) {
1723 /* we've done an indirect->direct conversion. when the data block
1724 ** was freed, it was removed from the list of blocks that must
1725 ** be flushed before the transaction commits, make sure to
1726 ** unmap and invalidate it
1727 */
1728 unmap_buffers(page, tail_pos);
1729 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1730 }
1731#ifdef REISERQUOTA_DEBUG
1732 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1733 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1734 quota_cut_bytes, inode->i_uid, '?');
1735#endif
1736 dquot_free_space_nodirty(inode, quota_cut_bytes);
1737 return ret_value;
1738}
1739
1740static void truncate_directory(struct reiserfs_transaction_handle *th,
1741 struct inode *inode)
1742{
1743 BUG_ON(!th->t_trans_id);
1744 if (inode->i_nlink)
1745 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1746
1747 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1748 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1749 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1750 reiserfs_update_sd(th, inode);
1751 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1752 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1753}
1754
1755/* Truncate file to the new size. Note, this must be called with a transaction
1756 already started */
1757int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1758 struct inode *inode, /* ->i_size contains new size */
1759 struct page *page, /* up to date for last block */
1760 int update_timestamps /* when it is called by
1761 file_release to convert
1762 the tail - no timestamps
1763 should be updated */
1764 )
1765{
1766 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1767 struct item_head *p_le_ih; /* Pointer to an item header. */
1768 struct cpu_key s_item_key; /* Key to search for a previous file item. */
1769 loff_t file_size, /* Old file size. */
1770 new_file_size; /* New file size. */
1771 int deleted; /* Number of deleted or truncated bytes. */
1772 int retval;
1773 int err = 0;
1774
1775 BUG_ON(!th->t_trans_id);
1776 if (!
1777 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1778 || S_ISLNK(inode->i_mode)))
1779 return 0;
1780
1781 if (S_ISDIR(inode->i_mode)) {
1782 // deletion of directory - no need to update timestamps
1783 truncate_directory(th, inode);
1784 return 0;
1785 }
1786
1787 /* Get new file size. */
1788 new_file_size = inode->i_size;
1789
1790 // FIXME: note, that key type is unimportant here
1791 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1792 TYPE_DIRECT, 3);
1793
1794 retval =
1795 search_for_position_by_key(inode->i_sb, &s_item_key,
1796 &s_search_path);
1797 if (retval == IO_ERROR) {
1798 reiserfs_error(inode->i_sb, "vs-5657",
1799 "i/o failure occurred trying to truncate %K",
1800 &s_item_key);
1801 err = -EIO;
1802 goto out;
1803 }
1804 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1805 reiserfs_error(inode->i_sb, "PAP-5660",
1806 "wrong result %d of search for %K", retval,
1807 &s_item_key);
1808
1809 err = -EIO;
1810 goto out;
1811 }
1812
1813 s_search_path.pos_in_item--;
1814
1815 /* Get real file size (total length of all file items) */
1816 p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1817 if (is_statdata_le_ih(p_le_ih))
1818 file_size = 0;
1819 else {
1820 loff_t offset = le_ih_k_offset(p_le_ih);
1821 int bytes =
1822 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1823
1824 /* this may mismatch with real file size: if last direct item
1825 had no padding zeros and last unformatted node had no free
1826 space, this file would have this file size */
1827 file_size = offset + bytes - 1;
1828 }
1829 /*
1830 * are we doing a full truncate or delete, if so
1831 * kick in the reada code
1832 */
1833 if (new_file_size == 0)
1834 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1835
1836 if (file_size == 0 || file_size < new_file_size) {
1837 goto update_and_out;
1838 }
1839
1840 /* Update key to search for the last file item. */
1841 set_cpu_key_k_offset(&s_item_key, file_size);
1842
1843 do {
1844 /* Cut or delete file item. */
1845 deleted =
1846 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1847 inode, page, new_file_size);
1848 if (deleted < 0) {
1849 reiserfs_warning(inode->i_sb, "vs-5665",
1850 "reiserfs_cut_from_item failed");
1851 reiserfs_check_path(&s_search_path);
1852 return 0;
1853 }
1854
1855 RFALSE(deleted > file_size,
1856 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1857 deleted, file_size, &s_item_key);
1858
1859 /* Change key to search the last file item. */
1860 file_size -= deleted;
1861
1862 set_cpu_key_k_offset(&s_item_key, file_size);
1863
1864 /* While there are bytes to truncate and previous file item is presented in the tree. */
1865
1866 /*
1867 ** This loop could take a really long time, and could log
1868 ** many more blocks than a transaction can hold. So, we do a polite
1869 ** journal end here, and if the transaction needs ending, we make
1870 ** sure the file is consistent before ending the current trans
1871 ** and starting a new one
1872 */
1873 if (journal_transaction_should_end(th, 0) ||
1874 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1875 int orig_len_alloc = th->t_blocks_allocated;
1876 pathrelse(&s_search_path);
1877
1878 if (update_timestamps) {
1879 inode->i_mtime = CURRENT_TIME_SEC;
1880 inode->i_ctime = CURRENT_TIME_SEC;
1881 }
1882 reiserfs_update_sd(th, inode);
1883
1884 err = journal_end(th, inode->i_sb, orig_len_alloc);
1885 if (err)
1886 goto out;
1887 err = journal_begin(th, inode->i_sb,
1888 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1889 if (err)
1890 goto out;
1891 reiserfs_update_inode_transaction(inode);
1892 }
1893 } while (file_size > ROUND_UP(new_file_size) &&
1894 search_for_position_by_key(inode->i_sb, &s_item_key,
1895 &s_search_path) == POSITION_FOUND);
1896
1897 RFALSE(file_size > ROUND_UP(new_file_size),
1898 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1899 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
1900
1901 update_and_out:
1902 if (update_timestamps) {
1903 // this is truncate, not file closing
1904 inode->i_mtime = CURRENT_TIME_SEC;
1905 inode->i_ctime = CURRENT_TIME_SEC;
1906 }
1907 reiserfs_update_sd(th, inode);
1908
1909 out:
1910 pathrelse(&s_search_path);
1911 return err;
1912}
1913
1914#ifdef CONFIG_REISERFS_CHECK
1915// this makes sure, that we __append__, not overwrite or add holes
1916static void check_research_for_paste(struct treepath *path,
1917 const struct cpu_key *key)
1918{
1919 struct item_head *found_ih = get_ih(path);
1920
1921 if (is_direct_le_ih(found_ih)) {
1922 if (le_ih_k_offset(found_ih) +
1923 op_bytes_number(found_ih,
1924 get_last_bh(path)->b_size) !=
1925 cpu_key_k_offset(key)
1926 || op_bytes_number(found_ih,
1927 get_last_bh(path)->b_size) !=
1928 pos_in_item(path))
1929 reiserfs_panic(NULL, "PAP-5720", "found direct item "
1930 "%h or position (%d) does not match "
1931 "to key %K", found_ih,
1932 pos_in_item(path), key);
1933 }
1934 if (is_indirect_le_ih(found_ih)) {
1935 if (le_ih_k_offset(found_ih) +
1936 op_bytes_number(found_ih,
1937 get_last_bh(path)->b_size) !=
1938 cpu_key_k_offset(key)
1939 || I_UNFM_NUM(found_ih) != pos_in_item(path)
1940 || get_ih_free_space(found_ih) != 0)
1941 reiserfs_panic(NULL, "PAP-5730", "found indirect "
1942 "item (%h) or position (%d) does not "
1943 "match to key (%K)",
1944 found_ih, pos_in_item(path), key);
1945 }
1946}
1947#endif /* config reiserfs check */
1948
1949/* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1950int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path, /* Path to the pasted item. */
1951 const struct cpu_key *key, /* Key to search for the needed item. */
1952 struct inode *inode, /* Inode item belongs to */
1953 const char *body, /* Pointer to the bytes to paste. */
1954 int pasted_size)
1955{ /* Size of pasted bytes. */
1956 struct tree_balance s_paste_balance;
1957 int retval;
1958 int fs_gen;
1959
1960 BUG_ON(!th->t_trans_id);
1961
1962 fs_gen = get_generation(inode->i_sb);
1963
1964#ifdef REISERQUOTA_DEBUG
1965 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1966 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1967 pasted_size, inode->i_uid,
1968 key2type(&(key->on_disk_key)));
1969#endif
1970
1971 retval = dquot_alloc_space_nodirty(inode, pasted_size);
1972 if (retval) {
1973 pathrelse(search_path);
1974 return retval;
1975 }
1976 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
1977 pasted_size);
1978#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1979 s_paste_balance.key = key->on_disk_key;
1980#endif
1981
1982 /* DQUOT_* can schedule, must check before the fix_nodes */
1983 if (fs_changed(fs_gen, inode->i_sb)) {
1984 goto search_again;
1985 }
1986
1987 while ((retval =
1988 fix_nodes(M_PASTE, &s_paste_balance, NULL,
1989 body)) == REPEAT_SEARCH) {
1990 search_again:
1991 /* file system changed while we were in the fix_nodes */
1992 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
1993 retval =
1994 search_for_position_by_key(th->t_super, key,
1995 search_path);
1996 if (retval == IO_ERROR) {
1997 retval = -EIO;
1998 goto error_out;
1999 }
2000 if (retval == POSITION_FOUND) {
2001 reiserfs_warning(inode->i_sb, "PAP-5710",
2002 "entry or pasted byte (%K) exists",
2003 key);
2004 retval = -EEXIST;
2005 goto error_out;
2006 }
2007#ifdef CONFIG_REISERFS_CHECK
2008 check_research_for_paste(search_path, key);
2009#endif
2010 }
2011
2012 /* Perform balancing after all resources are collected by fix_nodes, and
2013 accessing them will not risk triggering schedule. */
2014 if (retval == CARRY_ON) {
2015 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2016 return 0;
2017 }
2018 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2019 error_out:
2020 /* this also releases the path */
2021 unfix_nodes(&s_paste_balance);
2022#ifdef REISERQUOTA_DEBUG
2023 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2024 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2025 pasted_size, inode->i_uid,
2026 key2type(&(key->on_disk_key)));
2027#endif
2028 dquot_free_space_nodirty(inode, pasted_size);
2029 return retval;
2030}
2031
2032/* Insert new item into the buffer at the path.
