Loading...
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11/*
12 * This file contains functions dealing with S+tree
13 *
14 * B_IS_IN_TREE
15 * copy_item_head
16 * comp_short_keys
17 * comp_keys
18 * comp_short_le_keys
19 * le_key2cpu_key
20 * comp_le_keys
21 * bin_search
22 * get_lkey
23 * get_rkey
24 * key_in_buffer
25 * decrement_bcount
26 * reiserfs_check_path
27 * pathrelse_and_restore
28 * pathrelse
29 * search_by_key_reada
30 * search_by_key
31 * search_for_position_by_key
32 * comp_items
33 * prepare_for_direct_item
34 * prepare_for_direntry_item
35 * prepare_for_delete_or_cut
36 * calc_deleted_bytes_number
37 * init_tb_struct
38 * padd_item
39 * reiserfs_delete_item
40 * reiserfs_delete_solid_item
41 * reiserfs_delete_object
42 * maybe_indirect_to_direct
43 * indirect_to_direct_roll_back
44 * reiserfs_cut_from_item
45 * truncate_directory
46 * reiserfs_do_truncate
47 * reiserfs_paste_into_item
48 * reiserfs_insert_item
49 */
50
51#include <linux/time.h>
52#include <linux/string.h>
53#include <linux/pagemap.h>
54#include <linux/reiserfs_fs.h>
55#include <linux/buffer_head.h>
56#include <linux/quotaops.h>
57
58/* Does the buffer contain a disk block which is in the tree. */
59inline int B_IS_IN_TREE(const struct buffer_head *bh)
60{
61
62 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
63 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
64
65 return (B_LEVEL(bh) != FREE_LEVEL);
66}
67
68//
69// to gets item head in le form
70//
71inline void copy_item_head(struct item_head *to,
72 const struct item_head *from)
73{
74 memcpy(to, from, IH_SIZE);
75}
76
77/* k1 is pointer to on-disk structure which is stored in little-endian
78 form. k2 is pointer to cpu variable. For key of items of the same
79 object this returns 0.
80 Returns: -1 if key1 < key2
81 0 if key1 == key2
82 1 if key1 > key2 */
83inline int comp_short_keys(const struct reiserfs_key *le_key,
84 const struct cpu_key *cpu_key)
85{
86 __u32 n;
87 n = le32_to_cpu(le_key->k_dir_id);
88 if (n < cpu_key->on_disk_key.k_dir_id)
89 return -1;
90 if (n > cpu_key->on_disk_key.k_dir_id)
91 return 1;
92 n = le32_to_cpu(le_key->k_objectid);
93 if (n < cpu_key->on_disk_key.k_objectid)
94 return -1;
95 if (n > cpu_key->on_disk_key.k_objectid)
96 return 1;
97 return 0;
98}
99
100/* k1 is pointer to on-disk structure which is stored in little-endian
101 form. k2 is pointer to cpu variable.
102 Compare keys using all 4 key fields.
103 Returns: -1 if key1 < key2 0
104 if key1 = key2 1 if key1 > key2 */
105static inline int comp_keys(const struct reiserfs_key *le_key,
106 const struct cpu_key *cpu_key)
107{
108 int retval;
109
110 retval = comp_short_keys(le_key, cpu_key);
111 if (retval)
112 return retval;
113 if (le_key_k_offset(le_key_version(le_key), le_key) <
114 cpu_key_k_offset(cpu_key))
115 return -1;
116 if (le_key_k_offset(le_key_version(le_key), le_key) >
117 cpu_key_k_offset(cpu_key))
118 return 1;
119
120 if (cpu_key->key_length == 3)
121 return 0;
122
123 /* this part is needed only when tail conversion is in progress */
124 if (le_key_k_type(le_key_version(le_key), le_key) <
125 cpu_key_k_type(cpu_key))
126 return -1;
127
128 if (le_key_k_type(le_key_version(le_key), le_key) >
129 cpu_key_k_type(cpu_key))
130 return 1;
131
132 return 0;
133}
134
135inline int comp_short_le_keys(const struct reiserfs_key *key1,
136 const struct reiserfs_key *key2)
137{
138 __u32 *k1_u32, *k2_u32;
139 int key_length = REISERFS_SHORT_KEY_LEN;
140
141 k1_u32 = (__u32 *) key1;
142 k2_u32 = (__u32 *) key2;
143 for (; key_length--; ++k1_u32, ++k2_u32) {
144 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
145 return -1;
146 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
147 return 1;
148 }
149 return 0;
150}
151
152inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
153{
154 int version;
155 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
156 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
157
158 // find out version of the key
159 version = le_key_version(from);
160 to->version = version;
161 to->on_disk_key.k_offset = le_key_k_offset(version, from);
162 to->on_disk_key.k_type = le_key_k_type(version, from);
163}
164
165// this does not say which one is bigger, it only returns 1 if keys
166// are not equal, 0 otherwise
167inline int comp_le_keys(const struct reiserfs_key *k1,
168 const struct reiserfs_key *k2)
169{
170 return memcmp(k1, k2, sizeof(struct reiserfs_key));
171}
172
173/**************************************************************************
174 * Binary search toolkit function *
175 * Search for an item in the array by the item key *
176 * Returns: 1 if found, 0 if not found; *
177 * *pos = number of the searched element if found, else the *
178 * number of the first element that is larger than key. *
179 **************************************************************************/
180/* For those not familiar with binary search: lbound is the leftmost item that it
181 could be, rbound the rightmost item that it could be. We examine the item
182 halfway between lbound and rbound, and that tells us either that we can increase
183 lbound, or decrease rbound, or that we have found it, or if lbound <= rbound that
184 there are no possible items, and we have not found it. With each examination we
185 cut the number of possible items it could be by one more than half rounded down,
186 or we find it. */
187static inline int bin_search(const void *key, /* Key to search for. */
188 const void *base, /* First item in the array. */
189 int num, /* Number of items in the array. */
190 int width, /* Item size in the array.
191 searched. Lest the reader be
192 confused, note that this is crafted
193 as a general function, and when it
194 is applied specifically to the array
195 of item headers in a node, width
196 is actually the item header size not
197 the item size. */
198 int *pos /* Number of the searched for element. */
199 )
200{
201 int rbound, lbound, j;
202
203 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
204 lbound <= rbound; j = (rbound + lbound) / 2)
205 switch (comp_keys
206 ((struct reiserfs_key *)((char *)base + j * width),
207 (struct cpu_key *)key)) {
208 case -1:
209 lbound = j + 1;
210 continue;
211 case 1:
212 rbound = j - 1;
213 continue;
214 case 0:
215 *pos = j;
216 return ITEM_FOUND; /* Key found in the array. */
217 }
218
219 /* bin_search did not find given key, it returns position of key,
220 that is minimal and greater than the given one. */
221 *pos = lbound;
222 return ITEM_NOT_FOUND;
223}
224
225
226/* Minimal possible key. It is never in the tree. */
227const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
228
229/* Maximal possible key. It is never in the tree. */
230static const struct reiserfs_key MAX_KEY = {
231 __constant_cpu_to_le32(0xffffffff),
232 __constant_cpu_to_le32(0xffffffff),
233 {{__constant_cpu_to_le32(0xffffffff),
234 __constant_cpu_to_le32(0xffffffff)},}
235};
236
237/* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
238 of the path, and going upwards. We must check the path's validity at each step. If the key is not in
239 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
240 case we return a special key, either MIN_KEY or MAX_KEY. */
241static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
242 const struct super_block *sb)
243{
244 int position, path_offset = chk_path->path_length;
245 struct buffer_head *parent;
246
247 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
248 "PAP-5010: invalid offset in the path");
249
250 /* While not higher in path than first element. */
251 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
252
253 RFALSE(!buffer_uptodate
254 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
255 "PAP-5020: parent is not uptodate");
256
257 /* Parent at the path is not in the tree now. */
258 if (!B_IS_IN_TREE
259 (parent =
260 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
261 return &MAX_KEY;
262 /* Check whether position in the parent is correct. */
263 if ((position =
264 PATH_OFFSET_POSITION(chk_path,
265 path_offset)) >
266 B_NR_ITEMS(parent))
267 return &MAX_KEY;
268 /* Check whether parent at the path really points to the child. */
269 if (B_N_CHILD_NUM(parent, position) !=
270 PATH_OFFSET_PBUFFER(chk_path,
271 path_offset + 1)->b_blocknr)
272 return &MAX_KEY;
273 /* Return delimiting key if position in the parent is not equal to zero. */
274 if (position)
275 return B_N_PDELIM_KEY(parent, position - 1);
276 }
277 /* Return MIN_KEY if we are in the root of the buffer tree. */
278 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
279 b_blocknr == SB_ROOT_BLOCK(sb))
280 return &MIN_KEY;
281 return &MAX_KEY;
282}
283
284/* Get delimiting key of the buffer at the path and its right neighbor. */
285inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
286 const struct super_block *sb)
287{
288 int position, path_offset = chk_path->path_length;
289 struct buffer_head *parent;
290
291 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
292 "PAP-5030: invalid offset in the path");
293
294 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
295
296 RFALSE(!buffer_uptodate
297 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
298 "PAP-5040: parent is not uptodate");
299
300 /* Parent at the path is not in the tree now. */
301 if (!B_IS_IN_TREE
302 (parent =
303 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
304 return &MIN_KEY;
305 /* Check whether position in the parent is correct. */
306 if ((position =
307 PATH_OFFSET_POSITION(chk_path,
308 path_offset)) >
309 B_NR_ITEMS(parent))
310 return &MIN_KEY;
311 /* Check whether parent at the path really points to the child. */
312 if (B_N_CHILD_NUM(parent, position) !=
313 PATH_OFFSET_PBUFFER(chk_path,
314 path_offset + 1)->b_blocknr)
315 return &MIN_KEY;
316 /* Return delimiting key if position in the parent is not the last one. */
317 if (position != B_NR_ITEMS(parent))
318 return B_N_PDELIM_KEY(parent, position);
319 }
320 /* Return MAX_KEY if we are in the root of the buffer tree. */
321 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
322 b_blocknr == SB_ROOT_BLOCK(sb))
323 return &MAX_KEY;
324 return &MIN_KEY;
325}
326
327/* Check whether a key is contained in the tree rooted from a buffer at a path. */
328/* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
329 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
330 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
331 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
332static inline int key_in_buffer(struct treepath *chk_path, /* Path which should be checked. */
333 const struct cpu_key *key, /* Key which should be checked. */
334 struct super_block *sb
335 )
336{
337
338 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
339 || chk_path->path_length > MAX_HEIGHT,
340 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
341 key, chk_path->path_length);
342 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
343 "PAP-5060: device must not be NODEV");
344
345 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
346 /* left delimiting key is bigger, that the key we look for */
347 return 0;
348 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
349 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
350 /* key must be less than right delimitiing key */
351 return 0;
352 return 1;
353}
354
355int reiserfs_check_path(struct treepath *p)
356{
357 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
358 "path not properly relsed");
359 return 0;
360}
361
362/* Drop the reference to each buffer in a path and restore
363 * dirty bits clean when preparing the buffer for the log.
364 * This version should only be called from fix_nodes() */
365void pathrelse_and_restore(struct super_block *sb,
366 struct treepath *search_path)
367{
368 int path_offset = search_path->path_length;
369
370 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
371 "clm-4000: invalid path offset");
372
373 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
374 struct buffer_head *bh;
375 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
376 reiserfs_restore_prepared_buffer(sb, bh);
377 brelse(bh);
378 }
379 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
380}
381
382/* Drop the reference to each buffer in a path */
383void pathrelse(struct treepath *search_path)
384{
385 int path_offset = search_path->path_length;
386
387 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
388 "PAP-5090: invalid path offset");
389
390 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
391 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
392
393 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
394}
395
396static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
397{
398 struct block_head *blkh;
399 struct item_head *ih;
400 int used_space;
401 int prev_location;
402 int i;
403 int nr;
404
405 blkh = (struct block_head *)buf;
406 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
407 reiserfs_warning(NULL, "reiserfs-5080",
408 "this should be caught earlier");
409 return 0;
410 }
411
412 nr = blkh_nr_item(blkh);
413 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
414 /* item number is too big or too small */
415 reiserfs_warning(NULL, "reiserfs-5081",
416 "nr_item seems wrong: %z", bh);
417 return 0;
418 }
419 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
420 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
421 if (used_space != blocksize - blkh_free_space(blkh)) {
422 /* free space does not match to calculated amount of use space */
423 reiserfs_warning(NULL, "reiserfs-5082",
424 "free space seems wrong: %z", bh);
425 return 0;
426 }
427 // FIXME: it is_leaf will hit performance too much - we may have
428 // return 1 here
429
430 /* check tables of item heads */
431 ih = (struct item_head *)(buf + BLKH_SIZE);
432 prev_location = blocksize;
433 for (i = 0; i < nr; i++, ih++) {
434 if (le_ih_k_type(ih) == TYPE_ANY) {
435 reiserfs_warning(NULL, "reiserfs-5083",
436 "wrong item type for item %h",
437 ih);
438 return 0;
439 }
440 if (ih_location(ih) >= blocksize
441 || ih_location(ih) < IH_SIZE * nr) {
442 reiserfs_warning(NULL, "reiserfs-5084",
443 "item location seems wrong: %h",
444 ih);
445 return 0;
446 }
447 if (ih_item_len(ih) < 1
448 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
449 reiserfs_warning(NULL, "reiserfs-5085",
450 "item length seems wrong: %h",
451 ih);
452 return 0;
453 }
454 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
455 reiserfs_warning(NULL, "reiserfs-5086",
456 "item location seems wrong "
457 "(second one): %h", ih);
458 return 0;
459 }
460 prev_location = ih_location(ih);
461 }
462
463 // one may imagine much more checks
464 return 1;
465}
466
467/* returns 1 if buf looks like an internal node, 0 otherwise */
468static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
469{
470 struct block_head *blkh;
471 int nr;
472 int used_space;
473
474 blkh = (struct block_head *)buf;
475 nr = blkh_level(blkh);
476 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
477 /* this level is not possible for internal nodes */
478 reiserfs_warning(NULL, "reiserfs-5087",
479 "this should be caught earlier");
480 return 0;
481 }
482
483 nr = blkh_nr_item(blkh);
484 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
485 /* for internal which is not root we might check min number of keys */
486 reiserfs_warning(NULL, "reiserfs-5088",
487 "number of key seems wrong: %z", bh);
488 return 0;
489 }
490
491 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
492 if (used_space != blocksize - blkh_free_space(blkh)) {
493 reiserfs_warning(NULL, "reiserfs-5089",
494 "free space seems wrong: %z", bh);
495 return 0;
496 }
497 // one may imagine much more checks
498 return 1;
499}
500
501// make sure that bh contains formatted node of reiserfs tree of
502// 'level'-th level
503static int is_tree_node(struct buffer_head *bh, int level)
504{
505 if (B_LEVEL(bh) != level) {
506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
507 "not match to the expected one %d",
508 B_LEVEL(bh), level);
509 return 0;
510 }
511 if (level == DISK_LEAF_NODE_LEVEL)
512 return is_leaf(bh->b_data, bh->b_size, bh);
513
514 return is_internal(bh->b_data, bh->b_size, bh);
515}
516
517#define SEARCH_BY_KEY_READA 16
518
519/*
520 * The function is NOT SCHEDULE-SAFE!
521 * It might unlock the write lock if we needed to wait for a block
522 * to be read. Note that in this case it won't recover the lock to avoid
523 * high contention resulting from too much lock requests, especially
524 * the caller (search_by_key) will perform other schedule-unsafe
525 * operations just after calling this function.
