Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  4 *
  5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/kernel.h>
 12#include <linux/string.h>
 13#include <linux/ptrace.h>
 14#include <linux/errno.h>
 15#include <linux/ioport.h>
 16#include <linux/slab.h>
 17#include <linux/interrupt.h>
 18#include <linux/pci.h>
 19#include <linux/delay.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/skbuff.h>
 23#include <linux/spinlock.h>
 24#include <linux/workqueue.h>
 25#include <linux/bitops.h>
 26#include <linux/io.h>
 27#include <linux/irq.h>
 28#include <linux/clk.h>
 29#include <linux/platform_device.h>
 30#include <linux/phy.h>
 31#include <linux/fec.h>
 32#include <linux/of.h>
 33#include <linux/of_device.h>
 34#include <linux/of_gpio.h>
 35#include <linux/of_net.h>
 36
 37#include "fec.h"
 38
 39/* FEC 1588 register bits */
 40#define FEC_T_CTRL_SLAVE                0x00002000
 41#define FEC_T_CTRL_CAPTURE              0x00000800
 42#define FEC_T_CTRL_RESTART              0x00000200
 43#define FEC_T_CTRL_PERIOD_RST           0x00000030
 44#define FEC_T_CTRL_PERIOD_EN		0x00000010
 45#define FEC_T_CTRL_ENABLE               0x00000001
 46
 47#define FEC_T_INC_MASK                  0x0000007f
 48#define FEC_T_INC_OFFSET                0
 49#define FEC_T_INC_CORR_MASK             0x00007f00
 50#define FEC_T_INC_CORR_OFFSET           8
 51
 52#define FEC_T_CTRL_PINPER		0x00000080
 53#define FEC_T_TF0_MASK			0x00000001
 54#define FEC_T_TF0_OFFSET		0
 55#define FEC_T_TF1_MASK			0x00000002
 56#define FEC_T_TF1_OFFSET		1
 57#define FEC_T_TF2_MASK			0x00000004
 58#define FEC_T_TF2_OFFSET		2
 59#define FEC_T_TF3_MASK			0x00000008
 60#define FEC_T_TF3_OFFSET		3
 61#define FEC_T_TDRE_MASK			0x00000001
 62#define FEC_T_TDRE_OFFSET		0
 63#define FEC_T_TMODE_MASK		0x0000003C
 64#define FEC_T_TMODE_OFFSET		2
 65#define FEC_T_TIE_MASK			0x00000040
 66#define FEC_T_TIE_OFFSET		6
 67#define FEC_T_TF_MASK			0x00000080
 68#define FEC_T_TF_OFFSET			7
 69
 70#define FEC_ATIME_CTRL		0x400
 71#define FEC_ATIME		0x404
 72#define FEC_ATIME_EVT_OFFSET	0x408
 73#define FEC_ATIME_EVT_PERIOD	0x40c
 74#define FEC_ATIME_CORR		0x410
 75#define FEC_ATIME_INC		0x414
 76#define FEC_TS_TIMESTAMP	0x418
 77
 78#define FEC_TGSR		0x604
 79#define FEC_TCSR(n)		(0x608 + n * 0x08)
 80#define FEC_TCCR(n)		(0x60C + n * 0x08)
 81#define MAX_TIMER_CHANNEL	3
 82#define FEC_TMODE_TOGGLE	0x05
 83#define FEC_HIGH_PULSE		0x0F
 84
 85#define FEC_CC_MULT	(1 << 31)
 86#define FEC_COUNTER_PERIOD	(1 << 31)
 87#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
 88#define FEC_CHANNLE_0		0
 89#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
 90
 91/**
 92 * fec_ptp_enable_pps
 93 * @fep: the fec_enet_private structure handle
 94 * @enable: enable the channel pps output
 95 *
 96 * This function enble the PPS ouput on the timer channel.