2033 * th - active transaction handle
2034 * path - path to the inserted item
2035 * ih - pointer to the item header to insert
2036 * body - pointer to the bytes to insert
2037 */
2038int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2039 struct treepath *path, const struct cpu_key *key,
2040 struct item_head *ih, struct inode *inode,
2041 const char *body)
2042{
2043 struct tree_balance s_ins_balance;
2044 int retval;
2045 int fs_gen = 0;
2046 int quota_bytes = 0;
2047
2048 BUG_ON(!th->t_trans_id);
2049
2050 if (inode) { /* Do we count quotas for item? */
2051 fs_gen = get_generation(inode->i_sb);
2052 quota_bytes = ih_item_len(ih);
2053
2054 /* hack so the quota code doesn't have to guess if the file has
2055 ** a tail, links are always tails, so there's no guessing needed
2056 */
2057 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2058 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2059#ifdef REISERQUOTA_DEBUG
2060 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2061 "reiserquota insert_item(): allocating %u id=%u type=%c",
2062 quota_bytes, inode->i_uid, head2type(ih));
2063#endif
2064 /* We can't dirty inode here. It would be immediately written but
2065 * appropriate stat item isn't inserted yet... */
2066 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2067 if (retval) {
2068 pathrelse(path);
2069 return retval;
2070 }
2071 }
2072 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2073 IH_SIZE + ih_item_len(ih));
2074#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2075 s_ins_balance.key = key->on_disk_key;
2076#endif
2077 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2078 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2079 goto search_again;
2080 }
2081
2082 while ((retval =
2083 fix_nodes(M_INSERT, &s_ins_balance, ih,
2084 body)) == REPEAT_SEARCH) {
2085 search_again:
2086 /* file system changed while we were in the fix_nodes */
2087 PROC_INFO_INC(th->t_super, insert_item_restarted);
2088 retval = search_item(th->t_super, key, path);
2089 if (retval == IO_ERROR) {
2090 retval = -EIO;
2091 goto error_out;
2092 }
2093 if (retval == ITEM_FOUND) {
2094 reiserfs_warning(th->t_super, "PAP-5760",
2095 "key %K already exists in the tree",
2096 key);
2097 retval = -EEXIST;
2098 goto error_out;
2099 }
2100 }
2101
2102 /* make balancing after all resources will be collected at a time */
2103 if (retval == CARRY_ON) {
2104 do_balance(&s_ins_balance, ih, body, M_INSERT);
2105 return 0;
2106 }
2107
2108 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2109 error_out:
2110 /* also releases the path */
2111 unfix_nodes(&s_ins_balance);
2112#ifdef REISERQUOTA_DEBUG
2113 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2114 "reiserquota insert_item(): freeing %u id=%u type=%c",
2115 quota_bytes, inode->i_uid, head2type(ih));
2116#endif
2117 if (inode)
2118 dquot_free_space_nodirty(inode, quota_bytes);
2119 return retval;
2120}
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11#include <linux/time.h>
12#include <linux/string.h>
13#include <linux/pagemap.h>
14#include <linux/bio.h>
15#include "reiserfs.h"
16#include <linux/buffer_head.h>
17#include <linux/quotaops.h>
18
19/* Does the buffer contain a disk block which is in the tree. */
20inline int B_IS_IN_TREE(const struct buffer_head *bh)
21{
22
23 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25
26 return (B_LEVEL(bh) != FREE_LEVEL);
27}
28
29/* to get item head in le form */
30inline void copy_item_head(struct item_head *to,
31 const struct item_head *from)
32{
33 memcpy(to, from, IH_SIZE);
34}
35
36/*
37 * k1 is pointer to on-disk structure which is stored in little-endian
38 * form. k2 is pointer to cpu variable. For key of items of the same
39 * object this returns 0.
40 * Returns: -1 if key1 < key2
41 * 0 if key1 == key2
42 * 1 if key1 > key2
43 */
44inline int comp_short_keys(const struct reiserfs_key *le_key,
45 const struct cpu_key *cpu_key)
46{
47 __u32 n;
48 n = le32_to_cpu(le_key->k_dir_id);
49 if (n < cpu_key->on_disk_key.k_dir_id)
50 return -1;
51 if (n > cpu_key->on_disk_key.k_dir_id)
52 return 1;
53 n = le32_to_cpu(le_key->k_objectid);
54 if (n < cpu_key->on_disk_key.k_objectid)
55 return -1;
56 if (n > cpu_key->on_disk_key.k_objectid)
57 return 1;
58 return 0;
59}
60
61/*
62 * k1 is pointer to on-disk structure which is stored in little-endian
63 * form. k2 is pointer to cpu variable.
64 * Compare keys using all 4 key fields.
65 * Returns: -1 if key1 < key2 0
66 * if key1 = key2 1 if key1 > key2
67 */
68static inline int comp_keys(const struct reiserfs_key *le_key,
69 const struct cpu_key *cpu_key)
70{
71 int retval;
72
73 retval = comp_short_keys(le_key, cpu_key);
74 if (retval)
75 return retval;
76 if (le_key_k_offset(le_key_version(le_key), le_key) <
77 cpu_key_k_offset(cpu_key))
78 return -1;
79 if (le_key_k_offset(le_key_version(le_key), le_key) >
80 cpu_key_k_offset(cpu_key))
81 return 1;
82
83 if (cpu_key->key_length == 3)
84 return 0;
85
86 /* this part is needed only when tail conversion is in progress */
87 if (le_key_k_type(le_key_version(le_key), le_key) <
88 cpu_key_k_type(cpu_key))
89 return -1;
90
91 if (le_key_k_type(le_key_version(le_key), le_key) >
92 cpu_key_k_type(cpu_key))
93 return 1;
94
95 return 0;
96}
97
98inline int comp_short_le_keys(const struct reiserfs_key *key1,
99 const struct reiserfs_key *key2)
100{
101 __u32 *k1_u32, *k2_u32;
102 int key_length = REISERFS_SHORT_KEY_LEN;
103
104 k1_u32 = (__u32 *) key1;
105 k2_u32 = (__u32 *) key2;
106 for (; key_length--; ++k1_u32, ++k2_u32) {
107 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108 return -1;
109 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110 return 1;
111 }
112 return 0;
113}
114
115inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116{
117 int version;
118 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120
121 /* find out version of the key */
122 version = le_key_version(from);
123 to->version = version;
124 to->on_disk_key.k_offset = le_key_k_offset(version, from);
125 to->on_disk_key.k_type = le_key_k_type(version, from);
126}
127
128/*
129 * this does not say which one is bigger, it only returns 1 if keys
130 * are not equal, 0 otherwise
131 */
132inline int comp_le_keys(const struct reiserfs_key *k1,
133 const struct reiserfs_key *k2)
134{
135 return memcmp(k1, k2, sizeof(struct reiserfs_key));
136}
137
138/**************************************************************************
139 * Binary search toolkit function *
140 * Search for an item in the array by the item key *
141 * Returns: 1 if found, 0 if not found; *
142 * *pos = number of the searched element if found, else the *
143 * number of the first element that is larger than key. *
144 **************************************************************************/
145/*
146 * For those not familiar with binary search: lbound is the leftmost item
147 * that it could be, rbound the rightmost item that it could be. We examine
148 * the item halfway between lbound and rbound, and that tells us either
149 * that we can increase lbound, or decrease rbound, or that we have found it,
150 * or if lbound <= rbound that there are no possible items, and we have not
151 * found it. With each examination we cut the number of possible items it
152 * could be by one more than half rounded down, or we find it.
153 */
154static inline int bin_search(const void *key, /* Key to search for. */
155 const void *base, /* First item in the array. */
156 int num, /* Number of items in the array. */
157 /*
158 * Item size in the array. searched. Lest the
159 * reader be confused, note that this is crafted
160 * as a general function, and when it is applied
161 * specifically to the array of item headers in a
162 * node, width is actually the item header size
163 * not the item size.
164 */
165 int width,
166 int *pos /* Number of the searched for element. */
167 )
168{
169 int rbound, lbound, j;
170
171 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172 lbound <= rbound; j = (rbound + lbound) / 2)
173 switch (comp_keys
174 ((struct reiserfs_key *)((char *)base + j * width),
175 (struct cpu_key *)key)) {
176 case -1:
177 lbound = j + 1;
178 continue;
179 case 1:
180 rbound = j - 1;
181 continue;
182 case 0:
183 *pos = j;
184 return ITEM_FOUND; /* Key found in the array. */
185 }
186
187 /*
188 * bin_search did not find given key, it returns position of key,
189 * that is minimal and greater than the given one.
190 */
191 *pos = lbound;
192 return ITEM_NOT_FOUND;
193}
194
195
196/* Minimal possible key. It is never in the tree. */
197const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198
199/* Maximal possible key. It is never in the tree. */
200static const struct reiserfs_key MAX_KEY = {
201 cpu_to_le32(0xffffffff),
202 cpu_to_le32(0xffffffff),
203 {{cpu_to_le32(0xffffffff),
204 cpu_to_le32(0xffffffff)},}
205};
206
207/*
208 * Get delimiting key of the buffer by looking for it in the buffers in the
209 * path, starting from the bottom of the path, and going upwards. We must
210 * check the path's validity at each step. If the key is not in the path,
211 * there is no delimiting key in the tree (buffer is first or last buffer
212 * in tree), and in this case we return a special key, either MIN_KEY or
213 * MAX_KEY.
214 */
215static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216 const struct super_block *sb)
217{
218 int position, path_offset = chk_path->path_length;
219 struct buffer_head *parent;
220
221 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222 "PAP-5010: invalid offset in the path");
223
224 /* While not higher in path than first element. */
225 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226
227 RFALSE(!buffer_uptodate
228 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229 "PAP-5020: parent is not uptodate");
230
231 /* Parent at the path is not in the tree now. */
232 if (!B_IS_IN_TREE
233 (parent =
234 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235 return &MAX_KEY;
236 /* Check whether position in the parent is correct. */
237 if ((position =
238 PATH_OFFSET_POSITION(chk_path,
239 path_offset)) >
240 B_NR_ITEMS(parent))
241 return &MAX_KEY;
242 /* Check whether parent at the path really points to the child. */
243 if (B_N_CHILD_NUM(parent, position) !=
244 PATH_OFFSET_PBUFFER(chk_path,
245 path_offset + 1)->b_blocknr)
246 return &MAX_KEY;
247 /*
248 * Return delimiting key if position in the parent
249 * is not equal to zero.