526 *
527 * @return true if we have unlocked
528 */
529static bool search_by_key_reada(struct super_block *s,
530 struct buffer_head **bh,
531 b_blocknr_t *b, int num)
532{
533 int i, j;
534 bool unlocked = false;
535
536 for (i = 0; i < num; i++) {
537 bh[i] = sb_getblk(s, b[i]);
538 }
539 /*
540 * We are going to read some blocks on which we
541 * have a reference. It's safe, though we might be
542 * reading blocks concurrently changed if we release
543 * the lock. But it's still fine because we check later
544 * if the tree changed
545 */
546 for (j = 0; j < i; j++) {
547 /*
548 * note, this needs attention if we are getting rid of the BKL
549 * you have to make sure the prepared bit isn't set on this buffer
550 */
551 if (!buffer_uptodate(bh[j])) {
552 if (!unlocked) {
553 reiserfs_write_unlock(s);
554 unlocked = true;
555 }
556 ll_rw_block(READA, 1, bh + j);
557 }
558 brelse(bh[j]);
559 }
560 return unlocked;
561}
562
563/**************************************************************************
564 * Algorithm SearchByKey *
565 * look for item in the Disk S+Tree by its key *
566 * Input: sb - super block *
567 * key - pointer to the key to search *
568 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
569 * search_path - path from the root to the needed leaf *
570 **************************************************************************/
571
572/* This function fills up the path from the root to the leaf as it
573 descends the tree looking for the key. It uses reiserfs_bread to
574 try to find buffers in the cache given their block number. If it
575 does not find them in the cache it reads them from disk. For each
576 node search_by_key finds using reiserfs_bread it then uses
577 bin_search to look through that node. bin_search will find the
578 position of the block_number of the next node if it is looking
579 through an internal node. If it is looking through a leaf node
580 bin_search will find the position of the item which has key either
581 equal to given key, or which is the maximal key less than the given
582 key. search_by_key returns a path that must be checked for the
583 correctness of the top of the path but need not be checked for the
584 correctness of the bottom of the path */
585/* The function is NOT SCHEDULE-SAFE! */
586int search_by_key(struct super_block *sb, const struct cpu_key *key, /* Key to search. */
587 struct treepath *search_path,/* This structure was
588 allocated and initialized
589 by the calling
590 function. It is filled up
591 by this function. */
592 int stop_level /* How far down the tree to search. To
593 stop at leaf level - set to
594 DISK_LEAF_NODE_LEVEL */
595 )
596{
597 b_blocknr_t block_number;
598 int expected_level;
599 struct buffer_head *bh;
600 struct path_element *last_element;
601 int node_level, retval;
602 int right_neighbor_of_leaf_node;
603 int fs_gen;
604 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
605 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
606 int reada_count = 0;
607
608#ifdef CONFIG_REISERFS_CHECK
609 int repeat_counter = 0;
610#endif
611
612 PROC_INFO_INC(sb, search_by_key);
613
614 /* As we add each node to a path we increase its count. This means that
615 we must be careful to release all nodes in a path before we either
616 discard the path struct or re-use the path struct, as we do here. */
617
618 pathrelse(search_path);
619
620 right_neighbor_of_leaf_node = 0;
621
622 /* With each iteration of this loop we search through the items in the
623 current node, and calculate the next current node(next path element)
624 for the next iteration of this loop.. */
625 block_number = SB_ROOT_BLOCK(sb);
626 expected_level = -1;
627 while (1) {
628
629#ifdef CONFIG_REISERFS_CHECK
630 if (!(++repeat_counter % 50000))
631 reiserfs_warning(sb, "PAP-5100",
632 "%s: there were %d iterations of "
633 "while loop looking for key %K",
634 current->comm, repeat_counter,
635 key);
636#endif
637
638 /* prep path to have another element added to it. */
639 last_element =
640 PATH_OFFSET_PELEMENT(search_path,
641 ++search_path->path_length);
642 fs_gen = get_generation(sb);
643
644 /* Read the next tree node, and set the last element in the path to
645 have a pointer to it. */
646 if ((bh = last_element->pe_buffer =
647 sb_getblk(sb, block_number))) {
648 bool unlocked = false;
649
650 if (!buffer_uptodate(bh) && reada_count > 1)
651 /* may unlock the write lock */
652 unlocked = search_by_key_reada(sb, reada_bh,
653 reada_blocks, reada_count);
654 /*
655 * If we haven't already unlocked the write lock,
656 * then we need to do that here before reading
657 * the current block
658 */
659 if (!buffer_uptodate(bh) && !unlocked) {
660 reiserfs_write_unlock(sb);
661 unlocked = true;
662 }
663 ll_rw_block(READ, 1, &bh);
664 wait_on_buffer(bh);
665
666 if (unlocked)
667 reiserfs_write_lock(sb);
668 if (!buffer_uptodate(bh))
669 goto io_error;
670 } else {
671 io_error:
672 search_path->path_length--;
673 pathrelse(search_path);
674 return IO_ERROR;
675 }
676 reada_count = 0;
677 if (expected_level == -1)
678 expected_level = SB_TREE_HEIGHT(sb);
679 expected_level--;
680
681 /* It is possible that schedule occurred. We must check whether the key
682 to search is still in the tree rooted from the current buffer. If
683 not then repeat search from the root. */
684 if (fs_changed(fs_gen, sb) &&
685 (!B_IS_IN_TREE(bh) ||
686 B_LEVEL(bh) != expected_level ||
687 !key_in_buffer(search_path, key, sb))) {
688 PROC_INFO_INC(sb, search_by_key_fs_changed);
689 PROC_INFO_INC(sb, search_by_key_restarted);
690 PROC_INFO_INC(sb,
691 sbk_restarted[expected_level - 1]);
692 pathrelse(search_path);
693
694 /* Get the root block number so that we can repeat the search
695 starting from the root. */
696 block_number = SB_ROOT_BLOCK(sb);
697 expected_level = -1;
698 right_neighbor_of_leaf_node = 0;
699
700 /* repeat search from the root */
701 continue;
702 }
703
704 /* only check that the key is in the buffer if key is not
705 equal to the MAX_KEY. Latter case is only possible in
706 "finish_unfinished()" processing during mount. */
707 RFALSE(comp_keys(&MAX_KEY, key) &&
708 !key_in_buffer(search_path, key, sb),
709 "PAP-5130: key is not in the buffer");
710#ifdef CONFIG_REISERFS_CHECK
711 if (REISERFS_SB(sb)->cur_tb) {
712 print_cur_tb("5140");
713 reiserfs_panic(sb, "PAP-5140",
714 "schedule occurred in do_balance!");
715 }
716#endif
717
718 // make sure, that the node contents look like a node of
719 // certain level
720 if (!is_tree_node(bh, expected_level)) {
721 reiserfs_error(sb, "vs-5150",
722 "invalid format found in block %ld. "
723 "Fsck?", bh->b_blocknr);
724 pathrelse(search_path);
725 return IO_ERROR;
726 }
727
728 /* ok, we have acquired next formatted node in the tree */
729 node_level = B_LEVEL(bh);
730
731 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
732
733 RFALSE(node_level < stop_level,
734 "vs-5152: tree level (%d) is less than stop level (%d)",
735 node_level, stop_level);
736
737 retval = bin_search(key, B_N_PITEM_HEAD(bh, 0),
738 B_NR_ITEMS(bh),
739 (node_level ==
740 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
741 KEY_SIZE,
742 &(last_element->pe_position));
743 if (node_level == stop_level) {
744 return retval;
745 }
746
747 /* we are not in the stop level */
748 if (retval == ITEM_FOUND)
749 /* item has been found, so we choose the pointer which is to the right of the found one */
750 last_element->pe_position++;
751
752 /* if item was not found we choose the position which is to
753 the left of the found item. This requires no code,
754 bin_search did it already. */
755
756 /* So we have chosen a position in the current node which is
757 an internal node. Now we calculate child block number by
758 position in the node. */
759 block_number =
760 B_N_CHILD_NUM(bh, last_element->pe_position);
761
762 /* if we are going to read leaf nodes, try for read ahead as well */
763 if ((search_path->reada & PATH_READA) &&
764 node_level == DISK_LEAF_NODE_LEVEL + 1) {
765 int pos = last_element->pe_position;
766 int limit = B_NR_ITEMS(bh);
767 struct reiserfs_key *le_key;
768
769 if (search_path->reada & PATH_READA_BACK)
770 limit = 0;
771 while (reada_count < SEARCH_BY_KEY_READA) {
772 if (pos == limit)
773 break;
774 reada_blocks[reada_count++] =
775 B_N_CHILD_NUM(bh, pos);
776 if (search_path->reada & PATH_READA_BACK)
777 pos--;
778 else
779 pos++;
780
781 /*
782 * check to make sure we're in the same object
783 */
784 le_key = B_N_PDELIM_KEY(bh, pos);
785 if (le32_to_cpu(le_key->k_objectid) !=
786 key->on_disk_key.k_objectid) {
787 break;
788 }
789 }
790 }
791 }
792}
793
794/* Form the path to an item and position in this item which contains
795 file byte defined by key. If there is no such item
796 corresponding to the key, we point the path to the item with
797 maximal key less than key, and *pos_in_item is set to one
798 past the last entry/byte in the item. If searching for entry in a
799 directory item, and it is not found, *pos_in_item is set to one
800 entry more than the entry with maximal key which is less than the
801 sought key.
802
803 Note that if there is no entry in this same node which is one more,
804 then we point to an imaginary entry. for direct items, the
805 position is in units of bytes, for indirect items the position is
806 in units of blocknr entries, for directory items the position is in
807 units of directory entries. */
808
809/* The function is NOT SCHEDULE-SAFE! */
810int search_for_position_by_key(struct super_block *sb, /* Pointer to the super block. */
811 const struct cpu_key *p_cpu_key, /* Key to search (cpu variable) */
812 struct treepath *search_path /* Filled up by this function. */
813 )
814{
815 struct item_head *p_le_ih; /* pointer to on-disk structure */
816 int blk_size;
817 loff_t item_offset, offset;
818 struct reiserfs_dir_entry de;
819 int retval;
820
821 /* If searching for directory entry. */
822 if (is_direntry_cpu_key(p_cpu_key))
823 return search_by_entry_key(sb, p_cpu_key, search_path,
824 &de);
825
826 /* If not searching for directory entry. */
827
828 /* If item is found. */
829 retval = search_item(sb, p_cpu_key, search_path);
830 if (retval == IO_ERROR)
831 return retval;
832 if (retval == ITEM_FOUND) {
833
834 RFALSE(!ih_item_len
835 (B_N_PITEM_HEAD
836 (PATH_PLAST_BUFFER(search_path),
837 PATH_LAST_POSITION(search_path))),
838 "PAP-5165: item length equals zero");
839
840 pos_in_item(search_path) = 0;
841 return POSITION_FOUND;
842 }
843
844 RFALSE(!PATH_LAST_POSITION(search_path),
845 "PAP-5170: position equals zero");
846
847 /* Item is not found. Set path to the previous item. */
848 p_le_ih =
849 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(search_path),
850 --PATH_LAST_POSITION(search_path));
851 blk_size = sb->s_blocksize;
852
853 if (comp_short_keys(&(p_le_ih->ih_key), p_cpu_key)) {
854 return FILE_NOT_FOUND;
855 }
856 // FIXME: quite ugly this far
857
858 item_offset = le_ih_k_offset(p_le_ih);
859 offset = cpu_key_k_offset(p_cpu_key);
860
861 /* Needed byte is contained in the item pointed to by the path. */
862 if (item_offset <= offset &&
863 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
864 pos_in_item(search_path) = offset - item_offset;
865 if (is_indirect_le_ih(p_le_ih)) {
866 pos_in_item(search_path) /= blk_size;
867 }
868 return POSITION_FOUND;
869 }
870
871 /* Needed byte is not contained in the item pointed to by the
872 path. Set pos_in_item out of the item. */
873 if (is_indirect_le_ih(p_le_ih))
874 pos_in_item(search_path) =
875 ih_item_len(p_le_ih) / UNFM_P_SIZE;
876 else
877 pos_in_item(search_path) = ih_item_len(p_le_ih);
878
879 return POSITION_NOT_FOUND;
880}
881
882/* Compare given item and item pointed to by the path. */
883int comp_items(const struct item_head *stored_ih, const struct treepath *path)
884{
885 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
886 struct item_head *ih;
887
888 /* Last buffer at the path is not in the tree. */
889 if (!B_IS_IN_TREE(bh))
890 return 1;
891
892 /* Last path position is invalid. */
893 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
894 return 1;
895
896 /* we need only to know, whether it is the same item */
897 ih = get_ih(path);
898 return memcmp(stored_ih, ih, IH_SIZE);
899}
900
901/* unformatted nodes are not logged anymore, ever. This is safe
902** now
903*/
904#define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
905
906// block can not be forgotten as it is in I/O or held by someone
907#define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
908
909// prepare for delete or cut of direct item
910static inline int prepare_for_direct_item(struct treepath *path,
911 struct item_head *le_ih,
912 struct inode *inode,
913 loff_t new_file_length, int *cut_size)
914{
915 loff_t round_len;
916
917 if (new_file_length == max_reiserfs_offset(inode)) {
918 /* item has to be deleted */
919 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
920 return M_DELETE;
921 }
922 // new file gets truncated
923 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
924 //
925 round_len = ROUND_UP(new_file_length);
926 /* this was new_file_length < le_ih ... */
927 if (round_len < le_ih_k_offset(le_ih)) {
928 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
929 return M_DELETE; /* Delete this item. */
930 }
931 /* Calculate first position and size for cutting from item. */
932 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
933 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
934
935 return M_CUT; /* Cut from this item. */
936 }
937
938 // old file: items may have any length
939
940 if (new_file_length < le_ih_k_offset(le_ih)) {
941 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
942 return M_DELETE; /* Delete this item. */
943 }
944 /* Calculate first position and size for cutting from item. */
945 *cut_size = -(ih_item_len(le_ih) -
946 (pos_in_item(path) =
947 new_file_length + 1 - le_ih_k_offset(le_ih)));
948 return M_CUT; /* Cut from this item. */
949}
950
951static inline int prepare_for_direntry_item(struct treepath *path,
952 struct item_head *le_ih,
953 struct inode *inode,
954 loff_t new_file_length,
955 int *cut_size)
956{
957 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
958 new_file_length == max_reiserfs_offset(inode)) {
959 RFALSE(ih_entry_count(le_ih) != 2,
960 "PAP-5220: incorrect empty directory item (%h)", le_ih);
961 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
962 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
963 }
964
965 if (ih_entry_count(le_ih) == 1) {
966 /* Delete the directory item such as there is one record only
967 in this item */
968 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
969 return M_DELETE;
970 }
971
972 /* Cut one record from the directory item. */
973 *cut_size =
974 -(DEH_SIZE +
975 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
976 return M_CUT;
977}
978
979#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
980
981/* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
982 If the path points to an indirect item, remove some number of its unformatted nodes.
983 In case of file truncate calculate whether this item must be deleted/truncated or last
984 unformatted node of this item will be converted to a direct item.
985 This function returns a determination of what balance mode the calling function should employ. */
986static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th, struct inode *inode, struct treepath *path, const struct cpu_key *item_key, int *removed, /* Number of unformatted nodes which were removed
987 from end of the file. */
988 int *cut_size, unsigned long long new_file_length /* MAX_KEY_OFFSET in case of delete. */
989 )
990{
991 struct super_block *sb = inode->i_sb;
992 struct item_head *p_le_ih = PATH_PITEM_HEAD(path);
993 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
994
995 BUG_ON(!th->t_trans_id);
996
997 /* Stat_data item. */
998 if (is_statdata_le_ih(p_le_ih)) {
999
1000 RFALSE(new_file_length != max_reiserfs_offset(inode),
1001 "PAP-5210: mode must be M_DELETE");
1002
1003 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1004 return M_DELETE;
1005 }
1006
1007 /* Directory item. */
1008 if (is_direntry_le_ih(p_le_ih))
1009 return prepare_for_direntry_item(path, p_le_ih, inode,
1010 new_file_length,
1011 cut_size);
1012
1013 /* Direct item. */
1014 if (is_direct_le_ih(p_le_ih))
1015 return prepare_for_direct_item(path, p_le_ih, inode,
1016 new_file_length, cut_size);
1017
1018 /* Case of an indirect item. */
1019 {
1020 int blk_size = sb->s_blocksize;
1021 struct item_head s_ih;
1022 int need_re_search;
1023 int delete = 0;
1024 int result = M_CUT;
1025 int pos = 0;
1026
1027 if ( new_file_length == max_reiserfs_offset (inode) ) {
1028 /* prepare_for_delete_or_cut() is called by
1029 * reiserfs_delete_item() */
1030 new_file_length = 0;
1031 delete = 1;
1032 }
1033
1034 do {
1035 need_re_search = 0;
1036 *cut_size = 0;
1037 bh = PATH_PLAST_BUFFER(path);
1038 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1039 pos = I_UNFM_NUM(&s_ih);
1040
1041 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1042 __le32 *unfm;
1043 __u32 block;
1044
1045 /* Each unformatted block deletion may involve one additional
1046 * bitmap block into the transaction, thereby the initial
1047 * journal space reservation might not be enough. */
1048 if (!delete && (*cut_size) != 0 &&
1049 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1050 break;
1051
1052 unfm = (__le32 *)B_I_PITEM(bh, &s_ih) + pos - 1;
1053 block = get_block_num(unfm, 0);
1054
1055 if (block != 0) {
1056 reiserfs_prepare_for_journal(sb, bh, 1);
1057 put_block_num(unfm, 0, 0);
1058 journal_mark_dirty(th, sb, bh);
1059 reiserfs_free_block(th, inode, block, 1);
1060 }
1061
1062 reiserfs_write_unlock(sb);
1063 cond_resched();
1064 reiserfs_write_lock(sb);
1065
1066 if (item_moved (&s_ih, path)) {
1067 need_re_search = 1;
1068 break;
1069 }
1070
1071 pos --;
1072 (*removed)++;
1073 (*cut_size) -= UNFM_P_SIZE;
1074
1075 if (pos == 0) {
1076 (*cut_size) -= IH_SIZE;
1077 result = M_DELETE;
1078 break;
1079 }
1080 }
1081 /* a trick. If the buffer has been logged, this will do nothing. If
1082 ** we've broken the loop without logging it, it will restore the
1083 ** buffer */
1084 reiserfs_restore_prepared_buffer(sb, bh);
1085 } while (need_re_search &&
1086 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1087 pos_in_item(path) = pos * UNFM_P_SIZE;
1088
1089 if (*cut_size == 0) {
1090 /* Nothing were cut. maybe convert last unformatted node to the
1091 * direct item? */
1092 result = M_CONVERT;
1093 }
1094 return result;
1095 }
1096}
1097
1098/* Calculate number of bytes which will be deleted or cut during balance */
1099static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1100{
1101 int del_size;
1102 struct item_head *p_le_ih = PATH_PITEM_HEAD(tb->tb_path);
1103
1104 if (is_statdata_le_ih(p_le_ih))
1105 return 0;
1106
1107 del_size =
1108 (mode ==
1109 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1110 if (is_direntry_le_ih(p_le_ih)) {
1111 /* return EMPTY_DIR_SIZE; We delete emty directoris only.
