Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * ACPI probing code for ARM performance counters.
  3 *
  4 * Copyright (C) 2017 ARM Ltd.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10
 11#include <linux/acpi.h>
 12#include <linux/cpumask.h>
 13#include <linux/init.h>
 14#include <linux/irq.h>
 15#include <linux/irqdesc.h>
 16#include <linux/percpu.h>
 17#include <linux/perf/arm_pmu.h>
 18
 19#include <asm/cputype.h>
 20
 21static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
 22static DEFINE_PER_CPU(int, pmu_irqs);
 23
 24static int arm_pmu_acpi_register_irq(int cpu)
 25{
 26	struct acpi_madt_generic_interrupt *gicc;
 27	int gsi, trigger;
 28
 29	gicc = acpi_cpu_get_madt_gicc(cpu);
 30	if (WARN_ON(!gicc))
 31		return -EINVAL;
 32
 33	gsi = gicc->performance_interrupt;
 34
 35	/*
 36	 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
 37	 * have an interrupt. QEMU advertises this by using a GSI of zero,
 38	 * which is not known to be valid on any hardware despite being
 39	 * valid per the spec. Take the pragmatic approach and reject a
 40	 * GSI of zero for now.
 41	 */
 42	if (!gsi)
 43		return 0;
 44
 45	if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
 46		trigger = ACPI_EDGE_SENSITIVE;
 47	else
 48		trigger = ACPI_LEVEL_SENSITIVE;
 49
 50	/*
 51	 * Helpfully, the MADT GICC doesn't have a polarity flag for the
 52	 * "performance interrupt". Luckily, on compliant GICs the polarity is
 53	 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
 54	 * from SW.
 55	 *
 56	 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
 57	 * may not match the real polarity, but that should not matter.
 58	 *
 59	 * Other interrupt controllers are not supported with ACPI.
 60	 */
 61	return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
 62}
 63
 64static void arm_pmu_acpi_unregister_irq(int cpu)
 65{
 66	struct acpi_madt_generic_interrupt *gicc;
 67	int gsi;
 68
 69	gicc = acpi_cpu_get_madt_gicc(cpu);
 70	if (!gicc)
 71		return;
 72
 73	gsi = gicc->performance_interrupt;
 74	acpi_unregister_gsi(gsi);
 75}
 76
 77static int arm_pmu_acpi_parse_irqs(void)
 78{
 79	int irq, cpu, irq_cpu, err;
 80
 81	for_each_possible_cpu(cpu) {
 82		irq = arm_pmu_acpi_register_irq(cpu);
 83		if (irq < 0) {
 84			err = irq;
 85			pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
 86				cpu, err);
 87			goto out_err;
 88		} else if (irq == 0) {
 89			pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
 90		}
 91
 92		/*
 93		 * Log and request the IRQ so the core arm_pmu code can manage
 94		 * it. We'll have to sanity-check IRQs later when we associate
 95		 * them with their PMUs.
 96		 */
 97		per_cpu(pmu_irqs, cpu) = irq;
 98		armpmu_request_irq(irq, cpu);
 99	}
100
101	return 0;
102
103out_err:
104	for_each_possible_cpu(cpu) {
105		irq = per_cpu(pmu_irqs, cpu);
106		if (!irq)
107			continue;
108
109		arm_pmu_acpi_unregister_irq(cpu);
110
111		/*
112		 * Blat all copies of the IRQ so that we only unregister the
113		 * corresponding GSI once (e.g. when we have PPIs).
114		 */
115		for_each_possible_cpu(irq_cpu) {
116			if (per_cpu(pmu_irqs, irq_cpu) == irq)
117				per_cpu(pmu_irqs, irq_cpu) = 0;
118		}
119	}
120
121	return err;
122}
123
124static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
125{
126	unsigned long cpuid = read_cpuid_id();
127	struct arm_pmu *pmu;
128	int cpu;
129
130	for_each_possible_cpu(cpu) {
131		pmu = per_cpu(probed_pmus, cpu);
132		if (!pmu || pmu->acpi_cpuid != cpuid)
133			continue;
134
135		return pmu;
136	}
137
138	pmu = armpmu_alloc_atomic();
139	if (!pmu) {
140		pr_warn("Unable to allocate PMU for CPU%d\n",
141			smp_processor_id());
142		return NULL;
143	}
144
145	pmu->acpi_cpuid = cpuid;
146
147	return pmu;
148}
149
150/*
151 * Check whether the new IRQ is compatible with those already associated with
152 * the PMU (e.g. we don't have mismatched PPIs).