 97 */
 98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
 99{
100	unsigned long flags;
101	u32 val, tempval;
102	struct timespec64 ts;
103	u64 ns;
104	val = 0;
105
106	if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
107		dev_err(&fep->pdev->dev, "No ptp stack is running\n");
108		return -EINVAL;
109	}
110
111	if (fep->pps_enable == enable)
112		return 0;
113
114	fep->pps_channel = DEFAULT_PPS_CHANNEL;
115	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
116
117	spin_lock_irqsave(&fep->tmreg_lock, flags);
118
119	if (enable) {
120		/* clear capture or output compare interrupt status if have.
121		 */
122		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
123
124		/* It is recommended to double check the TMODE field in the
125		 * TCSR register to be cleared before the first compare counter
126		 * is written into TCCR register. Just add a double check.
127		 */
128		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
129		do {
130			val &= ~(FEC_T_TMODE_MASK);
131			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
132			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
133		} while (val & FEC_T_TMODE_MASK);
134
135		/* Dummy read counter to update the counter */
136		timecounter_read(&fep->tc);
137		/* We want to find the first compare event in the next
138		 * second point. So we need to know what the ptp time
139		 * is now and how many nanoseconds is ahead to get next second.
140		 * The remaining nanosecond ahead before the next second would be
141		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
142		 * to current timer would be next second.
143		 */
144		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
145		tempval |= FEC_T_CTRL_CAPTURE;
146		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
147
148		tempval = readl(fep->hwp + FEC_ATIME);
149		/* Convert the ptp local counter to 1588 timestamp */
150		ns = timecounter_cyc2time(&fep->tc, tempval);
151		ts = ns_to_timespec64(ns);
152
153		/* The tempval is  less than 3 seconds, and  so val is less than
154		 * 4 seconds. No overflow for 32bit calculation.
155		 */
156		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
157
158		/* Need to consider the situation that the current time is
159		 * very close to the second point, which means NSEC_PER_SEC
160		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
161		 * is still running when we calculate the first compare event, it is
162		 * possible that the remaining nanoseonds run out before the compare
163		 * counter is calculated and written into TCCR register. To avoid
164		 * this possibility, we will set the compare event to be the next
165		 * of next second. The current setting is 31-bit timer and wrap
166		 * around over 2 seconds. So it is okay to set the next of next
167		 * seond for the timer.
168		 */
169		val += NSEC_PER_SEC;
170
171		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
172		 * ptp counter, which maybe cause 32-bit wrap. Since the
173		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
174		 * We can ensure the wrap will not cause issue. If the offset
175		 * is bigger than fep->cc.mask would be a error.
176		 */
177		val &= fep->cc.mask;
178		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
179
180		/* Calculate the second the compare event timestamp */
181		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
182
183		/* * Enable compare event when overflow */
184		val = readl(fep->hwp + FEC_ATIME_CTRL);
185		val |= FEC_T_CTRL_PINPER;
186		writel(val, fep->hwp + FEC_ATIME_CTRL);
187
188		/* Compare channel setting. */
189		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
190		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
191		val &= ~(1 << FEC_T_TDRE_OFFSET);
192		val &= ~(FEC_T_TMODE_MASK);
193		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
194		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
195
196		/* Write the second compare event timestamp and calculate
197		 * the third timestamp. Refer the TCCR register detail in the spec.
198		 */
199		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
200		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
201	} else {
202		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
203	}
204
205	fep->pps_enable = enable;
206	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
207
208	return 0;
209}
210
211/**
212 * fec_ptp_read - read raw cycle counter (to be used by time counter)
213 * @cc: the cyclecounter structure
214 *
215 * this function reads the cyclecounter registers and is called by the
216 * cyclecounter structure used to construct a ns counter from the
217 * arbitrary fixed point registers
218 */
219static u64 fec_ptp_read(const struct cyclecounter *cc)
220{
221	struct fec_enet_private *fep =
222		container_of(cc, struct fec_enet_private, cc);
223	const struct platform_device_id *id_entry =
224		platform_get_device_id(fep->pdev);
225	u32 tempval;
226
227	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
228	tempval |= FEC_T_CTRL_CAPTURE;
229	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
230
231	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
232		udelay(1);
233
234	return readl(fep->hwp + FEC_ATIME);
235}
236
237/**
238 * fec_ptp_start_cyclecounter - create the cycle counter from hw
239 * @ndev: network device
240 *
241 * this function initializes the timecounter and cyclecounter
242 * structures for use in generated a ns counter from the arbitrary
243 * fixed point cycles registers in the hardware.