1112 * we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1113 * empty size. ick. FIXME, is this right? */
1114 return del_size;
1115 }
1116
1117 if (is_indirect_le_ih(p_le_ih))
1118 del_size = (del_size / UNFM_P_SIZE) *
1119 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1120 return del_size;
1121}
1122
1123static void init_tb_struct(struct reiserfs_transaction_handle *th,
1124 struct tree_balance *tb,
1125 struct super_block *sb,
1126 struct treepath *path, int size)
1127{
1128
1129 BUG_ON(!th->t_trans_id);
1130
1131 memset(tb, '\0', sizeof(struct tree_balance));
1132 tb->transaction_handle = th;
1133 tb->tb_sb = sb;
1134 tb->tb_path = path;
1135 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1136 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1137 tb->insert_size[0] = size;
1138}
1139
1140void padd_item(char *item, int total_length, int length)
1141{
1142 int i;
1143
1144 for (i = total_length; i > length;)
1145 item[--i] = 0;
1146}
1147
1148#ifdef REISERQUOTA_DEBUG
1149char key2type(struct reiserfs_key *ih)
1150{
1151 if (is_direntry_le_key(2, ih))
1152 return 'd';
1153 if (is_direct_le_key(2, ih))
1154 return 'D';
1155 if (is_indirect_le_key(2, ih))
1156 return 'i';
1157 if (is_statdata_le_key(2, ih))
1158 return 's';
1159 return 'u';
1160}
1161
1162char head2type(struct item_head *ih)
1163{
1164 if (is_direntry_le_ih(ih))
1165 return 'd';
1166 if (is_direct_le_ih(ih))
1167 return 'D';
1168 if (is_indirect_le_ih(ih))
1169 return 'i';
1170 if (is_statdata_le_ih(ih))
1171 return 's';
1172 return 'u';
1173}
1174#endif
1175
1176/* Delete object item.
1177 * th - active transaction handle
1178 * path - path to the deleted item
1179 * item_key - key to search for the deleted item
1180 * indode - used for updating i_blocks and quotas
1181 * un_bh - NULL or unformatted node pointer
1182 */
1183int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1184 struct treepath *path, const struct cpu_key *item_key,
1185 struct inode *inode, struct buffer_head *un_bh)
1186{
1187 struct super_block *sb = inode->i_sb;
1188 struct tree_balance s_del_balance;
1189 struct item_head s_ih;
1190 struct item_head *q_ih;
1191 int quota_cut_bytes;
1192 int ret_value, del_size, removed;
1193
1194#ifdef CONFIG_REISERFS_CHECK
1195 char mode;
1196 int iter = 0;
1197#endif
1198
1199 BUG_ON(!th->t_trans_id);
1200
1201 init_tb_struct(th, &s_del_balance, sb, path,
1202 0 /*size is unknown */ );
1203
1204 while (1) {
1205 removed = 0;
1206
1207#ifdef CONFIG_REISERFS_CHECK
1208 iter++;
1209 mode =
1210#endif
1211 prepare_for_delete_or_cut(th, inode, path,
1212 item_key, &removed,
1213 &del_size,
1214 max_reiserfs_offset(inode));
1215
1216 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1217
1218 copy_item_head(&s_ih, PATH_PITEM_HEAD(path));
1219 s_del_balance.insert_size[0] = del_size;
1220
1221 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1222 if (ret_value != REPEAT_SEARCH)
1223 break;
1224
1225 PROC_INFO_INC(sb, delete_item_restarted);
1226
1227 // file system changed, repeat search
1228 ret_value =
1229 search_for_position_by_key(sb, item_key, path);
1230 if (ret_value == IO_ERROR)
1231 break;
1232 if (ret_value == FILE_NOT_FOUND) {
1233 reiserfs_warning(sb, "vs-5340",
1234 "no items of the file %K found",
1235 item_key);
1236 break;
1237 }
1238 } /* while (1) */
1239
1240 if (ret_value != CARRY_ON) {
1241 unfix_nodes(&s_del_balance);
1242 return 0;
1243 }
1244 // reiserfs_delete_item returns item length when success
1245 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1246 q_ih = get_ih(path);
1247 quota_cut_bytes = ih_item_len(q_ih);
1248
1249 /* hack so the quota code doesn't have to guess if the file
1250 ** has a tail. On tail insert, we allocate quota for 1 unformatted node.
1251 ** We test the offset because the tail might have been
1252 ** split into multiple items, and we only want to decrement for
1253 ** the unfm node once
1254 */
1255 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1256 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1257 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1258 } else {
1259 quota_cut_bytes = 0;
1260 }
1261 }
1262
1263 if (un_bh) {
1264 int off;
1265 char *data;
1266
1267 /* We are in direct2indirect conversion, so move tail contents
1268 to the unformatted node */
1269 /* note, we do the copy before preparing the buffer because we
1270 ** don't care about the contents of the unformatted node yet.
1271 ** the only thing we really care about is the direct item's data
1272 ** is in the unformatted node.
1273 **
1274 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1275 ** the unformatted node, which might schedule, meaning we'd have to
1276 ** loop all the way back up to the start of the while loop.
1277 **
1278 ** The unformatted node must be dirtied later on. We can't be
1279 ** sure here if the entire tail has been deleted yet.
1280 **
1281 ** un_bh is from the page cache (all unformatted nodes are
1282 ** from the page cache) and might be a highmem page. So, we
1283 ** can't use un_bh->b_data.
1284 ** -clm
1285 */
1286
1287 data = kmap_atomic(un_bh->b_page, KM_USER0);
1288 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1289 memcpy(data + off,
1290 B_I_PITEM(PATH_PLAST_BUFFER(path), &s_ih),
1291 ret_value);
1292 kunmap_atomic(data, KM_USER0);
1293 }
1294 /* Perform balancing after all resources have been collected at once. */
1295 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1296
1297#ifdef REISERQUOTA_DEBUG
1298 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1299 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1300 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1301#endif
1302 dquot_free_space_nodirty(inode, quota_cut_bytes);
1303
1304 /* Return deleted body length */
1305 return ret_value;
1306}
1307
1308/* Summary Of Mechanisms For Handling Collisions Between Processes:
1309
1310 deletion of the body of the object is performed by iput(), with the
1311 result that if multiple processes are operating on a file, the
1312 deletion of the body of the file is deferred until the last process
1313 that has an open inode performs its iput().
1314
1315 writes and truncates are protected from collisions by use of
1316 semaphores.
1317
1318 creates, linking, and mknod are protected from collisions with other
1319 processes by making the reiserfs_add_entry() the last step in the
1320 creation, and then rolling back all changes if there was a collision.
1321 - Hans
1322*/
1323
1324/* this deletes item which never gets split */
1325void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1326 struct inode *inode, struct reiserfs_key *key)
1327{
1328 struct tree_balance tb;
1329 INITIALIZE_PATH(path);
1330 int item_len = 0;
1331 int tb_init = 0;
1332 struct cpu_key cpu_key;
1333 int retval;
1334 int quota_cut_bytes = 0;
1335
1336 BUG_ON(!th->t_trans_id);
1337
1338 le_key2cpu_key(&cpu_key, key);
1339
1340 while (1) {
1341 retval = search_item(th->t_super, &cpu_key, &path);
1342 if (retval == IO_ERROR) {
1343 reiserfs_error(th->t_super, "vs-5350",
1344 "i/o failure occurred trying "
1345 "to delete %K", &cpu_key);
1346 break;
1347 }
1348 if (retval != ITEM_FOUND) {
1349 pathrelse(&path);
1350 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1351 if (!
1352 ((unsigned long long)
1353 GET_HASH_VALUE(le_key_k_offset
1354 (le_key_version(key), key)) == 0
1355 && (unsigned long long)
1356 GET_GENERATION_NUMBER(le_key_k_offset
1357 (le_key_version(key),
1358 key)) == 1))
1359 reiserfs_warning(th->t_super, "vs-5355",
1360 "%k not found", key);
1361 break;
1362 }
1363 if (!tb_init) {
1364 tb_init = 1;
1365 item_len = ih_item_len(PATH_PITEM_HEAD(&path));
1366 init_tb_struct(th, &tb, th->t_super, &path,
1367 -(IH_SIZE + item_len));
1368 }
1369 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path));
1370
1371 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1372 if (retval == REPEAT_SEARCH) {
1373 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1374 continue;
1375 }
1376
1377 if (retval == CARRY_ON) {
1378 do_balance(&tb, NULL, NULL, M_DELETE);
1379 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
1380#ifdef REISERQUOTA_DEBUG
1381 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1382 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1383 quota_cut_bytes, inode->i_uid,
1384 key2type(key));
1385#endif
1386 dquot_free_space_nodirty(inode,
1387 quota_cut_bytes);
1388 }
1389 break;
1390 }
1391 // IO_ERROR, NO_DISK_SPACE, etc
1392 reiserfs_warning(th->t_super, "vs-5360",
1393 "could not delete %K due to fix_nodes failure",
1394 &cpu_key);
1395 unfix_nodes(&tb);
1396 break;
1397 }
1398
1399 reiserfs_check_path(&path);
1400}
1401
1402int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1403 struct inode *inode)
1404{
1405 int err;
1406 inode->i_size = 0;
1407 BUG_ON(!th->t_trans_id);
1408
1409 /* for directory this deletes item containing "." and ".." */
1410 err =
1411 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1412 if (err)
1413 return err;
1414
1415#if defined( USE_INODE_GENERATION_COUNTER )
1416 if (!old_format_only(th->t_super)) {
1417 __le32 *inode_generation;
1418
1419 inode_generation =
1420 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1421 le32_add_cpu(inode_generation, 1);
1422 }
1423/* USE_INODE_GENERATION_COUNTER */
1424#endif
1425 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1426
1427 return err;
1428}
1429
1430static void unmap_buffers(struct page *page, loff_t pos)
1431{
1432 struct buffer_head *bh;
1433 struct buffer_head *head;
1434 struct buffer_head *next;
1435 unsigned long tail_index;
1436 unsigned long cur_index;
1437
1438 if (page) {
1439 if (page_has_buffers(page)) {
1440 tail_index = pos & (PAGE_CACHE_SIZE - 1);
1441 cur_index = 0;
1442 head = page_buffers(page);
1443 bh = head;
1444 do {
1445 next = bh->b_this_page;
1446
1447 /* we want to unmap the buffers that contain the tail, and
1448 ** all the buffers after it (since the tail must be at the
1449 ** end of the file). We don't want to unmap file data
1450 ** before the tail, since it might be dirty and waiting to
1451 ** reach disk
1452 */
1453 cur_index += bh->b_size;
1454 if (cur_index > tail_index) {
1455 reiserfs_unmap_buffer(bh);
1456 }
1457 bh = next;
1458 } while (bh != head);
1459 }
1460 }
1461}
1462
1463static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1464 struct inode *inode,
1465 struct page *page,
1466 struct treepath *path,
1467 const struct cpu_key *item_key,
1468 loff_t new_file_size, char *mode)
1469{
1470 struct super_block *sb = inode->i_sb;
1471 int block_size = sb->s_blocksize;
1472 int cut_bytes;
1473 BUG_ON(!th->t_trans_id);
1474 BUG_ON(new_file_size != inode->i_size);
1475
1476 /* the page being sent in could be NULL if there was an i/o error
1477 ** reading in the last block. The user will hit problems trying to
1478 ** read the file, but for now we just skip the indirect2direct
1479 */
1480 if (atomic_read(&inode->i_count) > 1 ||
1481 !tail_has_to_be_packed(inode) ||
1482 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1483 /* leave tail in an unformatted node */
1484 *mode = M_SKIP_BALANCING;
1485 cut_bytes =
1486 block_size - (new_file_size & (block_size - 1));
1487 pathrelse(path);
1488 return cut_bytes;
1489 }
1490 /* Perform the conversion to a direct_item. */
1491 /* return indirect_to_direct(inode, path, item_key,
1492 new_file_size, mode); */
1493 return indirect2direct(th, inode, page, path, item_key,
1494 new_file_size, mode);
1495}
1496
1497/* we did indirect_to_direct conversion. And we have inserted direct
1498 item successesfully, but there were no disk space to cut unfm
1499 pointer being converted. Therefore we have to delete inserted
1500 direct item(s) */
1501static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1502 struct inode *inode, struct treepath *path)
1503{
1504 struct cpu_key tail_key;
1505 int tail_len;
1506 int removed;
1507 BUG_ON(!th->t_trans_id);
1508
1509 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4); // !!!!
1510 tail_key.key_length = 4;
1511
1512 tail_len =
1513 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1514 while (tail_len) {
1515 /* look for the last byte of the tail */
1516 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1517 POSITION_NOT_FOUND)
1518 reiserfs_panic(inode->i_sb, "vs-5615",
1519 "found invalid item");
1520 RFALSE(path->pos_in_item !=
1521 ih_item_len(PATH_PITEM_HEAD(path)) - 1,
1522 "vs-5616: appended bytes found");
1523 PATH_LAST_POSITION(path)--;
1524
1525 removed =
1526 reiserfs_delete_item(th, path, &tail_key, inode,
1527 NULL /*unbh not needed */ );
1528 RFALSE(removed <= 0
1529 || removed > tail_len,
1530 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1531 tail_len, removed);
1532 tail_len -= removed;
1533 set_cpu_key_k_offset(&tail_key,
1534 cpu_key_k_offset(&tail_key) - removed);
1535 }
1536 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1537 "conversion has been rolled back due to "
1538 "lack of disk space");
1539 //mark_file_without_tail (inode);
1540 mark_inode_dirty(inode);
1541}
1542
1543/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1544int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1545 struct treepath *path,
1546 struct cpu_key *item_key,
1547 struct inode *inode,
1548 struct page *page, loff_t new_file_size)
1549{
1550 struct super_block *sb = inode->i_sb;
1551 /* Every function which is going to call do_balance must first
1552 create a tree_balance structure. Then it must fill up this
1553 structure by using the init_tb_struct and fix_nodes functions.
1554 After that we can make tree balancing. */
1555 struct tree_balance s_cut_balance;
1556 struct item_head *p_le_ih;
1557 int cut_size = 0, /* Amount to be cut. */
1558 ret_value = CARRY_ON, removed = 0, /* Number of the removed unformatted nodes. */
1559 is_inode_locked = 0;
1560 char mode; /* Mode of the balance. */
1561 int retval2 = -1;
1562 int quota_cut_bytes;
1563 loff_t tail_pos = 0;
1564
1565 BUG_ON(!th->t_trans_id);
1566
1567 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1568 cut_size);
1569
1570 /* Repeat this loop until we either cut the item without needing
1571 to balance, or we fix_nodes without schedule occurring */
1572 while (1) {
1573 /* Determine the balance mode, position of the first byte to
1574 be cut, and size to be cut. In case of the indirect item
1575 free unformatted nodes which are pointed to by the cut
1576 pointers. */
1577
1578 mode =
1579 prepare_for_delete_or_cut(th, inode, path,
1580 item_key, &removed,
1581 &cut_size, new_file_size);
1582 if (mode == M_CONVERT) {
1583 /* convert last unformatted node to direct item or leave
1584 tail in the unformatted node */
1585 RFALSE(ret_value != CARRY_ON,
1586 "PAP-5570: can not convert twice");
1587
1588 ret_value =
1589 maybe_indirect_to_direct(th, inode, page,
1590 path, item_key,
1591 new_file_size, &mode);
1592 if (mode == M_SKIP_BALANCING)
1593 /* tail has been left in the unformatted node */
1594 return ret_value;
1595
1596 is_inode_locked = 1;
1597
1598 /* removing of last unformatted node will change value we
1599 have to return to truncate. Save it */
1600 retval2 = ret_value;
1601 /*retval2 = sb->s_blocksize - (new_file_size & (sb->s_blocksize - 1)); */
1602
1603 /* So, we have performed the first part of the conversion:
1604 inserting the new direct item. Now we are removing the
1605 last unformatted node pointer. Set key to search for
1606 it. */
1607 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1608 item_key->key_length = 4;
1609 new_file_size -=
1610 (new_file_size & (sb->s_blocksize - 1));
1611 tail_pos = new_file_size;
1612 set_cpu_key_k_offset(item_key, new_file_size + 1);
1613 if (search_for_position_by_key
1614 (sb, item_key,
1615 path) == POSITION_NOT_FOUND) {
1616 print_block(PATH_PLAST_BUFFER(path), 3,
1617 PATH_LAST_POSITION(path) - 1,
1618 PATH_LAST_POSITION(path) + 1);
1619 reiserfs_panic(sb, "PAP-5580", "item to "
1620 "convert does not exist (%K)",
1621 item_key);
1622 }
1623 continue;
1624 }
1625 if (cut_size == 0) {
1626 pathrelse(path);
1627 return 0;
1628 }
1629
1630 s_cut_balance.insert_size[0] = cut_size;
1631
1632 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1633 if (ret_value != REPEAT_SEARCH)
1634 break;
1635
1636 PROC_INFO_INC(sb, cut_from_item_restarted);
1637
1638 ret_value =
1639 search_for_position_by_key(sb, item_key, path);
1640 if (ret_value == POSITION_FOUND)
1641 continue;
1642
1643 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1644 item_key);
1645 unfix_nodes(&s_cut_balance);
1646 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1647 } /* while */
1648
1649 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1650 if (ret_value != CARRY_ON) {
1651 if (is_inode_locked) {
1652 // FIXME: this seems to be not needed: we are always able
1653 // to cut item
1654 indirect_to_direct_roll_back(th, inode, path);
1655 }
1656 if (ret_value == NO_DISK_SPACE)
1657 reiserfs_warning(sb, "reiserfs-5092",
1658 "NO_DISK_SPACE");
1659 unfix_nodes(&s_cut_balance);
1660 return -EIO;
1661 }
1662
1663 /* go ahead and perform balancing */
1664
1665 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1666
1667 /* Calculate number of bytes that need to be cut from the item. */
1668 quota_cut_bytes =
1669 (mode ==
1670 M_DELETE) ? ih_item_len(get_ih(path)) : -s_cut_balance.
1671 insert_size[0];
1672 if (retval2 == -1)
1673 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1674 else
1675 ret_value = retval2;
1676
1677 /* For direct items, we only change the quota when deleting the last
1678 ** item.
