Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * ACPI probing code for ARM performance counters.
  4 *
  5 * Copyright (C) 2017 ARM Ltd.
  6 */
  7
  8#include <linux/acpi.h>
  9#include <linux/cpumask.h>
 10#include <linux/init.h>
 11#include <linux/irq.h>
 12#include <linux/irqdesc.h>
 13#include <linux/percpu.h>
 14#include <linux/perf/arm_pmu.h>
 15
 16#include <asm/cputype.h>
 17
 18static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
 19static DEFINE_PER_CPU(int, pmu_irqs);
 20
 21static int arm_pmu_acpi_register_irq(int cpu)
 22{
 23	struct acpi_madt_generic_interrupt *gicc;
 24	int gsi, trigger;
 25
 26	gicc = acpi_cpu_get_madt_gicc(cpu);
 27	if (WARN_ON(!gicc))
 28		return -EINVAL;
 29
 30	gsi = gicc->performance_interrupt;
 31
 32	/*
 33	 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
 34	 * have an interrupt. QEMU advertises this by using a GSI of zero,
 35	 * which is not known to be valid on any hardware despite being
 36	 * valid per the spec. Take the pragmatic approach and reject a
 37	 * GSI of zero for now.
 38	 */
 39	if (!gsi)
 40		return 0;
 41
 42	if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
 43		trigger = ACPI_EDGE_SENSITIVE;
 44	else
 45		trigger = ACPI_LEVEL_SENSITIVE;
 46
 47	/*
 48	 * Helpfully, the MADT GICC doesn't have a polarity flag for the
 49	 * "performance interrupt". Luckily, on compliant GICs the polarity is
 50	 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
 51	 * from SW.
 52	 *
 53	 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
 54	 * may not match the real polarity, but that should not matter.
 55	 *
 56	 * Other interrupt controllers are not supported with ACPI.
 57	 */
 58	return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
 59}
 60
 61static void arm_pmu_acpi_unregister_irq(int cpu)
 62{
 63	struct acpi_madt_generic_interrupt *gicc;
 64	int gsi;
 65
 66	gicc = acpi_cpu_get_madt_gicc(cpu);
 67	if (!gicc)
 68		return;
 69
 70	gsi = gicc->performance_interrupt;
 71	acpi_unregister_gsi(gsi);
 72}
 73
 74#if IS_ENABLED(CONFIG_ARM_SPE_PMU)
 75static struct resource spe_resources[] = {
 76	{
 77		/* irq */
 78		.flags          = IORESOURCE_IRQ,
 79	}
 80};
 81
 82static struct platform_device spe_dev = {
 83	.name = ARMV8_SPE_PDEV_NAME,
 84	.id = -1,
 85	.resource = spe_resources,
 86	.num_resources = ARRAY_SIZE(spe_resources)
 87};
 88
 89/*
 90 * For lack of a better place, hook the normal PMU MADT walk
 91 * and create a SPE device if we detect a recent MADT with
 92 * a homogeneous PPI mapping.
 93 */
 94static void arm_spe_acpi_register_device(void)
 95{
 96	int cpu, hetid, irq, ret;
 97	bool first = true;
 98	u16 gsi = 0;
 99
100	/*
101	 * Sanity check all the GICC tables for the same interrupt number.
102	 * For now, we only support homogeneous ACPI/SPE machines.
103	 */
104	for_each_possible_cpu(cpu) {
105		struct acpi_madt_generic_interrupt *gicc;
106
107		gicc = acpi_cpu_get_madt_gicc(cpu);
108		if (gicc->header.length < ACPI_MADT_GICC_SPE)
109			return;
110
111		if (first) {
112			gsi = gicc->spe_interrupt;
113			if (!gsi)
114				return;
115			hetid = find_acpi_cpu_topology_hetero_id(cpu);
116			first = false;
117		} else if ((gsi != gicc->spe_interrupt) ||
118			   (hetid != find_acpi_cpu_topology_hetero_id(cpu))) {
119			pr_warn("ACPI: SPE must be homogeneous\n");
120			return;
121		}
122	}
123
124	irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE,
125				ACPI_ACTIVE_HIGH);
126	if (irq < 0) {
127		pr_warn("ACPI: SPE Unable to register interrupt: %d\n", gsi);
128		return;
129	}
130
131	spe_resources[0].start = irq;
132	ret = platform_device_register(&spe_dev);
133	if (ret < 0) {
134		pr_warn("ACPI: SPE: Unable to register device\n");
135		acpi_unregister_gsi(gsi);
136	}
137}
138#else
139static inline void arm_spe_acpi_register_device(void)
140{
141}
142#endif /* CONFIG_ARM_SPE_PMU */
143
144static int arm_pmu_acpi_parse_irqs(void)
145{
146	int irq, cpu, irq_cpu, err;
147
148	for_each_possible_cpu(cpu) {
149		irq = arm_pmu_acpi_register_irq(cpu);
150		if (irq < 0) {
151			err = irq;
152			pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
153				cpu, err);
154			goto out_err;
155		} else if (irq == 0) {
156			pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
157		}
158
159		/*
160		 * Log and request the IRQ so the core arm_pmu code can manage
161		 * it. We'll have to sanity-check IRQs later when we associate
162		 * them with their PMUs.