250 */
251 if (position)
252 return internal_key(parent, position - 1);
253 }
254 /* Return MIN_KEY if we are in the root of the buffer tree. */
255 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256 b_blocknr == SB_ROOT_BLOCK(sb))
257 return &MIN_KEY;
258 return &MAX_KEY;
259}
260
261/* Get delimiting key of the buffer at the path and its right neighbor. */
262inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263 const struct super_block *sb)
264{
265 int position, path_offset = chk_path->path_length;
266 struct buffer_head *parent;
267
268 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269 "PAP-5030: invalid offset in the path");
270
271 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272
273 RFALSE(!buffer_uptodate
274 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275 "PAP-5040: parent is not uptodate");
276
277 /* Parent at the path is not in the tree now. */
278 if (!B_IS_IN_TREE
279 (parent =
280 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281 return &MIN_KEY;
282 /* Check whether position in the parent is correct. */
283 if ((position =
284 PATH_OFFSET_POSITION(chk_path,
285 path_offset)) >
286 B_NR_ITEMS(parent))
287 return &MIN_KEY;
288 /*
289 * Check whether parent at the path really points
290 * to the child.
291 */
292 if (B_N_CHILD_NUM(parent, position) !=
293 PATH_OFFSET_PBUFFER(chk_path,
294 path_offset + 1)->b_blocknr)
295 return &MIN_KEY;
296
297 /*
298 * Return delimiting key if position in the parent
299 * is not the last one.
300 */
301 if (position != B_NR_ITEMS(parent))
302 return internal_key(parent, position);
303 }
304
305 /* Return MAX_KEY if we are in the root of the buffer tree. */
306 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307 b_blocknr == SB_ROOT_BLOCK(sb))
308 return &MAX_KEY;
309 return &MIN_KEY;
310}
311
312/*
313 * Check whether a key is contained in the tree rooted from a buffer at a path.
314 * This works by looking at the left and right delimiting keys for the buffer
315 * in the last path_element in the path. These delimiting keys are stored
316 * at least one level above that buffer in the tree. If the buffer is the
317 * first or last node in the tree order then one of the delimiting keys may
318 * be absent, and in this case get_lkey and get_rkey return a special key
319 * which is MIN_KEY or MAX_KEY.
320 */
321static inline int key_in_buffer(
322 /* Path which should be checked. */
323 struct treepath *chk_path,
324 /* Key which should be checked. */
325 const struct cpu_key *key,
326 struct super_block *sb
327 )
328{
329
330 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331 || chk_path->path_length > MAX_HEIGHT,
332 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333 key, chk_path->path_length);
334 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335 "PAP-5060: device must not be NODEV");
336
337 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338 /* left delimiting key is bigger, that the key we look for */
339 return 0;
340 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342 /* key must be less than right delimitiing key */
343 return 0;
344 return 1;
345}
346
347int reiserfs_check_path(struct treepath *p)
348{
349 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350 "path not properly relsed");
351 return 0;
352}
353
354/*
355 * Drop the reference to each buffer in a path and restore
356 * dirty bits clean when preparing the buffer for the log.
357 * This version should only be called from fix_nodes()
358 */
359void pathrelse_and_restore(struct super_block *sb,
360 struct treepath *search_path)
361{
362 int path_offset = search_path->path_length;
363
364 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365 "clm-4000: invalid path offset");
366
367 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368 struct buffer_head *bh;
369 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370 reiserfs_restore_prepared_buffer(sb, bh);
371 brelse(bh);
372 }
373 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374}
375
376/* Drop the reference to each buffer in a path */
377void pathrelse(struct treepath *search_path)
378{
379 int path_offset = search_path->path_length;
380
381 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382 "PAP-5090: invalid path offset");
383
384 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386
387 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388}
389
390static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
391{
392 struct block_head *blkh;
393 struct item_head *ih;
394 int used_space;
395 int prev_location;
396 int i;
397 int nr;
398
399 blkh = (struct block_head *)buf;
400 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
401 reiserfs_warning(NULL, "reiserfs-5080",
402 "this should be caught earlier");
403 return 0;
404 }
405
406 nr = blkh_nr_item(blkh);
407 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
408 /* item number is too big or too small */
409 reiserfs_warning(NULL, "reiserfs-5081",
410 "nr_item seems wrong: %z", bh);
411 return 0;
412 }
413 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
414 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
415
416 /* free space does not match to calculated amount of use space */
417 if (used_space != blocksize - blkh_free_space(blkh)) {
418 reiserfs_warning(NULL, "reiserfs-5082",
419 "free space seems wrong: %z", bh);
420 return 0;
421 }
422 /*
423 * FIXME: it is_leaf will hit performance too much - we may have
424 * return 1 here
425 */
426
427 /* check tables of item heads */
428 ih = (struct item_head *)(buf + BLKH_SIZE);
429 prev_location = blocksize;
430 for (i = 0; i < nr; i++, ih++) {
431 if (le_ih_k_type(ih) == TYPE_ANY) {
432 reiserfs_warning(NULL, "reiserfs-5083",
433 "wrong item type for item %h",
434 ih);
435 return 0;
436 }
437 if (ih_location(ih) >= blocksize
438 || ih_location(ih) < IH_SIZE * nr) {
439 reiserfs_warning(NULL, "reiserfs-5084",
440 "item location seems wrong: %h",
441 ih);
442 return 0;
443 }
444 if (ih_item_len(ih) < 1
445 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
446 reiserfs_warning(NULL, "reiserfs-5085",
447 "item length seems wrong: %h",
448 ih);
449 return 0;
450 }
451 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
452 reiserfs_warning(NULL, "reiserfs-5086",
453 "item location seems wrong "
454 "(second one): %h", ih);
455 return 0;
456 }
457 prev_location = ih_location(ih);
458 }
459
460 /* one may imagine many more checks */
461 return 1;
462}
463
464/* returns 1 if buf looks like an internal node, 0 otherwise */
465static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
466{
467 struct block_head *blkh;
468 int nr;
469 int used_space;
470
471 blkh = (struct block_head *)buf;
472 nr = blkh_level(blkh);
473 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
474 /* this level is not possible for internal nodes */
475 reiserfs_warning(NULL, "reiserfs-5087",
476 "this should be caught earlier");
477 return 0;
478 }
479
480 nr = blkh_nr_item(blkh);
481 /* for internal which is not root we might check min number of keys */
482 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
483 reiserfs_warning(NULL, "reiserfs-5088",
484 "number of key seems wrong: %z", bh);
485 return 0;
486 }
487
488 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
489 if (used_space != blocksize - blkh_free_space(blkh)) {
490 reiserfs_warning(NULL, "reiserfs-5089",
491 "free space seems wrong: %z", bh);
492 return 0;
493 }
494
495 /* one may imagine many more checks */
496 return 1;
497}
498
499/*
500 * make sure that bh contains formatted node of reiserfs tree of
501 * 'level'-th level
502 */
503static int is_tree_node(struct buffer_head *bh, int level)
504{
505 if (B_LEVEL(bh) != level) {
506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
507 "not match to the expected one %d",
508 B_LEVEL(bh), level);
509 return 0;
510 }
511 if (level == DISK_LEAF_NODE_LEVEL)
512 return is_leaf(bh->b_data, bh->b_size, bh);
513
514 return is_internal(bh->b_data, bh->b_size, bh);
515}
516
517#define SEARCH_BY_KEY_READA 16
518
519/*
520 * The function is NOT SCHEDULE-SAFE!
521 * It might unlock the write lock if we needed to wait for a block
522 * to be read. Note that in this case it won't recover the lock to avoid
523 * high contention resulting from too much lock requests, especially
524 * the caller (search_by_key) will perform other schedule-unsafe
525 * operations just after calling this function.
526 *
527 * @return depth of lock to be restored after read completes
528 */
529static int search_by_key_reada(struct super_block *s,
530 struct buffer_head **bh,
531 b_blocknr_t *b, int num)
532{
533 int i, j;
534 int depth = -1;
535
536 for (i = 0; i < num; i++) {
537 bh[i] = sb_getblk(s, b[i]);
538 }
539 /*
540 * We are going to read some blocks on which we
541 * have a reference. It's safe, though we might be
542 * reading blocks concurrently changed if we release
543 * the lock. But it's still fine because we check later
544 * if the tree changed
545 */
546 for (j = 0; j < i; j++) {
547 /*
548 * note, this needs attention if we are getting rid of the BKL
549 * you have to make sure the prepared bit isn't set on this
550 * buffer
551 */
552 if (!buffer_uptodate(bh[j])) {
553 if (depth == -1)
554 depth = reiserfs_write_unlock_nested(s);
555 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
556 }
557 brelse(bh[j]);
558 }
559 return depth;
560}
561
562/*
563 * This function fills up the path from the root to the leaf as it
564 * descends the tree looking for the key. It uses reiserfs_bread to
565 * try to find buffers in the cache given their block number. If it
566 * does not find them in the cache it reads them from disk. For each
567 * node search_by_key finds using reiserfs_bread it then uses
568 * bin_search to look through that node. bin_search will find the
569 * position of the block_number of the next node if it is looking
570 * through an internal node. If it is looking through a leaf node
571 * bin_search will find the position of the item which has key either
572 * equal to given key, or which is the maximal key less than the given
573 * key. search_by_key returns a path that must be checked for the
574 * correctness of the top of the path but need not be checked for the
575 * correctness of the bottom of the path
576 */
577/*
578 * search_by_key - search for key (and item) in stree
579 * @sb: superblock
580 * @key: pointer to key to search for
581 * @search_path: Allocated and initialized struct treepath; Returned filled
582 * on success.
583 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
584 * stop at leaf level.
585 *
586 * The function is NOT SCHEDULE-SAFE!
587 */
588int search_by_key(struct super_block *sb, const struct cpu_key *key,
589 struct treepath *search_path, int stop_level)
590{
591 b_blocknr_t block_number;
592 int expected_level;
593 struct buffer_head *bh;
594 struct path_element *last_element;
595 int node_level, retval;
596 int fs_gen;
597 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
598 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
599 int reada_count = 0;
600
601#ifdef CONFIG_REISERFS_CHECK
602 int repeat_counter = 0;
603#endif
604
605 PROC_INFO_INC(sb, search_by_key);
606
607 /*
608 * As we add each node to a path we increase its count. This means
609 * that we must be careful to release all nodes in a path before we
610 * either discard the path struct or re-use the path struct, as we
611 * do here.
