Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
  4 *
  5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/module.h>
 11#include <linux/kernel.h>
 12#include <linux/string.h>
 13#include <linux/ptrace.h>
 14#include <linux/errno.h>
 15#include <linux/ioport.h>
 16#include <linux/slab.h>
 17#include <linux/interrupt.h>
 18#include <linux/pci.h>
 19#include <linux/delay.h>
 20#include <linux/netdevice.h>
 21#include <linux/etherdevice.h>
 22#include <linux/skbuff.h>
 23#include <linux/spinlock.h>
 24#include <linux/workqueue.h>
 25#include <linux/bitops.h>
 26#include <linux/io.h>
 27#include <linux/irq.h>
 28#include <linux/clk.h>
 29#include <linux/platform_device.h>
 30#include <linux/phy.h>
 31#include <linux/fec.h>
 32#include <linux/of.h>
 33#include <linux/of_gpio.h>
 34#include <linux/of_net.h>
 35
 36#include "fec.h"
 37
 38/* FEC 1588 register bits */
 39#define FEC_T_CTRL_SLAVE                0x00002000
 40#define FEC_T_CTRL_CAPTURE              0x00000800
 41#define FEC_T_CTRL_RESTART              0x00000200
 42#define FEC_T_CTRL_PERIOD_RST           0x00000030
 43#define FEC_T_CTRL_PERIOD_EN		0x00000010
 44#define FEC_T_CTRL_ENABLE               0x00000001
 45
 46#define FEC_T_INC_MASK                  0x0000007f
 47#define FEC_T_INC_OFFSET                0
 48#define FEC_T_INC_CORR_MASK             0x00007f00
 49#define FEC_T_INC_CORR_OFFSET           8
 50
 51#define FEC_T_CTRL_PINPER		0x00000080
 52#define FEC_T_TF0_MASK			0x00000001
 53#define FEC_T_TF0_OFFSET		0
 54#define FEC_T_TF1_MASK			0x00000002
 55#define FEC_T_TF1_OFFSET		1
 56#define FEC_T_TF2_MASK			0x00000004
 57#define FEC_T_TF2_OFFSET		2
 58#define FEC_T_TF3_MASK			0x00000008
 59#define FEC_T_TF3_OFFSET		3
 60#define FEC_T_TDRE_MASK			0x00000001
 61#define FEC_T_TDRE_OFFSET		0
 62#define FEC_T_TMODE_MASK		0x0000003C
 63#define FEC_T_TMODE_OFFSET		2
 64#define FEC_T_TIE_MASK			0x00000040
 65#define FEC_T_TIE_OFFSET		6
 66#define FEC_T_TF_MASK			0x00000080
 67#define FEC_T_TF_OFFSET			7
 68
 69#define FEC_ATIME_CTRL		0x400
 70#define FEC_ATIME		0x404
 71#define FEC_ATIME_EVT_OFFSET	0x408
 72#define FEC_ATIME_EVT_PERIOD	0x40c
 73#define FEC_ATIME_CORR		0x410
 74#define FEC_ATIME_INC		0x414
 75#define FEC_TS_TIMESTAMP	0x418
 76
 77#define FEC_TGSR		0x604
 78#define FEC_TCSR(n)		(0x608 + n * 0x08)
 79#define FEC_TCCR(n)		(0x60C + n * 0x08)
 80#define MAX_TIMER_CHANNEL	3
 81#define FEC_TMODE_TOGGLE	0x05
 82#define FEC_HIGH_PULSE		0x0F
 83
 84#define FEC_CC_MULT	(1 << 31)
 85#define FEC_COUNTER_PERIOD	(1 << 31)
 86#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
 87#define FEC_CHANNLE_0		0
 88#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
 89
 90#define FEC_PTP_MAX_NSEC_PERIOD		4000000000ULL
 91#define FEC_PTP_MAX_NSEC_COUNTER	0x80000000ULL
 92
 93/**
 94 * fec_ptp_enable_pps
 95 * @fep: the fec_enet_private structure handle
 96 * @enable: enable the channel pps output
 97 *
 98 * This function enble the PPS ouput on the timer channel.
