Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/fs/fcntl.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 */
  6
  7#include <linux/syscalls.h>
  8#include <linux/init.h>
  9#include <linux/mm.h>
 
 10#include <linux/fs.h>
 11#include <linux/file.h>
 12#include <linux/fdtable.h>
 13#include <linux/capability.h>
 14#include <linux/dnotify.h>
 15#include <linux/slab.h>
 16#include <linux/module.h>
 17#include <linux/pipe_fs_i.h>
 18#include <linux/security.h>
 19#include <linux/ptrace.h>
 20#include <linux/signal.h>
 21#include <linux/rcupdate.h>
 22#include <linux/pid_namespace.h>
 
 
 
 23
 24#include <asm/poll.h>
 25#include <asm/siginfo.h>
 26#include <asm/uaccess.h>
 27
 28void set_close_on_exec(unsigned int fd, int flag)
 29{
 30	struct files_struct *files = current->files;
 31	struct fdtable *fdt;
 32	spin_lock(&files->file_lock);
 33	fdt = files_fdtable(files);
 34	if (flag)
 35		FD_SET(fd, fdt->close_on_exec);
 36	else
 37		FD_CLR(fd, fdt->close_on_exec);
 38	spin_unlock(&files->file_lock);
 39}
 40
 41static int get_close_on_exec(unsigned int fd)
 42{
 43	struct files_struct *files = current->files;
 44	struct fdtable *fdt;
 45	int res;
 46	rcu_read_lock();
 47	fdt = files_fdtable(files);
 48	res = FD_ISSET(fd, fdt->close_on_exec);
 49	rcu_read_unlock();
 50	return res;
 51}
 52
 53SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
 54{
 55	int err = -EBADF;
 56	struct file * file, *tofree;
 57	struct files_struct * files = current->files;
 58	struct fdtable *fdt;
 59
 60	if ((flags & ~O_CLOEXEC) != 0)
 61		return -EINVAL;
 62
 63	if (unlikely(oldfd == newfd))
 64		return -EINVAL;
 65
 66	spin_lock(&files->file_lock);
 67	err = expand_files(files, newfd);
 68	file = fcheck(oldfd);
 69	if (unlikely(!file))
 70		goto Ebadf;
 71	if (unlikely(err < 0)) {
 72		if (err == -EMFILE)
 73			goto Ebadf;
 74		goto out_unlock;
 75	}
 76	/*
 77	 * We need to detect attempts to do dup2() over allocated but still
 78	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
 79	 * extra work in their equivalent of fget() - they insert struct
 80	 * file immediately after grabbing descriptor, mark it larval if
 81	 * more work (e.g. actual opening) is needed and make sure that
 82	 * fget() treats larval files as absent.  Potentially interesting,
 83	 * but while extra work in fget() is trivial, locking implications
 84	 * and amount of surgery on open()-related paths in VFS are not.
 85	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
 86	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
 87	 * scope of POSIX or SUS, since neither considers shared descriptor
 88	 * tables and this condition does not arise without those.
 89	 */
 90	err = -EBUSY;
 91	fdt = files_fdtable(files);
 92	tofree = fdt->fd[newfd];
 93	if (!tofree && FD_ISSET(newfd, fdt->open_fds))
 94		goto out_unlock;
 95	get_file(file);
 96	rcu_assign_pointer(fdt->fd[newfd], file);
 97	FD_SET(newfd, fdt->open_fds);
 98	if (flags & O_CLOEXEC)
 99		FD_SET(newfd, fdt->close_on_exec);
100	else
101		FD_CLR(newfd, fdt->close_on_exec);
102	spin_unlock(&files->file_lock);
103
104	if (tofree)
105		filp_close(tofree, files);
106
107	return newfd;
108
109Ebadf:
110	err = -EBADF;
111out_unlock:
112	spin_unlock(&files->file_lock);
113	return err;
114}
115
116SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
117{
118	if (unlikely(newfd == oldfd)) { /* corner case */
119		struct files_struct *files = current->files;
120		int retval = oldfd;
121
122		rcu_read_lock();
123		if (!fcheck_files(files, oldfd))
124			retval = -EBADF;
125		rcu_read_unlock();
126		return retval;
127	}
128	return sys_dup3(oldfd, newfd, 0);
129}
130
131SYSCALL_DEFINE1(dup, unsigned int, fildes)
132{
133	int ret = -EBADF;
134	struct file *file = fget_raw(fildes);
135
136	if (file) {
137		ret = get_unused_fd();
138		if (ret >= 0)
139			fd_install(ret, file);
140		else
141			fput(file);
142	}
143	return ret;
144}
145
146#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
147
148static int setfl(int fd, struct file * filp, unsigned long arg)
149{
150	struct inode * inode = filp->f_path.dentry->d_inode;
151	int error = 0;
152
153	/*
154	 * O_APPEND cannot be cleared if the file is marked as append-only
155	 * and the file is open for write.
156	 */
157	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
158		return -EPERM;
159
160	/* O_NOATIME can only be set by the owner or superuser */
161	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
162		if (!inode_owner_or_capable(inode))
163			return -EPERM;
164
165	/* required for strict SunOS emulation */
166	if (O_NONBLOCK != O_NDELAY)
167	       if (arg & O_NDELAY)
168		   arg |= O_NONBLOCK;
169
170	if (arg & O_DIRECT) {
 
171		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
172			!filp->f_mapping->a_ops->direct_IO)
173				return -EINVAL;
174	}
175
176	if (filp->f_op && filp->f_op->check_flags)
177		error = filp->f_op->check_flags(arg);
178	if (error)
179		return error;
180
181	/*
182	 * ->fasync() is responsible for setting the FASYNC bit.
183	 */
184	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op &&
185			filp->f_op->fasync) {
186		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
187		if (error < 0)
188			goto out;
189		if (error > 0)
190			error = 0;
191	}
192	spin_lock(&filp->f_lock);
193	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
194	spin_unlock(&filp->f_lock);
195
196 out:
197	return error;
198}
199
200static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
201                     int force)
202{
203	write_lock_irq(&filp->f_owner.lock);
204	if (force || !filp->f_owner.pid) {
205		put_pid(filp->f_owner.pid);
206		filp->f_owner.pid = get_pid(pid);
207		filp->f_owner.pid_type = type;
208
209		if (pid) {
210			const struct cred *cred = current_cred();
211			filp->f_owner.uid = cred->uid;
212			filp->f_owner.euid = cred->euid;
213		}
214	}
215	write_unlock_irq(&filp->f_owner.lock);
216}
217
218int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
219		int force)
220{
221	int err;
222
223	err = security_file_set_fowner(filp);
224	if (err)
225		return err;
226
227	f_modown(filp, pid, type, force);
228	return 0;
229}
230EXPORT_SYMBOL(__f_setown);
231
232int f_setown(struct file *filp, unsigned long arg, int force)
233{
234	enum pid_type type;
235	struct pid *pid;
236	int who = arg;
237	int result;
238	type = PIDTYPE_PID;
239	if (who < 0) {
 
 
 
