Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * fs/mpage.c
  3 *
  4 * Copyright (C) 2002, Linus Torvalds.
  5 *
  6 * Contains functions related to preparing and submitting BIOs which contain
  7 * multiple pagecache pages.
  8 *
  9 * 15May2002	Andrew Morton
 10 *		Initial version
 11 * 27Jun2002	axboe@suse.de
 12 *		use bio_add_page() to build bio's just the right size
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/mm.h>
 18#include <linux/kdev_t.h>
 19#include <linux/gfp.h>
 20#include <linux/bio.h>
 21#include <linux/fs.h>
 22#include <linux/buffer_head.h>
 23#include <linux/blkdev.h>
 24#include <linux/highmem.h>
 25#include <linux/prefetch.h>
 26#include <linux/mpage.h>
 
 27#include <linux/writeback.h>
 28#include <linux/backing-dev.h>
 29#include <linux/pagevec.h>
 30#include <linux/cleancache.h>
 
 31
 32/*
 33 * I/O completion handler for multipage BIOs.
 34 *
 35 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 36 * If a page does not map to a contiguous run of blocks then it simply falls
 37 * back to block_read_full_page().
 38 *
 39 * Why is this?  If a page's completion depends on a number of different BIOs
 40 * which can complete in any order (or at the same time) then determining the
 41 * status of that page is hard.  See end_buffer_async_read() for the details.
 42 * There is no point in duplicating all that complexity.
 43 */
 44static void mpage_end_io(struct bio *bio, int err)
 45{
 46	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 47	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 48
 49	do {
 50		struct page *page = bvec->bv_page;
 
 
 
 51
 52		if (--bvec >= bio->bi_io_vec)
 53			prefetchw(&bvec->bv_page->flags);
 54		if (bio_data_dir(bio) == READ) {
 55			if (uptodate) {
 56				SetPageUptodate(page);
 57			} else {
 58				ClearPageUptodate(page);
 59				SetPageError(page);
 60			}
 61			unlock_page(page);
 62		} else { /* bio_data_dir(bio) == WRITE */
 63			if (!uptodate) {
 64				SetPageError(page);
 65				if (page->mapping)
 66					set_bit(AS_EIO, &page->mapping->flags);
 67			}
 68			end_page_writeback(page);
 69		}
 70	} while (bvec >= bio->bi_io_vec);
 71	bio_put(bio);
 72}
 73
 74static struct bio *mpage_bio_submit(int rw, struct bio *bio)
 75{
 76	bio->bi_end_io = mpage_end_io;
 77	submit_bio(rw, bio);
 
 
 78	return NULL;
 79}
 80
 81static struct bio *
 82mpage_alloc(struct block_device *bdev,
 83		sector_t first_sector, int nr_vecs,
 84		gfp_t gfp_flags)
 85{
 86	struct bio *bio;
 87
 
 
 88	bio = bio_alloc(gfp_flags, nr_vecs);
 89
 90	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 91		while (!bio && (nr_vecs /= 2))
 92			bio = bio_alloc(gfp_flags, nr_vecs);
 93	}
 94
 95	if (bio) {
 96		bio->bi_bdev = bdev;
 97		bio->bi_sector = first_sector;
 98	}
 99	return bio;
100}
101
102/*
103 * support function for mpage_readpages.  The fs supplied get_block might
104 * return an up to date buffer.  This is used to map that buffer into
105 * the page, which allows readpage to avoid triggering a duplicate call
106 * to get_block.
107 *
108 * The idea is to avoid adding buffers to pages that don't already have
109 * them.  So when the buffer is up to date and the page size == block size,
110 * this marks the page up to date instead of adding new buffers.
111 */
112static void 
113map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
114{
115	struct inode *inode = page->mapping->host;
116	struct buffer_head *page_bh, *head;
117	int block = 0;
118
119	if (!page_has_buffers(page)) {
120		/*
121		 * don't make any buffers if there is only one buffer on
122		 * the page and the page just needs to be set up to date
123		 */
124		if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
125		    buffer_uptodate(bh)) {
126			SetPageUptodate(page);    
127			return;
128		}
129		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
130	}
131	head = page_buffers(page);
132	page_bh = head;
133	do {
134		if (block == page_block) {
135			page_bh->b_state = bh->b_state;
136			page_bh->b_bdev = bh->b_bdev;
137			page_bh->b_blocknr = bh->b_blocknr;
138			break;
139		}
140		page_bh = page_bh->b_this_page;
141		block++;
142	} while (page_bh != head);
143}
144
 
 
 
 
 
 
 
 
 
 
 
145/*
146 * This is the worker routine which does all the work of mapping the disk
147 * blocks and constructs largest possible bios, submits them for IO if the
148 * blocks are not contiguous on the disk.
149 *
150 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
151 * represent the validity of its disk mapping and to decide when to do the next
152 * get_block() call.
153 */
154static struct bio *
155do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
156		sector_t *last_block_in_bio, struct buffer_head *map_bh,
157		unsigned long *first_logical_block, get_block_t get_block)
158{
 
159	struct inode *inode = page->mapping->host;
160	const unsigned blkbits = inode->i_blkbits;
161	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
162	const unsigned blocksize = 1 << blkbits;
 
163	sector_t block_in_file;
164	sector_t last_block;
165	sector_t last_block_in_file;
166	sector_t blocks[MAX_BUF_PER_PAGE];
167	unsigned page_block;
168	unsigned first_hole = blocks_per_page;
169	struct block_device *bdev = NULL;
170	int length;
171	int fully_mapped = 1;
 
172	unsigned nblocks;
173	unsigned relative_block;
 
 
 
 
 
 
 
 
 