1679 */
1680 p_le_ih = PATH_PITEM_HEAD(s_cut_balance.tb_path);
1681 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1682 if (mode == M_DELETE &&
1683 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1684 1) {
1685 // FIXME: this is to keep 3.5 happy
1686 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1687 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1688 } else {
1689 quota_cut_bytes = 0;
1690 }
1691 }
1692#ifdef CONFIG_REISERFS_CHECK
1693 if (is_inode_locked) {
1694 struct item_head *le_ih =
1695 PATH_PITEM_HEAD(s_cut_balance.tb_path);
1696 /* we are going to complete indirect2direct conversion. Make
1697 sure, that we exactly remove last unformatted node pointer
1698 of the item */
1699 if (!is_indirect_le_ih(le_ih))
1700 reiserfs_panic(sb, "vs-5652",
1701 "item must be indirect %h", le_ih);
1702
1703 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1704 reiserfs_panic(sb, "vs-5653", "completing "
1705 "indirect2direct conversion indirect "
1706 "item %h being deleted must be of "
1707 "4 byte long", le_ih);
1708
1709 if (mode == M_CUT
1710 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1711 reiserfs_panic(sb, "vs-5654", "can not complete "
1712 "indirect2direct conversion of %h "
1713 "(CUT, insert_size==%d)",
1714 le_ih, s_cut_balance.insert_size[0]);
1715 }
1716 /* it would be useful to make sure, that right neighboring
1717 item is direct item of this file */
1718 }
1719#endif
1720
1721 do_balance(&s_cut_balance, NULL, NULL, mode);
1722 if (is_inode_locked) {
1723 /* we've done an indirect->direct conversion. when the data block
1724 ** was freed, it was removed from the list of blocks that must
1725 ** be flushed before the transaction commits, make sure to
1726 ** unmap and invalidate it
1727 */
1728 unmap_buffers(page, tail_pos);
1729 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1730 }
1731#ifdef REISERQUOTA_DEBUG
1732 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1733 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1734 quota_cut_bytes, inode->i_uid, '?');
1735#endif
1736 dquot_free_space_nodirty(inode, quota_cut_bytes);
1737 return ret_value;
1738}
1739
1740static void truncate_directory(struct reiserfs_transaction_handle *th,
1741 struct inode *inode)
1742{
1743 BUG_ON(!th->t_trans_id);
1744 if (inode->i_nlink)
1745 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1746
1747 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1748 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1749 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1750 reiserfs_update_sd(th, inode);
1751 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1752 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1753}
1754
1755/* Truncate file to the new size. Note, this must be called with a transaction
1756 already started */
1757int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1758 struct inode *inode, /* ->i_size contains new size */
1759 struct page *page, /* up to date for last block */
1760 int update_timestamps /* when it is called by
1761 file_release to convert
1762 the tail - no timestamps
1763 should be updated */
1764 )
1765{
1766 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1767 struct item_head *p_le_ih; /* Pointer to an item header. */
1768 struct cpu_key s_item_key; /* Key to search for a previous file item. */
1769 loff_t file_size, /* Old file size. */
1770 new_file_size; /* New file size. */
1771 int deleted; /* Number of deleted or truncated bytes. */
1772 int retval;
1773 int err = 0;
1774
1775 BUG_ON(!th->t_trans_id);
1776 if (!
1777 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1778 || S_ISLNK(inode->i_mode)))
1779 return 0;
1780
1781 if (S_ISDIR(inode->i_mode)) {
1782 // deletion of directory - no need to update timestamps
1783 truncate_directory(th, inode);
1784 return 0;
1785 }
1786
1787 /* Get new file size. */
1788 new_file_size = inode->i_size;
1789
1790 // FIXME: note, that key type is unimportant here
1791 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1792 TYPE_DIRECT, 3);
1793
1794 retval =
1795 search_for_position_by_key(inode->i_sb, &s_item_key,
1796 &s_search_path);
1797 if (retval == IO_ERROR) {
1798 reiserfs_error(inode->i_sb, "vs-5657",
1799 "i/o failure occurred trying to truncate %K",
1800 &s_item_key);
1801 err = -EIO;
1802 goto out;
1803 }
1804 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1805 reiserfs_error(inode->i_sb, "PAP-5660",
1806 "wrong result %d of search for %K", retval,
1807 &s_item_key);
1808
1809 err = -EIO;
1810 goto out;
1811 }
1812
1813 s_search_path.pos_in_item--;
1814
1815 /* Get real file size (total length of all file items) */
1816 p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1817 if (is_statdata_le_ih(p_le_ih))
1818 file_size = 0;
1819 else {
1820 loff_t offset = le_ih_k_offset(p_le_ih);
1821 int bytes =
1822 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1823
1824 /* this may mismatch with real file size: if last direct item
1825 had no padding zeros and last unformatted node had no free
1826 space, this file would have this file size */
1827 file_size = offset + bytes - 1;
1828 }
1829 /*
1830 * are we doing a full truncate or delete, if so
1831 * kick in the reada code
1832 */
1833 if (new_file_size == 0)
1834 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1835
1836 if (file_size == 0 || file_size < new_file_size) {
1837 goto update_and_out;
1838 }
1839
1840 /* Update key to search for the last file item. */
1841 set_cpu_key_k_offset(&s_item_key, file_size);
1842
1843 do {
1844 /* Cut or delete file item. */
1845 deleted =
1846 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1847 inode, page, new_file_size);
1848 if (deleted < 0) {
1849 reiserfs_warning(inode->i_sb, "vs-5665",
1850 "reiserfs_cut_from_item failed");
1851 reiserfs_check_path(&s_search_path);
1852 return 0;
1853 }
1854
1855 RFALSE(deleted > file_size,
1856 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1857 deleted, file_size, &s_item_key);
1858
1859 /* Change key to search the last file item. */
1860 file_size -= deleted;
1861
1862 set_cpu_key_k_offset(&s_item_key, file_size);
1863
1864 /* While there are bytes to truncate and previous file item is presented in the tree. */
1865
1866 /*
1867 ** This loop could take a really long time, and could log
1868 ** many more blocks than a transaction can hold. So, we do a polite
1869 ** journal end here, and if the transaction needs ending, we make
1870 ** sure the file is consistent before ending the current trans
1871 ** and starting a new one
1872 */
1873 if (journal_transaction_should_end(th, 0) ||
1874 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1875 int orig_len_alloc = th->t_blocks_allocated;
1876 pathrelse(&s_search_path);
1877
1878 if (update_timestamps) {
1879 inode->i_mtime = CURRENT_TIME_SEC;
1880 inode->i_ctime = CURRENT_TIME_SEC;
1881 }
1882 reiserfs_update_sd(th, inode);
1883
1884 err = journal_end(th, inode->i_sb, orig_len_alloc);
1885 if (err)
1886 goto out;
1887 err = journal_begin(th, inode->i_sb,
1888 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1889 if (err)
1890 goto out;
1891 reiserfs_update_inode_transaction(inode);
1892 }
1893 } while (file_size > ROUND_UP(new_file_size) &&
1894 search_for_position_by_key(inode->i_sb, &s_item_key,
1895 &s_search_path) == POSITION_FOUND);
1896
1897 RFALSE(file_size > ROUND_UP(new_file_size),
1898 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1899 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
1900
1901 update_and_out:
1902 if (update_timestamps) {
1903 // this is truncate, not file closing
1904 inode->i_mtime = CURRENT_TIME_SEC;
1905 inode->i_ctime = CURRENT_TIME_SEC;
1906 }
1907 reiserfs_update_sd(th, inode);
1908
1909 out:
1910 pathrelse(&s_search_path);
1911 return err;
1912}
1913
1914#ifdef CONFIG_REISERFS_CHECK
1915// this makes sure, that we __append__, not overwrite or add holes
1916static void check_research_for_paste(struct treepath *path,
1917 const struct cpu_key *key)
1918{
1919 struct item_head *found_ih = get_ih(path);
1920
1921 if (is_direct_le_ih(found_ih)) {
1922 if (le_ih_k_offset(found_ih) +
1923 op_bytes_number(found_ih,
1924 get_last_bh(path)->b_size) !=
1925 cpu_key_k_offset(key)
1926 || op_bytes_number(found_ih,
1927 get_last_bh(path)->b_size) !=
1928 pos_in_item(path))
1929 reiserfs_panic(NULL, "PAP-5720", "found direct item "
1930 "%h or position (%d) does not match "
1931 "to key %K", found_ih,
1932 pos_in_item(path), key);
1933 }
1934 if (is_indirect_le_ih(found_ih)) {
1935 if (le_ih_k_offset(found_ih) +
1936 op_bytes_number(found_ih,
1937 get_last_bh(path)->b_size) !=
1938 cpu_key_k_offset(key)
1939 || I_UNFM_NUM(found_ih) != pos_in_item(path)
1940 || get_ih_free_space(found_ih) != 0)
1941 reiserfs_panic(NULL, "PAP-5730", "found indirect "
1942 "item (%h) or position (%d) does not "
1943 "match to key (%K)",
1944 found_ih, pos_in_item(path), key);
1945 }
1946}
1947#endif /* config reiserfs check */
1948
1949/* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1950int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, struct treepath *search_path, /* Path to the pasted item. */
1951 const struct cpu_key *key, /* Key to search for the needed item. */
1952 struct inode *inode, /* Inode item belongs to */
1953 const char *body, /* Pointer to the bytes to paste. */
1954 int pasted_size)
1955{ /* Size of pasted bytes. */
1956 struct tree_balance s_paste_balance;
1957 int retval;
1958 int fs_gen;
1959
1960 BUG_ON(!th->t_trans_id);
1961
1962 fs_gen = get_generation(inode->i_sb);
1963
1964#ifdef REISERQUOTA_DEBUG
1965 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1966 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
1967 pasted_size, inode->i_uid,
1968 key2type(&(key->on_disk_key)));
1969#endif
1970
1971 retval = dquot_alloc_space_nodirty(inode, pasted_size);
1972 if (retval) {
1973 pathrelse(search_path);
1974 return retval;
1975 }
1976 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
1977 pasted_size);
1978#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1979 s_paste_balance.key = key->on_disk_key;
1980#endif
1981
1982 /* DQUOT_* can schedule, must check before the fix_nodes */
1983 if (fs_changed(fs_gen, inode->i_sb)) {
1984 goto search_again;
1985 }
1986
1987 while ((retval =
1988 fix_nodes(M_PASTE, &s_paste_balance, NULL,
1989 body)) == REPEAT_SEARCH) {
1990 search_again:
1991 /* file system changed while we were in the fix_nodes */
1992 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
1993 retval =
1994 search_for_position_by_key(th->t_super, key,
1995 search_path);
1996 if (retval == IO_ERROR) {
1997 retval = -EIO;
1998 goto error_out;
1999 }
2000 if (retval == POSITION_FOUND) {
2001 reiserfs_warning(inode->i_sb, "PAP-5710",
2002 "entry or pasted byte (%K) exists",
2003 key);
2004 retval = -EEXIST;
2005 goto error_out;
2006 }
2007#ifdef CONFIG_REISERFS_CHECK
2008 check_research_for_paste(search_path, key);
2009#endif
2010 }
2011
2012 /* Perform balancing after all resources are collected by fix_nodes, and
2013 accessing them will not risk triggering schedule. */
2014 if (retval == CARRY_ON) {
2015 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2016 return 0;
2017 }
2018 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2019 error_out:
2020 /* this also releases the path */
2021 unfix_nodes(&s_paste_balance);
2022#ifdef REISERQUOTA_DEBUG
2023 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2024 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2025 pasted_size, inode->i_uid,
2026 key2type(&(key->on_disk_key)));
2027#endif
2028 dquot_free_space_nodirty(inode, pasted_size);
2029 return retval;
2030}
2031
2032/* Insert new item into the buffer at the path.
2033 * th - active transaction handle
2034 * path - path to the inserted item
2035 * ih - pointer to the item header to insert
2036 * body - pointer to the bytes to insert
2037 */
2038int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2039 struct treepath *path, const struct cpu_key *key,
2040 struct item_head *ih, struct inode *inode,
2041 const char *body)
2042{
2043 struct tree_balance s_ins_balance;
2044 int retval;
2045 int fs_gen = 0;
2046 int quota_bytes = 0;
2047
2048 BUG_ON(!th->t_trans_id);
2049
2050 if (inode) { /* Do we count quotas for item? */
2051 fs_gen = get_generation(inode->i_sb);
2052 quota_bytes = ih_item_len(ih);
2053
2054 /* hack so the quota code doesn't have to guess if the file has
2055 ** a tail, links are always tails, so there's no guessing needed
2056 */
2057 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2058 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2059#ifdef REISERQUOTA_DEBUG
2060 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2061 "reiserquota insert_item(): allocating %u id=%u type=%c",
2062 quota_bytes, inode->i_uid, head2type(ih));
2063#endif
2064 /* We can't dirty inode here. It would be immediately written but
2065 * appropriate stat item isn't inserted yet... */
2066 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2067 if (retval) {
2068 pathrelse(path);
2069 return retval;
2070 }
2071 }
2072 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2073 IH_SIZE + ih_item_len(ih));
2074#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2075 s_ins_balance.key = key->on_disk_key;
2076#endif
2077 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2078 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2079 goto search_again;
2080 }
2081
2082 while ((retval =
2083 fix_nodes(M_INSERT, &s_ins_balance, ih,
2084 body)) == REPEAT_SEARCH) {
2085 search_again:
2086 /* file system changed while we were in the fix_nodes */
2087 PROC_INFO_INC(th->t_super, insert_item_restarted);
2088 retval = search_item(th->t_super, key, path);
2089 if (retval == IO_ERROR) {
2090 retval = -EIO;
2091 goto error_out;
2092 }
2093 if (retval == ITEM_FOUND) {
2094 reiserfs_warning(th->t_super, "PAP-5760",
2095 "key %K already exists in the tree",
2096 key);
2097 retval = -EEXIST;
2098 goto error_out;
2099 }
2100 }
2101
2102 /* make balancing after all resources will be collected at a time */
2103 if (retval == CARRY_ON) {
2104 do_balance(&s_ins_balance, ih, body, M_INSERT);
2105 return 0;
2106 }
2107
2108 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2109 error_out:
2110 /* also releases the path */
2111 unfix_nodes(&s_ins_balance);
2112#ifdef REISERQUOTA_DEBUG
2113 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2114 "reiserquota insert_item(): freeing %u id=%u type=%c",
2115 quota_bytes, inode->i_uid, head2type(ih));
2116#endif
2117 if (inode)
2118 dquot_free_space_nodirty(inode, quota_bytes);
2119 return retval;
2120}
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11#include <linux/time.h>
12#include <linux/string.h>
13#include <linux/pagemap.h>
14#include <linux/bio.h>
15#include "reiserfs.h"
16#include <linux/buffer_head.h>
17#include <linux/quotaops.h>
18
19/* Does the buffer contain a disk block which is in the tree. */
20inline int B_IS_IN_TREE(const struct buffer_head *bh)
21{
22
23 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25
26 return (B_LEVEL(bh) != FREE_LEVEL);
27}
28
29/* to get item head in le form */
30inline void copy_item_head(struct item_head *to,
31 const struct item_head *from)
32{
33 memcpy(to, from, IH_SIZE);
34}
35
36/*
37 * k1 is pointer to on-disk structure which is stored in little-endian
38 * form. k2 is pointer to cpu variable. For key of items of the same
39 * object this returns 0.