 
240		type = PIDTYPE_PGID;
241		who = -who;
242	}
 
243	rcu_read_lock();
244	pid = find_vpid(who);
245	result = __f_setown(filp, pid, type, force);
 
 
 
 
 
 
246	rcu_read_unlock();
247	return result;
 
248}
249EXPORT_SYMBOL(f_setown);
250
251void f_delown(struct file *filp)
252{
253	f_modown(filp, NULL, PIDTYPE_PID, 1);
254}
255
256pid_t f_getown(struct file *filp)
257{
258	pid_t pid;
259	read_lock(&filp->f_owner.lock);
260	pid = pid_vnr(filp->f_owner.pid);
261	if (filp->f_owner.pid_type == PIDTYPE_PGID)
262		pid = -pid;
263	read_unlock(&filp->f_owner.lock);
264	return pid;
265}
266
267static int f_setown_ex(struct file *filp, unsigned long arg)
268{
269	struct f_owner_ex * __user owner_p = (void * __user)arg;
270	struct f_owner_ex owner;
271	struct pid *pid;
272	int type;
273	int ret;
274
275	ret = copy_from_user(&owner, owner_p, sizeof(owner));
276	if (ret)
277		return -EFAULT;
278
279	switch (owner.type) {
280	case F_OWNER_TID:
281		type = PIDTYPE_MAX;
282		break;
283
284	case F_OWNER_PID:
285		type = PIDTYPE_PID;
286		break;
287
288	case F_OWNER_PGRP:
289		type = PIDTYPE_PGID;
290		break;
291
292	default:
293		return -EINVAL;
294	}
295
296	rcu_read_lock();
297	pid = find_vpid(owner.pid);
298	if (owner.pid && !pid)
299		ret = -ESRCH;
300	else
301		ret = __f_setown(filp, pid, type, 1);
302	rcu_read_unlock();
303
304	return ret;
305}
306
307static int f_getown_ex(struct file *filp, unsigned long arg)
308{
309	struct f_owner_ex * __user owner_p = (void * __user)arg;
310	struct f_owner_ex owner;
311	int ret = 0;
312
313	read_lock(&filp->f_owner.lock);
314	owner.pid = pid_vnr(filp->f_owner.pid);
315	switch (filp->f_owner.pid_type) {
316	case PIDTYPE_MAX:
317		owner.type = F_OWNER_TID;
318		break;
319
320	case PIDTYPE_PID:
321		owner.type = F_OWNER_PID;
322		break;
323
324	case PIDTYPE_PGID:
325		owner.type = F_OWNER_PGRP;
326		break;
327
328	default:
329		WARN_ON(1);
330		ret = -EINVAL;
331		break;
332	}
333	read_unlock(&filp->f_owner.lock);
334
335	if (!ret) {
336		ret = copy_to_user(owner_p, &owner, sizeof(owner));
337		if (ret)
338			ret = -EFAULT;
339	}
340	return ret;
341}
342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
344		struct file *filp)
345{
 
 
346	long err = -EINVAL;
347
348	switch (cmd) {
349	case F_DUPFD:
 
 
350	case F_DUPFD_CLOEXEC:
351		if (arg >= rlimit(RLIMIT_NOFILE))
352			break;
353		err = alloc_fd(arg, cmd == F_DUPFD_CLOEXEC ? O_CLOEXEC : 0);
354		if (err >= 0) {
355			get_file(filp);
356			fd_install(err, filp);
357		}
358		break;
359	case F_GETFD:
360		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
361		break;
362	case F_SETFD:
363		err = 0;
364		set_close_on_exec(fd, arg & FD_CLOEXEC);
365		break;
366	case F_GETFL:
367		err = filp->f_flags;
368		break;
369	case F_SETFL:
370		err = setfl(fd, filp, arg);
371		break;
 
 
 
 
372	case F_GETLK:
373		err = fcntl_getlk(filp, (struct flock __user *) arg);
374		break;
 
 
 
 
 
 
 
 
 
 
375	case F_SETLK:
376	case F_SETLKW:
377		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
 
 
378		break;
379	case F_GETOWN:
380		/*
381		 * XXX If f_owner is a process group, the
382		 * negative return value will get converted
383		 * into an error.  Oops.  If we keep the
384		 * current syscall conventions, the only way
385		 * to fix this will be in libc.
386		 */
387		err = f_getown(filp);
388		force_successful_syscall_return();
389		break;
390	case F_SETOWN:
391		err = f_setown(filp, arg, 1);
392		break;
393	case F_GETOWN_EX:
394		err = f_getown_ex(filp, arg);
395		break;
396	case F_SETOWN_EX:
397		err = f_setown_ex(filp, arg);
398		break;
 
 
 
399	case F_GETSIG:
400		err = filp->f_owner.signum;
401		break;
402	case F_SETSIG:
403		/* arg == 0 restores default behaviour. */
404		if (!valid_signal(arg)) {
405			break;
406		}
407		err = 0;
408		filp->f_owner.signum = arg;
409		break;
410	case F_GETLEASE:
411		err = fcntl_getlease(filp);
412		break;
413	case F_SETLEASE:
414		err = fcntl_setlease(fd, filp, arg);
415		break;
416	case F_NOTIFY:
417		err = fcntl_dirnotify(fd, filp, arg);
418		break;
419	case F_SETPIPE_SZ:
420	case F_GETPIPE_SZ:
421		err = pipe_fcntl(filp, cmd, arg);
422		break;
 
 
 
 
 
 
 
 
 
 
423	default:
424		break;
425	}
426	return err;
427}
428
429static int check_fcntl_cmd(unsigned cmd)
430{
431	switch (cmd) {
432	case F_DUPFD:
433	case F_DUPFD_CLOEXEC:
434	case F_GETFD:
435	case F_SETFD:
436	case F_GETFL:
437		return 1;
438	}
439	return 0;
440}
441
442SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
443{	
444	struct file *filp;
445	long err = -EBADF;
446
447	filp = fget_raw(fd);
448	if (!filp)
449		goto out;
450
451	if (unlikely(filp->f_mode & FMODE_PATH)) {
452		if (!check_fcntl_cmd(cmd)) {
453			fput(filp);
454			goto out;
455		}
456	}
457
458	err = security_file_fcntl(filp, cmd, arg);
459	if (err) {
460		fput(filp);
461		return err;
462	}
463
464	err = do_fcntl(fd, cmd, arg, filp);
 
 
465
466 	fput(filp);
 
467out:
468	return err;
469}
470
471#if BITS_PER_LONG == 32
472SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
473		unsigned long, arg)
474{	
475	struct file * filp;
476	long err;
 
 
477
478	err = -EBADF;
479	filp = fget_raw(fd);
480	if (!filp)
481		goto out;
482
483	if (unlikely(filp->f_mode & FMODE_PATH)) {
484		if (!check_fcntl_cmd(cmd)) {
485			fput(filp);
486			goto out;
487		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488	}
489
490	err = security_file_fcntl(filp, cmd, arg);
491	if (err) {
492		fput(filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493		return err;
 
 
 
 
494	}
495	err = -EBADF;
496	
 
 
 