612 */
613
614 pathrelse(search_path);
615
616 /*
617 * With each iteration of this loop we search through the items in the
618 * current node, and calculate the next current node(next path element)
619 * for the next iteration of this loop..
620 */
621 block_number = SB_ROOT_BLOCK(sb);
622 expected_level = -1;
623 while (1) {
624
625#ifdef CONFIG_REISERFS_CHECK
626 if (!(++repeat_counter % 50000))
627 reiserfs_warning(sb, "PAP-5100",
628 "%s: there were %d iterations of "
629 "while loop looking for key %K",
630 current->comm, repeat_counter,
631 key);
632#endif
633
634 /* prep path to have another element added to it. */
635 last_element =
636 PATH_OFFSET_PELEMENT(search_path,
637 ++search_path->path_length);
638 fs_gen = get_generation(sb);
639
640 /*
641 * Read the next tree node, and set the last element
642 * in the path to have a pointer to it.
643 */
644 if ((bh = last_element->pe_buffer =
645 sb_getblk(sb, block_number))) {
646
647 /*
648 * We'll need to drop the lock if we encounter any
649 * buffers that need to be read. If all of them are
650 * already up to date, we don't need to drop the lock.
651 */
652 int depth = -1;
653
654 if (!buffer_uptodate(bh) && reada_count > 1)
655 depth = search_by_key_reada(sb, reada_bh,
656 reada_blocks, reada_count);
657
658 if (!buffer_uptodate(bh) && depth == -1)
659 depth = reiserfs_write_unlock_nested(sb);
660
661 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
662 wait_on_buffer(bh);
663
664 if (depth != -1)
665 reiserfs_write_lock_nested(sb, depth);
666 if (!buffer_uptodate(bh))
667 goto io_error;
668 } else {
669io_error:
670 search_path->path_length--;
671 pathrelse(search_path);
672 return IO_ERROR;
673 }
674 reada_count = 0;
675 if (expected_level == -1)
676 expected_level = SB_TREE_HEIGHT(sb);
677 expected_level--;
678
679 /*
680 * It is possible that schedule occurred. We must check
681 * whether the key to search is still in the tree rooted
682 * from the current buffer. If not then repeat search
683 * from the root.
684 */
685 if (fs_changed(fs_gen, sb) &&
686 (!B_IS_IN_TREE(bh) ||
687 B_LEVEL(bh) != expected_level ||
688 !key_in_buffer(search_path, key, sb))) {
689 PROC_INFO_INC(sb, search_by_key_fs_changed);
690 PROC_INFO_INC(sb, search_by_key_restarted);
691 PROC_INFO_INC(sb,
692 sbk_restarted[expected_level - 1]);
693 pathrelse(search_path);
694
695 /*
696 * Get the root block number so that we can
697 * repeat the search starting from the root.
698 */
699 block_number = SB_ROOT_BLOCK(sb);
700 expected_level = -1;
701
702 /* repeat search from the root */
703 continue;
704 }
705
706 /*
707 * only check that the key is in the buffer if key is not
708 * equal to the MAX_KEY. Latter case is only possible in
709 * "finish_unfinished()" processing during mount.
710 */
711 RFALSE(comp_keys(&MAX_KEY, key) &&
712 !key_in_buffer(search_path, key, sb),
713 "PAP-5130: key is not in the buffer");
714#ifdef CONFIG_REISERFS_CHECK
715 if (REISERFS_SB(sb)->cur_tb) {
716 print_cur_tb("5140");
717 reiserfs_panic(sb, "PAP-5140",
718 "schedule occurred in do_balance!");
719 }
720#endif
721
722 /*
723 * make sure, that the node contents look like a node of
724 * certain level
725 */
726 if (!is_tree_node(bh, expected_level)) {
727 reiserfs_error(sb, "vs-5150",
728 "invalid format found in block %ld. "
729 "Fsck?", bh->b_blocknr);
730 pathrelse(search_path);
731 return IO_ERROR;
732 }
733
734 /* ok, we have acquired next formatted node in the tree */
735 node_level = B_LEVEL(bh);
736
737 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
738
739 RFALSE(node_level < stop_level,
740 "vs-5152: tree level (%d) is less than stop level (%d)",
741 node_level, stop_level);
742
743 retval = bin_search(key, item_head(bh, 0),
744 B_NR_ITEMS(bh),
745 (node_level ==
746 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
747 KEY_SIZE,
748 &last_element->pe_position);
749 if (node_level == stop_level) {
750 return retval;
751 }
752
753 /* we are not in the stop level */
754 /*
755 * item has been found, so we choose the pointer which
756 * is to the right of the found one
757 */
758 if (retval == ITEM_FOUND)
759 last_element->pe_position++;
760
761 /*
762 * if item was not found we choose the position which is to
763 * the left of the found item. This requires no code,
764 * bin_search did it already.
765 */
766
767 /*
768 * So we have chosen a position in the current node which is
769 * an internal node. Now we calculate child block number by
770 * position in the node.
771 */
772 block_number =
773 B_N_CHILD_NUM(bh, last_element->pe_position);
774
775 /*
776 * if we are going to read leaf nodes, try for read
777 * ahead as well
778 */
779 if ((search_path->reada & PATH_READA) &&
780 node_level == DISK_LEAF_NODE_LEVEL + 1) {
781 int pos = last_element->pe_position;
782 int limit = B_NR_ITEMS(bh);
783 struct reiserfs_key *le_key;
784
785 if (search_path->reada & PATH_READA_BACK)
786 limit = 0;
787 while (reada_count < SEARCH_BY_KEY_READA) {
788 if (pos == limit)
789 break;
790 reada_blocks[reada_count++] =
791 B_N_CHILD_NUM(bh, pos);
792 if (search_path->reada & PATH_READA_BACK)
793 pos--;
794 else
795 pos++;
796
797 /*
798 * check to make sure we're in the same object
799 */
800 le_key = internal_key(bh, pos);
801 if (le32_to_cpu(le_key->k_objectid) !=
802 key->on_disk_key.k_objectid) {
803 break;
804 }
805 }
806 }
807 }
808}
809
810/*
811 * Form the path to an item and position in this item which contains
812 * file byte defined by key. If there is no such item
813 * corresponding to the key, we point the path to the item with
814 * maximal key less than key, and *pos_in_item is set to one
815 * past the last entry/byte in the item. If searching for entry in a
816 * directory item, and it is not found, *pos_in_item is set to one
817 * entry more than the entry with maximal key which is less than the
818 * sought key.
819 *
820 * Note that if there is no entry in this same node which is one more,
821 * then we point to an imaginary entry. for direct items, the
822 * position is in units of bytes, for indirect items the position is
823 * in units of blocknr entries, for directory items the position is in
824 * units of directory entries.
825 */
826/* The function is NOT SCHEDULE-SAFE! */
827int search_for_position_by_key(struct super_block *sb,
828 /* Key to search (cpu variable) */
829 const struct cpu_key *p_cpu_key,
830 /* Filled up by this function. */
831 struct treepath *search_path)
832{
833 struct item_head *p_le_ih; /* pointer to on-disk structure */
834 int blk_size;
835 loff_t item_offset, offset;
836 struct reiserfs_dir_entry de;
837 int retval;
838
839 /* If searching for directory entry. */
840 if (is_direntry_cpu_key(p_cpu_key))
841 return search_by_entry_key(sb, p_cpu_key, search_path,
842 &de);
843
844 /* If not searching for directory entry. */
845
846 /* If item is found. */
847 retval = search_item(sb, p_cpu_key, search_path);
848 if (retval == IO_ERROR)
849 return retval;
850 if (retval == ITEM_FOUND) {
851
852 RFALSE(!ih_item_len
853 (item_head
854 (PATH_PLAST_BUFFER(search_path),
855 PATH_LAST_POSITION(search_path))),
856 "PAP-5165: item length equals zero");
857
858 pos_in_item(search_path) = 0;
859 return POSITION_FOUND;
860 }
861
862 RFALSE(!PATH_LAST_POSITION(search_path),
863 "PAP-5170: position equals zero");
864
865 /* Item is not found. Set path to the previous item. */
866 p_le_ih =
867 item_head(PATH_PLAST_BUFFER(search_path),
868 --PATH_LAST_POSITION(search_path));
869 blk_size = sb->s_blocksize;
870
871 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
872 return FILE_NOT_FOUND;
873
874 /* FIXME: quite ugly this far */
875
876 item_offset = le_ih_k_offset(p_le_ih);
877 offset = cpu_key_k_offset(p_cpu_key);
878
879 /* Needed byte is contained in the item pointed to by the path. */
880 if (item_offset <= offset &&
881 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
882 pos_in_item(search_path) = offset - item_offset;
883 if (is_indirect_le_ih(p_le_ih)) {
884 pos_in_item(search_path) /= blk_size;
885 }
886 return POSITION_FOUND;
887 }
888
889 /*
890 * Needed byte is not contained in the item pointed to by the
891 * path. Set pos_in_item out of the item.