174
175	if (page_has_buffers(page))
176		goto confused;
177
178	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
179	last_block = block_in_file + nr_pages * blocks_per_page;
180	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
181	if (last_block > last_block_in_file)
182		last_block = last_block_in_file;
183	page_block = 0;
184
185	/*
186	 * Map blocks using the result from the previous get_blocks call first.
187	 */
188	nblocks = map_bh->b_size >> blkbits;
189	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
190			block_in_file < (*first_logical_block + nblocks)) {
191		unsigned map_offset = block_in_file - *first_logical_block;
 
192		unsigned last = nblocks - map_offset;
193
194		for (relative_block = 0; ; relative_block++) {
195			if (relative_block == last) {
196				clear_buffer_mapped(map_bh);
197				break;
198			}
199			if (page_block == blocks_per_page)
200				break;
201			blocks[page_block] = map_bh->b_blocknr + map_offset +
202						relative_block;
203			page_block++;
204			block_in_file++;
205		}
206		bdev = map_bh->b_bdev;
207	}
208
209	/*
210	 * Then do more get_blocks calls until we are done with this page.
211	 */
212	map_bh->b_page = page;
213	while (page_block < blocks_per_page) {
214		map_bh->b_state = 0;
215		map_bh->b_size = 0;
216
217		if (block_in_file < last_block) {
218			map_bh->b_size = (last_block-block_in_file) << blkbits;
219			if (get_block(inode, block_in_file, map_bh, 0))
220				goto confused;
221			*first_logical_block = block_in_file;
222		}
223
224		if (!buffer_mapped(map_bh)) {
225			fully_mapped = 0;
226			if (first_hole == blocks_per_page)
227				first_hole = page_block;
228			page_block++;
229			block_in_file++;
230			continue;
231		}
232
233		/* some filesystems will copy data into the page during
234		 * the get_block call, in which case we don't want to
235		 * read it again.  map_buffer_to_page copies the data
236		 * we just collected from get_block into the page's buffers
237		 * so readpage doesn't have to repeat the get_block call
238		 */
239		if (buffer_uptodate(map_bh)) {
240			map_buffer_to_page(page, map_bh, page_block);
241			goto confused;
242		}
243	
244		if (first_hole != blocks_per_page)
245			goto confused;		/* hole -> non-hole */
246
247		/* Contiguous blocks? */
248		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
249			goto confused;
250		nblocks = map_bh->b_size >> blkbits;
251		for (relative_block = 0; ; relative_block++) {
252			if (relative_block == nblocks) {
253				clear_buffer_mapped(map_bh);
254				break;
255			} else if (page_block == blocks_per_page)
256				break;
257			blocks[page_block] = map_bh->b_blocknr+relative_block;
258			page_block++;
259			block_in_file++;
260		}
261		bdev = map_bh->b_bdev;
262	}
263
264	if (first_hole != blocks_per_page) {
265		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
266		if (first_hole == 0) {
267			SetPageUptodate(page);
268			unlock_page(page);
269			goto out;
270		}
271	} else if (fully_mapped) {
272		SetPageMappedToDisk(page);
273	}
274
275	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
276	    cleancache_get_page(page) == 0) {
277		SetPageUptodate(page);
278		goto confused;
279	}
280
281	/*
282	 * This page will go to BIO.  Do we need to send this BIO off first?
283	 */
284	if (bio && (*last_block_in_bio != blocks[0] - 1))
285		bio = mpage_bio_submit(READ, bio);
286
287alloc_new:
288	if (bio == NULL) {
289		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
290			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
291				GFP_KERNEL);
292		if (bio == NULL)
 
 
 
 
 
 
293			goto confused;
294	}
295
296	length = first_hole << blkbits;
297	if (bio_add_page(bio, page, length, 0) < length) {
298		bio = mpage_bio_submit(READ, bio);
299		goto alloc_new;
300	}
301
302	relative_block = block_in_file - *first_logical_block;
303	nblocks = map_bh->b_size >> blkbits;
304	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
305	    (first_hole != blocks_per_page))
306		bio = mpage_bio_submit(READ, bio);
307	else
308		*last_block_in_bio = blocks[blocks_per_page - 1];
309out:
310	return bio;
311
312confused:
313	if (bio)
314		bio = mpage_bio_submit(READ, bio);
315	if (!PageUptodate(page))
316	        block_read_full_page(page, get_block);
317	else
318		unlock_page(page);
319	goto out;
320}
321
322/**
323 * mpage_readpages - populate an address space with some pages & start reads against them
324 * @mapping: the address_space
325 * @pages: The address of a list_head which contains the target pages.  These
326 *   pages have their ->index populated and are otherwise uninitialised.
327 *   The page at @pages->prev has the lowest file offset, and reads should be
328 *   issued in @pages->prev to @pages->next order.
329 * @nr_pages: The number of pages at *@pages
330 * @get_block: The filesystem's block mapper function.
331 *
332 * This function walks the pages and the blocks within each page, building and
333 * emitting large BIOs.
334 *
335 * If anything unusual happens, such as:
336 *
337 * - encountering a page which has buffers
338 * - encountering a page which has a non-hole after a hole
339 * - encountering a page with non-contiguous blocks
340 *
341 * then this code just gives up and calls the buffer_head-based read function.
342 * It does handle a page which has holes at the end - that is a common case:
343 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
344 *
345 * BH_Boundary explanation:
346 *
347 * There is a problem.  The mpage read code assembles several pages, gets all
348 * their disk mappings, and then submits them all.  That's fine, but obtaining
349 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
350 *
351 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
352 * submitted in the following order:
 