497	switch (cmd) {
498		case F_GETLK64:
499			err = fcntl_getlk64(filp, (struct flock64 __user *) arg);
 
500			break;
501		case F_SETLK64:
502		case F_SETLKW64:
503			err = fcntl_setlk64(fd, filp, cmd,
504					(struct flock64 __user *) arg);
505			break;
506		default:
507			err = do_fcntl(fd, cmd, arg, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508			break;
 
 
 
 
 
509	}
510	fput(filp);
511out:
512	return err;
513}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514#endif
515
516/* Table to convert sigio signal codes into poll band bitmaps */
517
518static const long band_table[NSIGPOLL] = {
519	POLLIN | POLLRDNORM,			/* POLL_IN */
520	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
521	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
522	POLLERR,				/* POLL_ERR */
523	POLLPRI | POLLRDBAND,			/* POLL_PRI */
524	POLLHUP | POLLERR			/* POLL_HUP */
525};
526
527static inline int sigio_perm(struct task_struct *p,
528                             struct fown_struct *fown, int sig)
529{
530	const struct cred *cred;
531	int ret;
532
533	rcu_read_lock();
534	cred = __task_cred(p);
535	ret = ((fown->euid == 0 ||
536		fown->euid == cred->suid || fown->euid == cred->uid ||
537		fown->uid  == cred->suid || fown->uid  == cred->uid) &&
538	       !security_file_send_sigiotask(p, fown, sig));
539	rcu_read_unlock();
540	return ret;
541}
542
543static void send_sigio_to_task(struct task_struct *p,
544			       struct fown_struct *fown,
545			       int fd, int reason, int group)
546{
547	/*
548	 * F_SETSIG can change ->signum lockless in parallel, make
549	 * sure we read it once and use the same value throughout.
550	 */
551	int signum = ACCESS_ONCE(fown->signum);
552
553	if (!sigio_perm(p, fown, signum))
554		return;
555
556	switch (signum) {
557		siginfo_t si;
558		default:
559			/* Queue a rt signal with the appropriate fd as its
560			   value.  We use SI_SIGIO as the source, not 
561			   SI_KERNEL, since kernel signals always get 
562			   delivered even if we can't queue.  Failure to
563			   queue in this case _should_ be reported; we fall
564			   back to SIGIO in that case. --sct */
 
565			si.si_signo = signum;
566			si.si_errno = 0;
567		        si.si_code  = reason;
 
 
 
 
 
 
 
 
 
 
 
568			/* Make sure we are called with one of the POLL_*
569			   reasons, otherwise we could leak kernel stack into
570			   userspace.  */
571			BUG_ON((reason & __SI_MASK) != __SI_POLL);
572			if (reason - POLL_IN >= NSIGPOLL)
573				si.si_band  = ~0L;
574			else
575				si.si_band = band_table[reason - POLL_IN];
576			si.si_fd    = fd;
577			if (!do_send_sig_info(signum, &si, p, group))
578				break;
579		/* fall-through: fall back on the old plain SIGIO signal */
580		case 0:
581			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
582	}
583}
584
585void send_sigio(struct fown_struct *fown, int fd, int band)
586{
587	struct task_struct *p;
588	enum pid_type type;
589	struct pid *pid;
590	int group = 1;
591	
592	read_lock(&fown->lock);
593
594	type = fown->pid_type;
595	if (type == PIDTYPE_MAX) {
596		group = 0;
597		type = PIDTYPE_PID;
598	}
599
600	pid = fown->pid;
601	if (!pid)
602		goto out_unlock_fown;
603	
604	read_lock(&tasklist_lock);
605	do_each_pid_task(pid, type, p) {
606		send_sigio_to_task(p, fown, fd, band, group);
607	} while_each_pid_task(pid, type, p);
608	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
 
609 out_unlock_fown:
610	read_unlock(&fown->lock);
611}
612
613static void send_sigurg_to_task(struct task_struct *p,
614				struct fown_struct *fown, int group)
615{
616	if (sigio_perm(p, fown, SIGURG))
617		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
618}
619
620int send_sigurg(struct fown_struct *fown)
621{
622	struct task_struct *p;
623	enum pid_type type;
624	struct pid *pid;
625	int group = 1;
626	int ret = 0;
627	
628	read_lock(&fown->lock);
629
630	type = fown->pid_type;
631	if (type == PIDTYPE_MAX) {
632		group = 0;
633		type = PIDTYPE_PID;
634	}
635
636	pid = fown->pid;
637	if (!pid)
638		goto out_unlock_fown;
639
640	ret = 1;
641	
642	read_lock(&tasklist_lock);
643	do_each_pid_task(pid, type, p) {
644		send_sigurg_to_task(p, fown, group);
645	} while_each_pid_task(pid, type, p);
646	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
 