892 */
893 if (is_indirect_le_ih(p_le_ih))
894 pos_in_item(search_path) =
895 ih_item_len(p_le_ih) / UNFM_P_SIZE;
896 else
897 pos_in_item(search_path) = ih_item_len(p_le_ih);
898
899 return POSITION_NOT_FOUND;
900}
901
902/* Compare given item and item pointed to by the path. */
903int comp_items(const struct item_head *stored_ih, const struct treepath *path)
904{
905 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
906 struct item_head *ih;
907
908 /* Last buffer at the path is not in the tree. */
909 if (!B_IS_IN_TREE(bh))
910 return 1;
911
912 /* Last path position is invalid. */
913 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
914 return 1;
915
916 /* we need only to know, whether it is the same item */
917 ih = tp_item_head(path);
918 return memcmp(stored_ih, ih, IH_SIZE);
919}
920
921/* unformatted nodes are not logged anymore, ever. This is safe now */
922#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
923
924/* block can not be forgotten as it is in I/O or held by someone */
925#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
926
927/* prepare for delete or cut of direct item */
928static inline int prepare_for_direct_item(struct treepath *path,
929 struct item_head *le_ih,
930 struct inode *inode,
931 loff_t new_file_length, int *cut_size)
932{
933 loff_t round_len;
934
935 if (new_file_length == max_reiserfs_offset(inode)) {
936 /* item has to be deleted */
937 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
938 return M_DELETE;
939 }
940 /* new file gets truncated */
941 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
942 round_len = ROUND_UP(new_file_length);
943 /* this was new_file_length < le_ih ... */
944 if (round_len < le_ih_k_offset(le_ih)) {
945 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
946 return M_DELETE; /* Delete this item. */
947 }
948 /* Calculate first position and size for cutting from item. */
949 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
950 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
951
952 return M_CUT; /* Cut from this item. */
953 }
954
955 /* old file: items may have any length */
956
957 if (new_file_length < le_ih_k_offset(le_ih)) {
958 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
959 return M_DELETE; /* Delete this item. */
960 }
961
962 /* Calculate first position and size for cutting from item. */
963 *cut_size = -(ih_item_len(le_ih) -
964 (pos_in_item(path) =
965 new_file_length + 1 - le_ih_k_offset(le_ih)));
966 return M_CUT; /* Cut from this item. */
967}
968
969static inline int prepare_for_direntry_item(struct treepath *path,
970 struct item_head *le_ih,
971 struct inode *inode,
972 loff_t new_file_length,
973 int *cut_size)
974{
975 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
976 new_file_length == max_reiserfs_offset(inode)) {
977 RFALSE(ih_entry_count(le_ih) != 2,
978 "PAP-5220: incorrect empty directory item (%h)", le_ih);
979 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
980 /* Delete the directory item containing "." and ".." entry. */
981 return M_DELETE;
982 }
983
984 if (ih_entry_count(le_ih) == 1) {
985 /*
986 * Delete the directory item such as there is one record only
987 * in this item
988 */
989 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
990 return M_DELETE;
991 }
992
993 /* Cut one record from the directory item. */
994 *cut_size =
995 -(DEH_SIZE +
996 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
997 return M_CUT;
998}
999
1000#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1001
1002/*
1003 * If the path points to a directory or direct item, calculate mode
1004 * and the size cut, for balance.
1005 * If the path points to an indirect item, remove some number of its
1006 * unformatted nodes.
1007 * In case of file truncate calculate whether this item must be
1008 * deleted/truncated or last unformatted node of this item will be
1009 * converted to a direct item.
1010 * This function returns a determination of what balance mode the
1011 * calling function should employ.
1012 */
1013static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1014 struct inode *inode,
1015 struct treepath *path,
1016 const struct cpu_key *item_key,
1017 /*
1018 * Number of unformatted nodes
1019 * which were removed from end
1020 * of the file.
1021 */
1022 int *removed,
1023 int *cut_size,
1024 /* MAX_KEY_OFFSET in case of delete. */
1025 unsigned long long new_file_length
1026 )
1027{
1028 struct super_block *sb = inode->i_sb;
1029 struct item_head *p_le_ih = tp_item_head(path);
1030 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1031
1032 BUG_ON(!th->t_trans_id);
1033
1034 /* Stat_data item. */
1035 if (is_statdata_le_ih(p_le_ih)) {
1036
1037 RFALSE(new_file_length != max_reiserfs_offset(inode),
1038 "PAP-5210: mode must be M_DELETE");
1039
1040 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1041 return M_DELETE;
1042 }
1043
1044 /* Directory item. */
1045 if (is_direntry_le_ih(p_le_ih))
1046 return prepare_for_direntry_item(path, p_le_ih, inode,
1047 new_file_length,
1048 cut_size);
1049
1050 /* Direct item. */
1051 if (is_direct_le_ih(p_le_ih))
1052 return prepare_for_direct_item(path, p_le_ih, inode,
1053 new_file_length, cut_size);
1054
1055 /* Case of an indirect item. */
1056 {
1057 int blk_size = sb->s_blocksize;
1058 struct item_head s_ih;
1059 int need_re_search;
1060 int delete = 0;
1061 int result = M_CUT;
1062 int pos = 0;
1063
1064 if ( new_file_length == max_reiserfs_offset (inode) ) {
1065 /*
1066 * prepare_for_delete_or_cut() is called by
1067 * reiserfs_delete_item()
1068 */
1069 new_file_length = 0;
1070 delete = 1;
1071 }
1072
1073 do {
1074 need_re_search = 0;
1075 *cut_size = 0;
1076 bh = PATH_PLAST_BUFFER(path);
1077 copy_item_head(&s_ih, tp_item_head(path));
1078 pos = I_UNFM_NUM(&s_ih);
1079
1080 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1081 __le32 *unfm;
1082 __u32 block;
1083
1084 /*
1085 * Each unformatted block deletion may involve
1086 * one additional bitmap block into the transaction,
1087 * thereby the initial journal space reservation
1088 * might not be enough.
1089 */
1090 if (!delete && (*cut_size) != 0 &&
1091 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1092 break;
1093
1094 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1095 block = get_block_num(unfm, 0);
1096
1097 if (block != 0) {
1098 reiserfs_prepare_for_journal(sb, bh, 1);
1099 put_block_num(unfm, 0, 0);
1100 journal_mark_dirty(th, bh);
1101 reiserfs_free_block(th, inode, block, 1);
1102 }
1103
1104 reiserfs_cond_resched(sb);
1105
1106 if (item_moved (&s_ih, path)) {
1107 need_re_search = 1;
1108 break;
1109 }
1110
1111 pos --;
1112 (*removed)++;
1113 (*cut_size) -= UNFM_P_SIZE;
1114
1115 if (pos == 0) {
1116 (*cut_size) -= IH_SIZE;
1117 result = M_DELETE;
1118 break;
1119 }
1120 }
1121 /*
1122 * a trick. If the buffer has been logged, this will
1123 * do nothing. If we've broken the loop without logging
1124 * it, it will restore the buffer
1125 */
1126 reiserfs_restore_prepared_buffer(sb, bh);
1127 } while (need_re_search &&
1128 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1129 pos_in_item(path) = pos * UNFM_P_SIZE;
1130
1131 if (*cut_size == 0) {
1132 /*
1133 * Nothing was cut. maybe convert last unformatted node to the
1134 * direct item?
1135 */
1136 result = M_CONVERT;
1137 }
1138 return result;
1139 }
1140}
1141
1142/* Calculate number of bytes which will be deleted or cut during balance */
1143static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1144{
1145 int del_size;
1146 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1147
1148 if (is_statdata_le_ih(p_le_ih))
1149 return 0;
1150
1151 del_size =
1152 (mode ==
1153 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1154 if (is_direntry_le_ih(p_le_ih)) {
1155 /*
1156 * return EMPTY_DIR_SIZE; We delete emty directories only.
1157 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1158 * different empty size. ick. FIXME, is this right?
1159 */
1160 return del_size;
1161 }
1162
1163 if (is_indirect_le_ih(p_le_ih))
1164 del_size = (del_size / UNFM_P_SIZE) *
1165 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1166 return del_size;
1167}
1168
1169static void init_tb_struct(struct reiserfs_transaction_handle *th,
1170 struct tree_balance *tb,
1171 struct super_block *sb,
1172 struct treepath *path, int size)
1173{
1174
1175 BUG_ON(!th->t_trans_id);
1176
1177 memset(tb, '\0', sizeof(struct tree_balance));
1178 tb->transaction_handle = th;
1179 tb->tb_sb = sb;
1180 tb->tb_path = path;
1181 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1182 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1183 tb->insert_size[0] = size;
1184}
1185
1186void padd_item(char *item, int total_length, int length)
1187{
1188 int i;
1189
1190 for (i = total_length; i > length;)
1191 item[--i] = 0;
1192}
1193
1194#ifdef REISERQUOTA_DEBUG
1195char key2type(struct reiserfs_key *ih)
1196{
1197 if (is_direntry_le_key(2, ih))
1198 return 'd';
1199 if (is_direct_le_key(2, ih))
1200 return 'D';
1201 if (is_indirect_le_key(2, ih))
1202 return 'i';
1203 if (is_statdata_le_key(2, ih))
1204 return 's';
1205 return 'u';
1206}
1207
1208char head2type(struct item_head *ih)
1209{
1210 if (is_direntry_le_ih(ih))
1211 return 'd';
1212 if (is_direct_le_ih(ih))
1213 return 'D';
1214 if (is_indirect_le_ih(ih))
1215 return 'i';
1216 if (is_statdata_le_ih(ih))
1217 return 's';
1218 return 'u';
1219}
1220#endif
1221
1222/*
1223 * Delete object item.
1224 * th - active transaction handle
1225 * path - path to the deleted item
1226 * item_key - key to search for the deleted item
1227 * indode - used for updating i_blocks and quotas
1228 * un_bh - NULL or unformatted node pointer
1229 */
1230int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1231 struct treepath *path, const struct cpu_key *item_key,
1232 struct inode *inode, struct buffer_head *un_bh)
1233{
1234 struct super_block *sb = inode->i_sb;
1235 struct tree_balance s_del_balance;
1236 struct item_head s_ih;
1237 struct item_head *q_ih;
1238 int quota_cut_bytes;
1239 int ret_value, del_size, removed;
1240 int depth;
1241
1242#ifdef CONFIG_REISERFS_CHECK
1243 char mode;
1244 int iter = 0;
1245#endif
1246
1247 BUG_ON(!th->t_trans_id);
1248
1249 init_tb_struct(th, &s_del_balance, sb, path,
1250 0 /*size is unknown */ );
1251
1252 while (1) {
1253 removed = 0;
1254
1255#ifdef CONFIG_REISERFS_CHECK
1256 iter++;
1257 mode =
1258#endif
1259 prepare_for_delete_or_cut(th, inode, path,
1260 item_key, &removed,
1261 &del_size,
1262 max_reiserfs_offset(inode));
1263
1264 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1265
1266 copy_item_head(&s_ih, tp_item_head(path));
1267 s_del_balance.insert_size[0] = del_size;
1268
1269 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1270 if (ret_value != REPEAT_SEARCH)
1271 break;
1272
1273 PROC_INFO_INC(sb, delete_item_restarted);
1274
1275 /* file system changed, repeat search */
1276 ret_value =
1277 search_for_position_by_key(sb, item_key, path);
1278 if (ret_value == IO_ERROR)
1279 break;
1280 if (ret_value == FILE_NOT_FOUND) {
1281 reiserfs_warning(sb, "vs-5340",
1282 "no items of the file %K found",
1283 item_key);
1284 break;
1285 }
1286 } /* while (1) */
1287
1288 if (ret_value != CARRY_ON) {
1289 unfix_nodes(&s_del_balance);
1290 return 0;
1291 }
1292
1293 /* reiserfs_delete_item returns item length when success */
1294 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1295 q_ih = tp_item_head(path);
1296 quota_cut_bytes = ih_item_len(q_ih);
1297
1298 /*
1299 * hack so the quota code doesn't have to guess if the file has a
1300 * tail. On tail insert, we allocate quota for 1 unformatted node.