353 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
354 *
355 * because the indirect block has to be read to get the mappings of blocks
356 * 13,14,15,16.  Obviously, this impacts performance.
357 *
358 * So what we do it to allow the filesystem's get_block() function to set
359 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
360 * after this one will require I/O against a block which is probably close to
361 * this one.  So you should push what I/O you have currently accumulated.
362 *
363 * This all causes the disk requests to be issued in the correct order.
364 */
365int
366mpage_readpages(struct address_space *mapping, struct list_head *pages,
367				unsigned nr_pages, get_block_t get_block)
368{
369	struct bio *bio = NULL;
 
 
 
370	unsigned page_idx;
371	sector_t last_block_in_bio = 0;
372	struct buffer_head map_bh;
373	unsigned long first_logical_block = 0;
374	struct blk_plug plug;
375
376	blk_start_plug(&plug);
377
378	map_bh.b_state = 0;
379	map_bh.b_size = 0;
380	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
381		struct page *page = list_entry(pages->prev, struct page, lru);
382
383		prefetchw(&page->flags);
384		list_del(&page->lru);
385		if (!add_to_page_cache_lru(page, mapping,
386					page->index, GFP_KERNEL)) {
387			bio = do_mpage_readpage(bio, page,
388					nr_pages - page_idx,
389					&last_block_in_bio, &map_bh,
390					&first_logical_block,
391					get_block);
392		}
393		page_cache_release(page);
394	}
395	BUG_ON(!list_empty(pages));
396	if (bio)
397		mpage_bio_submit(READ, bio);
398	blk_finish_plug(&plug);
399	return 0;
400}
401EXPORT_SYMBOL(mpage_readpages);
402
403/*
404 * This isn't called much at all
405 */
406int mpage_readpage(struct page *page, get_block_t get_block)
407{
408	struct bio *bio = NULL;
409	sector_t last_block_in_bio = 0;
410	struct buffer_head map_bh;
411	unsigned long first_logical_block = 0;
 
412
413	map_bh.b_state = 0;
414	map_bh.b_size = 0;
415	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
416			&map_bh, &first_logical_block, get_block);
417	if (bio)
418		mpage_bio_submit(READ, bio);
419	return 0;
420}
421EXPORT_SYMBOL(mpage_readpage);
422
423/*
424 * Writing is not so simple.
425 *
426 * If the page has buffers then they will be used for obtaining the disk
427 * mapping.  We only support pages which are fully mapped-and-dirty, with a
428 * special case for pages which are unmapped at the end: end-of-file.
429 *
430 * If the page has no buffers (preferred) then the page is mapped here.
431 *
432 * If all blocks are found to be contiguous then the page can go into the
433 * BIO.  Otherwise fall back to the mapping's writepage().
434 * 
435 * FIXME: This code wants an estimate of how many pages are still to be
436 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
437 * just allocate full-size (16-page) BIOs.
438 */
439
440struct mpage_data {
441	struct bio *bio;
442	sector_t last_block_in_bio;
443	get_block_t *get_block;
444	unsigned use_writepage;
445};
446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
448		      void *data)
449{
450	struct mpage_data *mpd = data;
451	struct bio *bio = mpd->bio;
452	struct address_space *mapping = page->mapping;
453	struct inode *inode = page->mapping->host;
454	const unsigned blkbits = inode->i_blkbits;
455	unsigned long end_index;
456	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
457	sector_t last_block;
458	sector_t block_in_file;
459	sector_t blocks[MAX_BUF_PER_PAGE];
460	unsigned page_block;
461	unsigned first_unmapped = blocks_per_page;
462	struct block_device *bdev = NULL;
463	int boundary = 0;
464	sector_t boundary_block = 0;
465	struct block_device *boundary_bdev = NULL;
466	int length;
467	struct buffer_head map_bh;
468	loff_t i_size = i_size_read(inode);
469	int ret = 0;
 
470
471	if (page_has_buffers(page)) {
472		struct buffer_head *head = page_buffers(page);
473		struct buffer_head *bh = head;
474
475		/* If they're all mapped and dirty, do it */
476		page_block = 0;
477		do {
478			BUG_ON(buffer_locked(bh));
479			if (!buffer_mapped(bh)) {
480				/*
481				 * unmapped dirty buffers are created by
482				 * __set_page_dirty_buffers -> mmapped data
483				 */
484				if (buffer_dirty(bh))
485					goto confused;
486				if (first_unmapped == blocks_per_page)
487					first_unmapped = page_block;
488				continue;
489			}
490
491			if (first_unmapped != blocks_per_page)
492				goto confused;	/* hole -> non-hole */
493
494			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
495				goto confused;
496			if (page_block) {
497				if (bh->b_blocknr != blocks[page_block-1] + 1)
498					goto confused;
499			}
500			blocks[page_block++] = bh->b_blocknr;
501			boundary = buffer_boundary(bh);
502			if (boundary) {
503				boundary_block = bh->b_blocknr;
504				boundary_bdev = bh->b_bdev;
505			}
506			bdev = bh->b_bdev;
507		} while ((bh = bh->b_this_page) != head);
508
509		if (first_unmapped)
510			goto page_is_mapped;
511
512		/*
513		 * Page has buffers, but they are all unmapped. The page was
514		 * created by pagein or read over a hole which was handled by
515		 * block_read_full_page().  If this address_space is also
516		 * using mpage_readpages then this can rarely happen.
517		 */
518		goto confused;
519	}
520
521	/*
522	 * The page has no buffers: map it to disk
523	 */
524	BUG_ON(!PageUptodate(page));
525	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
526	last_block = (i_size - 1) >> blkbits;
527	map_bh.b_page = page;
528	for (page_block = 0; page_block < blocks_per_page; ) {
529
530		map_bh.b_state = 0;
531		map_bh.b_size = 1 << blkbits;
532		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
533			goto confused;
534		if (buffer_new(&map_bh))
535			unmap_underlying_metadata(map_bh.b_bdev,
536						map_bh.b_blocknr);
537		if (buffer_boundary(&map_bh)) {
538			boundary_block = map_bh.b_blocknr;
539			boundary_bdev = map_bh.b_bdev;
540		}
541		if (page_block) {
542			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
543				goto confused;
544		}
545		blocks[page_block++] = map_bh.b_blocknr;
546		boundary = buffer_boundary(&map_bh);
547		bdev = map_bh.b_bdev;
548		if (block_in_file == last_block)
549			break;
550		block_in_file++;
551	}
552	BUG_ON(page_block == 0);
553
554	first_unmapped = page_block;
555
556page_is_mapped:
557	end_index = i_size >> PAGE_CACHE_SHIFT;
558	if (page->index >= end_index) {
559		/*
560		 * The page straddles i_size.  It must be zeroed out on each
561		 * and every writepage invocation because it may be mmapped.
562		 * "A file is mapped in multiples of the page size.  For a file
563		 * that is not a multiple of the page size, the remaining memory
564		 * is zeroed when mapped, and writes to that region are not
565		 * written out to the file."
566		 */
567		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
568
569		if (page->index > end_index || !offset)
570			goto confused;
571		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
572	}
573
574	/*
575	 * This page will go to BIO.  Do we need to send this BIO off first?
576	 */
577	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
578		bio = mpage_bio_submit(WRITE, bio);
579
580alloc_new:
581	if (bio == NULL) {
 