647 out_unlock_fown:
648	read_unlock(&fown->lock);
649	return ret;
650}
651
652static DEFINE_SPINLOCK(fasync_lock);
653static struct kmem_cache *fasync_cache __read_mostly;
654
655static void fasync_free_rcu(struct rcu_head *head)
656{
657	kmem_cache_free(fasync_cache,
658			container_of(head, struct fasync_struct, fa_rcu));
659}
660
661/*
662 * Remove a fasync entry. If successfully removed, return
663 * positive and clear the FASYNC flag. If no entry exists,
664 * do nothing and return 0.
665 *
666 * NOTE! It is very important that the FASYNC flag always
667 * match the state "is the filp on a fasync list".
668 *
669 */
670int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
671{
672	struct fasync_struct *fa, **fp;
673	int result = 0;
674
675	spin_lock(&filp->f_lock);
676	spin_lock(&fasync_lock);
677	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
678		if (fa->fa_file != filp)
679			continue;
680
681		spin_lock_irq(&fa->fa_lock);
682		fa->fa_file = NULL;
683		spin_unlock_irq(&fa->fa_lock);
684
685		*fp = fa->fa_next;
686		call_rcu(&fa->fa_rcu, fasync_free_rcu);
687		filp->f_flags &= ~FASYNC;
688		result = 1;
689		break;
690	}
691	spin_unlock(&fasync_lock);
692	spin_unlock(&filp->f_lock);
693	return result;
694}
695
696struct fasync_struct *fasync_alloc(void)
697{
698	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
699}
700
701/*
702 * NOTE! This can be used only for unused fasync entries:
703 * entries that actually got inserted on the fasync list
704 * need to be released by rcu - see fasync_remove_entry.
705 */
706void fasync_free(struct fasync_struct *new)
707{
708	kmem_cache_free(fasync_cache, new);
709}
710
711/*
712 * Insert a new entry into the fasync list.  Return the pointer to the
713 * old one if we didn't use the new one.
714 *
715 * NOTE! It is very important that the FASYNC flag always
716 * match the state "is the filp on a fasync list".
717 */
718struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
719{
720        struct fasync_struct *fa, **fp;
721
722	spin_lock(&filp->f_lock);
723	spin_lock(&fasync_lock);
724	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
725		if (fa->fa_file != filp)
726			continue;
727
728		spin_lock_irq(&fa->fa_lock);
729		fa->fa_fd = fd;
730		spin_unlock_irq(&fa->fa_lock);
731		goto out;
732	}
733
734	spin_lock_init(&new->fa_lock);
735	new->magic = FASYNC_MAGIC;
736	new->fa_file = filp;
737	new->fa_fd = fd;
738	new->fa_next = *fapp;
739	rcu_assign_pointer(*fapp, new);
740	filp->f_flags |= FASYNC;
741
742out:
743	spin_unlock(&fasync_lock);
744	spin_unlock(&filp->f_lock);
745	return fa;
746}
747
748/*
749 * Add a fasync entry. Return negative on error, positive if
750 * added, and zero if did nothing but change an existing one.
751 */
752static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
753{
754	struct fasync_struct *new;
755
756	new = fasync_alloc();
757	if (!new)
758		return -ENOMEM;
759
760	/*
761	 * fasync_insert_entry() returns the old (update) entry if
762	 * it existed.
763	 *
764	 * So free the (unused) new entry and return 0 to let the
765	 * caller know that we didn't add any new fasync entries.
766	 */
767	if (fasync_insert_entry(fd, filp, fapp, new)) {
768		fasync_free(new);
769		return 0;
770	}
771
772	return 1;
773}
774
775/*
776 * fasync_helper() is used by almost all character device drivers
777 * to set up the fasync queue, and for regular files by the file
778 * lease code. It returns negative on error, 0 if it did no changes
779 * and positive if it added/deleted the entry.
780 */
781int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
782{
783	if (!on)
784		return fasync_remove_entry(filp, fapp);
785	return fasync_add_entry(fd, filp, fapp);
786}
787
788EXPORT_SYMBOL(fasync_helper);
789
790/*
791 * rcu_read_lock() is held
792 */
793static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
794{
795	while (fa) {
796		struct fown_struct *fown;
797		unsigned long flags;
798
799		if (fa->magic != FASYNC_MAGIC) {
800			printk(KERN_ERR "kill_fasync: bad magic number in "
801			       "fasync_struct!\n");
802			return;
803		}
804		spin_lock_irqsave(&fa->fa_lock, flags);
805		if (fa->fa_file) {
806			fown = &fa->fa_file->f_owner;
807			/* Don't send SIGURG to processes which have not set a
808			   queued signum: SIGURG has its own default signalling
809			   mechanism. */
810			if (!(sig == SIGURG && fown->signum == 0))
811				send_sigio(fown, fa->fa_fd, band);
812		}
813		spin_unlock_irqrestore(&fa->fa_lock, flags);
814		fa = rcu_dereference(fa->fa_next);
815	}
816}
817
818void kill_fasync(struct fasync_struct **fp, int sig, int band)
819{
820	/* First a quick test without locking: usually
821	 * the list is empty.
822	 */
823	if (*fp) {
824		rcu_read_lock();
825		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
826		rcu_read_unlock();
827	}
828}
829EXPORT_SYMBOL(kill_fasync);
830
831static int __init fcntl_init(void)
832{
833	/*
834	 * Please add new bits here to ensure allocation uniqueness.
835	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
836	 * is defined as O_NONBLOCK on some platforms and not on others.
837	 */
838	BUILD_BUG_ON(19 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
839		O_RDONLY	| O_WRONLY	| O_RDWR	|
840		O_CREAT		| O_EXCL	| O_NOCTTY	|
841		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
842		__O_SYNC	| O_DSYNC	| FASYNC	|
843		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
844		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
845		__FMODE_EXEC	| O_PATH
846		));
847
848	fasync_cache = kmem_cache_create("fasync_cache",
849		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
850	return 0;
851}
852
853module_init(fcntl_init)
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/fcntl.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/syscalls.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/fdtable.h>
  15#include <linux/capability.h>
  16#include <linux/dnotify.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/security.h>
  21#include <linux/ptrace.h>
  22#include <linux/signal.h>
  23#include <linux/rcupdate.h>
  24#include <linux/pid_namespace.h>
  25#include <linux/user_namespace.h>
  26#include <linux/memfd.h>
  27#include <linux/compat.h>
  28
  29#include <linux/poll.h>
  30#include <asm/siginfo.h>
  31#include <linux/uaccess.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
  34
  35static int setfl(int fd, struct file * filp, unsigned long arg)
  36{
  37	struct inode * inode = file_inode(filp);
  38	int error = 0;
  39
  40	/*
  41	 * O_APPEND cannot be cleared if the file is marked as append-only
  42	 * and the file is open for write.
  43	 */
  44	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
  45		return -EPERM;
  46
  47	/* O_NOATIME can only be set by the owner or superuser */
  48	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
  49		if (!inode_owner_or_capable(inode))
  50			return -EPERM;
  51
  52	/* required for strict SunOS emulation */
  53	if (O_NONBLOCK != O_NDELAY)
  54	       if (arg & O_NDELAY)
  55		   arg |= O_NONBLOCK;
  56
  57	/* Pipe packetized mode is controlled by O_DIRECT flag */
  58	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
  59		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
  60			!filp->f_mapping->a_ops->direct_IO)
  61				return -EINVAL;
  62	}
  63
  64	if (filp->f_op->check_flags)
  65		error = filp->f_op->check_flags(arg);
  66	if (error)
  67		return error;
  68
  69	/*
  70	 * ->fasync() is responsible for setting the FASYNC bit.
  71	 */
  72	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
 
  73		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
  74		if (error < 0)
  75			goto out;
  76		if (error > 0)
  77			error = 0;
  78	}
  79	spin_lock(&filp->f_lock);
  80	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
  81	spin_unlock(&filp->f_lock);
  82
  83 out:
  84	return error;
  85}
  86
  87static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
  88                     int force)
  89{
  90	write_lock_irq(&filp->f_owner.lock);
  91	if (force || !filp->f_owner.pid) {
  92		put_pid(filp->f_owner.pid);
  93		filp->f_owner.pid = get_pid(pid);
  94		filp->f_owner.pid_type = type;
  95
  96		if (pid) {
  97			const struct cred *cred = current_cred();
  98			filp->f_owner.uid = cred->uid;
  99			filp->f_owner.euid = cred->euid;
 100		}
 101	}
 102	write_unlock_irq(&filp->f_owner.lock);
 103}
 104
 105void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
 106		int force)
 107{
 108	security_file_set_fowner(filp);
 
 
 
 
 
 109	f_modown(filp, pid, type, force);
 