40 * Returns: -1 if key1 < key2
41 * 0 if key1 == key2
42 * 1 if key1 > key2
43 */
44inline int comp_short_keys(const struct reiserfs_key *le_key,
45 const struct cpu_key *cpu_key)
46{
47 __u32 n;
48 n = le32_to_cpu(le_key->k_dir_id);
49 if (n < cpu_key->on_disk_key.k_dir_id)
50 return -1;
51 if (n > cpu_key->on_disk_key.k_dir_id)
52 return 1;
53 n = le32_to_cpu(le_key->k_objectid);
54 if (n < cpu_key->on_disk_key.k_objectid)
55 return -1;
56 if (n > cpu_key->on_disk_key.k_objectid)
57 return 1;
58 return 0;
59}
60
61/*
62 * k1 is pointer to on-disk structure which is stored in little-endian
63 * form. k2 is pointer to cpu variable.
64 * Compare keys using all 4 key fields.
65 * Returns: -1 if key1 < key2 0
66 * if key1 = key2 1 if key1 > key2
67 */
68static inline int comp_keys(const struct reiserfs_key *le_key,
69 const struct cpu_key *cpu_key)
70{
71 int retval;
72
73 retval = comp_short_keys(le_key, cpu_key);
74 if (retval)
75 return retval;
76 if (le_key_k_offset(le_key_version(le_key), le_key) <
77 cpu_key_k_offset(cpu_key))
78 return -1;
79 if (le_key_k_offset(le_key_version(le_key), le_key) >
80 cpu_key_k_offset(cpu_key))
81 return 1;
82
83 if (cpu_key->key_length == 3)
84 return 0;
85
86 /* this part is needed only when tail conversion is in progress */
87 if (le_key_k_type(le_key_version(le_key), le_key) <
88 cpu_key_k_type(cpu_key))
89 return -1;
90
91 if (le_key_k_type(le_key_version(le_key), le_key) >
92 cpu_key_k_type(cpu_key))
93 return 1;
94
95 return 0;
96}
97
98inline int comp_short_le_keys(const struct reiserfs_key *key1,
99 const struct reiserfs_key *key2)
100{
101 __u32 *k1_u32, *k2_u32;
102 int key_length = REISERFS_SHORT_KEY_LEN;
103
104 k1_u32 = (__u32 *) key1;
105 k2_u32 = (__u32 *) key2;
106 for (; key_length--; ++k1_u32, ++k2_u32) {
107 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108 return -1;
109 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110 return 1;
111 }
112 return 0;
113}
114
115inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116{
117 int version;
118 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120
121 /* find out version of the key */
122 version = le_key_version(from);
123 to->version = version;
124 to->on_disk_key.k_offset = le_key_k_offset(version, from);
125 to->on_disk_key.k_type = le_key_k_type(version, from);
126}
127
128/*
129 * this does not say which one is bigger, it only returns 1 if keys
130 * are not equal, 0 otherwise
131 */
132inline int comp_le_keys(const struct reiserfs_key *k1,
133 const struct reiserfs_key *k2)
134{
135 return memcmp(k1, k2, sizeof(struct reiserfs_key));
136}
137
138/**************************************************************************
139 * Binary search toolkit function *
140 * Search for an item in the array by the item key *
141 * Returns: 1 if found, 0 if not found; *
142 * *pos = number of the searched element if found, else the *
143 * number of the first element that is larger than key. *
144 **************************************************************************/
145/*
146 * For those not familiar with binary search: lbound is the leftmost item
147 * that it could be, rbound the rightmost item that it could be. We examine
148 * the item halfway between lbound and rbound, and that tells us either
149 * that we can increase lbound, or decrease rbound, or that we have found it,
150 * or if lbound <= rbound that there are no possible items, and we have not
151 * found it. With each examination we cut the number of possible items it
152 * could be by one more than half rounded down, or we find it.
153 */
154static inline int bin_search(const void *key, /* Key to search for. */
155 const void *base, /* First item in the array. */
156 int num, /* Number of items in the array. */
157 /*
158 * Item size in the array. searched. Lest the
159 * reader be confused, note that this is crafted
160 * as a general function, and when it is applied
161 * specifically to the array of item headers in a
162 * node, width is actually the item header size
163 * not the item size.
164 */
165 int width,
166 int *pos /* Number of the searched for element. */
167 )
168{
169 int rbound, lbound, j;
170
171 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172 lbound <= rbound; j = (rbound + lbound) / 2)
173 switch (comp_keys
174 ((struct reiserfs_key *)((char *)base + j * width),
175 (struct cpu_key *)key)) {
176 case -1:
177 lbound = j + 1;
178 continue;
179 case 1:
180 rbound = j - 1;
181 continue;
182 case 0:
183 *pos = j;
184 return ITEM_FOUND; /* Key found in the array. */
185 }
186
187 /*
188 * bin_search did not find given key, it returns position of key,
189 * that is minimal and greater than the given one.
190 */
191 *pos = lbound;
192 return ITEM_NOT_FOUND;
193}
194
195
196/* Minimal possible key. It is never in the tree. */
197const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198
199/* Maximal possible key. It is never in the tree. */
200static const struct reiserfs_key MAX_KEY = {
201 cpu_to_le32(0xffffffff),
202 cpu_to_le32(0xffffffff),
203 {{cpu_to_le32(0xffffffff),
204 cpu_to_le32(0xffffffff)},}
205};
206
207/*
208 * Get delimiting key of the buffer by looking for it in the buffers in the
209 * path, starting from the bottom of the path, and going upwards. We must
210 * check the path's validity at each step. If the key is not in the path,
211 * there is no delimiting key in the tree (buffer is first or last buffer
212 * in tree), and in this case we return a special key, either MIN_KEY or
213 * MAX_KEY.
214 */
215static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216 const struct super_block *sb)
217{
218 int position, path_offset = chk_path->path_length;
219 struct buffer_head *parent;
220
221 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222 "PAP-5010: invalid offset in the path");
223
224 /* While not higher in path than first element. */
225 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226
227 RFALSE(!buffer_uptodate
228 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229 "PAP-5020: parent is not uptodate");
230
231 /* Parent at the path is not in the tree now. */
232 if (!B_IS_IN_TREE
233 (parent =
234 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235 return &MAX_KEY;
236 /* Check whether position in the parent is correct. */
237 if ((position =
238 PATH_OFFSET_POSITION(chk_path,
239 path_offset)) >
240 B_NR_ITEMS(parent))
241 return &MAX_KEY;
242 /* Check whether parent at the path really points to the child. */
243 if (B_N_CHILD_NUM(parent, position) !=
244 PATH_OFFSET_PBUFFER(chk_path,
245 path_offset + 1)->b_blocknr)
246 return &MAX_KEY;
247 /*
248 * Return delimiting key if position in the parent
249 * is not equal to zero.
250 */
251 if (position)
252 return internal_key(parent, position - 1);
253 }
254 /* Return MIN_KEY if we are in the root of the buffer tree. */
255 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256 b_blocknr == SB_ROOT_BLOCK(sb))
257 return &MIN_KEY;
258 return &MAX_KEY;
259}
260
261/* Get delimiting key of the buffer at the path and its right neighbor. */
262inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263 const struct super_block *sb)
264{
265 int position, path_offset = chk_path->path_length;
266 struct buffer_head *parent;
267
268 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269 "PAP-5030: invalid offset in the path");
270
271 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272
273 RFALSE(!buffer_uptodate
274 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275 "PAP-5040: parent is not uptodate");
276
277 /* Parent at the path is not in the tree now. */
278 if (!B_IS_IN_TREE
279 (parent =
280 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281 return &MIN_KEY;
282 /* Check whether position in the parent is correct. */
283 if ((position =
284 PATH_OFFSET_POSITION(chk_path,
285 path_offset)) >
286 B_NR_ITEMS(parent))
287 return &MIN_KEY;
288 /*
289 * Check whether parent at the path really points
290 * to the child.
291 */
292 if (B_N_CHILD_NUM(parent, position) !=
293 PATH_OFFSET_PBUFFER(chk_path,
294 path_offset + 1)->b_blocknr)
295 return &MIN_KEY;
296
297 /*
298 * Return delimiting key if position in the parent
299 * is not the last one.
300 */
301 if (position != B_NR_ITEMS(parent))
302 return internal_key(parent, position);
303 }
304
305 /* Return MAX_KEY if we are in the root of the buffer tree. */
306 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307 b_blocknr == SB_ROOT_BLOCK(sb))
308 return &MAX_KEY;
309 return &MIN_KEY;
310}
311
312/*
313 * Check whether a key is contained in the tree rooted from a buffer at a path.
314 * This works by looking at the left and right delimiting keys for the buffer
315 * in the last path_element in the path. These delimiting keys are stored
316 * at least one level above that buffer in the tree. If the buffer is the
317 * first or last node in the tree order then one of the delimiting keys may
318 * be absent, and in this case get_lkey and get_rkey return a special key
319 * which is MIN_KEY or MAX_KEY.
320 */
321static inline int key_in_buffer(
322 /* Path which should be checked. */
323 struct treepath *chk_path,
324 /* Key which should be checked. */
325 const struct cpu_key *key,
326 struct super_block *sb
327 )
328{
329
330 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331 || chk_path->path_length > MAX_HEIGHT,
332 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333 key, chk_path->path_length);
334 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335 "PAP-5060: device must not be NODEV");
336
337 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338 /* left delimiting key is bigger, that the key we look for */
339 return 0;
340 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342 /* key must be less than right delimitiing key */
343 return 0;
344 return 1;
345}
346
347int reiserfs_check_path(struct treepath *p)
348{
349 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350 "path not properly relsed");
351 return 0;
352}
353
354/*
355 * Drop the reference to each buffer in a path and restore
356 * dirty bits clean when preparing the buffer for the log.
357 * This version should only be called from fix_nodes()
358 */
359void pathrelse_and_restore(struct super_block *sb,
360 struct treepath *search_path)
361{
362 int path_offset = search_path->path_length;
363
364 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365 "clm-4000: invalid path offset");
366
367 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368 struct buffer_head *bh;
369 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370 reiserfs_restore_prepared_buffer(sb, bh);
371 brelse(bh);
372 }
373 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374}
375
376/* Drop the reference to each buffer in a path */
377void pathrelse(struct treepath *search_path)
378{
379 int path_offset = search_path->path_length;
380
381 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382 "PAP-5090: invalid path offset");
383
384 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386
387 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388}
389
390static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
391{
392 struct reiserfs_de_head *deh;
393 int i;
394
395 deh = B_I_DEH(bh, ih);
396 for (i = 0; i < ih_entry_count(ih); i++) {
397 if (deh_location(&deh[i]) > ih_item_len(ih)) {
398 reiserfs_warning(NULL, "reiserfs-5094",
399 "directory entry location seems wrong %h",
400 &deh[i]);
401 return 0;
402 }
403 }
404
405 return 1;
406}
407
408static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
409{
410 struct block_head *blkh;
411 struct item_head *ih;
412 int used_space;
413 int prev_location;
414 int i;
415 int nr;
416
417 blkh = (struct block_head *)buf;
418 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
419 reiserfs_warning(NULL, "reiserfs-5080",
420 "this should be caught earlier");
421 return 0;
422 }
423
424 nr = blkh_nr_item(blkh);
425 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
426 /* item number is too big or too small */
427 reiserfs_warning(NULL, "reiserfs-5081",
428 "nr_item seems wrong: %z", bh);
429 return 0;
430 }
431 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
432 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
433
434 /* free space does not match to calculated amount of use space */
435 if (used_space != blocksize - blkh_free_space(blkh)) {
436 reiserfs_warning(NULL, "reiserfs-5082",
437 "free space seems wrong: %z", bh);
438 return 0;
439 }
440 /*
441 * FIXME: it is_leaf will hit performance too much - we may have
442 * return 1 here
443 */
444
445 /* check tables of item heads */
446 ih = (struct item_head *)(buf + BLKH_SIZE);
447 prev_location = blocksize;
448 for (i = 0; i < nr; i++, ih++) {
449 if (le_ih_k_type(ih) == TYPE_ANY) {
450 reiserfs_warning(NULL, "reiserfs-5083",
451 "wrong item type for item %h",
452 ih);
453 return 0;
454 }
455 if (ih_location(ih) >= blocksize
456 || ih_location(ih) < IH_SIZE * nr) {
457 reiserfs_warning(NULL, "reiserfs-5084",
458 "item location seems wrong: %h",
459 ih);
460 return 0;
461 }
462 if (ih_item_len(ih) < 1
463 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
464 reiserfs_warning(NULL, "reiserfs-5085",
465 "item length seems wrong: %h",
466 ih);
467 return 0;
468 }
469 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
470 reiserfs_warning(NULL, "reiserfs-5086",
471 "item location seems wrong "
472 "(second one): %h", ih);
473 return 0;
474 }
475 if (is_direntry_le_ih(ih)) {
476 if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
477 reiserfs_warning(NULL, "reiserfs-5093",
478 "item entry count seems wrong %h",
479 ih);
480 return 0;
481 }
482 return has_valid_deh_location(bh, ih);
483 }
484 prev_location = ih_location(ih);
485 }
486
487 /* one may imagine many more checks */
488 return 1;
489}
490
491/* returns 1 if buf looks like an internal node, 0 otherwise */
492static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
493{
494 struct block_head *blkh;
495 int nr;
496 int used_space;
497
498 blkh = (struct block_head *)buf;
499 nr = blkh_level(blkh);
500 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
501 /* this level is not possible for internal nodes */
502 reiserfs_warning(NULL, "reiserfs-5087",
503 "this should be caught earlier");
504 return 0;
505 }
506
507 nr = blkh_nr_item(blkh);
508 /* for internal which is not root we might check min number of keys */
509 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
510 reiserfs_warning(NULL, "reiserfs-5088",
511 "number of key seems wrong: %z", bh);
512 return 0;
513 }
514
515 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
516 if (used_space != blocksize - blkh_free_space(blkh)) {
517 reiserfs_warning(NULL, "reiserfs-5089",
518 "free space seems wrong: %z", bh);
519 return 0;
520 }
521
522 /* one may imagine many more checks */
523 return 1;
524}
525
526/*
527 * make sure that bh contains formatted node of reiserfs tree of
528 * 'level'-th level
529 */
530static int is_tree_node(struct buffer_head *bh, int level)
531{
532 if (B_LEVEL(bh) != level) {
533 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
534 "not match to the expected one %d",
535 B_LEVEL(bh), level);
536 return 0;
537 }
538 if (level == DISK_LEAF_NODE_LEVEL)
539 return is_leaf(bh->b_data, bh->b_size, bh);
540
541 return is_internal(bh->b_data, bh->b_size, bh);
542}
543
544#define SEARCH_BY_KEY_READA 16
545
546/*
547 * The function is NOT SCHEDULE-SAFE!
548 * It might unlock the write lock if we needed to wait for a block
549 * to be read. Note that in this case it won't recover the lock to avoid
550 * high contention resulting from too much lock requests, especially
551 * the caller (search_by_key) will perform other schedule-unsafe
552 * operations just after calling this function.
553 *
554 * @return depth of lock to be restored after read completes
555 */
556static int search_by_key_reada(struct super_block *s,
557 struct buffer_head **bh,
558 b_blocknr_t *b, int num)
559{
560 int i, j;
561 int depth = -1;
562
563 for (i = 0; i < num; i++) {
564 bh[i] = sb_getblk(s, b[i]);
565 }
566 /*
567 * We are going to read some blocks on which we
568 * have a reference. It's safe, though we might be
569 * reading blocks concurrently changed if we release
570 * the lock. But it's still fine because we check later
571 * if the tree changed
572 */
573 for (j = 0; j < i; j++) {
574 /*
575 * note, this needs attention if we are getting rid of the BKL
576 * you have to make sure the prepared bit isn't set on this
577 * buffer
578 */
579 if (!buffer_uptodate(bh[j])) {
580 if (depth == -1)
581 depth = reiserfs_write_unlock_nested(s);
582 bh_readahead(bh[j], REQ_RAHEAD);
583 }
584 brelse(bh[j]);
585 }
586 return depth;
587}
588
589/*
590 * This function fills up the path from the root to the leaf as it
591 * descends the tree looking for the key. It uses reiserfs_bread to
592 * try to find buffers in the cache given their block number. If it
593 * does not find them in the cache it reads them from disk. For each
594 * node search_by_key finds using reiserfs_bread it then uses
595 * bin_search to look through that node. bin_search will find the
596 * position of the block_number of the next node if it is looking
597 * through an internal node. If it is looking through a leaf node
598 * bin_search will find the position of the item which has key either
599 * equal to given key, or which is the maximal key less than the given
600 * key. search_by_key returns a path that must be checked for the
601 * correctness of the top of the path but need not be checked for the
602 * correctness of the bottom of the path
603 */
604/*
605 * search_by_key - search for key (and item) in stree
606 * @sb: superblock
607 * @key: pointer to key to search for
608 * @search_path: Allocated and initialized struct treepath; Returned filled
609 * on success.
610 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
611 * stop at leaf level.
612 *
613 * The function is NOT SCHEDULE-SAFE!