1301 * We test the offset because the tail might have been
1302 * split into multiple items, and we only want to decrement for
1303 * the unfm node once
1304 */
1305 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1306 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1307 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1308 } else {
1309 quota_cut_bytes = 0;
1310 }
1311 }
1312
1313 if (un_bh) {
1314 int off;
1315 char *data;
1316
1317 /*
1318 * We are in direct2indirect conversion, so move tail contents
1319 * to the unformatted node
1320 */
1321 /*
1322 * note, we do the copy before preparing the buffer because we
1323 * don't care about the contents of the unformatted node yet.
1324 * the only thing we really care about is the direct item's
1325 * data is in the unformatted node.
1326 *
1327 * Otherwise, we would have to call
1328 * reiserfs_prepare_for_journal on the unformatted node,
1329 * which might schedule, meaning we'd have to loop all the
1330 * way back up to the start of the while loop.
1331 *
1332 * The unformatted node must be dirtied later on. We can't be
1333 * sure here if the entire tail has been deleted yet.
1334 *
1335 * un_bh is from the page cache (all unformatted nodes are
1336 * from the page cache) and might be a highmem page. So, we
1337 * can't use un_bh->b_data.
1338 * -clm
1339 */
1340
1341 data = kmap_atomic(un_bh->b_page);
1342 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1343 memcpy(data + off,
1344 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1345 ret_value);
1346 kunmap_atomic(data);
1347 }
1348
1349 /* Perform balancing after all resources have been collected at once. */
1350 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1351
1352#ifdef REISERQUOTA_DEBUG
1353 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1354 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1355 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1356#endif
1357 depth = reiserfs_write_unlock_nested(inode->i_sb);
1358 dquot_free_space_nodirty(inode, quota_cut_bytes);
1359 reiserfs_write_lock_nested(inode->i_sb, depth);
1360
1361 /* Return deleted body length */
1362 return ret_value;
1363}
1364
1365/*
1366 * Summary Of Mechanisms For Handling Collisions Between Processes:
1367 *
1368 * deletion of the body of the object is performed by iput(), with the
1369 * result that if multiple processes are operating on a file, the
1370 * deletion of the body of the file is deferred until the last process
1371 * that has an open inode performs its iput().
1372 *
1373 * writes and truncates are protected from collisions by use of
1374 * semaphores.
1375 *
1376 * creates, linking, and mknod are protected from collisions with other
1377 * processes by making the reiserfs_add_entry() the last step in the
1378 * creation, and then rolling back all changes if there was a collision.
1379 * - Hans
1380*/
1381
1382/* this deletes item which never gets split */
1383void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1384 struct inode *inode, struct reiserfs_key *key)
1385{
1386 struct super_block *sb = th->t_super;
1387 struct tree_balance tb;
1388 INITIALIZE_PATH(path);
1389 int item_len = 0;
1390 int tb_init = 0;
1391 struct cpu_key cpu_key;
1392 int retval;
1393 int quota_cut_bytes = 0;
1394
1395 BUG_ON(!th->t_trans_id);
1396
1397 le_key2cpu_key(&cpu_key, key);
1398
1399 while (1) {
1400 retval = search_item(th->t_super, &cpu_key, &path);
1401 if (retval == IO_ERROR) {
1402 reiserfs_error(th->t_super, "vs-5350",
1403 "i/o failure occurred trying "
1404 "to delete %K", &cpu_key);
1405 break;
1406 }
1407 if (retval != ITEM_FOUND) {
1408 pathrelse(&path);
1409 /*
1410 * No need for a warning, if there is just no free
1411 * space to insert '..' item into the
1412 * newly-created subdir
1413 */
1414 if (!
1415 ((unsigned long long)
1416 GET_HASH_VALUE(le_key_k_offset
1417 (le_key_version(key), key)) == 0
1418 && (unsigned long long)
1419 GET_GENERATION_NUMBER(le_key_k_offset
1420 (le_key_version(key),
1421 key)) == 1))
1422 reiserfs_warning(th->t_super, "vs-5355",
1423 "%k not found", key);
1424 break;
1425 }
1426 if (!tb_init) {
1427 tb_init = 1;
1428 item_len = ih_item_len(tp_item_head(&path));
1429 init_tb_struct(th, &tb, th->t_super, &path,
1430 -(IH_SIZE + item_len));
1431 }
1432 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1433
1434 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1435 if (retval == REPEAT_SEARCH) {
1436 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1437 continue;
1438 }
1439
1440 if (retval == CARRY_ON) {
1441 do_balance(&tb, NULL, NULL, M_DELETE);
1442 /*
1443 * Should we count quota for item? (we don't
1444 * count quotas for save-links)
1445 */
1446 if (inode) {
1447 int depth;
1448#ifdef REISERQUOTA_DEBUG
1449 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1450 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1451 quota_cut_bytes, inode->i_uid,
1452 key2type(key));
1453#endif
1454 depth = reiserfs_write_unlock_nested(sb);
1455 dquot_free_space_nodirty(inode,
1456 quota_cut_bytes);
1457 reiserfs_write_lock_nested(sb, depth);
1458 }
1459 break;
1460 }
1461
1462 /* IO_ERROR, NO_DISK_SPACE, etc */
1463 reiserfs_warning(th->t_super, "vs-5360",
1464 "could not delete %K due to fix_nodes failure",
1465 &cpu_key);
1466 unfix_nodes(&tb);
1467 break;
1468 }
1469
1470 reiserfs_check_path(&path);
1471}
1472
1473int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1474 struct inode *inode)
1475{
1476 int err;
1477 inode->i_size = 0;
1478 BUG_ON(!th->t_trans_id);
1479
1480 /* for directory this deletes item containing "." and ".." */
1481 err =
1482 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1483 if (err)
1484 return err;
1485
1486#if defined( USE_INODE_GENERATION_COUNTER )
1487 if (!old_format_only(th->t_super)) {
1488 __le32 *inode_generation;
1489
1490 inode_generation =
1491 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1492 le32_add_cpu(inode_generation, 1);
1493 }
1494/* USE_INODE_GENERATION_COUNTER */
1495#endif
1496 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1497
1498 return err;
1499}
1500
1501static void unmap_buffers(struct page *page, loff_t pos)
1502{
1503 struct buffer_head *bh;
1504 struct buffer_head *head;
1505 struct buffer_head *next;
1506 unsigned long tail_index;
1507 unsigned long cur_index;
1508
1509 if (page) {
1510 if (page_has_buffers(page)) {
1511 tail_index = pos & (PAGE_SIZE - 1);
1512 cur_index = 0;
1513 head = page_buffers(page);
1514 bh = head;
1515 do {
1516 next = bh->b_this_page;
1517
1518 /*
1519 * we want to unmap the buffers that contain
1520 * the tail, and all the buffers after it
1521 * (since the tail must be at the end of the
1522 * file). We don't want to unmap file data
1523 * before the tail, since it might be dirty
1524 * and waiting to reach disk
1525 */
1526 cur_index += bh->b_size;
1527 if (cur_index > tail_index) {
1528 reiserfs_unmap_buffer(bh);
1529 }
1530 bh = next;
1531 } while (bh != head);
1532 }
1533 }
1534}
1535
1536static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1537 struct inode *inode,
1538 struct page *page,
1539 struct treepath *path,
1540 const struct cpu_key *item_key,
1541 loff_t new_file_size, char *mode)
1542{
1543 struct super_block *sb = inode->i_sb;
1544 int block_size = sb->s_blocksize;
1545 int cut_bytes;
1546 BUG_ON(!th->t_trans_id);
1547 BUG_ON(new_file_size != inode->i_size);
1548
1549 /*
1550 * the page being sent in could be NULL if there was an i/o error
1551 * reading in the last block. The user will hit problems trying to
1552 * read the file, but for now we just skip the indirect2direct
1553 */
1554 if (atomic_read(&inode->i_count) > 1 ||
1555 !tail_has_to_be_packed(inode) ||
1556 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1557 /* leave tail in an unformatted node */
1558 *mode = M_SKIP_BALANCING;
1559 cut_bytes =
1560 block_size - (new_file_size & (block_size - 1));
1561 pathrelse(path);
1562 return cut_bytes;
1563 }
1564
1565 /* Perform the conversion to a direct_item. */
1566 return indirect2direct(th, inode, page, path, item_key,
1567 new_file_size, mode);
1568}
1569
1570/*
1571 * we did indirect_to_direct conversion. And we have inserted direct
1572 * item successesfully, but there were no disk space to cut unfm
1573 * pointer being converted. Therefore we have to delete inserted
1574 * direct item(s)
1575 */
1576static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1577 struct inode *inode, struct treepath *path)
1578{
1579 struct cpu_key tail_key;
1580 int tail_len;
1581 int removed;
1582 BUG_ON(!th->t_trans_id);
1583
1584 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1585 tail_key.key_length = 4;
1586
1587 tail_len =
1588 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1589 while (tail_len) {
1590 /* look for the last byte of the tail */
1591 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1592 POSITION_NOT_FOUND)
1593 reiserfs_panic(inode->i_sb, "vs-5615",
1594 "found invalid item");
1595 RFALSE(path->pos_in_item !=
1596 ih_item_len(tp_item_head(path)) - 1,
1597 "vs-5616: appended bytes found");
1598 PATH_LAST_POSITION(path)--;
1599
1600 removed =
1601 reiserfs_delete_item(th, path, &tail_key, inode,
1602 NULL /*unbh not needed */ );
1603 RFALSE(removed <= 0
1604 || removed > tail_len,
1605 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1606 tail_len, removed);
1607 tail_len -= removed;
1608 set_cpu_key_k_offset(&tail_key,
1609 cpu_key_k_offset(&tail_key) - removed);
1610 }
1611 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1612 "conversion has been rolled back due to "
1613 "lack of disk space");
1614 mark_inode_dirty(inode);
1615}
1616
1617/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1618int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1619 struct treepath *path,
1620 struct cpu_key *item_key,
1621 struct inode *inode,
1622 struct page *page, loff_t new_file_size)
1623{
1624 struct super_block *sb = inode->i_sb;
1625 /*
1626 * Every function which is going to call do_balance must first
1627 * create a tree_balance structure. Then it must fill up this
1628 * structure by using the init_tb_struct and fix_nodes functions.