 110}
 111EXPORT_SYMBOL(__f_setown);
 112
 113int f_setown(struct file *filp, unsigned long arg, int force)
 114{
 115	enum pid_type type;
 116	struct pid *pid = NULL;
 117	int who = arg, ret = 0;
 118
 119	type = PIDTYPE_TGID;
 120	if (who < 0) {
 121		/* avoid overflow below */
 122		if (who == INT_MIN)
 123			return -EINVAL;
 124
 125		type = PIDTYPE_PGID;
 126		who = -who;
 127	}
 128
 129	rcu_read_lock();
 130	if (who) {
 131		pid = find_vpid(who);
 132		if (!pid)
 133			ret = -ESRCH;
 134	}
 135
 136	if (!ret)
 137		__f_setown(filp, pid, type, force);
 138	rcu_read_unlock();
 139
 140	return ret;
 141}
 142EXPORT_SYMBOL(f_setown);
 143
 144void f_delown(struct file *filp)
 145{
 146	f_modown(filp, NULL, PIDTYPE_TGID, 1);
 147}
 148
 149pid_t f_getown(struct file *filp)
 150{
 151	pid_t pid;
 152	read_lock(&filp->f_owner.lock);
 153	pid = pid_vnr(filp->f_owner.pid);
 154	if (filp->f_owner.pid_type == PIDTYPE_PGID)
 155		pid = -pid;
 156	read_unlock(&filp->f_owner.lock);
 157	return pid;
 158}
 159
 160static int f_setown_ex(struct file *filp, unsigned long arg)
 161{
 162	struct f_owner_ex __user *owner_p = (void __user *)arg;
 163	struct f_owner_ex owner;
 164	struct pid *pid;
 165	int type;
 166	int ret;
 167
 168	ret = copy_from_user(&owner, owner_p, sizeof(owner));
 169	if (ret)
 170		return -EFAULT;
 171
 172	switch (owner.type) {
 173	case F_OWNER_TID:
 174		type = PIDTYPE_PID;
 175		break;
 176
 177	case F_OWNER_PID:
 178		type = PIDTYPE_TGID;
 179		break;
 180
 181	case F_OWNER_PGRP:
 182		type = PIDTYPE_PGID;
 183		break;
 184
 185	default:
 186		return -EINVAL;
 187	}
 188
 189	rcu_read_lock();
 190	pid = find_vpid(owner.pid);
 191	if (owner.pid && !pid)
 192		ret = -ESRCH;
 193	else
 194		 __f_setown(filp, pid, type, 1);
 195	rcu_read_unlock();
 196
 197	return ret;
 198}
 199
 200static int f_getown_ex(struct file *filp, unsigned long arg)
 201{
 202	struct f_owner_ex __user *owner_p = (void __user *)arg;
 203	struct f_owner_ex owner;
 204	int ret = 0;
 205
 206	read_lock(&filp->f_owner.lock);
 207	owner.pid = pid_vnr(filp->f_owner.pid);
 208	switch (filp->f_owner.pid_type) {
 209	case PIDTYPE_PID:
 210		owner.type = F_OWNER_TID;
 211		break;
 212
 213	case PIDTYPE_TGID:
 214		owner.type = F_OWNER_PID;
 215		break;
 216
 217	case PIDTYPE_PGID:
 218		owner.type = F_OWNER_PGRP;
 219		break;
 220
 221	default:
 222		WARN_ON(1);
 223		ret = -EINVAL;
 224		break;
 225	}
 226	read_unlock(&filp->f_owner.lock);
 227
 228	if (!ret) {
 229		ret = copy_to_user(owner_p, &owner, sizeof(owner));
 230		if (ret)
 231			ret = -EFAULT;
 232	}
 233	return ret;
 234}
 235
 236#ifdef CONFIG_CHECKPOINT_RESTORE
 237static int f_getowner_uids(struct file *filp, unsigned long arg)
 238{
 239	struct user_namespace *user_ns = current_user_ns();
 240	uid_t __user *dst = (void __user *)arg;
 241	uid_t src[2];
 242	int err;
 243
 244	read_lock(&filp->f_owner.lock);
 245	src[0] = from_kuid(user_ns, filp->f_owner.uid);
 246	src[1] = from_kuid(user_ns, filp->f_owner.euid);
 247	read_unlock(&filp->f_owner.lock);
 248
 249	err  = put_user(src[0], &dst[0]);
 250	err |= put_user(src[1], &dst[1]);
 251
 252	return err;
 253}
 254#else
 255static int f_getowner_uids(struct file *filp, unsigned long arg)
 256{
 257	return -EINVAL;
 258}
 259#endif
 260
 261static bool rw_hint_valid(enum rw_hint hint)
 262{
 263	switch (hint) {
 264	case RWF_WRITE_LIFE_NOT_SET:
 265	case RWH_WRITE_LIFE_NONE:
 266	case RWH_WRITE_LIFE_SHORT:
 267	case RWH_WRITE_LIFE_MEDIUM:
 268	case RWH_WRITE_LIFE_LONG:
 269	case RWH_WRITE_LIFE_EXTREME:
 270		return true;
 271	default:
 272		return false;
 273	}
 274}
 275
 276static long fcntl_rw_hint(struct file *file, unsigned int cmd,
 277			  unsigned long arg)
 278{
 279	struct inode *inode = file_inode(file);
 280	u64 *argp = (u64 __user *)arg;
 281	enum rw_hint hint;
 282	u64 h;
 283
 284	switch (cmd) {
 285	case F_GET_FILE_RW_HINT:
 286		h = file_write_hint(file);
 287		if (copy_to_user(argp, &h, sizeof(*argp)))
 288			return -EFAULT;
 289		return 0;
 290	case F_SET_FILE_RW_HINT:
 291		if (copy_from_user(&h, argp, sizeof(h)))
 292			return -EFAULT;
 293		hint = (enum rw_hint) h;
 294		if (!rw_hint_valid(hint))
 295			return -EINVAL;
 296
 297		spin_lock(&file->f_lock);
 298		file->f_write_hint = hint;
 299		spin_unlock(&file->f_lock);
 300		return 0;
 301	case F_GET_RW_HINT:
 302		h = inode->i_write_hint;
 303		if (copy_to_user(argp, &h, sizeof(*argp)))
 304			return -EFAULT;
 305		return 0;
 306	case F_SET_RW_HINT:
 307		if (copy_from_user(&h, argp, sizeof(h)))
 308			return -EFAULT;
 309		hint = (enum rw_hint) h;
 310		if (!rw_hint_valid(hint))
 311			return -EINVAL;
 312
 313		inode_lock(inode);
 314		inode->i_write_hint = hint;
 315		inode_unlock(inode);
 316		return 0;
 317	default:
 318		return -EINVAL;
 319	}
 320}
 321
 322static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
 323		struct file *filp)
 324{
 325	void __user *argp = (void __user *)arg;
 326	struct flock flock;
 327	long err = -EINVAL;
 328
 329	switch (cmd) {
 330	case F_DUPFD:
 331		err = f_dupfd(arg, filp, 0);
 332		break;
 333	case F_DUPFD_CLOEXEC:
 334		err = f_dupfd(arg, filp, O_CLOEXEC);
 
 
 
 
 