244 */
245void fec_ptp_start_cyclecounter(struct net_device *ndev)
246{
247	struct fec_enet_private *fep = netdev_priv(ndev);
248	unsigned long flags;
249	int inc;
250
251	inc = 1000000000 / fep->cycle_speed;
252
253	/* grab the ptp lock */
254	spin_lock_irqsave(&fep->tmreg_lock, flags);
255
256	/* 1ns counter */
257	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
258
259	/* use 31-bit timer counter */
260	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
261
262	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
263		fep->hwp + FEC_ATIME_CTRL);
264
265	memset(&fep->cc, 0, sizeof(fep->cc));
266	fep->cc.read = fec_ptp_read;
267	fep->cc.mask = CLOCKSOURCE_MASK(31);
268	fep->cc.shift = 31;
269	fep->cc.mult = FEC_CC_MULT;
270
271	/* reset the ns time counter */
272	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
273
274	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
275}
276
277/**
278 * fec_ptp_adjfreq - adjust ptp cycle frequency
279 * @ptp: the ptp clock structure
280 * @ppb: parts per billion adjustment from base
281 *
282 * Adjust the frequency of the ptp cycle counter by the
283 * indicated ppb from the base frequency.
284 *
285 * Because ENET hardware frequency adjust is complex,
286 * using software method to do that.
287 */
288static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
289{
290	unsigned long flags;
291	int neg_adj = 0;
292	u32 i, tmp;
293	u32 corr_inc, corr_period;
294	u32 corr_ns;
295	u64 lhs, rhs;
296
297	struct fec_enet_private *fep =
298	    container_of(ptp, struct fec_enet_private, ptp_caps);
299
300	if (ppb == 0)
301		return 0;
302
303	if (ppb < 0) {
304		ppb = -ppb;
305		neg_adj = 1;
306	}
307
308	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
309	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
310	 * meet adjustment requirement.
311	 */
312	lhs = NSEC_PER_SEC;
313	rhs = (u64)ppb * (u64)fep->ptp_inc;
314	for (i = 1; i <= fep->ptp_inc; i++) {
315		if (lhs >= rhs) {
316			corr_inc = i;
317			corr_period = div_u64(lhs, rhs);
318			break;
319		}
320		lhs += NSEC_PER_SEC;
321	}
322	/* Not found? Set it to high value - double speed
323	 * correct in every clock step.
324	 */
325	if (i > fep->ptp_inc) {
326		corr_inc = fep->ptp_inc;
327		corr_period = 1;
328	}
329
330	if (neg_adj)
331		corr_ns = fep->ptp_inc - corr_inc;
332	else
333		corr_ns = fep->ptp_inc + corr_inc;
334
335	spin_lock_irqsave(&fep->tmreg_lock, flags);
336
337	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
338	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
339	writel(tmp, fep->hwp + FEC_ATIME_INC);
340	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
341	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
342	/* dummy read to update the timer. */
343	timecounter_read(&fep->tc);
344
345	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
346
347	return 0;
348}
349
350/**
351 * fec_ptp_adjtime
352 * @ptp: the ptp clock structure
353 * @delta: offset to adjust the cycle counter by
354 *
355 * adjust the timer by resetting the timecounter structure.
356 */
357static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
358{
359	struct fec_enet_private *fep =
360	    container_of(ptp, struct fec_enet_private, ptp_caps);
361	unsigned long flags;
362
363	spin_lock_irqsave(&fep->tmreg_lock, flags);
364	timecounter_adjtime(&fep->tc, delta);
365	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
366
367	return 0;
368}
369
370/**
371 * fec_ptp_gettime
372 * @ptp: the ptp clock structure
373 * @ts: timespec structure to hold the current time value
374 *
375 * read the timecounter and return the correct value on ns,
376 * after converting it into a struct timespec.