 
 
 
 
582		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
583				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
584		if (bio == NULL)
585			goto confused;
 
 
 
586	}
587
588	/*
589	 * Must try to add the page before marking the buffer clean or
590	 * the confused fail path above (OOM) will be very confused when
591	 * it finds all bh marked clean (i.e. it will not write anything)
592	 */
 
593	length = first_unmapped << blkbits;
594	if (bio_add_page(bio, page, length, 0) < length) {
595		bio = mpage_bio_submit(WRITE, bio);
596		goto alloc_new;
597	}
598
599	/*
600	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
601	 * sure to only clean buffers which we know we'll be writing.
602	 */
603	if (page_has_buffers(page)) {
604		struct buffer_head *head = page_buffers(page);
605		struct buffer_head *bh = head;
606		unsigned buffer_counter = 0;
607
608		do {
609			if (buffer_counter++ == first_unmapped)
610				break;
611			clear_buffer_dirty(bh);
612			bh = bh->b_this_page;
613		} while (bh != head);
614
615		/*
616		 * we cannot drop the bh if the page is not uptodate
617		 * or a concurrent readpage would fail to serialize with the bh
618		 * and it would read from disk before we reach the platter.
619		 */
620		if (buffer_heads_over_limit && PageUptodate(page))
621			try_to_free_buffers(page);
622	}
623
624	BUG_ON(PageWriteback(page));
625	set_page_writeback(page);
626	unlock_page(page);
627	if (boundary || (first_unmapped != blocks_per_page)) {
628		bio = mpage_bio_submit(WRITE, bio);
629		if (boundary_block) {
630			write_boundary_block(boundary_bdev,
631					boundary_block, 1 << blkbits);
632		}
633	} else {
634		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
635	}
636	goto out;
637
638confused:
639	if (bio)
640		bio = mpage_bio_submit(WRITE, bio);
641
642	if (mpd->use_writepage) {
643		ret = mapping->a_ops->writepage(page, wbc);
644	} else {
645		ret = -EAGAIN;
646		goto out;
647	}
648	/*
649	 * The caller has a ref on the inode, so *mapping is stable
650	 */
651	mapping_set_error(mapping, ret);
652out:
653	mpd->bio = bio;
654	return ret;
655}
656
657/**
658 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
659 * @mapping: address space structure to write
660 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
661 * @get_block: the filesystem's block mapper function.
662 *             If this is NULL then use a_ops->writepage.  Otherwise, go
663 *             direct-to-BIO.
664 *
665 * This is a library function, which implements the writepages()
666 * address_space_operation.
667 *
668 * If a page is already under I/O, generic_writepages() skips it, even
669 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
670 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
671 * and msync() need to guarantee that all the data which was dirty at the time
672 * the call was made get new I/O started against them.  If wbc->sync_mode is
673 * WB_SYNC_ALL then we were called for data integrity and we must wait for
674 * existing IO to complete.
675 */
676int
677mpage_writepages(struct address_space *mapping,
678		struct writeback_control *wbc, get_block_t get_block)
679{
680	struct blk_plug plug;
681	int ret;
682
683	blk_start_plug(&plug);
684
685	if (!get_block)
686		ret = generic_writepages(mapping, wbc);
687	else {
688		struct mpage_data mpd = {
689			.bio = NULL,
690			.last_block_in_bio = 0,
691			.get_block = get_block,
692			.use_writepage = 1,
693		};
694
695		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
696		if (mpd.bio)
697			mpage_bio_submit(WRITE, mpd.bio);
 
 
 
698	}
699	blk_finish_plug(&plug);
700	return ret;
701}
702EXPORT_SYMBOL(mpage_writepages);
703
704int mpage_writepage(struct page *page, get_block_t get_block,
705	struct writeback_control *wbc)
706{
707	struct mpage_data mpd = {
708		.bio = NULL,
709		.last_block_in_bio = 0,
710		.get_block = get_block,
711		.use_writepage = 0,
712	};
713	int ret = __mpage_writepage(page, wbc, &mpd);
714	if (mpd.bio)
715		mpage_bio_submit(WRITE, mpd.bio);
 
 
 