 
 335		break;
 336	case F_GETFD:
 337		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
 338		break;
 339	case F_SETFD:
 340		err = 0;
 341		set_close_on_exec(fd, arg & FD_CLOEXEC);
 342		break;
 343	case F_GETFL:
 344		err = filp->f_flags;
 345		break;
 346	case F_SETFL:
 347		err = setfl(fd, filp, arg);
 348		break;
 349#if BITS_PER_LONG != 32
 350	/* 32-bit arches must use fcntl64() */
 351	case F_OFD_GETLK:
 352#endif
 353	case F_GETLK:
 354		if (copy_from_user(&flock, argp, sizeof(flock)))
 355			return -EFAULT;
 356		err = fcntl_getlk(filp, cmd, &flock);
 357		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 358			return -EFAULT;
 359		break;
 360#if BITS_PER_LONG != 32
 361	/* 32-bit arches must use fcntl64() */
 362	case F_OFD_SETLK:
 363	case F_OFD_SETLKW:
 364#endif
 365		/* Fallthrough */
 366	case F_SETLK:
 367	case F_SETLKW:
 368		if (copy_from_user(&flock, argp, sizeof(flock)))
 369			return -EFAULT;
 370		err = fcntl_setlk(fd, filp, cmd, &flock);
 371		break;
 372	case F_GETOWN:
 373		/*
 374		 * XXX If f_owner is a process group, the
 375		 * negative return value will get converted
 376		 * into an error.  Oops.  If we keep the
 377		 * current syscall conventions, the only way
 378		 * to fix this will be in libc.
 379		 */
 380		err = f_getown(filp);
 381		force_successful_syscall_return();
 382		break;
 383	case F_SETOWN:
 384		err = f_setown(filp, arg, 1);
 385		break;
 386	case F_GETOWN_EX:
 387		err = f_getown_ex(filp, arg);
 388		break;
 389	case F_SETOWN_EX:
 390		err = f_setown_ex(filp, arg);
 391		break;
 392	case F_GETOWNER_UIDS:
 393		err = f_getowner_uids(filp, arg);
 394		break;
 395	case F_GETSIG:
 396		err = filp->f_owner.signum;
 397		break;
 398	case F_SETSIG:
 399		/* arg == 0 restores default behaviour. */
 400		if (!valid_signal(arg)) {
 401			break;
 402		}
 403		err = 0;
 404		filp->f_owner.signum = arg;
 405		break;
 406	case F_GETLEASE:
 407		err = fcntl_getlease(filp);
 408		break;
 409	case F_SETLEASE:
 410		err = fcntl_setlease(fd, filp, arg);
 411		break;
 412	case F_NOTIFY:
 413		err = fcntl_dirnotify(fd, filp, arg);
 414		break;
 415	case F_SETPIPE_SZ:
 416	case F_GETPIPE_SZ:
 417		err = pipe_fcntl(filp, cmd, arg);
 418		break;
 419	case F_ADD_SEALS:
 420	case F_GET_SEALS:
 421		err = memfd_fcntl(filp, cmd, arg);
 422		break;
 423	case F_GET_RW_HINT:
 424	case F_SET_RW_HINT:
 425	case F_GET_FILE_RW_HINT:
 426	case F_SET_FILE_RW_HINT:
 427		err = fcntl_rw_hint(filp, cmd, arg);
 428		break;
 429	default:
 430		break;
 431	}
 432	return err;
 433}
 434
 435static int check_fcntl_cmd(unsigned cmd)
 436{
 437	switch (cmd) {
 438	case F_DUPFD:
 439	case F_DUPFD_CLOEXEC:
 440	case F_GETFD:
 441	case F_SETFD:
 442	case F_GETFL:
 443		return 1;
 444	}
 445	return 0;
 446}
 447
 448SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
 449{	
 450	struct fd f = fdget_raw(fd);
 451	long err = -EBADF;
 452
 453	if (!f.file)
 
 454		goto out;
 455
 456	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 457		if (!check_fcntl_cmd(cmd))
 458			goto out1;
 
 
 
 
 
 
 
 
 459	}
 460
 461	err = security_file_fcntl(f.file, cmd, arg);
 462	if (!err)
 463		err = do_fcntl(fd, cmd, arg, f.file);
 464
 465out1:
 466 	fdput(f);
 467out:
 468	return err;
 469}
 470
 471#if BITS_PER_LONG == 32
 472SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 473		unsigned long, arg)
 474{	
 475	void __user *argp = (void __user *)arg;
 476	struct fd f = fdget_raw(fd);
 477	struct flock64 flock;
 478	long err = -EBADF;
 479
 480	if (!f.file)
 
 
 481		goto out;
 482
 483	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 484		if (!check_fcntl_cmd(cmd))
 485			goto out1;
 486	}
 487
 488	err = security_file_fcntl(f.file, cmd, arg);
 489	if (err)
 490		goto out1;
 491	
 492	switch (cmd) {
 493	case F_GETLK64:
 494	case F_OFD_GETLK:
 495		err = -EFAULT;
 496		if (copy_from_user(&flock, argp, sizeof(flock)))
 497			break;
 498		err = fcntl_getlk64(f.file, cmd, &flock);
 499		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 500			err = -EFAULT;
 501		break;
 502	case F_SETLK64:
 503	case F_SETLKW64:
 504	case F_OFD_SETLK:
 505	case F_OFD_SETLKW:
 506		err = -EFAULT;
 507		if (copy_from_user(&flock, argp, sizeof(flock)))
 508			break;
 509		err = fcntl_setlk64(fd, f.file, cmd, &flock);
 510		break;
 511	default:
 512		err = do_fcntl(fd, cmd, arg, f.file);
 513		break;
 514	}
 515out1:
 516	fdput(f);
 517out:
 518	return err;
 519}
 520#endif
 521
 522#ifdef CONFIG_COMPAT
 523/* careful - don't use anywhere else */
 524#define copy_flock_fields(dst, src)		\
 525	(dst)->l_type = (src)->l_type;		\
 526	(dst)->l_whence = (src)->l_whence;	\
 527	(dst)->l_start = (src)->l_start;	\
 528	(dst)->l_len = (src)->l_len;		\
 529	(dst)->l_pid = (src)->l_pid;
 530
 531static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
 532{
 533	struct compat_flock fl;
 534
 535	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
 536		return -EFAULT;
 537	copy_flock_fields(kfl, &fl);
 538	return 0;
 539}
 540
 541static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
 542{
 543	struct compat_flock64 fl;
 544
 545	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
 546		return -EFAULT;
 547	copy_flock_fields(kfl, &fl);
 548	return 0;
 549}
 550
 551static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
 552{
 553	struct compat_flock fl;
 554
 555	memset(&fl, 0, sizeof(struct compat_flock));
 556	copy_flock_fields(&fl, kfl);
 557	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
 558		return -EFAULT;
 559	return 0;
 560}
 561
 562static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
 563{
 564	struct compat_flock64 fl;
 565
 566	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
 567	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
 568
 569	memset(&fl, 0, sizeof(struct compat_flock64));
 570	copy_flock_fields(&fl, kfl);
 571	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
 572		return -EFAULT;
 573	return 0;
 574}
 575#undef copy_flock_fields
 576
 577static unsigned int
 578convert_fcntl_cmd(unsigned int cmd)
 579{
 580	switch (cmd) {
 581	case F_GETLK64:
 582		return F_GETLK;
 583	case F_SETLK64:
 584		return F_SETLK;
 585	case F_SETLKW64:
 586		return F_SETLKW;
 587	}
 588
 589	return cmd;
 590}
 591
 592/*
 593 * GETLK was successful and we need to return the data, but it needs to fit in
 594 * the compat structure.
 595 * l_start shouldn't be too big, unless the original start + end is greater than
 596 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
 597 * -EOVERFLOW in that case.  l_len could be too big, in which case we just
 598 * truncate it, and only allow the app to see that part of the conflicting lock
 599 * that might make sense to it anyway
 600 */
 601static int fixup_compat_flock(struct flock *flock)
 602{
 603	if (flock->l_start > COMPAT_OFF_T_MAX)
 604		return -EOVERFLOW;
 605	if (flock->l_len > COMPAT_OFF_T_MAX)
 606		flock->l_len = COMPAT_OFF_T_MAX;
 607	return 0;
 608}
 609
 610static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
 611			     compat_ulong_t arg)
 612{
 613	struct fd f = fdget_raw(fd);
 614	struct flock flock;
 615	long err = -EBADF;
 616
 617	if (!f.file)
 618		return err;
 619
 620	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 621		if (!check_fcntl_cmd(cmd))
 622			goto out_put;
 623	}
 624
 625	err = security_file_fcntl(f.file, cmd, arg);
 626	if (err)
 627		goto out_put;
 628
 629	switch (cmd) {
 630	case F_GETLK:
 631		err = get_compat_flock(&flock, compat_ptr(arg));
 632		if (err)
 633			break;
 634		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 635		if (err)
 