1629 * After that we can make tree balancing.
1630 */
1631 struct tree_balance s_cut_balance;
1632 struct item_head *p_le_ih;
1633 int cut_size = 0; /* Amount to be cut. */
1634 int ret_value = CARRY_ON;
1635 int removed = 0; /* Number of the removed unformatted nodes. */
1636 int is_inode_locked = 0;
1637 char mode; /* Mode of the balance. */
1638 int retval2 = -1;
1639 int quota_cut_bytes;
1640 loff_t tail_pos = 0;
1641 int depth;
1642
1643 BUG_ON(!th->t_trans_id);
1644
1645 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1646 cut_size);
1647
1648 /*
1649 * Repeat this loop until we either cut the item without needing
1650 * to balance, or we fix_nodes without schedule occurring
1651 */
1652 while (1) {
1653 /*
1654 * Determine the balance mode, position of the first byte to
1655 * be cut, and size to be cut. In case of the indirect item
1656 * free unformatted nodes which are pointed to by the cut
1657 * pointers.
1658 */
1659
1660 mode =
1661 prepare_for_delete_or_cut(th, inode, path,
1662 item_key, &removed,
1663 &cut_size, new_file_size);
1664 if (mode == M_CONVERT) {
1665 /*
1666 * convert last unformatted node to direct item or
1667 * leave tail in the unformatted node
1668 */
1669 RFALSE(ret_value != CARRY_ON,
1670 "PAP-5570: can not convert twice");
1671
1672 ret_value =
1673 maybe_indirect_to_direct(th, inode, page,
1674 path, item_key,
1675 new_file_size, &mode);
1676 if (mode == M_SKIP_BALANCING)
1677 /* tail has been left in the unformatted node */
1678 return ret_value;
1679
1680 is_inode_locked = 1;
1681
1682 /*
1683 * removing of last unformatted node will
1684 * change value we have to return to truncate.
1685 * Save it
1686 */
1687 retval2 = ret_value;
1688
1689 /*
1690 * So, we have performed the first part of the
1691 * conversion:
1692 * inserting the new direct item. Now we are
1693 * removing the last unformatted node pointer.
1694 * Set key to search for it.
1695 */
1696 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1697 item_key->key_length = 4;
1698 new_file_size -=
1699 (new_file_size & (sb->s_blocksize - 1));
1700 tail_pos = new_file_size;
1701 set_cpu_key_k_offset(item_key, new_file_size + 1);
1702 if (search_for_position_by_key
1703 (sb, item_key,
1704 path) == POSITION_NOT_FOUND) {
1705 print_block(PATH_PLAST_BUFFER(path), 3,
1706 PATH_LAST_POSITION(path) - 1,
1707 PATH_LAST_POSITION(path) + 1);
1708 reiserfs_panic(sb, "PAP-5580", "item to "
1709 "convert does not exist (%K)",
1710 item_key);
1711 }
1712 continue;
1713 }
1714 if (cut_size == 0) {
1715 pathrelse(path);
1716 return 0;
1717 }
1718
1719 s_cut_balance.insert_size[0] = cut_size;
1720
1721 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1722 if (ret_value != REPEAT_SEARCH)
1723 break;
1724
1725 PROC_INFO_INC(sb, cut_from_item_restarted);
1726
1727 ret_value =
1728 search_for_position_by_key(sb, item_key, path);
1729 if (ret_value == POSITION_FOUND)
1730 continue;
1731
1732 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1733 item_key);
1734 unfix_nodes(&s_cut_balance);
1735 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1736 } /* while */
1737
1738 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1739 if (ret_value != CARRY_ON) {
1740 if (is_inode_locked) {
1741 /*
1742 * FIXME: this seems to be not needed: we are always
1743 * able to cut item
1744 */
1745 indirect_to_direct_roll_back(th, inode, path);
1746 }
1747 if (ret_value == NO_DISK_SPACE)
1748 reiserfs_warning(sb, "reiserfs-5092",
1749 "NO_DISK_SPACE");
1750 unfix_nodes(&s_cut_balance);
1751 return -EIO;
1752 }
1753
1754 /* go ahead and perform balancing */
1755
1756 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1757
1758 /* Calculate number of bytes that need to be cut from the item. */
1759 quota_cut_bytes =
1760 (mode ==
1761 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1762 insert_size[0];
1763 if (retval2 == -1)
1764 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1765 else
1766 ret_value = retval2;
1767
1768 /*
1769 * For direct items, we only change the quota when deleting the last
1770 * item.
1771 */
1772 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1773 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1774 if (mode == M_DELETE &&
1775 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1776 1) {
1777 /* FIXME: this is to keep 3.5 happy */
1778 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1779 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1780 } else {
1781 quota_cut_bytes = 0;
1782 }
1783 }
1784#ifdef CONFIG_REISERFS_CHECK
1785 if (is_inode_locked) {
1786 struct item_head *le_ih =
1787 tp_item_head(s_cut_balance.tb_path);
1788 /*
1789 * we are going to complete indirect2direct conversion. Make
1790 * sure, that we exactly remove last unformatted node pointer
1791 * of the item
1792 */
1793 if (!is_indirect_le_ih(le_ih))
1794 reiserfs_panic(sb, "vs-5652",
1795 "item must be indirect %h", le_ih);
1796
1797 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1798 reiserfs_panic(sb, "vs-5653", "completing "
1799 "indirect2direct conversion indirect "
1800 "item %h being deleted must be of "
1801 "4 byte long", le_ih);
1802
1803 if (mode == M_CUT
1804 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1805 reiserfs_panic(sb, "vs-5654", "can not complete "
1806 "indirect2direct conversion of %h "
1807 "(CUT, insert_size==%d)",
1808 le_ih, s_cut_balance.insert_size[0]);
1809 }
1810 /*
1811 * it would be useful to make sure, that right neighboring
1812 * item is direct item of this file
1813 */
1814 }
1815#endif
1816
1817 do_balance(&s_cut_balance, NULL, NULL, mode);
1818 if (is_inode_locked) {
1819 /*
1820 * we've done an indirect->direct conversion. when the
1821 * data block was freed, it was removed from the list of
1822 * blocks that must be flushed before the transaction
1823 * commits, make sure to unmap and invalidate it
1824 */
1825 unmap_buffers(page, tail_pos);
1826 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1827 }
1828#ifdef REISERQUOTA_DEBUG
1829 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1830 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1831 quota_cut_bytes, inode->i_uid, '?');
1832#endif
1833 depth = reiserfs_write_unlock_nested(sb);
1834 dquot_free_space_nodirty(inode, quota_cut_bytes);
1835 reiserfs_write_lock_nested(sb, depth);
1836 return ret_value;
1837}
1838
1839static void truncate_directory(struct reiserfs_transaction_handle *th,
1840 struct inode *inode)
1841{
1842 BUG_ON(!th->t_trans_id);
1843 if (inode->i_nlink)
1844 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1845
1846 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1847 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1848 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1849 reiserfs_update_sd(th, inode);
1850 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1851 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1852}
1853
1854/*
1855 * Truncate file to the new size. Note, this must be called with a
1856 * transaction already started
1857 */
1858int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1859 struct inode *inode, /* ->i_size contains new size */
1860 struct page *page, /* up to date for last block */
1861 /*
1862 * when it is called by file_release to convert
1863 * the tail - no timestamps should be updated
1864 */
1865 int update_timestamps
1866 )
1867{
1868 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1869 struct item_head *p_le_ih; /* Pointer to an item header. */
1870
1871 /* Key to search for a previous file item. */
1872 struct cpu_key s_item_key;
1873 loff_t file_size, /* Old file size. */
1874 new_file_size; /* New file size. */
1875 int deleted; /* Number of deleted or truncated bytes. */
1876 int retval;
1877 int err = 0;
1878
1879 BUG_ON(!th->t_trans_id);
1880 if (!
1881 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1882 || S_ISLNK(inode->i_mode)))
1883 return 0;
1884
1885 /* deletion of directory - no need to update timestamps */
1886 if (S_ISDIR(inode->i_mode)) {
1887 truncate_directory(th, inode);
1888 return 0;
1889 }
1890
1891 /* Get new file size. */
1892 new_file_size = inode->i_size;
1893
1894 /* FIXME: note, that key type is unimportant here */
1895 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1896 TYPE_DIRECT, 3);
1897
1898 retval =
1899 search_for_position_by_key(inode->i_sb, &s_item_key,
1900 &s_search_path);
1901 if (retval == IO_ERROR) {
1902 reiserfs_error(inode->i_sb, "vs-5657",
1903 "i/o failure occurred trying to truncate %K",
1904 &s_item_key);
1905 err = -EIO;
1906 goto out;
1907 }
1908 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1909 reiserfs_error(inode->i_sb, "PAP-5660",
1910 "wrong result %d of search for %K", retval,
1911 &s_item_key);
1912
1913 err = -EIO;
1914 goto out;
1915 }
1916
1917 s_search_path.pos_in_item--;
1918
1919 /* Get real file size (total length of all file items) */
1920 p_le_ih = tp_item_head(&s_search_path);
1921 if (is_statdata_le_ih(p_le_ih))
1922 file_size = 0;
1923 else {
1924 loff_t offset = le_ih_k_offset(p_le_ih);
1925 int bytes =
1926 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1927
1928 /*
1929 * this may mismatch with real file size: if last direct item
1930 * had no padding zeros and last unformatted node had no free
1931 * space, this file would have this file size
1932 */
1933 file_size = offset + bytes - 1;
1934 }
1935 /*
1936 * are we doing a full truncate or delete, if so
1937 * kick in the reada code
1938 */
1939 if (new_file_size == 0)
1940 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1941
1942 if (file_size == 0 || file_size < new_file_size) {
1943 goto update_and_out;
1944 }
1945
1946 /* Update key to search for the last file item. */
1947 set_cpu_key_k_offset(&s_item_key, file_size);
1948
1949 do {
1950 /* Cut or delete file item. */
1951 deleted =
1952 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1953 inode, page, new_file_size);
1954 if (deleted < 0) {
1955 reiserfs_warning(inode->i_sb, "vs-5665",
1956 "reiserfs_cut_from_item failed");
1957 reiserfs_check_path(&s_search_path);
1958 return 0;
1959 }
1960
1961 RFALSE(deleted > file_size,
1962 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1963 deleted, file_size, &s_item_key);
1964
1965 /* Change key to search the last file item. */
1966 file_size -= deleted;
1967
1968 set_cpu_key_k_offset(&s_item_key, file_size);
1969
1970 /*
1971 * While there are bytes to truncate and previous
1972 * file item is presented in the tree.