716	return ret;
717}
718EXPORT_SYMBOL(mpage_writepage);
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/mpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 *
  7 * Contains functions related to preparing and submitting BIOs which contain
  8 * multiple pagecache pages.
  9 *
 10 * 15May2002	Andrew Morton
 11 *		Initial version
 12 * 27Jun2002	axboe@suse.de
 13 *		use bio_add_page() to build bio's just the right size
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/export.h>
 18#include <linux/mm.h>
 19#include <linux/kdev_t.h>
 20#include <linux/gfp.h>
 21#include <linux/bio.h>
 22#include <linux/fs.h>
 23#include <linux/buffer_head.h>
 24#include <linux/blkdev.h>
 25#include <linux/highmem.h>
 26#include <linux/prefetch.h>
 27#include <linux/mpage.h>
 28#include <linux/mm_inline.h>
 29#include <linux/writeback.h>
 30#include <linux/backing-dev.h>
 31#include <linux/pagevec.h>
 32#include <linux/cleancache.h>
 33#include "internal.h"
 34
 35/*
 36 * I/O completion handler for multipage BIOs.
 37 *
 38 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 39 * If a page does not map to a contiguous run of blocks then it simply falls
 40 * back to block_read_full_page().
 41 *
 42 * Why is this?  If a page's completion depends on a number of different BIOs
 43 * which can complete in any order (or at the same time) then determining the
 44 * status of that page is hard.  See end_buffer_async_read() for the details.
 45 * There is no point in duplicating all that complexity.
 46 */
 47static void mpage_end_io(struct bio *bio)
 48{
 49	struct bio_vec *bv;
 50	struct bvec_iter_all iter_all;
 51
 52	bio_for_each_segment_all(bv, bio, iter_all) {
 53		struct page *page = bv->bv_page;
 54		page_endio(page, bio_op(bio),
 55			   blk_status_to_errno(bio->bi_status));
 56	}
 57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58	bio_put(bio);
 59}
 60
 61static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
 62{
 63	bio->bi_end_io = mpage_end_io;
 64	bio_set_op_attrs(bio, op, op_flags);
 65	guard_bio_eod(op, bio);
 66	submit_bio(bio);
 67	return NULL;
 68}
 69
 70static struct bio *
 71mpage_alloc(struct block_device *bdev,
 72		sector_t first_sector, int nr_vecs,
 73		gfp_t gfp_flags)
 74{
 75	struct bio *bio;
 76
 77	/* Restrict the given (page cache) mask for slab allocations */
 78	gfp_flags &= GFP_KERNEL;
 79	bio = bio_alloc(gfp_flags, nr_vecs);
 80
 81	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 82		while (!bio && (nr_vecs /= 2))
 83			bio = bio_alloc(gfp_flags, nr_vecs);
 84	}
 85
 86	if (bio) {
 87		bio_set_dev(bio, bdev);
 88		bio->bi_iter.bi_sector = first_sector;
 89	}
 90	return bio;
 91}
 92
 93/*
 94 * support function for mpage_readpages.  The fs supplied get_block might
 95 * return an up to date buffer.  This is used to map that buffer into
 96 * the page, which allows readpage to avoid triggering a duplicate call
 97 * to get_block.
 98 *
 99 * The idea is to avoid adding buffers to pages that don't already have
100 * them.  So when the buffer is up to date and the page size == block size,
101 * this marks the page up to date instead of adding new buffers.
102 */
103static void 
104map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
105{
106	struct inode *inode = page->mapping->host;
107	struct buffer_head *page_bh, *head;
108	int block = 0;
109
110	if (!page_has_buffers(page)) {
111		/*
112		 * don't make any buffers if there is only one buffer on
113		 * the page and the page just needs to be set up to date
114		 */
115		if (inode->i_blkbits == PAGE_SHIFT &&
116		    buffer_uptodate(bh)) {
117			SetPageUptodate(page);    
118			return;
119		}
120		create_empty_buffers(page, i_blocksize(inode), 0);
121	}
122	head = page_buffers(page);
123	page_bh = head;
124	do {
125		if (block == page_block) {
126			page_bh->b_state = bh->b_state;
127			page_bh->b_bdev = bh->b_bdev;
128			page_bh->b_blocknr = bh->b_blocknr;
129			break;
130		}
131		page_bh = page_bh->b_this_page;
132		block++;
133	} while (page_bh != head);
134}
135
136struct mpage_readpage_args {
137	struct bio *bio;
138	struct page *page;
139	unsigned int nr_pages;
140	bool is_readahead;
141	sector_t last_block_in_bio;
142	struct buffer_head map_bh;
143	unsigned long first_logical_block;
144	get_block_t *get_block;
145};
146
147/*
148 * This is the worker routine which does all the work of mapping the disk
149 * blocks and constructs largest possible bios, submits them for IO if the
150 * blocks are not contiguous on the disk.
151 *
152 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
153 * represent the validity of its disk mapping and to decide when to do the next
154 * get_block() call.
155 */
156static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
 
 
 