 
 636			break;
 637		err = fixup_compat_flock(&flock);
 638		if (!err)
 639			err = put_compat_flock(&flock, compat_ptr(arg));
 640		break;
 641	case F_GETLK64:
 642	case F_OFD_GETLK:
 643		err = get_compat_flock64(&flock, compat_ptr(arg));
 644		if (err)
 645			break;
 646		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 647		if (!err)
 648			err = put_compat_flock64(&flock, compat_ptr(arg));
 649		break;
 650	case F_SETLK:
 651	case F_SETLKW:
 652		err = get_compat_flock(&flock, compat_ptr(arg));
 653		if (err)
 654			break;
 655		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 656		break;
 657	case F_SETLK64:
 658	case F_SETLKW64:
 659	case F_OFD_SETLK:
 660	case F_OFD_SETLKW:
 661		err = get_compat_flock64(&flock, compat_ptr(arg));
 662		if (err)
 663			break;
 664		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 665		break;
 666	default:
 667		err = do_fcntl(fd, cmd, arg, f.file);
 668		break;
 669	}
 670out_put:
 671	fdput(f);
 672	return err;
 673}
 674
 675COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 676		       compat_ulong_t, arg)
 677{
 678	return do_compat_fcntl64(fd, cmd, arg);
 679}
 680
 681COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
 682		       compat_ulong_t, arg)
 683{
 684	switch (cmd) {
 685	case F_GETLK64:
 686	case F_SETLK64:
 687	case F_SETLKW64:
 688	case F_OFD_GETLK:
 689	case F_OFD_SETLK:
 690	case F_OFD_SETLKW:
 691		return -EINVAL;
 692	}
 693	return do_compat_fcntl64(fd, cmd, arg);
 694}
 695#endif
 696
 697/* Table to convert sigio signal codes into poll band bitmaps */
 698
 699static const __poll_t band_table[NSIGPOLL] = {
 700	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
 701	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
 702	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
 703	EPOLLERR,				/* POLL_ERR */
 704	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
 705	EPOLLHUP | EPOLLERR			/* POLL_HUP */
 706};
 707
 708static inline int sigio_perm(struct task_struct *p,
 709                             struct fown_struct *fown, int sig)
 710{
 711	const struct cred *cred;
 712	int ret;
 713
 714	rcu_read_lock();
 715	cred = __task_cred(p);
 716	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
 717		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
 718		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
 719	       !security_file_send_sigiotask(p, fown, sig));
 720	rcu_read_unlock();
 721	return ret;
 722}
 723
 724static void send_sigio_to_task(struct task_struct *p,
 725			       struct fown_struct *fown,
 726			       int fd, int reason, enum pid_type type)
 727{
 728	/*
 729	 * F_SETSIG can change ->signum lockless in parallel, make
 730	 * sure we read it once and use the same value throughout.
 731	 */
 732	int signum = READ_ONCE(fown->signum);
 733
 734	if (!sigio_perm(p, fown, signum))
 735		return;
 736
 737	switch (signum) {
 738		kernel_siginfo_t si;
 739		default:
 740			/* Queue a rt signal with the appropriate fd as its
 741			   value.  We use SI_SIGIO as the source, not 
 742			   SI_KERNEL, since kernel signals always get 
 743			   delivered even if we can't queue.  Failure to
 744			   queue in this case _should_ be reported; we fall
 745			   back to SIGIO in that case. --sct */
 746			clear_siginfo(&si);
 747			si.si_signo = signum;
 748			si.si_errno = 0;
 749		        si.si_code  = reason;
 750			/*
 751			 * Posix definies POLL_IN and friends to be signal
 752			 * specific si_codes for SIG_POLL.  Linux extended
 753			 * these si_codes to other signals in a way that is
 754			 * ambiguous if other signals also have signal
 755			 * specific si_codes.  In that case use SI_SIGIO instead
 756			 * to remove the ambiguity.
 757			 */
 758			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
 759				si.si_code = SI_SIGIO;
 760
 761			/* Make sure we are called with one of the POLL_*
 762			   reasons, otherwise we could leak kernel stack into
 763			   userspace.  */
 764			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
 765			if (reason - POLL_IN >= NSIGPOLL)
 766				si.si_band  = ~0L;
 767			else
 768				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
 769			si.si_fd    = fd;
 770			if (!do_send_sig_info(signum, &si, p, type))
 771				break;
 772		/* fall-through - fall back on the old plain SIGIO signal */
 773		case 0:
 774			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
 775	}
 776}
 777
 778void send_sigio(struct fown_struct *fown, int fd, int band)
 779{
 780	struct task_struct *p;
 781	enum pid_type type;
 782	struct pid *pid;
 
 783	
 784	read_lock(&fown->lock);
 785
 786	type = fown->pid_type;
 
 
 
 
 
 787	pid = fown->pid;
 788	if (!pid)
 789		goto out_unlock_fown;
 790
 791	if (type <= PIDTYPE_TGID) {
 792		rcu_read_lock();
 793		p = pid_task(pid, PIDTYPE_PID);
 794		if (p)
 795			send_sigio_to_task(p, fown, fd, band, type);
 796		rcu_read_unlock();
 797	} else {
 798		read_lock(&tasklist_lock);
 799		do_each_pid_task(pid, type, p) {
 800			send_sigio_to_task(p, fown, fd, band, type);
 801		} while_each_pid_task(pid, type, p);
 802		read_unlock(&tasklist_lock);
 803	}
 804 out_unlock_fown:
 805	read_unlock(&fown->lock);
 806}
 807
 808static void send_sigurg_to_task(struct task_struct *p,
 809				struct fown_struct *fown, enum pid_type type)
 810{
 811	if (sigio_perm(p, fown, SIGURG))
 812		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
 813}
 814
 815int send_sigurg(struct fown_struct *fown)
 816{
 817	struct task_struct *p;
 818	enum pid_type type;
 819	struct pid *pid;
 