377 */
378static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
379{
380	struct fec_enet_private *adapter =
381	    container_of(ptp, struct fec_enet_private, ptp_caps);
382	u64 ns;
383	unsigned long flags;
384
385	spin_lock_irqsave(&adapter->tmreg_lock, flags);
386	ns = timecounter_read(&adapter->tc);
387	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
388
389	*ts = ns_to_timespec64(ns);
390
391	return 0;
392}
393
394/**
395 * fec_ptp_settime
396 * @ptp: the ptp clock structure
397 * @ts: the timespec containing the new time for the cycle counter
398 *
399 * reset the timecounter to use a new base value instead of the kernel
400 * wall timer value.
401 */
402static int fec_ptp_settime(struct ptp_clock_info *ptp,
403			   const struct timespec64 *ts)
404{
405	struct fec_enet_private *fep =
406	    container_of(ptp, struct fec_enet_private, ptp_caps);
407
408	u64 ns;
409	unsigned long flags;
410	u32 counter;
411
412	mutex_lock(&fep->ptp_clk_mutex);
413	/* Check the ptp clock */
414	if (!fep->ptp_clk_on) {
415		mutex_unlock(&fep->ptp_clk_mutex);
416		return -EINVAL;
417	}
418
419	ns = timespec64_to_ns(ts);
420	/* Get the timer value based on timestamp.
421	 * Update the counter with the masked value.
422	 */
423	counter = ns & fep->cc.mask;
424
425	spin_lock_irqsave(&fep->tmreg_lock, flags);
426	writel(counter, fep->hwp + FEC_ATIME);
427	timecounter_init(&fep->tc, &fep->cc, ns);
428	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
429	mutex_unlock(&fep->ptp_clk_mutex);
430	return 0;
431}
432
433/**
434 * fec_ptp_enable
435 * @ptp: the ptp clock structure
436 * @rq: the requested feature to change
437 * @on: whether to enable or disable the feature
438 *
439 */
440static int fec_ptp_enable(struct ptp_clock_info *ptp,
441			  struct ptp_clock_request *rq, int on)
442{
443	struct fec_enet_private *fep =
444	    container_of(ptp, struct fec_enet_private, ptp_caps);
445	int ret = 0;
446
447	if (rq->type == PTP_CLK_REQ_PPS) {
448		ret = fec_ptp_enable_pps(fep, on);
449
450		return ret;
451	}
452	return -EOPNOTSUPP;
453}
454
455int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
456{
457	struct fec_enet_private *fep = netdev_priv(ndev);
458
459	struct hwtstamp_config config;
460
461	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
462		return -EFAULT;
463
464	/* reserved for future extensions */
465	if (config.flags)
466		return -EINVAL;
467
468	switch (config.tx_type) {
469	case HWTSTAMP_TX_OFF:
470		fep->hwts_tx_en = 0;
471		break;
472	case HWTSTAMP_TX_ON:
473		fep->hwts_tx_en = 1;
474		break;
475	default:
476		return -ERANGE;
477	}
478
479	switch (config.rx_filter) {
480	case HWTSTAMP_FILTER_NONE:
481		if (fep->hwts_rx_en)
482			fep->hwts_rx_en = 0;
483		config.rx_filter = HWTSTAMP_FILTER_NONE;
484		break;
485
486	default:
487		fep->hwts_rx_en = 1;
488		config.rx_filter = HWTSTAMP_FILTER_ALL;
489		break;
490	}
491
492	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
493	    -EFAULT : 0;
494}
495
496int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
497{
498	struct fec_enet_private *fep = netdev_priv(ndev);
499	struct hwtstamp_config config;
500
501	config.flags = 0;
502	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
503	config.rx_filter = (fep->hwts_rx_en ?