157{
158	struct page *page = args->page;
159	struct inode *inode = page->mapping->host;
160	const unsigned blkbits = inode->i_blkbits;
161	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
162	const unsigned blocksize = 1 << blkbits;
163	struct buffer_head *map_bh = &args->map_bh;
164	sector_t block_in_file;
165	sector_t last_block;
166	sector_t last_block_in_file;
167	sector_t blocks[MAX_BUF_PER_PAGE];
168	unsigned page_block;
169	unsigned first_hole = blocks_per_page;
170	struct block_device *bdev = NULL;
171	int length;
172	int fully_mapped = 1;
173	int op_flags;
174	unsigned nblocks;
175	unsigned relative_block;
176	gfp_t gfp;
177
178	if (args->is_readahead) {
179		op_flags = REQ_RAHEAD;
180		gfp = readahead_gfp_mask(page->mapping);
181	} else {
182		op_flags = 0;
183		gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
184	}
185
186	if (page_has_buffers(page))
187		goto confused;
188
189	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
190	last_block = block_in_file + args->nr_pages * blocks_per_page;
191	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
192	if (last_block > last_block_in_file)
193		last_block = last_block_in_file;
194	page_block = 0;
195
196	/*
197	 * Map blocks using the result from the previous get_blocks call first.
198	 */
199	nblocks = map_bh->b_size >> blkbits;
200	if (buffer_mapped(map_bh) &&
201			block_in_file > args->first_logical_block &&
202			block_in_file < (args->first_logical_block + nblocks)) {
203		unsigned map_offset = block_in_file - args->first_logical_block;
204		unsigned last = nblocks - map_offset;
205
206		for (relative_block = 0; ; relative_block++) {
207			if (relative_block == last) {
208				clear_buffer_mapped(map_bh);
209				break;
210			}
211			if (page_block == blocks_per_page)
212				break;
213			blocks[page_block] = map_bh->b_blocknr + map_offset +
214						relative_block;
215			page_block++;
216			block_in_file++;
217		}
218		bdev = map_bh->b_bdev;
219	}
220
221	/*
222	 * Then do more get_blocks calls until we are done with this page.
223	 */
224	map_bh->b_page = page;
225	while (page_block < blocks_per_page) {
226		map_bh->b_state = 0;
227		map_bh->b_size = 0;
228
229		if (block_in_file < last_block) {
230			map_bh->b_size = (last_block-block_in_file) << blkbits;
231			if (args->get_block(inode, block_in_file, map_bh, 0))
232				goto confused;
233			args->first_logical_block = block_in_file;
234		}
235
236		if (!buffer_mapped(map_bh)) {
237			fully_mapped = 0;
238			if (first_hole == blocks_per_page)
239				first_hole = page_block;
240			page_block++;
241			block_in_file++;
242			continue;
243		}
244
245		/* some filesystems will copy data into the page during
246		 * the get_block call, in which case we don't want to
247		 * read it again.  map_buffer_to_page copies the data
248		 * we just collected from get_block into the page's buffers
249		 * so readpage doesn't have to repeat the get_block call
250		 */
251		if (buffer_uptodate(map_bh)) {
252			map_buffer_to_page(page, map_bh, page_block);
253			goto confused;
254		}
255	
256		if (first_hole != blocks_per_page)
257			goto confused;		/* hole -> non-hole */
258
259		/* Contiguous blocks? */
260		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
261			goto confused;
262		nblocks = map_bh->b_size >> blkbits;
263		for (relative_block = 0; ; relative_block++) {
264			if (relative_block == nblocks) {
265				clear_buffer_mapped(map_bh);
266				break;
267			} else if (page_block == blocks_per_page)
268				break;
269			blocks[page_block] = map_bh->b_blocknr+relative_block;
270			page_block++;
271			block_in_file++;
272		}
273		bdev = map_bh->b_bdev;
274	}
275
276	if (first_hole != blocks_per_page) {
277		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
278		if (first_hole == 0) {
279			SetPageUptodate(page);
280			unlock_page(page);
281			goto out;
282		}
283	} else if (fully_mapped) {
284		SetPageMappedToDisk(page);
285	}
286
287	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
288	    cleancache_get_page(page) == 0) {
289		SetPageUptodate(page);
290		goto confused;
291	}
292
293	/*
294	 * This page will go to BIO.  Do we need to send this BIO off first?
295	 */
296	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
297		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
298
299alloc_new:
300	if (args->bio == NULL) {
301		if (first_hole == blocks_per_page) {
302			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
303								page))
304				goto out;
305		}
306		args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
307					min_t(int, args->nr_pages,
308					      BIO_MAX_PAGES),
309					gfp);
310		if (args->bio == NULL)
311			goto confused;
312	}
313
314	length = first_hole << blkbits;
315	if (bio_add_page(args->bio, page, length, 0) < length) {
316		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
317		goto alloc_new;
318	}
319
320	relative_block = block_in_file - args->first_logical_block;
321	nblocks = map_bh->b_size >> blkbits;
322	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
323	    (first_hole != blocks_per_page))
324		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
325	else
326		args->last_block_in_bio = blocks[blocks_per_page - 1];
327out:
328	return args->bio;
329
330confused:
331	if (args->bio)
332		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
333	if (!PageUptodate(page))
334		block_read_full_page(page, args->get_block);
335	else
336		unlock_page(page);
337	goto out;
338}
339
340/**
341 * mpage_readpages - populate an address space with some pages & start reads against them
342 * @mapping: the address_space
343 * @pages: The address of a list_head which contains the target pages.  These
344 *   pages have their ->index populated and are otherwise uninitialised.
345 *   The page at @pages->prev has the lowest file offset, and reads should be
346 *   issued in @pages->prev to @pages->next order.
347 * @nr_pages: The number of pages at *@pages
348 * @get_block: The filesystem's block mapper function.
349 *
350 * This function walks the pages and the blocks within each page, building and
351 * emitting large BIOs.
352 *
353 * If anything unusual happens, such as:
354 *
355 * - encountering a page which has buffers
356 * - encountering a page which has a non-hole after a hole
357 * - encountering a page with non-contiguous blocks
358 *
359 * then this code just gives up and calls the buffer_head-based read function.
360 * It does handle a page which has holes at the end - that is a common case:
361 * the end-of-file on blocksize < PAGE_SIZE setups.
362 *
363 * BH_Boundary explanation:
364 *
365 * There is a problem.  The mpage read code assembles several pages, gets all
366 * their disk mappings, and then submits them all.  That's fine, but obtaining
367 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
368 *
369 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
370 * submitted in the following order:
371 *
372 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
373 *
374 * because the indirect block has to be read to get the mappings of blocks
375 * 13,14,15,16.  Obviously, this impacts performance.
376 *
377 * So what we do it to allow the filesystem's get_block() function to set
378 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
379 * after this one will require I/O against a block which is probably close to
380 * this one.  So you should push what I/O you have currently accumulated.
381 *
382 * This all causes the disk requests to be issued in the correct order.
383 */
384int
385mpage_readpages(struct address_space *mapping, struct list_head *pages,
386				unsigned nr_pages, get_block_t get_block)
387{
388	struct mpage_readpage_args args = {
389		.get_block = get_block,
390		.is_readahead = true,
391	};
392	unsigned page_idx;
 