163		 */
164		per_cpu(pmu_irqs, cpu) = irq;
165		armpmu_request_irq(irq, cpu);
166	}
167
168	return 0;
169
170out_err:
171	for_each_possible_cpu(cpu) {
172		irq = per_cpu(pmu_irqs, cpu);
173		if (!irq)
174			continue;
175
176		arm_pmu_acpi_unregister_irq(cpu);
177
178		/*
179		 * Blat all copies of the IRQ so that we only unregister the
180		 * corresponding GSI once (e.g. when we have PPIs).
181		 */
182		for_each_possible_cpu(irq_cpu) {
183			if (per_cpu(pmu_irqs, irq_cpu) == irq)
184				per_cpu(pmu_irqs, irq_cpu) = 0;
185		}
186	}
187
188	return err;
189}
190
191static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
192{
193	unsigned long cpuid = read_cpuid_id();
194	struct arm_pmu *pmu;
195	int cpu;
196
197	for_each_possible_cpu(cpu) {
198		pmu = per_cpu(probed_pmus, cpu);
199		if (!pmu || pmu->acpi_cpuid != cpuid)
200			continue;
201
202		return pmu;
203	}
204
205	pmu = armpmu_alloc_atomic();
206	if (!pmu) {
207		pr_warn("Unable to allocate PMU for CPU%d\n",
208			smp_processor_id());
209		return NULL;
210	}
211
212	pmu->acpi_cpuid = cpuid;
213
214	return pmu;
215}
216
217/*
218 * Check whether the new IRQ is compatible with those already associated with
219 * the PMU (e.g. we don't have mismatched PPIs).
220 */
221static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
222{
223	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
224	int cpu;
225
226	if (!irq)
227		return true;
228
229	for_each_cpu(cpu, &pmu->supported_cpus) {
230		int other_irq = per_cpu(hw_events->irq, cpu);
231		if (!other_irq)
232			continue;
233
234		if (irq == other_irq)
235			continue;
236		if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
237			continue;
238
239		pr_warn("mismatched PPIs detected\n");
240		return false;
241	}
242
243	return true;
244}
245
246/*
247 * This must run before the common arm_pmu hotplug logic, so that we can
248 * associate a CPU and its interrupt before the common code tries to manage the
249 * affinity and so on.
250 *
251 * Note that hotplug events are serialized, so we cannot race with another CPU
252 * coming up. The perf core won't open events while a hotplug event is in
253 * progress.
254 */
255static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
256{
257	struct arm_pmu *pmu;
258	struct pmu_hw_events __percpu *hw_events;
259	int irq;
260
261	/* If we've already probed this CPU, we have nothing to do */
262	if (per_cpu(probed_pmus, cpu))
263		return 0;
264
265	irq = per_cpu(pmu_irqs, cpu);
266
267	pmu = arm_pmu_acpi_find_alloc_pmu();
268	if (!pmu)
269		return -ENOMEM;
270
271	per_cpu(probed_pmus, cpu) = pmu;
272
273	if (pmu_irq_matches(pmu, irq)) {
274		hw_events = pmu->hw_events;
275		per_cpu(hw_events->irq, cpu) = irq;
276	}
277
278	cpumask_set_cpu(cpu, &pmu->supported_cpus);
279
280	/*
281	 * Ideally, we'd probe the PMU here when we find the first matching
282	 * CPU. We can't do that for several reasons; see the comment in
283	 * arm_pmu_acpi_init().
284	 *
285	 * So for the time being, we're done.
286	 */
287	return 0;
288}
289
290int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
291{
292	int pmu_idx = 0;
293	int cpu, ret;
294
295	/*
296	 * Initialise and register the set of PMUs which we know about right
297	 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
298	 * could handle late hotplug, but this may lead to deadlock since we
299	 * might try to register a hotplug notifier instance from within a
300	 * hotplug notifier.
301	 *
302	 * There's also the problem of having access to the right init_fn,
303	 * without tying this too deeply into the "real" PMU driver.
304	 *
305	 * For the moment, as with the platform/DT case, we need at least one
306	 * of a PMU's CPUs to be online at probe time.
307	 */
308	for_each_possible_cpu(cpu) {
309		struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
310		char *base_name;
311
312		if (!pmu || pmu->name)
313			continue;
314
315		ret = init_fn(pmu);
316		if (ret == -ENODEV) {
317			/* PMU not handled by this driver, or not present */
318			continue;
319		} else if (ret) {
320			pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
321			return ret;
322		}
323
324		base_name = pmu->name;
325		pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
326		if (!pmu->name) {
327			pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
328			return -ENOMEM;
329		}
330
331		ret = armpmu_register(pmu);
332		if (ret) {
333			pr_warn("Failed to register PMU for CPU%d\n", cpu);
334			kfree(pmu->name);
335			return ret;
336		}
337	}
338
339	return 0;
340}
341
342static int arm_pmu_acpi_init(void)
343{
344	int ret;
345
346	if (acpi_disabled)
347		return 0;
348
349	arm_spe_acpi_register_device();
350
351	ret = arm_pmu_acpi_parse_irqs();
352	if (ret)
353		return ret;
354
355	ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
356				"perf/arm/pmu_acpi:starting",
357				arm_pmu_acpi_cpu_starting, NULL);
358
359	return ret;
360}
361subsys_initcall(arm_pmu_acpi_init)