 820	int ret = 0;
 821	
 822	read_lock(&fown->lock);
 823
 824	type = fown->pid_type;
 
 
 
 
 
 825	pid = fown->pid;
 826	if (!pid)
 827		goto out_unlock_fown;
 828
 829	ret = 1;
 830
 831	if (type <= PIDTYPE_TGID) {
 832		rcu_read_lock();
 833		p = pid_task(pid, PIDTYPE_PID);
 834		if (p)
 835			send_sigurg_to_task(p, fown, type);
 836		rcu_read_unlock();
 837	} else {
 838		read_lock(&tasklist_lock);
 839		do_each_pid_task(pid, type, p) {
 840			send_sigurg_to_task(p, fown, type);
 841		} while_each_pid_task(pid, type, p);
 842		read_unlock(&tasklist_lock);
 843	}
 844 out_unlock_fown:
 845	read_unlock(&fown->lock);
 846	return ret;
 847}
 848
 849static DEFINE_SPINLOCK(fasync_lock);
 850static struct kmem_cache *fasync_cache __read_mostly;
 851
 852static void fasync_free_rcu(struct rcu_head *head)
 853{
 854	kmem_cache_free(fasync_cache,
 855			container_of(head, struct fasync_struct, fa_rcu));
 856}
 857
 858/*
 859 * Remove a fasync entry. If successfully removed, return
 860 * positive and clear the FASYNC flag. If no entry exists,
 861 * do nothing and return 0.
 862 *
 863 * NOTE! It is very important that the FASYNC flag always
 864 * match the state "is the filp on a fasync list".
 865 *
 866 */
 867int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
 868{
 869	struct fasync_struct *fa, **fp;
 870	int result = 0;
 871
 872	spin_lock(&filp->f_lock);
 873	spin_lock(&fasync_lock);
 874	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 875		if (fa->fa_file != filp)
 876			continue;
 877
 878		write_lock_irq(&fa->fa_lock);
 879		fa->fa_file = NULL;
 880		write_unlock_irq(&fa->fa_lock);
 881
 882		*fp = fa->fa_next;
 883		call_rcu(&fa->fa_rcu, fasync_free_rcu);
 884		filp->f_flags &= ~FASYNC;
 885		result = 1;
 886		break;
 887	}
 888	spin_unlock(&fasync_lock);
 889	spin_unlock(&filp->f_lock);
 890	return result;
 891}
 892
 893struct fasync_struct *fasync_alloc(void)
 894{
 895	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
 896}
 897
 898/*
 899 * NOTE! This can be used only for unused fasync entries:
 900 * entries that actually got inserted on the fasync list
 901 * need to be released by rcu - see fasync_remove_entry.
 902 */
 903void fasync_free(struct fasync_struct *new)
 904{
 905	kmem_cache_free(fasync_cache, new);
 906}
 907
 908/*
 909 * Insert a new entry into the fasync list.  Return the pointer to the
 910 * old one if we didn't use the new one.
 911 *
 912 * NOTE! It is very important that the FASYNC flag always
 913 * match the state "is the filp on a fasync list".
 914 */
 915struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
 916{
 917        struct fasync_struct *fa, **fp;
 918
 919	spin_lock(&filp->f_lock);
 920	spin_lock(&fasync_lock);
 921	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 922		if (fa->fa_file != filp)
 923			continue;
 924
 925		write_lock_irq(&fa->fa_lock);
 926		fa->fa_fd = fd;
 927		write_unlock_irq(&fa->fa_lock);
 928		goto out;
 929	}
 930
 931	rwlock_init(&new->fa_lock);
 932	new->magic = FASYNC_MAGIC;
 933	new->fa_file = filp;
 934	new->fa_fd = fd;
 935	new->fa_next = *fapp;
 936	rcu_assign_pointer(*fapp, new);
 937	filp->f_flags |= FASYNC;
 938
 939out:
 940	spin_unlock(&fasync_lock);
 941	spin_unlock(&filp->f_lock);
 942	return fa;
 943}
 944
 945/*
 946 * Add a fasync entry. Return negative on error, positive if
 947 * added, and zero if did nothing but change an existing one.
 948 */
 949static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
 950{
 951	struct fasync_struct *new;
 952
 953	new = fasync_alloc();
 954	if (!new)
 955		return -ENOMEM;
 956
 957	/*
 958	 * fasync_insert_entry() returns the old (update) entry if
 959	 * it existed.
 960	 *
 961	 * So free the (unused) new entry and return 0 to let the
 962	 * caller know that we didn't add any new fasync entries.
 963	 */
 964	if (fasync_insert_entry(fd, filp, fapp, new)) {
 965		fasync_free(new);
 966		return 0;
 967	}
 968
 969	return 1;
 970}
 971
 972/*
 973 * fasync_helper() is used by almost all character device drivers
 974 * to set up the fasync queue, and for regular files by the file
 975 * lease code. It returns negative on error, 0 if it did no changes
 976 * and positive if it added/deleted the entry.
 977 */
 978int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
 979{
 980	if (!on)
 981		return fasync_remove_entry(filp, fapp);
 982	return fasync_add_entry(fd, filp, fapp);
 983}
 984
 985EXPORT_SYMBOL(fasync_helper);
 986
 987/*
 988 * rcu_read_lock() is held
 989 */
 990static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
 991{
 992	while (fa) {
 993		struct fown_struct *fown;
 
 994
 995		if (fa->magic != FASYNC_MAGIC) {
 996			printk(KERN_ERR "kill_fasync: bad magic number in "
 997			       "fasync_struct!\n");
 998			return;
 999		}
1000		read_lock(&fa->fa_lock);
1001		if (fa->fa_file) {
1002			fown = &fa->fa_file->f_owner;
1003			/* Don't send SIGURG to processes which have not set a
1004			   queued signum: SIGURG has its own default signalling
1005			   mechanism. */
1006			if (!(sig == SIGURG && fown->signum == 0))
1007				send_sigio(fown, fa->fa_fd, band);
1008		}
1009		read_unlock(&fa->fa_lock);
1010		fa = rcu_dereference(fa->fa_next);
1011	}
1012}
1013
1014void kill_fasync(struct fasync_struct **fp, int sig, int band)
1015{
1016	/* First a quick test without locking: usually
1017	 * the list is empty.
1018	 */
1019	if (*fp) {
1020		rcu_read_lock();
1021		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1022		rcu_read_unlock();
1023	}
1024}
1025EXPORT_SYMBOL(kill_fasync);
1026
1027static int __init fcntl_init(void)
1028{
1029	/*
1030	 * Please add new bits here to ensure allocation uniqueness.
1031	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1032	 * is defined as O_NONBLOCK on some platforms and not on others.
1033	 */
1034	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1035		HWEIGHT32(
1036			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1037			__FMODE_EXEC | __FMODE_NONOTIFY));
 
 
 
 
 
1038
1039	fasync_cache = kmem_cache_create("fasync_cache",
1040		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
1041	return 0;
1042}
1043
1044module_init(fcntl_init)