 
 
 
 
 
393
 
 
394	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
395		struct page *page = lru_to_page(pages);
396
397		prefetchw(&page->flags);
398		list_del(&page->lru);
399		if (!add_to_page_cache_lru(page, mapping,
400					page->index,
401					readahead_gfp_mask(mapping))) {
402			args.page = page;
403			args.nr_pages = nr_pages - page_idx;
404			args.bio = do_mpage_readpage(&args);
 
405		}
406		put_page(page);
407	}
408	BUG_ON(!list_empty(pages));
409	if (args.bio)
410		mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
 
411	return 0;
412}
413EXPORT_SYMBOL(mpage_readpages);
414
415/*
416 * This isn't called much at all
417 */
418int mpage_readpage(struct page *page, get_block_t get_block)
419{
420	struct mpage_readpage_args args = {
421		.page = page,
422		.nr_pages = 1,
423		.get_block = get_block,
424	};
425
426	args.bio = do_mpage_readpage(&args);
427	if (args.bio)
428		mpage_bio_submit(REQ_OP_READ, 0, args.bio);
 
 
 
429	return 0;
430}
431EXPORT_SYMBOL(mpage_readpage);
432
433/*
434 * Writing is not so simple.
435 *
436 * If the page has buffers then they will be used for obtaining the disk
437 * mapping.  We only support pages which are fully mapped-and-dirty, with a
438 * special case for pages which are unmapped at the end: end-of-file.
439 *
440 * If the page has no buffers (preferred) then the page is mapped here.
441 *
442 * If all blocks are found to be contiguous then the page can go into the
443 * BIO.  Otherwise fall back to the mapping's writepage().
444 * 
445 * FIXME: This code wants an estimate of how many pages are still to be
446 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
447 * just allocate full-size (16-page) BIOs.
448 */
449
450struct mpage_data {
451	struct bio *bio;
452	sector_t last_block_in_bio;
453	get_block_t *get_block;
454	unsigned use_writepage;
455};
456
457/*
458 * We have our BIO, so we can now mark the buffers clean.  Make
459 * sure to only clean buffers which we know we'll be writing.
460 */
461static void clean_buffers(struct page *page, unsigned first_unmapped)
462{
463	unsigned buffer_counter = 0;
464	struct buffer_head *bh, *head;
465	if (!page_has_buffers(page))
466		return;
467	head = page_buffers(page);
468	bh = head;
469
470	do {
471		if (buffer_counter++ == first_unmapped)
472			break;
473		clear_buffer_dirty(bh);
474		bh = bh->b_this_page;
475	} while (bh != head);
476
477	/*
478	 * we cannot drop the bh if the page is not uptodate or a concurrent
479	 * readpage would fail to serialize with the bh and it would read from
480	 * disk before we reach the platter.
481	 */
482	if (buffer_heads_over_limit && PageUptodate(page))
483		try_to_free_buffers(page);
484}
485
486/*
487 * For situations where we want to clean all buffers attached to a page.
488 * We don't need to calculate how many buffers are attached to the page,
489 * we just need to specify a number larger than the maximum number of buffers.
490 */
491void clean_page_buffers(struct page *page)
492{
493	clean_buffers(page, ~0U);
494}
495
496static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
497		      void *data)
498{
499	struct mpage_data *mpd = data;
500	struct bio *bio = mpd->bio;
501	struct address_space *mapping = page->mapping;
502	struct inode *inode = page->mapping->host;
503	const unsigned blkbits = inode->i_blkbits;
504	unsigned long end_index;
505	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
506	sector_t last_block;
507	sector_t block_in_file;
508	sector_t blocks[MAX_BUF_PER_PAGE];
509	unsigned page_block;
510	unsigned first_unmapped = blocks_per_page;
511	struct block_device *bdev = NULL;
512	int boundary = 0;
513	sector_t boundary_block = 0;
514	struct block_device *boundary_bdev = NULL;
515	int length;
516	struct buffer_head map_bh;
517	loff_t i_size = i_size_read(inode);
518	int ret = 0;
519	int op_flags = wbc_to_write_flags(wbc);
520
521	if (page_has_buffers(page)) {
522		struct buffer_head *head = page_buffers(page);
523		struct buffer_head *bh = head;
524
525		/* If they're all mapped and dirty, do it */
526		page_block = 0;
527		do {
528			BUG_ON(buffer_locked(bh));
529			if (!buffer_mapped(bh)) {
530				/*
531				 * unmapped dirty buffers are created by
532				 * __set_page_dirty_buffers -> mmapped data
533				 */
534				if (buffer_dirty(bh))
535					goto confused;
536				if (first_unmapped == blocks_per_page)
537					first_unmapped = page_block;
538				continue;
539			}
540
541			if (first_unmapped != blocks_per_page)
542				goto confused;	/* hole -> non-hole */
543
544			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
545				goto confused;
546			if (page_block) {
547				if (bh->b_blocknr != blocks[page_block-1] + 1)
548					goto confused;
549			}
550			blocks[page_block++] = bh->b_blocknr;
551			boundary = buffer_boundary(bh);
552			if (boundary) {
553				boundary_block = bh->b_blocknr;
554				boundary_bdev = bh->b_bdev;
555			}
556			bdev = bh->b_bdev;
557		} while ((bh = bh->b_this_page) != head);
558
559		if (first_unmapped)
560			goto page_is_mapped;
561
562		/*
563		 * Page has buffers, but they are all unmapped. The page was
564		 * created by pagein or read over a hole which was handled by
565		 * block_read_full_page().  If this address_space is also
566		 * using mpage_readpages then this can rarely happen.
567		 */
568		goto confused;
569	}
570
571	/*
572	 * The page has no buffers: map it to disk
573	 */
574	BUG_ON(!PageUptodate(page));
575	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
576	last_block = (i_size - 1) >> blkbits;
577	map_bh.b_page = page;
578	for (page_block = 0; page_block < blocks_per_page; ) {
579
580		map_bh.b_state = 0;
581		map_bh.b_size = 1 << blkbits;
582		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
583			goto confused;
584		if (buffer_new(&map_bh))
585			clean_bdev_bh_alias(&map_bh);
 