614 */
615int search_by_key(struct super_block *sb, const struct cpu_key *key,
616 struct treepath *search_path, int stop_level)
617{
618 b_blocknr_t block_number;
619 int expected_level;
620 struct buffer_head *bh;
621 struct path_element *last_element;
622 int node_level, retval;
623 int fs_gen;
624 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
625 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
626 int reada_count = 0;
627
628#ifdef CONFIG_REISERFS_CHECK
629 int repeat_counter = 0;
630#endif
631
632 PROC_INFO_INC(sb, search_by_key);
633
634 /*
635 * As we add each node to a path we increase its count. This means
636 * that we must be careful to release all nodes in a path before we
637 * either discard the path struct or re-use the path struct, as we
638 * do here.
639 */
640
641 pathrelse(search_path);
642
643 /*
644 * With each iteration of this loop we search through the items in the
645 * current node, and calculate the next current node(next path element)
646 * for the next iteration of this loop..
647 */
648 block_number = SB_ROOT_BLOCK(sb);
649 expected_level = -1;
650 while (1) {
651
652#ifdef CONFIG_REISERFS_CHECK
653 if (!(++repeat_counter % 50000))
654 reiserfs_warning(sb, "PAP-5100",
655 "%s: there were %d iterations of "
656 "while loop looking for key %K",
657 current->comm, repeat_counter,
658 key);
659#endif
660
661 /* prep path to have another element added to it. */
662 last_element =
663 PATH_OFFSET_PELEMENT(search_path,
664 ++search_path->path_length);
665 fs_gen = get_generation(sb);
666
667 /*
668 * Read the next tree node, and set the last element
669 * in the path to have a pointer to it.
670 */
671 if ((bh = last_element->pe_buffer =
672 sb_getblk(sb, block_number))) {
673
674 /*
675 * We'll need to drop the lock if we encounter any
676 * buffers that need to be read. If all of them are
677 * already up to date, we don't need to drop the lock.
678 */
679 int depth = -1;
680
681 if (!buffer_uptodate(bh) && reada_count > 1)
682 depth = search_by_key_reada(sb, reada_bh,
683 reada_blocks, reada_count);
684
685 if (!buffer_uptodate(bh) && depth == -1)
686 depth = reiserfs_write_unlock_nested(sb);
687
688 bh_read_nowait(bh, 0);
689 wait_on_buffer(bh);
690
691 if (depth != -1)
692 reiserfs_write_lock_nested(sb, depth);
693 if (!buffer_uptodate(bh))
694 goto io_error;
695 } else {
696io_error:
697 search_path->path_length--;
698 pathrelse(search_path);
699 return IO_ERROR;
700 }
701 reada_count = 0;
702 if (expected_level == -1)
703 expected_level = SB_TREE_HEIGHT(sb);
704 expected_level--;
705
706 /*
707 * It is possible that schedule occurred. We must check
708 * whether the key to search is still in the tree rooted
709 * from the current buffer. If not then repeat search
710 * from the root.
711 */
712 if (fs_changed(fs_gen, sb) &&
713 (!B_IS_IN_TREE(bh) ||
714 B_LEVEL(bh) != expected_level ||
715 !key_in_buffer(search_path, key, sb))) {
716 PROC_INFO_INC(sb, search_by_key_fs_changed);
717 PROC_INFO_INC(sb, search_by_key_restarted);
718 PROC_INFO_INC(sb,
719 sbk_restarted[expected_level - 1]);
720 pathrelse(search_path);
721
722 /*
723 * Get the root block number so that we can
724 * repeat the search starting from the root.
725 */
726 block_number = SB_ROOT_BLOCK(sb);
727 expected_level = -1;
728
729 /* repeat search from the root */
730 continue;
731 }
732
733 /*
734 * only check that the key is in the buffer if key is not
735 * equal to the MAX_KEY. Latter case is only possible in
736 * "finish_unfinished()" processing during mount.
737 */
738 RFALSE(comp_keys(&MAX_KEY, key) &&
739 !key_in_buffer(search_path, key, sb),
740 "PAP-5130: key is not in the buffer");
741#ifdef CONFIG_REISERFS_CHECK
742 if (REISERFS_SB(sb)->cur_tb) {
743 print_cur_tb("5140");
744 reiserfs_panic(sb, "PAP-5140",
745 "schedule occurred in do_balance!");
746 }
747#endif
748
749 /*
750 * make sure, that the node contents look like a node of
751 * certain level
752 */
753 if (!is_tree_node(bh, expected_level)) {
754 reiserfs_error(sb, "vs-5150",
755 "invalid format found in block %ld. "
756 "Fsck?", bh->b_blocknr);
757 pathrelse(search_path);
758 return IO_ERROR;
759 }
760
761 /* ok, we have acquired next formatted node in the tree */
762 node_level = B_LEVEL(bh);
763
764 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
765
766 RFALSE(node_level < stop_level,
767 "vs-5152: tree level (%d) is less than stop level (%d)",
768 node_level, stop_level);
769
770 retval = bin_search(key, item_head(bh, 0),
771 B_NR_ITEMS(bh),
772 (node_level ==
773 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
774 KEY_SIZE,
775 &last_element->pe_position);
776 if (node_level == stop_level) {
777 return retval;
778 }
779
780 /* we are not in the stop level */
781 /*
782 * item has been found, so we choose the pointer which
783 * is to the right of the found one
784 */
785 if (retval == ITEM_FOUND)
786 last_element->pe_position++;
787
788 /*
789 * if item was not found we choose the position which is to
790 * the left of the found item. This requires no code,
791 * bin_search did it already.
792 */
793
794 /*
795 * So we have chosen a position in the current node which is
796 * an internal node. Now we calculate child block number by
797 * position in the node.
798 */
799 block_number =
800 B_N_CHILD_NUM(bh, last_element->pe_position);
801
802 /*
803 * if we are going to read leaf nodes, try for read
804 * ahead as well
805 */
806 if ((search_path->reada & PATH_READA) &&
807 node_level == DISK_LEAF_NODE_LEVEL + 1) {
808 int pos = last_element->pe_position;
809 int limit = B_NR_ITEMS(bh);
810 struct reiserfs_key *le_key;
811
812 if (search_path->reada & PATH_READA_BACK)
813 limit = 0;
814 while (reada_count < SEARCH_BY_KEY_READA) {
815 if (pos == limit)
816 break;
817 reada_blocks[reada_count++] =
818 B_N_CHILD_NUM(bh, pos);
819 if (search_path->reada & PATH_READA_BACK)
820 pos--;
821 else
822 pos++;
823
824 /*
825 * check to make sure we're in the same object
826 */
827 le_key = internal_key(bh, pos);
828 if (le32_to_cpu(le_key->k_objectid) !=
829 key->on_disk_key.k_objectid) {
830 break;
831 }
832 }
833 }
834 }
835}
836
837/*
838 * Form the path to an item and position in this item which contains
839 * file byte defined by key. If there is no such item
840 * corresponding to the key, we point the path to the item with
841 * maximal key less than key, and *pos_in_item is set to one
842 * past the last entry/byte in the item. If searching for entry in a
843 * directory item, and it is not found, *pos_in_item is set to one
844 * entry more than the entry with maximal key which is less than the
845 * sought key.
846 *
847 * Note that if there is no entry in this same node which is one more,
848 * then we point to an imaginary entry. for direct items, the
849 * position is in units of bytes, for indirect items the position is
850 * in units of blocknr entries, for directory items the position is in
851 * units of directory entries.
852 */
853/* The function is NOT SCHEDULE-SAFE! */
854int search_for_position_by_key(struct super_block *sb,
855 /* Key to search (cpu variable) */
856 const struct cpu_key *p_cpu_key,
857 /* Filled up by this function. */
858 struct treepath *search_path)
859{
860 struct item_head *p_le_ih; /* pointer to on-disk structure */
861 int blk_size;
862 loff_t item_offset, offset;
863 struct reiserfs_dir_entry de;
864 int retval;
865
866 /* If searching for directory entry. */
867 if (is_direntry_cpu_key(p_cpu_key))
868 return search_by_entry_key(sb, p_cpu_key, search_path,
869 &de);
870
871 /* If not searching for directory entry. */
872
873 /* If item is found. */
874 retval = search_item(sb, p_cpu_key, search_path);
875 if (retval == IO_ERROR)
876 return retval;
877 if (retval == ITEM_FOUND) {
878
879 RFALSE(!ih_item_len
880 (item_head
881 (PATH_PLAST_BUFFER(search_path),
882 PATH_LAST_POSITION(search_path))),
883 "PAP-5165: item length equals zero");
884
885 pos_in_item(search_path) = 0;
886 return POSITION_FOUND;
887 }
888
889 RFALSE(!PATH_LAST_POSITION(search_path),
890 "PAP-5170: position equals zero");
891
892 /* Item is not found. Set path to the previous item. */
893 p_le_ih =
894 item_head(PATH_PLAST_BUFFER(search_path),
895 --PATH_LAST_POSITION(search_path));
896 blk_size = sb->s_blocksize;
897
898 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
899 return FILE_NOT_FOUND;
900
901 /* FIXME: quite ugly this far */
902
903 item_offset = le_ih_k_offset(p_le_ih);
904 offset = cpu_key_k_offset(p_cpu_key);
905
906 /* Needed byte is contained in the item pointed to by the path. */
907 if (item_offset <= offset &&
908 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
909 pos_in_item(search_path) = offset - item_offset;
910 if (is_indirect_le_ih(p_le_ih)) {
911 pos_in_item(search_path) /= blk_size;
912 }
913 return POSITION_FOUND;
914 }
915
916 /*
917 * Needed byte is not contained in the item pointed to by the
918 * path. Set pos_in_item out of the item.
919 */
920 if (is_indirect_le_ih(p_le_ih))
921 pos_in_item(search_path) =
922 ih_item_len(p_le_ih) / UNFM_P_SIZE;
923 else
924 pos_in_item(search_path) = ih_item_len(p_le_ih);
925
926 return POSITION_NOT_FOUND;
927}
928
929/* Compare given item and item pointed to by the path. */
930int comp_items(const struct item_head *stored_ih, const struct treepath *path)
931{
932 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
933 struct item_head *ih;
934
935 /* Last buffer at the path is not in the tree. */
936 if (!B_IS_IN_TREE(bh))
937 return 1;
938
939 /* Last path position is invalid. */
940 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
941 return 1;
942
943 /* we need only to know, whether it is the same item */
944 ih = tp_item_head(path);
945 return memcmp(stored_ih, ih, IH_SIZE);
946}
947
948/* prepare for delete or cut of direct item */
949static inline int prepare_for_direct_item(struct treepath *path,
950 struct item_head *le_ih,
951 struct inode *inode,
952 loff_t new_file_length, int *cut_size)
953{
954 loff_t round_len;
955
956 if (new_file_length == max_reiserfs_offset(inode)) {
957 /* item has to be deleted */
958 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
959 return M_DELETE;
960 }
961 /* new file gets truncated */
962 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
963 round_len = ROUND_UP(new_file_length);
964 /* this was new_file_length < le_ih ... */
965 if (round_len < le_ih_k_offset(le_ih)) {
966 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
967 return M_DELETE; /* Delete this item. */
968 }
969 /* Calculate first position and size for cutting from item. */
970 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
971 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
972
973 return M_CUT; /* Cut from this item. */
974 }
975
976 /* old file: items may have any length */
977
978 if (new_file_length < le_ih_k_offset(le_ih)) {
979 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
980 return M_DELETE; /* Delete this item. */
981 }
982
983 /* Calculate first position and size for cutting from item. */
984 *cut_size = -(ih_item_len(le_ih) -
985 (pos_in_item(path) =
986 new_file_length + 1 - le_ih_k_offset(le_ih)));
987 return M_CUT; /* Cut from this item. */
988}
989
990static inline int prepare_for_direntry_item(struct treepath *path,
991 struct item_head *le_ih,
992 struct inode *inode,
993 loff_t new_file_length,
994 int *cut_size)
995{
996 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
997 new_file_length == max_reiserfs_offset(inode)) {
998 RFALSE(ih_entry_count(le_ih) != 2,
999 "PAP-5220: incorrect empty directory item (%h)", le_ih);
1000 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1001 /* Delete the directory item containing "." and ".." entry. */
1002 return M_DELETE;
1003 }
1004
1005 if (ih_entry_count(le_ih) == 1) {
1006 /*
1007 * Delete the directory item such as there is one record only
1008 * in this item
1009 */
1010 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1011 return M_DELETE;
1012 }
1013
1014 /* Cut one record from the directory item. */
1015 *cut_size =
1016 -(DEH_SIZE +
1017 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1018 return M_CUT;
1019}
1020
1021#define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1022
1023/*
1024 * If the path points to a directory or direct item, calculate mode
1025 * and the size cut, for balance.
1026 * If the path points to an indirect item, remove some number of its
1027 * unformatted nodes.
1028 * In case of file truncate calculate whether this item must be
1029 * deleted/truncated or last unformatted node of this item will be
1030 * converted to a direct item.
1031 * This function returns a determination of what balance mode the
1032 * calling function should employ.
1033 */
1034static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1035 struct inode *inode,
1036 struct treepath *path,
1037 const struct cpu_key *item_key,
1038 /*
1039 * Number of unformatted nodes
1040 * which were removed from end
1041 * of the file.
1042 */
1043 int *removed,
1044 int *cut_size,
1045 /* MAX_KEY_OFFSET in case of delete. */
1046 unsigned long long new_file_length
1047 )
1048{
1049 struct super_block *sb = inode->i_sb;
1050 struct item_head *p_le_ih = tp_item_head(path);
1051 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1052
1053 BUG_ON(!th->t_trans_id);
1054
1055 /* Stat_data item. */
1056 if (is_statdata_le_ih(p_le_ih)) {
1057
1058 RFALSE(new_file_length != max_reiserfs_offset(inode),
1059 "PAP-5210: mode must be M_DELETE");
1060
1061 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1062 return M_DELETE;
1063 }
1064
1065 /* Directory item. */
1066 if (is_direntry_le_ih(p_le_ih))
1067 return prepare_for_direntry_item(path, p_le_ih, inode,
1068 new_file_length,
1069 cut_size);
1070
1071 /* Direct item. */
1072 if (is_direct_le_ih(p_le_ih))
1073 return prepare_for_direct_item(path, p_le_ih, inode,
1074 new_file_length, cut_size);
1075
1076 /* Case of an indirect item. */
1077 {
1078 int blk_size = sb->s_blocksize;
1079 struct item_head s_ih;
1080 int need_re_search;
1081 int delete = 0;
1082 int result = M_CUT;
1083 int pos = 0;
1084
1085 if ( new_file_length == max_reiserfs_offset (inode) ) {
1086 /*
1087 * prepare_for_delete_or_cut() is called by
1088 * reiserfs_delete_item()
1089 */
1090 new_file_length = 0;
1091 delete = 1;
1092 }
1093
1094 do {
1095 need_re_search = 0;
1096 *cut_size = 0;
1097 bh = PATH_PLAST_BUFFER(path);
1098 copy_item_head(&s_ih, tp_item_head(path));
1099 pos = I_UNFM_NUM(&s_ih);
1100
1101 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1102 __le32 *unfm;
1103 __u32 block;
1104
1105 /*
1106 * Each unformatted block deletion may involve
1107 * one additional bitmap block into the transaction,
1108 * thereby the initial journal space reservation
1109 * might not be enough.
1110 */
1111 if (!delete && (*cut_size) != 0 &&
1112 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1113 break;
1114
1115 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1116 block = get_block_num(unfm, 0);
1117
1118 if (block != 0) {
1119 reiserfs_prepare_for_journal(sb, bh, 1);
1120 put_block_num(unfm, 0, 0);
1121 journal_mark_dirty(th, bh);
1122 reiserfs_free_block(th, inode, block, 1);
1123 }
1124
1125 reiserfs_cond_resched(sb);
1126
1127 if (item_moved (&s_ih, path)) {
1128 need_re_search = 1;
1129 break;
1130 }
1131
1132 pos --;
1133 (*removed)++;
1134 (*cut_size) -= UNFM_P_SIZE;
1135
1136 if (pos == 0) {
1137 (*cut_size) -= IH_SIZE;
1138 result = M_DELETE;
1139 break;
1140 }
1141 }
1142 /*
1143 * a trick. If the buffer has been logged, this will
1144 * do nothing. If we've broken the loop without logging
1145 * it, it will restore the buffer
1146 */
1147 reiserfs_restore_prepared_buffer(sb, bh);
1148 } while (need_re_search &&
1149 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1150 pos_in_item(path) = pos * UNFM_P_SIZE;
1151
1152 if (*cut_size == 0) {
1153 /*
1154 * Nothing was cut. maybe convert last unformatted node to the
1155 * direct item?
1156 */
1157 result = M_CONVERT;
1158 }
1159 return result;
1160 }
1161}
1162
1163/* Calculate number of bytes which will be deleted or cut during balance */
1164static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1165{
1166 int del_size;
1167 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1168
1169 if (is_statdata_le_ih(p_le_ih))
1170 return 0;
1171
1172 del_size =
1173 (mode ==
1174 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1175 if (is_direntry_le_ih(p_le_ih)) {
1176 /*
1177 * return EMPTY_DIR_SIZE; We delete emty directories only.