1973 */
1974
1975 /*
1976 * This loop could take a really long time, and could log
1977 * many more blocks than a transaction can hold. So, we do
1978 * a polite journal end here, and if the transaction needs
1979 * ending, we make sure the file is consistent before ending
1980 * the current trans and starting a new one
1981 */
1982 if (journal_transaction_should_end(th, 0) ||
1983 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1984 pathrelse(&s_search_path);
1985
1986 if (update_timestamps) {
1987 inode->i_mtime = current_time(inode);
1988 inode->i_ctime = current_time(inode);
1989 }
1990 reiserfs_update_sd(th, inode);
1991
1992 err = journal_end(th);
1993 if (err)
1994 goto out;
1995 err = journal_begin(th, inode->i_sb,
1996 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1997 if (err)
1998 goto out;
1999 reiserfs_update_inode_transaction(inode);
2000 }
2001 } while (file_size > ROUND_UP(new_file_size) &&
2002 search_for_position_by_key(inode->i_sb, &s_item_key,
2003 &s_search_path) == POSITION_FOUND);
2004
2005 RFALSE(file_size > ROUND_UP(new_file_size),
2006 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2007 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2008
2009update_and_out:
2010 if (update_timestamps) {
2011 /* this is truncate, not file closing */
2012 inode->i_mtime = current_time(inode);
2013 inode->i_ctime = current_time(inode);
2014 }
2015 reiserfs_update_sd(th, inode);
2016
2017out:
2018 pathrelse(&s_search_path);
2019 return err;
2020}
2021
2022#ifdef CONFIG_REISERFS_CHECK
2023/* this makes sure, that we __append__, not overwrite or add holes */
2024static void check_research_for_paste(struct treepath *path,
2025 const struct cpu_key *key)
2026{
2027 struct item_head *found_ih = tp_item_head(path);
2028
2029 if (is_direct_le_ih(found_ih)) {
2030 if (le_ih_k_offset(found_ih) +
2031 op_bytes_number(found_ih,
2032 get_last_bh(path)->b_size) !=
2033 cpu_key_k_offset(key)
2034 || op_bytes_number(found_ih,
2035 get_last_bh(path)->b_size) !=
2036 pos_in_item(path))
2037 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2038 "%h or position (%d) does not match "
2039 "to key %K", found_ih,
2040 pos_in_item(path), key);
2041 }
2042 if (is_indirect_le_ih(found_ih)) {
2043 if (le_ih_k_offset(found_ih) +
2044 op_bytes_number(found_ih,
2045 get_last_bh(path)->b_size) !=
2046 cpu_key_k_offset(key)
2047 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2048 || get_ih_free_space(found_ih) != 0)
2049 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2050 "item (%h) or position (%d) does not "
2051 "match to key (%K)",
2052 found_ih, pos_in_item(path), key);
2053 }
2054}
2055#endif /* config reiserfs check */
2056
2057/*
2058 * Paste bytes to the existing item.
2059 * Returns bytes number pasted into the item.
2060 */
2061int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2062 /* Path to the pasted item. */
2063 struct treepath *search_path,
2064 /* Key to search for the needed item. */
2065 const struct cpu_key *key,
2066 /* Inode item belongs to */
2067 struct inode *inode,
2068 /* Pointer to the bytes to paste. */
2069 const char *body,
2070 /* Size of pasted bytes. */
2071 int pasted_size)
2072{
2073 struct super_block *sb = inode->i_sb;
2074 struct tree_balance s_paste_balance;
2075 int retval;
2076 int fs_gen;
2077 int depth;
2078
2079 BUG_ON(!th->t_trans_id);
2080
2081 fs_gen = get_generation(inode->i_sb);
2082
2083#ifdef REISERQUOTA_DEBUG
2084 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2085 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2086 pasted_size, inode->i_uid,
2087 key2type(&key->on_disk_key));
2088#endif
2089
2090 depth = reiserfs_write_unlock_nested(sb);
2091 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2092 reiserfs_write_lock_nested(sb, depth);
2093 if (retval) {
2094 pathrelse(search_path);
2095 return retval;
2096 }
2097 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2098 pasted_size);
2099#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2100 s_paste_balance.key = key->on_disk_key;
2101#endif
2102
2103 /* DQUOT_* can schedule, must check before the fix_nodes */
2104 if (fs_changed(fs_gen, inode->i_sb)) {
2105 goto search_again;
2106 }
2107
2108 while ((retval =
2109 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2110 body)) == REPEAT_SEARCH) {
2111search_again:
2112 /* file system changed while we were in the fix_nodes */
2113 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2114 retval =
2115 search_for_position_by_key(th->t_super, key,
2116 search_path);
2117 if (retval == IO_ERROR) {
2118 retval = -EIO;
2119 goto error_out;
2120 }
2121 if (retval == POSITION_FOUND) {
2122 reiserfs_warning(inode->i_sb, "PAP-5710",
2123 "entry or pasted byte (%K) exists",
2124 key);
2125 retval = -EEXIST;
2126 goto error_out;
2127 }
2128#ifdef CONFIG_REISERFS_CHECK
2129 check_research_for_paste(search_path, key);
2130#endif
2131 }
2132
2133 /*
2134 * Perform balancing after all resources are collected by fix_nodes,
2135 * and accessing them will not risk triggering schedule.
2136 */
2137 if (retval == CARRY_ON) {
2138 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2139 return 0;
2140 }
2141 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2142error_out:
2143 /* this also releases the path */
2144 unfix_nodes(&s_paste_balance);
2145#ifdef REISERQUOTA_DEBUG
2146 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2147 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2148 pasted_size, inode->i_uid,
2149 key2type(&key->on_disk_key));
2150#endif
2151 depth = reiserfs_write_unlock_nested(sb);
2152 dquot_free_space_nodirty(inode, pasted_size);
2153 reiserfs_write_lock_nested(sb, depth);
2154 return retval;
2155}
2156
2157/*
2158 * Insert new item into the buffer at the path.
2159 * th - active transaction handle
2160 * path - path to the inserted item
2161 * ih - pointer to the item header to insert
2162 * body - pointer to the bytes to insert
2163 */
2164int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2165 struct treepath *path, const struct cpu_key *key,
2166 struct item_head *ih, struct inode *inode,
2167 const char *body)
2168{
2169 struct tree_balance s_ins_balance;
2170 int retval;
2171 int fs_gen = 0;
2172 int quota_bytes = 0;
2173
2174 BUG_ON(!th->t_trans_id);
2175
2176 if (inode) { /* Do we count quotas for item? */
2177 int depth;
2178 fs_gen = get_generation(inode->i_sb);
2179 quota_bytes = ih_item_len(ih);
2180
2181 /*
2182 * hack so the quota code doesn't have to guess
2183 * if the file has a tail, links are always tails,
2184 * so there's no guessing needed
2185 */
2186 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2187 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2188#ifdef REISERQUOTA_DEBUG
2189 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2190 "reiserquota insert_item(): allocating %u id=%u type=%c",
2191 quota_bytes, inode->i_uid, head2type(ih));
2192#endif
2193 /*
2194 * We can't dirty inode here. It would be immediately
2195 * written but appropriate stat item isn't inserted yet...
2196 */
2197 depth = reiserfs_write_unlock_nested(inode->i_sb);
2198 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2199 reiserfs_write_lock_nested(inode->i_sb, depth);
2200 if (retval) {
2201 pathrelse(path);
2202 return retval;
2203 }
2204 }
2205 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2206 IH_SIZE + ih_item_len(ih));
2207#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2208 s_ins_balance.key = key->on_disk_key;
2209#endif
2210 /*
2211 * DQUOT_* can schedule, must check to be sure calling
2212 * fix_nodes is safe
2213 */
2214 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2215 goto search_again;
2216 }
2217
2218 while ((retval =
2219 fix_nodes(M_INSERT, &s_ins_balance, ih,
2220 body)) == REPEAT_SEARCH) {
2221search_again:
2222 /* file system changed while we were in the fix_nodes */
2223 PROC_INFO_INC(th->t_super, insert_item_restarted);
2224 retval = search_item(th->t_super, key, path);
2225 if (retval == IO_ERROR) {
2226 retval = -EIO;
2227 goto error_out;
2228 }
2229 if (retval == ITEM_FOUND) {
2230 reiserfs_warning(th->t_super, "PAP-5760",
2231 "key %K already exists in the tree",
2232 key);
2233 retval = -EEXIST;
2234 goto error_out;
2235 }
2236 }
2237
2238 /* make balancing after all resources will be collected at a time */
2239 if (retval == CARRY_ON) {
2240 do_balance(&s_ins_balance, ih, body, M_INSERT);
2241 return 0;
2242 }
2243
2244 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2245error_out:
2246 /* also releases the path */
2247 unfix_nodes(&s_ins_balance);
2248#ifdef REISERQUOTA_DEBUG
2249 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2250 "reiserquota insert_item(): freeing %u id=%u type=%c",
2251 quota_bytes, inode->i_uid, head2type(ih));
2252#endif
2253 if (inode) {
2254 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2255 dquot_free_space_nodirty(inode, quota_bytes);
2256 reiserfs_write_lock_nested(inode->i_sb, depth);
2257 }
2258 return retval;
2259}