504			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
505
506	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
507		-EFAULT : 0;
508}
509
510/**
511 * fec_time_keep - call timecounter_read every second to avoid timer overrun
512 *                 because ENET just support 32bit counter, will timeout in 4s
513 */
514static void fec_time_keep(struct work_struct *work)
515{
516	struct delayed_work *dwork = to_delayed_work(work);
517	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
518	u64 ns;
519	unsigned long flags;
520
521	mutex_lock(&fep->ptp_clk_mutex);
522	if (fep->ptp_clk_on) {
523		spin_lock_irqsave(&fep->tmreg_lock, flags);
524		ns = timecounter_read(&fep->tc);
525		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
526	}
527	mutex_unlock(&fep->ptp_clk_mutex);
528
529	schedule_delayed_work(&fep->time_keep, HZ);
530}
531
532/* This function checks the pps event and reloads the timer compare counter. */
533static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
534{
535	struct net_device *ndev = dev_id;
536	struct fec_enet_private *fep = netdev_priv(ndev);
537	u32 val;
538	u8 channel = fep->pps_channel;
539	struct ptp_clock_event event;
540
541	val = readl(fep->hwp + FEC_TCSR(channel));
542	if (val & FEC_T_TF_MASK) {
543		/* Write the next next compare(not the next according the spec)
544		 * value to the register
545		 */
546		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
547		do {
548			writel(val, fep->hwp + FEC_TCSR(channel));
549		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
550
551		/* Update the counter; */
552		fep->next_counter = (fep->next_counter + fep->reload_period) &
553				fep->cc.mask;
554
555		event.type = PTP_CLOCK_PPS;
556		ptp_clock_event(fep->ptp_clock, &event);
557		return IRQ_HANDLED;
558	}
559
560	return IRQ_NONE;
561}
562
563/**
564 * fec_ptp_init
565 * @ndev: The FEC network adapter
566 *
567 * This function performs the required steps for enabling ptp
568 * support. If ptp support has already been loaded it simply calls the
569 * cyclecounter init routine and exits.
570 */
571
572void fec_ptp_init(struct platform_device *pdev, int irq_idx)
573{
574	struct net_device *ndev = platform_get_drvdata(pdev);
575	struct fec_enet_private *fep = netdev_priv(ndev);
576	int irq;
577	int ret;
578
579	fep->ptp_caps.owner = THIS_MODULE;
580	snprintf(fep->ptp_caps.name, 16, "fec ptp");
581
582	fep->ptp_caps.max_adj = 250000000;
583	fep->ptp_caps.n_alarm = 0;
584	fep->ptp_caps.n_ext_ts = 0;
585	fep->ptp_caps.n_per_out = 0;
586	fep->ptp_caps.n_pins = 0;
587	fep->ptp_caps.pps = 1;
588	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
589	fep->ptp_caps.adjtime = fec_ptp_adjtime;
590	fep->ptp_caps.gettime64 = fec_ptp_gettime;
591	fep->ptp_caps.settime64 = fec_ptp_settime;
592	fep->ptp_caps.enable = fec_ptp_enable;
593
594	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
595	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
596
597	spin_lock_init(&fep->tmreg_lock);
598
599	fec_ptp_start_cyclecounter(ndev);
600
601	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
602
603	irq = platform_get_irq_byname_optional(pdev, "pps");
604	if (irq < 0)
605		irq = platform_get_irq_optional(pdev, irq_idx);
606	/* Failure to get an irq is not fatal,
607	 * only the PTP_CLOCK_PPS clock events should stop
608	 */
609	if (irq >= 0) {
610		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
611				       0, pdev->name, ndev);
612		if (ret < 0)
613			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
614				 ret);
615	}
616
617	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
618	if (IS_ERR(fep->ptp_clock)) {
619		fep->ptp_clock = NULL;
620		dev_err(&pdev->dev, "ptp_clock_register failed\n");
621	}
622
623	schedule_delayed_work(&fep->time_keep, HZ);
624}
625
626void fec_ptp_stop(struct platform_device *pdev)
627{
628	struct net_device *ndev = platform_get_drvdata(pdev);
629	struct fec_enet_private *fep = netdev_priv(ndev);
630
631	cancel_delayed_work_sync(&fep->time_keep);
632	if (fep->ptp_clock)
633		ptp_clock_unregister(fep->ptp_clock);
634}