1178 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1179 * different empty size. ick. FIXME, is this right?
1180 */
1181 return del_size;
1182 }
1183
1184 if (is_indirect_le_ih(p_le_ih))
1185 del_size = (del_size / UNFM_P_SIZE) *
1186 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1187 return del_size;
1188}
1189
1190static void init_tb_struct(struct reiserfs_transaction_handle *th,
1191 struct tree_balance *tb,
1192 struct super_block *sb,
1193 struct treepath *path, int size)
1194{
1195
1196 BUG_ON(!th->t_trans_id);
1197
1198 memset(tb, '\0', sizeof(struct tree_balance));
1199 tb->transaction_handle = th;
1200 tb->tb_sb = sb;
1201 tb->tb_path = path;
1202 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1203 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1204 tb->insert_size[0] = size;
1205}
1206
1207void padd_item(char *item, int total_length, int length)
1208{
1209 int i;
1210
1211 for (i = total_length; i > length;)
1212 item[--i] = 0;
1213}
1214
1215#ifdef REISERQUOTA_DEBUG
1216char key2type(struct reiserfs_key *ih)
1217{
1218 if (is_direntry_le_key(2, ih))
1219 return 'd';
1220 if (is_direct_le_key(2, ih))
1221 return 'D';
1222 if (is_indirect_le_key(2, ih))
1223 return 'i';
1224 if (is_statdata_le_key(2, ih))
1225 return 's';
1226 return 'u';
1227}
1228
1229char head2type(struct item_head *ih)
1230{
1231 if (is_direntry_le_ih(ih))
1232 return 'd';
1233 if (is_direct_le_ih(ih))
1234 return 'D';
1235 if (is_indirect_le_ih(ih))
1236 return 'i';
1237 if (is_statdata_le_ih(ih))
1238 return 's';
1239 return 'u';
1240}
1241#endif
1242
1243/*
1244 * Delete object item.
1245 * th - active transaction handle
1246 * path - path to the deleted item
1247 * item_key - key to search for the deleted item
1248 * indode - used for updating i_blocks and quotas
1249 * un_bh - NULL or unformatted node pointer
1250 */
1251int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1252 struct treepath *path, const struct cpu_key *item_key,
1253 struct inode *inode, struct buffer_head *un_bh)
1254{
1255 struct super_block *sb = inode->i_sb;
1256 struct tree_balance s_del_balance;
1257 struct item_head s_ih;
1258 struct item_head *q_ih;
1259 int quota_cut_bytes;
1260 int ret_value, del_size, removed;
1261 int depth;
1262
1263#ifdef CONFIG_REISERFS_CHECK
1264 char mode;
1265#endif
1266
1267 BUG_ON(!th->t_trans_id);
1268
1269 init_tb_struct(th, &s_del_balance, sb, path,
1270 0 /*size is unknown */ );
1271
1272 while (1) {
1273 removed = 0;
1274
1275#ifdef CONFIG_REISERFS_CHECK
1276 mode =
1277#endif
1278 prepare_for_delete_or_cut(th, inode, path,
1279 item_key, &removed,
1280 &del_size,
1281 max_reiserfs_offset(inode));
1282
1283 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1284
1285 copy_item_head(&s_ih, tp_item_head(path));
1286 s_del_balance.insert_size[0] = del_size;
1287
1288 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1289 if (ret_value != REPEAT_SEARCH)
1290 break;
1291
1292 PROC_INFO_INC(sb, delete_item_restarted);
1293
1294 /* file system changed, repeat search */
1295 ret_value =
1296 search_for_position_by_key(sb, item_key, path);
1297 if (ret_value == IO_ERROR)
1298 break;
1299 if (ret_value == FILE_NOT_FOUND) {
1300 reiserfs_warning(sb, "vs-5340",
1301 "no items of the file %K found",
1302 item_key);
1303 break;
1304 }
1305 } /* while (1) */
1306
1307 if (ret_value != CARRY_ON) {
1308 unfix_nodes(&s_del_balance);
1309 return 0;
1310 }
1311
1312 /* reiserfs_delete_item returns item length when success */
1313 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1314 q_ih = tp_item_head(path);
1315 quota_cut_bytes = ih_item_len(q_ih);
1316
1317 /*
1318 * hack so the quota code doesn't have to guess if the file has a
1319 * tail. On tail insert, we allocate quota for 1 unformatted node.
1320 * We test the offset because the tail might have been
1321 * split into multiple items, and we only want to decrement for
1322 * the unfm node once
1323 */
1324 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1325 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1326 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1327 } else {
1328 quota_cut_bytes = 0;
1329 }
1330 }
1331
1332 if (un_bh) {
1333 int off;
1334 char *data;
1335
1336 /*
1337 * We are in direct2indirect conversion, so move tail contents
1338 * to the unformatted node
1339 */
1340 /*
1341 * note, we do the copy before preparing the buffer because we
1342 * don't care about the contents of the unformatted node yet.
1343 * the only thing we really care about is the direct item's
1344 * data is in the unformatted node.
1345 *
1346 * Otherwise, we would have to call
1347 * reiserfs_prepare_for_journal on the unformatted node,
1348 * which might schedule, meaning we'd have to loop all the
1349 * way back up to the start of the while loop.
1350 *
1351 * The unformatted node must be dirtied later on. We can't be
1352 * sure here if the entire tail has been deleted yet.
1353 *
1354 * un_bh is from the page cache (all unformatted nodes are
1355 * from the page cache) and might be a highmem page. So, we
1356 * can't use un_bh->b_data.
1357 * -clm
1358 */
1359
1360 data = kmap_atomic(un_bh->b_page);
1361 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1362 memcpy(data + off,
1363 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1364 ret_value);
1365 kunmap_atomic(data);
1366 }
1367
1368 /* Perform balancing after all resources have been collected at once. */
1369 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1370
1371#ifdef REISERQUOTA_DEBUG
1372 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1373 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1374 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1375#endif
1376 depth = reiserfs_write_unlock_nested(inode->i_sb);
1377 dquot_free_space_nodirty(inode, quota_cut_bytes);
1378 reiserfs_write_lock_nested(inode->i_sb, depth);
1379
1380 /* Return deleted body length */
1381 return ret_value;
1382}
1383
1384/*
1385 * Summary Of Mechanisms For Handling Collisions Between Processes:
1386 *
1387 * deletion of the body of the object is performed by iput(), with the
1388 * result that if multiple processes are operating on a file, the
1389 * deletion of the body of the file is deferred until the last process
1390 * that has an open inode performs its iput().
1391 *
1392 * writes and truncates are protected from collisions by use of
1393 * semaphores.
1394 *
1395 * creates, linking, and mknod are protected from collisions with other
1396 * processes by making the reiserfs_add_entry() the last step in the
1397 * creation, and then rolling back all changes if there was a collision.
1398 * - Hans
1399*/
1400
1401/* this deletes item which never gets split */
1402void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1403 struct inode *inode, struct reiserfs_key *key)
1404{
1405 struct super_block *sb = th->t_super;
1406 struct tree_balance tb;
1407 INITIALIZE_PATH(path);
1408 int item_len = 0;
1409 int tb_init = 0;
1410 struct cpu_key cpu_key = {};
1411 int retval;
1412 int quota_cut_bytes = 0;
1413
1414 BUG_ON(!th->t_trans_id);
1415
1416 le_key2cpu_key(&cpu_key, key);
1417
1418 while (1) {
1419 retval = search_item(th->t_super, &cpu_key, &path);
1420 if (retval == IO_ERROR) {
1421 reiserfs_error(th->t_super, "vs-5350",
1422 "i/o failure occurred trying "
1423 "to delete %K", &cpu_key);
1424 break;
1425 }
1426 if (retval != ITEM_FOUND) {
1427 pathrelse(&path);
1428 /*
1429 * No need for a warning, if there is just no free
1430 * space to insert '..' item into the
1431 * newly-created subdir
1432 */
1433 if (!
1434 ((unsigned long long)
1435 GET_HASH_VALUE(le_key_k_offset
1436 (le_key_version(key), key)) == 0
1437 && (unsigned long long)
1438 GET_GENERATION_NUMBER(le_key_k_offset
1439 (le_key_version(key),
1440 key)) == 1))
1441 reiserfs_warning(th->t_super, "vs-5355",
1442 "%k not found", key);
1443 break;
1444 }
1445 if (!tb_init) {
1446 tb_init = 1;
1447 item_len = ih_item_len(tp_item_head(&path));
1448 init_tb_struct(th, &tb, th->t_super, &path,
1449 -(IH_SIZE + item_len));
1450 }
1451 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1452
1453 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1454 if (retval == REPEAT_SEARCH) {
1455 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1456 continue;
1457 }
1458
1459 if (retval == CARRY_ON) {
1460 do_balance(&tb, NULL, NULL, M_DELETE);
1461 /*
1462 * Should we count quota for item? (we don't
1463 * count quotas for save-links)
1464 */
1465 if (inode) {
1466 int depth;
1467#ifdef REISERQUOTA_DEBUG
1468 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1469 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1470 quota_cut_bytes, inode->i_uid,
1471 key2type(key));
1472#endif
1473 depth = reiserfs_write_unlock_nested(sb);
1474 dquot_free_space_nodirty(inode,
1475 quota_cut_bytes);
1476 reiserfs_write_lock_nested(sb, depth);
1477 }
1478 break;
1479 }
1480
1481 /* IO_ERROR, NO_DISK_SPACE, etc */
1482 reiserfs_warning(th->t_super, "vs-5360",
1483 "could not delete %K due to fix_nodes failure",
1484 &cpu_key);
1485 unfix_nodes(&tb);
1486 break;
1487 }
1488
1489 reiserfs_check_path(&path);
1490}
1491
1492int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1493 struct inode *inode)
1494{
1495 int err;
1496 inode->i_size = 0;
1497 BUG_ON(!th->t_trans_id);
1498
1499 /* for directory this deletes item containing "." and ".." */
1500 err =
1501 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1502 if (err)
1503 return err;
1504
1505#if defined( USE_INODE_GENERATION_COUNTER )
1506 if (!old_format_only(th->t_super)) {
1507 __le32 *inode_generation;
1508
1509 inode_generation =
1510 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1511 le32_add_cpu(inode_generation, 1);
1512 }
1513/* USE_INODE_GENERATION_COUNTER */
1514#endif
1515 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1516
1517 return err;
1518}
1519
1520static void unmap_buffers(struct page *page, loff_t pos)
1521{
1522 struct buffer_head *bh;
1523 struct buffer_head *head;
1524 struct buffer_head *next;
1525 unsigned long tail_index;
1526 unsigned long cur_index;
1527
1528 if (page) {
1529 if (page_has_buffers(page)) {
1530 tail_index = pos & (PAGE_SIZE - 1);
1531 cur_index = 0;
1532 head = page_buffers(page);
1533 bh = head;
1534 do {
1535 next = bh->b_this_page;
1536
1537 /*
1538 * we want to unmap the buffers that contain
1539 * the tail, and all the buffers after it
1540 * (since the tail must be at the end of the
1541 * file). We don't want to unmap file data
1542 * before the tail, since it might be dirty
1543 * and waiting to reach disk
1544 */
1545 cur_index += bh->b_size;
1546 if (cur_index > tail_index) {
1547 reiserfs_unmap_buffer(bh);
1548 }
1549 bh = next;
1550 } while (bh != head);
1551 }
1552 }
1553}
1554
1555static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1556 struct inode *inode,
1557 struct page *page,
1558 struct treepath *path,
1559 const struct cpu_key *item_key,
1560 loff_t new_file_size, char *mode)
1561{
1562 struct super_block *sb = inode->i_sb;
1563 int block_size = sb->s_blocksize;
1564 int cut_bytes;
1565 BUG_ON(!th->t_trans_id);
1566 BUG_ON(new_file_size != inode->i_size);
1567
1568 /*
1569 * the page being sent in could be NULL if there was an i/o error
1570 * reading in the last block. The user will hit problems trying to
1571 * read the file, but for now we just skip the indirect2direct
1572 */
1573 if (atomic_read(&inode->i_count) > 1 ||
1574 !tail_has_to_be_packed(inode) ||
1575 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1576 /* leave tail in an unformatted node */
1577 *mode = M_SKIP_BALANCING;
1578 cut_bytes =
1579 block_size - (new_file_size & (block_size - 1));
1580 pathrelse(path);
1581 return cut_bytes;
1582 }
1583
1584 /* Perform the conversion to a direct_item. */
1585 return indirect2direct(th, inode, page, path, item_key,
1586 new_file_size, mode);
1587}
1588
1589/*
1590 * we did indirect_to_direct conversion. And we have inserted direct
1591 * item successesfully, but there were no disk space to cut unfm
1592 * pointer being converted. Therefore we have to delete inserted
1593 * direct item(s)
1594 */
1595static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1596 struct inode *inode, struct treepath *path)
1597{
1598 struct cpu_key tail_key;
1599 int tail_len;
1600 int removed;
1601 BUG_ON(!th->t_trans_id);
1602
1603 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1604 tail_key.key_length = 4;
1605
1606 tail_len =
1607 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1608 while (tail_len) {
1609 /* look for the last byte of the tail */
1610 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1611 POSITION_NOT_FOUND)
1612 reiserfs_panic(inode->i_sb, "vs-5615",
1613 "found invalid item");
1614 RFALSE(path->pos_in_item !=
1615 ih_item_len(tp_item_head(path)) - 1,
1616 "vs-5616: appended bytes found");
1617 PATH_LAST_POSITION(path)--;
1618
1619 removed =
1620 reiserfs_delete_item(th, path, &tail_key, inode,
1621 NULL /*unbh not needed */ );
1622 RFALSE(removed <= 0
1623 || removed > tail_len,
1624 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1625 tail_len, removed);
1626 tail_len -= removed;
1627 set_cpu_key_k_offset(&tail_key,
1628 cpu_key_k_offset(&tail_key) - removed);
1629 }
1630 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1631 "conversion has been rolled back due to "
1632 "lack of disk space");
1633 mark_inode_dirty(inode);
1634}
1635
1636/* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1637int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1638 struct treepath *path,
1639 struct cpu_key *item_key,
1640 struct inode *inode,
1641 struct page *page, loff_t new_file_size)
1642{
1643 struct super_block *sb = inode->i_sb;
1644 /*
1645 * Every function which is going to call do_balance must first
1646 * create a tree_balance structure. Then it must fill up this
1647 * structure by using the init_tb_struct and fix_nodes functions.
1648 * After that we can make tree balancing.
1649 */
1650 struct tree_balance s_cut_balance;
1651 struct item_head *p_le_ih;
1652 int cut_size = 0; /* Amount to be cut. */
1653 int ret_value = CARRY_ON;
1654 int removed = 0; /* Number of the removed unformatted nodes. */
1655 int is_inode_locked = 0;
1656 char mode; /* Mode of the balance. */
1657 int retval2 = -1;
1658 int quota_cut_bytes;
1659 loff_t tail_pos = 0;
1660 int depth;
1661
1662 BUG_ON(!th->t_trans_id);
1663
1664 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1665 cut_size);
1666
1667 /*
1668 * Repeat this loop until we either cut the item without needing
1669 * to balance, or we fix_nodes without schedule occurring
1670 */
1671 while (1) {
1672 /*
1673 * Determine the balance mode, position of the first byte to
1674 * be cut, and size to be cut. In case of the indirect item
1675 * free unformatted nodes which are pointed to by the cut
1676 * pointers.
1677 */
1678
1679 mode =
1680 prepare_for_delete_or_cut(th, inode, path,
1681 item_key, &removed,
1682 &cut_size, new_file_size);
1683 if (mode == M_CONVERT) {
1684 /*
1685 * convert last unformatted node to direct item or
1686 * leave tail in the unformatted node
1687 */
1688 RFALSE(ret_value != CARRY_ON,
1689 "PAP-5570: can not convert twice");
1690
1691 ret_value =
1692 maybe_indirect_to_direct(th, inode, page,
1693 path, item_key,
1694 new_file_size, &mode);
1695 if (mode == M_SKIP_BALANCING)
1696 /* tail has been left in the unformatted node */
1697 return ret_value;
1698
1699 is_inode_locked = 1;
1700
1701 /*
1702 * removing of last unformatted node will
1703 * change value we have to return to truncate.
1704 * Save it
1705 */
1706 retval2 = ret_value;
1707
1708 /*
1709 * So, we have performed the first part of the
1710 * conversion:
1711 * inserting the new direct item. Now we are
1712 * removing the last unformatted node pointer.
1713 * Set key to search for it.