153 */
154static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
155{
156	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
157	int cpu;
158
159	if (!irq)
160		return true;
161
162	for_each_cpu(cpu, &pmu->supported_cpus) {
163		int other_irq = per_cpu(hw_events->irq, cpu);
164		if (!other_irq)
165			continue;
166
167		if (irq == other_irq)
168			continue;
169		if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
170			continue;
171
172		pr_warn("mismatched PPIs detected\n");
173		return false;
174	}
175
176	return true;
177}
178
179/*
180 * This must run before the common arm_pmu hotplug logic, so that we can
181 * associate a CPU and its interrupt before the common code tries to manage the
182 * affinity and so on.
183 *
184 * Note that hotplug events are serialized, so we cannot race with another CPU
185 * coming up. The perf core won't open events while a hotplug event is in
186 * progress.
187 */
188static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
189{
190	struct arm_pmu *pmu;
191	struct pmu_hw_events __percpu *hw_events;
192	int irq;
193
194	/* If we've already probed this CPU, we have nothing to do */
195	if (per_cpu(probed_pmus, cpu))
196		return 0;
197
198	irq = per_cpu(pmu_irqs, cpu);
199
200	pmu = arm_pmu_acpi_find_alloc_pmu();
201	if (!pmu)
202		return -ENOMEM;
203
204	per_cpu(probed_pmus, cpu) = pmu;
205
206	if (pmu_irq_matches(pmu, irq)) {
207		hw_events = pmu->hw_events;
208		per_cpu(hw_events->irq, cpu) = irq;
209	}
210
211	cpumask_set_cpu(cpu, &pmu->supported_cpus);
212
213	/*
214	 * Ideally, we'd probe the PMU here when we find the first matching
215	 * CPU. We can't do that for several reasons; see the comment in
216	 * arm_pmu_acpi_init().
217	 *
218	 * So for the time being, we're done.
219	 */
220	return 0;
221}
222
223int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
224{
225	int pmu_idx = 0;
226	int cpu, ret;
227
228	/*
229	 * Initialise and register the set of PMUs which we know about right
230	 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
231	 * could handle late hotplug, but this may lead to deadlock since we
232	 * might try to register a hotplug notifier instance from within a
233	 * hotplug notifier.
234	 *
235	 * There's also the problem of having access to the right init_fn,
236	 * without tying this too deeply into the "real" PMU driver.
237	 *
238	 * For the moment, as with the platform/DT case, we need at least one
239	 * of a PMU's CPUs to be online at probe time.
240	 */
241	for_each_possible_cpu(cpu) {
242		struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
243		char *base_name;
244
245		if (!pmu || pmu->name)
246			continue;
247
248		ret = init_fn(pmu);
249		if (ret == -ENODEV) {
250			/* PMU not handled by this driver, or not present */
251			continue;
252		} else if (ret) {
253			pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
254			return ret;
255		}
256
257		base_name = pmu->name;
258		pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
259		if (!pmu->name) {
260			pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
261			return -ENOMEM;
262		}
263
264		ret = armpmu_register(pmu);
265		if (ret) {
266			pr_warn("Failed to register PMU for CPU%d\n", cpu);
267			kfree(pmu->name);
268			return ret;
269		}
270	}
271
272	return 0;
273}
274
275static int arm_pmu_acpi_init(void)
276{
277	int ret;
278
279	if (acpi_disabled)
280		return 0;
281
282	ret = arm_pmu_acpi_parse_irqs();
283	if (ret)
284		return ret;
285
286	ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
287				"perf/arm/pmu_acpi:starting",
288				arm_pmu_acpi_cpu_starting, NULL);
289
290	return ret;
291}
292subsys_initcall(arm_pmu_acpi_init)