586		if (buffer_boundary(&map_bh)) {
587			boundary_block = map_bh.b_blocknr;
588			boundary_bdev = map_bh.b_bdev;
589		}
590		if (page_block) {
591			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
592				goto confused;
593		}
594		blocks[page_block++] = map_bh.b_blocknr;
595		boundary = buffer_boundary(&map_bh);
596		bdev = map_bh.b_bdev;
597		if (block_in_file == last_block)
598			break;
599		block_in_file++;
600	}
601	BUG_ON(page_block == 0);
602
603	first_unmapped = page_block;
604
605page_is_mapped:
606	end_index = i_size >> PAGE_SHIFT;
607	if (page->index >= end_index) {
608		/*
609		 * The page straddles i_size.  It must be zeroed out on each
610		 * and every writepage invocation because it may be mmapped.
611		 * "A file is mapped in multiples of the page size.  For a file
612		 * that is not a multiple of the page size, the remaining memory
613		 * is zeroed when mapped, and writes to that region are not
614		 * written out to the file."
615		 */
616		unsigned offset = i_size & (PAGE_SIZE - 1);
617
618		if (page->index > end_index || !offset)
619			goto confused;
620		zero_user_segment(page, offset, PAGE_SIZE);
621	}
622
623	/*
624	 * This page will go to BIO.  Do we need to send this BIO off first?
625	 */
626	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
627		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
628
629alloc_new:
630	if (bio == NULL) {
631		if (first_unmapped == blocks_per_page) {
632			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
633								page, wbc))
634				goto out;
635		}
636		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
637				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
638		if (bio == NULL)
639			goto confused;
640
641		wbc_init_bio(wbc, bio);
642		bio->bi_write_hint = inode->i_write_hint;
643	}
644
645	/*
646	 * Must try to add the page before marking the buffer clean or
647	 * the confused fail path above (OOM) will be very confused when
648	 * it finds all bh marked clean (i.e. it will not write anything)
649	 */
650	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
651	length = first_unmapped << blkbits;
652	if (bio_add_page(bio, page, length, 0) < length) {
653		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
654		goto alloc_new;
655	}
656
657	clean_buffers(page, first_unmapped);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
658
659	BUG_ON(PageWriteback(page));
660	set_page_writeback(page);
661	unlock_page(page);
662	if (boundary || (first_unmapped != blocks_per_page)) {
663		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
664		if (boundary_block) {
665			write_boundary_block(boundary_bdev,
666					boundary_block, 1 << blkbits);
667		}
668	} else {
669		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
670	}
671	goto out;
672
673confused:
674	if (bio)
675		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
676
677	if (mpd->use_writepage) {
678		ret = mapping->a_ops->writepage(page, wbc);
679	} else {
680		ret = -EAGAIN;
681		goto out;
682	}
683	/*
684	 * The caller has a ref on the inode, so *mapping is stable
685	 */
686	mapping_set_error(mapping, ret);
687out:
688	mpd->bio = bio;
689	return ret;
690}
691
692/**
693 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
694 * @mapping: address space structure to write
695 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
696 * @get_block: the filesystem's block mapper function.
697 *             If this is NULL then use a_ops->writepage.  Otherwise, go
698 *             direct-to-BIO.
699 *
700 * This is a library function, which implements the writepages()
701 * address_space_operation.
702 *
703 * If a page is already under I/O, generic_writepages() skips it, even
704 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
705 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
706 * and msync() need to guarantee that all the data which was dirty at the time
707 * the call was made get new I/O started against them.  If wbc->sync_mode is
708 * WB_SYNC_ALL then we were called for data integrity and we must wait for
709 * existing IO to complete.
710 */
711int
712mpage_writepages(struct address_space *mapping,
713		struct writeback_control *wbc, get_block_t get_block)
714{
715	struct blk_plug plug;
716	int ret;
717
718	blk_start_plug(&plug);
719
720	if (!get_block)
721		ret = generic_writepages(mapping, wbc);
722	else {
723		struct mpage_data mpd = {
724			.bio = NULL,
725			.last_block_in_bio = 0,
726			.get_block = get_block,
727			.use_writepage = 1,
728		};
729
730		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
731		if (mpd.bio) {
732			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
733				  REQ_SYNC : 0);
734			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
735		}
736	}
737	blk_finish_plug(&plug);
738	return ret;
739}
740EXPORT_SYMBOL(mpage_writepages);
741
742int mpage_writepage(struct page *page, get_block_t get_block,
743	struct writeback_control *wbc)
744{
745	struct mpage_data mpd = {
746		.bio = NULL,
747		.last_block_in_bio = 0,
748		.get_block = get_block,
749		.use_writepage = 0,
750	};
751	int ret = __mpage_writepage(page, wbc, &mpd);
752	if (mpd.bio) {
753		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
754			  REQ_SYNC : 0);
755		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
756	}
757	return ret;
758}
759EXPORT_SYMBOL(mpage_writepage);