1714 */
1715 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1716 item_key->key_length = 4;
1717 new_file_size -=
1718 (new_file_size & (sb->s_blocksize - 1));
1719 tail_pos = new_file_size;
1720 set_cpu_key_k_offset(item_key, new_file_size + 1);
1721 if (search_for_position_by_key
1722 (sb, item_key,
1723 path) == POSITION_NOT_FOUND) {
1724 print_block(PATH_PLAST_BUFFER(path), 3,
1725 PATH_LAST_POSITION(path) - 1,
1726 PATH_LAST_POSITION(path) + 1);
1727 reiserfs_panic(sb, "PAP-5580", "item to "
1728 "convert does not exist (%K)",
1729 item_key);
1730 }
1731 continue;
1732 }
1733 if (cut_size == 0) {
1734 pathrelse(path);
1735 return 0;
1736 }
1737
1738 s_cut_balance.insert_size[0] = cut_size;
1739
1740 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1741 if (ret_value != REPEAT_SEARCH)
1742 break;
1743
1744 PROC_INFO_INC(sb, cut_from_item_restarted);
1745
1746 ret_value =
1747 search_for_position_by_key(sb, item_key, path);
1748 if (ret_value == POSITION_FOUND)
1749 continue;
1750
1751 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1752 item_key);
1753 unfix_nodes(&s_cut_balance);
1754 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1755 } /* while */
1756
1757 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1758 if (ret_value != CARRY_ON) {
1759 if (is_inode_locked) {
1760 /*
1761 * FIXME: this seems to be not needed: we are always
1762 * able to cut item
1763 */
1764 indirect_to_direct_roll_back(th, inode, path);
1765 }
1766 if (ret_value == NO_DISK_SPACE)
1767 reiserfs_warning(sb, "reiserfs-5092",
1768 "NO_DISK_SPACE");
1769 unfix_nodes(&s_cut_balance);
1770 return -EIO;
1771 }
1772
1773 /* go ahead and perform balancing */
1774
1775 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1776
1777 /* Calculate number of bytes that need to be cut from the item. */
1778 quota_cut_bytes =
1779 (mode ==
1780 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1781 insert_size[0];
1782 if (retval2 == -1)
1783 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1784 else
1785 ret_value = retval2;
1786
1787 /*
1788 * For direct items, we only change the quota when deleting the last
1789 * item.
1790 */
1791 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1792 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1793 if (mode == M_DELETE &&
1794 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1795 1) {
1796 /* FIXME: this is to keep 3.5 happy */
1797 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1798 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1799 } else {
1800 quota_cut_bytes = 0;
1801 }
1802 }
1803#ifdef CONFIG_REISERFS_CHECK
1804 if (is_inode_locked) {
1805 struct item_head *le_ih =
1806 tp_item_head(s_cut_balance.tb_path);
1807 /*
1808 * we are going to complete indirect2direct conversion. Make
1809 * sure, that we exactly remove last unformatted node pointer
1810 * of the item
1811 */
1812 if (!is_indirect_le_ih(le_ih))
1813 reiserfs_panic(sb, "vs-5652",
1814 "item must be indirect %h", le_ih);
1815
1816 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1817 reiserfs_panic(sb, "vs-5653", "completing "
1818 "indirect2direct conversion indirect "
1819 "item %h being deleted must be of "
1820 "4 byte long", le_ih);
1821
1822 if (mode == M_CUT
1823 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1824 reiserfs_panic(sb, "vs-5654", "can not complete "
1825 "indirect2direct conversion of %h "
1826 "(CUT, insert_size==%d)",
1827 le_ih, s_cut_balance.insert_size[0]);
1828 }
1829 /*
1830 * it would be useful to make sure, that right neighboring
1831 * item is direct item of this file
1832 */
1833 }
1834#endif
1835
1836 do_balance(&s_cut_balance, NULL, NULL, mode);
1837 if (is_inode_locked) {
1838 /*
1839 * we've done an indirect->direct conversion. when the
1840 * data block was freed, it was removed from the list of
1841 * blocks that must be flushed before the transaction
1842 * commits, make sure to unmap and invalidate it
1843 */
1844 unmap_buffers(page, tail_pos);
1845 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1846 }
1847#ifdef REISERQUOTA_DEBUG
1848 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1849 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1850 quota_cut_bytes, inode->i_uid, '?');
1851#endif
1852 depth = reiserfs_write_unlock_nested(sb);
1853 dquot_free_space_nodirty(inode, quota_cut_bytes);
1854 reiserfs_write_lock_nested(sb, depth);
1855 return ret_value;
1856}
1857
1858static void truncate_directory(struct reiserfs_transaction_handle *th,
1859 struct inode *inode)
1860{
1861 BUG_ON(!th->t_trans_id);
1862 if (inode->i_nlink)
1863 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1864
1865 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1866 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1867 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1868 reiserfs_update_sd(th, inode);
1869 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1870 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1871}
1872
1873/*
1874 * Truncate file to the new size. Note, this must be called with a
1875 * transaction already started
1876 */
1877int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1878 struct inode *inode, /* ->i_size contains new size */
1879 struct page *page, /* up to date for last block */
1880 /*
1881 * when it is called by file_release to convert
1882 * the tail - no timestamps should be updated
1883 */
1884 int update_timestamps
1885 )
1886{
1887 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1888 struct item_head *p_le_ih; /* Pointer to an item header. */
1889
1890 /* Key to search for a previous file item. */
1891 struct cpu_key s_item_key;
1892 loff_t file_size, /* Old file size. */
1893 new_file_size; /* New file size. */
1894 int deleted; /* Number of deleted or truncated bytes. */
1895 int retval;
1896 int err = 0;
1897
1898 BUG_ON(!th->t_trans_id);
1899 if (!
1900 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1901 || S_ISLNK(inode->i_mode)))
1902 return 0;
1903
1904 /* deletion of directory - no need to update timestamps */
1905 if (S_ISDIR(inode->i_mode)) {
1906 truncate_directory(th, inode);
1907 return 0;
1908 }
1909
1910 /* Get new file size. */
1911 new_file_size = inode->i_size;
1912
1913 /* FIXME: note, that key type is unimportant here */
1914 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1915 TYPE_DIRECT, 3);
1916
1917 retval =
1918 search_for_position_by_key(inode->i_sb, &s_item_key,
1919 &s_search_path);
1920 if (retval == IO_ERROR) {
1921 reiserfs_error(inode->i_sb, "vs-5657",
1922 "i/o failure occurred trying to truncate %K",
1923 &s_item_key);
1924 err = -EIO;
1925 goto out;
1926 }
1927 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1928 reiserfs_error(inode->i_sb, "PAP-5660",
1929 "wrong result %d of search for %K", retval,
1930 &s_item_key);
1931
1932 err = -EIO;
1933 goto out;
1934 }
1935
1936 s_search_path.pos_in_item--;
1937
1938 /* Get real file size (total length of all file items) */
1939 p_le_ih = tp_item_head(&s_search_path);
1940 if (is_statdata_le_ih(p_le_ih))
1941 file_size = 0;
1942 else {
1943 loff_t offset = le_ih_k_offset(p_le_ih);
1944 int bytes =
1945 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1946
1947 /*
1948 * this may mismatch with real file size: if last direct item
1949 * had no padding zeros and last unformatted node had no free
1950 * space, this file would have this file size
1951 */
1952 file_size = offset + bytes - 1;
1953 }
1954 /*
1955 * are we doing a full truncate or delete, if so
1956 * kick in the reada code
1957 */
1958 if (new_file_size == 0)
1959 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1960
1961 if (file_size == 0 || file_size < new_file_size) {
1962 goto update_and_out;
1963 }
1964
1965 /* Update key to search for the last file item. */
1966 set_cpu_key_k_offset(&s_item_key, file_size);
1967
1968 do {
1969 /* Cut or delete file item. */
1970 deleted =
1971 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1972 inode, page, new_file_size);
1973 if (deleted < 0) {
1974 reiserfs_warning(inode->i_sb, "vs-5665",
1975 "reiserfs_cut_from_item failed");
1976 reiserfs_check_path(&s_search_path);
1977 return 0;
1978 }
1979
1980 RFALSE(deleted > file_size,
1981 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1982 deleted, file_size, &s_item_key);
1983
1984 /* Change key to search the last file item. */
1985 file_size -= deleted;
1986
1987 set_cpu_key_k_offset(&s_item_key, file_size);
1988
1989 /*
1990 * While there are bytes to truncate and previous
1991 * file item is presented in the tree.
1992 */
1993
1994 /*
1995 * This loop could take a really long time, and could log
1996 * many more blocks than a transaction can hold. So, we do
1997 * a polite journal end here, and if the transaction needs
1998 * ending, we make sure the file is consistent before ending
1999 * the current trans and starting a new one
2000 */
2001 if (journal_transaction_should_end(th, 0) ||
2002 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
2003 pathrelse(&s_search_path);
2004
2005 if (update_timestamps) {
2006 inode_set_mtime_to_ts(inode,
2007 current_time(inode));
2008 inode_set_ctime_current(inode);
2009 }
2010 reiserfs_update_sd(th, inode);
2011
2012 err = journal_end(th);
2013 if (err)
2014 goto out;
2015 err = journal_begin(th, inode->i_sb,
2016 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2017 if (err)
2018 goto out;
2019 reiserfs_update_inode_transaction(inode);
2020 }
2021 } while (file_size > ROUND_UP(new_file_size) &&
2022 search_for_position_by_key(inode->i_sb, &s_item_key,
2023 &s_search_path) == POSITION_FOUND);
2024
2025 RFALSE(file_size > ROUND_UP(new_file_size),
2026 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2027 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2028
2029update_and_out:
2030 if (update_timestamps) {
2031 /* this is truncate, not file closing */
2032 inode_set_mtime_to_ts(inode, current_time(inode));
2033 inode_set_ctime_current(inode);
2034 }
2035 reiserfs_update_sd(th, inode);
2036
2037out:
2038 pathrelse(&s_search_path);
2039 return err;
2040}
2041
2042#ifdef CONFIG_REISERFS_CHECK
2043/* this makes sure, that we __append__, not overwrite or add holes */
2044static void check_research_for_paste(struct treepath *path,
2045 const struct cpu_key *key)
2046{
2047 struct item_head *found_ih = tp_item_head(path);
2048
2049 if (is_direct_le_ih(found_ih)) {
2050 if (le_ih_k_offset(found_ih) +
2051 op_bytes_number(found_ih,
2052 get_last_bh(path)->b_size) !=
2053 cpu_key_k_offset(key)
2054 || op_bytes_number(found_ih,
2055 get_last_bh(path)->b_size) !=
2056 pos_in_item(path))
2057 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2058 "%h or position (%d) does not match "
2059 "to key %K", found_ih,
2060 pos_in_item(path), key);
2061 }
2062 if (is_indirect_le_ih(found_ih)) {
2063 if (le_ih_k_offset(found_ih) +
2064 op_bytes_number(found_ih,
2065 get_last_bh(path)->b_size) !=
2066 cpu_key_k_offset(key)
2067 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2068 || get_ih_free_space(found_ih) != 0)
2069 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2070 "item (%h) or position (%d) does not "
2071 "match to key (%K)",
2072 found_ih, pos_in_item(path), key);
2073 }
2074}
2075#endif /* config reiserfs check */
2076
2077/*
2078 * Paste bytes to the existing item.
2079 * Returns bytes number pasted into the item.
2080 */
2081int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2082 /* Path to the pasted item. */
2083 struct treepath *search_path,
2084 /* Key to search for the needed item. */
2085 const struct cpu_key *key,
2086 /* Inode item belongs to */
2087 struct inode *inode,
2088 /* Pointer to the bytes to paste. */
2089 const char *body,
2090 /* Size of pasted bytes. */
2091 int pasted_size)
2092{
2093 struct super_block *sb = inode->i_sb;
2094 struct tree_balance s_paste_balance;
2095 int retval;
2096 int fs_gen;
2097 int depth;
2098
2099 BUG_ON(!th->t_trans_id);
2100
2101 fs_gen = get_generation(inode->i_sb);
2102
2103#ifdef REISERQUOTA_DEBUG
2104 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2105 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2106 pasted_size, inode->i_uid,
2107 key2type(&key->on_disk_key));
2108#endif
2109
2110 depth = reiserfs_write_unlock_nested(sb);
2111 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2112 reiserfs_write_lock_nested(sb, depth);
2113 if (retval) {
2114 pathrelse(search_path);
2115 return retval;
2116 }
2117 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2118 pasted_size);
2119#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2120 s_paste_balance.key = key->on_disk_key;
2121#endif
2122
2123 /* DQUOT_* can schedule, must check before the fix_nodes */
2124 if (fs_changed(fs_gen, inode->i_sb)) {
2125 goto search_again;
2126 }
2127
2128 while ((retval =
2129 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2130 body)) == REPEAT_SEARCH) {
2131search_again:
2132 /* file system changed while we were in the fix_nodes */
2133 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2134 retval =
2135 search_for_position_by_key(th->t_super, key,
2136 search_path);
2137 if (retval == IO_ERROR) {
2138 retval = -EIO;
2139 goto error_out;
2140 }
2141 if (retval == POSITION_FOUND) {
2142 reiserfs_warning(inode->i_sb, "PAP-5710",
2143 "entry or pasted byte (%K) exists",
2144 key);
2145 retval = -EEXIST;
2146 goto error_out;
2147 }
2148#ifdef CONFIG_REISERFS_CHECK
2149 check_research_for_paste(search_path, key);
2150#endif
2151 }
2152
2153 /*
2154 * Perform balancing after all resources are collected by fix_nodes,
2155 * and accessing them will not risk triggering schedule.
2156 */
2157 if (retval == CARRY_ON) {
2158 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2159 return 0;
2160 }
2161 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2162error_out:
2163 /* this also releases the path */
2164 unfix_nodes(&s_paste_balance);
2165#ifdef REISERQUOTA_DEBUG
2166 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2167 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2168 pasted_size, inode->i_uid,
2169 key2type(&key->on_disk_key));
2170#endif
2171 depth = reiserfs_write_unlock_nested(sb);
2172 dquot_free_space_nodirty(inode, pasted_size);
2173 reiserfs_write_lock_nested(sb, depth);
2174 return retval;
2175}
2176
2177/*
2178 * Insert new item into the buffer at the path.
2179 * th - active transaction handle
2180 * path - path to the inserted item
2181 * ih - pointer to the item header to insert
2182 * body - pointer to the bytes to insert
2183 */
2184int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2185 struct treepath *path, const struct cpu_key *key,
2186 struct item_head *ih, struct inode *inode,
2187 const char *body)
2188{
2189 struct tree_balance s_ins_balance;
2190 int retval;
2191 int fs_gen = 0;
2192 int quota_bytes = 0;
2193
2194 BUG_ON(!th->t_trans_id);
2195
2196 if (inode) { /* Do we count quotas for item? */
2197 int depth;
2198 fs_gen = get_generation(inode->i_sb);
2199 quota_bytes = ih_item_len(ih);
2200
2201 /*
2202 * hack so the quota code doesn't have to guess
2203 * if the file has a tail, links are always tails,
2204 * so there's no guessing needed
2205 */
2206 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2207 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2208#ifdef REISERQUOTA_DEBUG
2209 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2210 "reiserquota insert_item(): allocating %u id=%u type=%c",
2211 quota_bytes, inode->i_uid, head2type(ih));
2212#endif
2213 /*
2214 * We can't dirty inode here. It would be immediately
2215 * written but appropriate stat item isn't inserted yet...
2216 */
2217 depth = reiserfs_write_unlock_nested(inode->i_sb);
2218 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2219 reiserfs_write_lock_nested(inode->i_sb, depth);
2220 if (retval) {
2221 pathrelse(path);
2222 return retval;
2223 }
2224 }
2225 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2226 IH_SIZE + ih_item_len(ih));
2227#ifdef DISPLACE_NEW_PACKING_LOCALITIES
2228 s_ins_balance.key = key->on_disk_key;
2229#endif
2230 /*
2231 * DQUOT_* can schedule, must check to be sure calling
2232 * fix_nodes is safe
2233 */
2234 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2235 goto search_again;
2236 }
2237
2238 while ((retval =
2239 fix_nodes(M_INSERT, &s_ins_balance, ih,
2240 body)) == REPEAT_SEARCH) {
2241search_again:
2242 /* file system changed while we were in the fix_nodes */
2243 PROC_INFO_INC(th->t_super, insert_item_restarted);
2244 retval = search_item(th->t_super, key, path);
2245 if (retval == IO_ERROR) {
2246 retval = -EIO;
2247 goto error_out;
2248 }
2249 if (retval == ITEM_FOUND) {
2250 reiserfs_warning(th->t_super, "PAP-5760",
2251 "key %K already exists in the tree",
2252 key);
2253 retval = -EEXIST;
2254 goto error_out;
2255 }
2256 }
2257
2258 /* make balancing after all resources will be collected at a time */
2259 if (retval == CARRY_ON) {
2260 do_balance(&s_ins_balance, ih, body, M_INSERT);
2261 return 0;
2262 }
2263
2264 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2265error_out:
2266 /* also releases the path */
2267 unfix_nodes(&s_ins_balance);
2268#ifdef REISERQUOTA_DEBUG
2269 if (inode)
2270 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2271 "reiserquota insert_item(): freeing %u id=%u type=%c",
2272 quota_bytes, inode->i_uid, head2type(ih));
2273#endif
2274 if (inode) {
2275 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2276 dquot_free_space_nodirty(inode, quota_bytes);
2277 reiserfs_write_lock_nested(inode->i_sb, depth);
2278 }
2279 return retval;
2280}