 99 */
100static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
101{
102	unsigned long flags;
103	u32 val, tempval;
104	struct timespec64 ts;
105	u64 ns;
106
107	spin_lock_irqsave(&fep->tmreg_lock, flags);
108
109	if (fep->pps_enable == enable) {
110		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
111		return 0;
112	}
113
114	if (enable) {
115		/* clear capture or output compare interrupt status if have.
116		 */
117		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
118
119		/* It is recommended to double check the TMODE field in the
120		 * TCSR register to be cleared before the first compare counter
121		 * is written into TCCR register. Just add a double check.
122		 */
123		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
124		do {
125			val &= ~(FEC_T_TMODE_MASK);
126			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
127			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
128		} while (val & FEC_T_TMODE_MASK);
129
130		/* Dummy read counter to update the counter */
131		timecounter_read(&fep->tc);
132		/* We want to find the first compare event in the next
133		 * second point. So we need to know what the ptp time
134		 * is now and how many nanoseconds is ahead to get next second.
135		 * The remaining nanosecond ahead before the next second would be
136		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
137		 * to current timer would be next second.
138		 */
139		tempval = fep->cc.read(&fep->cc);
140		/* Convert the ptp local counter to 1588 timestamp */
141		ns = timecounter_cyc2time(&fep->tc, tempval);
142		ts = ns_to_timespec64(ns);
143
144		/* The tempval is  less than 3 seconds, and  so val is less than
145		 * 4 seconds. No overflow for 32bit calculation.
146		 */
147		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
148
149		/* Need to consider the situation that the current time is
150		 * very close to the second point, which means NSEC_PER_SEC
151		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
152		 * is still running when we calculate the first compare event, it is
153		 * possible that the remaining nanoseonds run out before the compare
154		 * counter is calculated and written into TCCR register. To avoid
155		 * this possibility, we will set the compare event to be the next
156		 * of next second. The current setting is 31-bit timer and wrap
157		 * around over 2 seconds. So it is okay to set the next of next
158		 * seond for the timer.
159		 */
160		val += NSEC_PER_SEC;
161
162		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
163		 * ptp counter, which maybe cause 32-bit wrap. Since the
164		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
165		 * We can ensure the wrap will not cause issue. If the offset
166		 * is bigger than fep->cc.mask would be a error.
167		 */
168		val &= fep->cc.mask;
169		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
170
171		/* Calculate the second the compare event timestamp */
172		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
173
174		/* * Enable compare event when overflow */
175		val = readl(fep->hwp + FEC_ATIME_CTRL);
176		val |= FEC_T_CTRL_PINPER;
177		writel(val, fep->hwp + FEC_ATIME_CTRL);
178
179		/* Compare channel setting. */
180		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
181		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
182		val &= ~(1 << FEC_T_TDRE_OFFSET);
183		val &= ~(FEC_T_TMODE_MASK);
184		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
185		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
186
187		/* Write the second compare event timestamp and calculate
188		 * the third timestamp. Refer the TCCR register detail in the spec.
189		 */
190		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
191		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
192	} else {
193		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
194	}
195
196	fep->pps_enable = enable;
197	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
198
199	return 0;
200}
201
202static int fec_ptp_pps_perout(struct fec_enet_private *fep)
203{
204	u32 compare_val, ptp_hc, temp_val;
205	u64 curr_time;
206	unsigned long flags;
207
208	spin_lock_irqsave(&fep->tmreg_lock, flags);
209
210	/* Update time counter */
211	timecounter_read(&fep->tc);
212
213	/* Get the current ptp hardware time counter */
214	temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
215	temp_val |= FEC_T_CTRL_CAPTURE;
216	writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
217	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
218		udelay(1);
219
220	ptp_hc = readl(fep->hwp + FEC_ATIME);
221
222	/* Convert the ptp local counter to 1588 timestamp */
223	curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
224
225	/* If the pps start time less than current time add 100ms, just return.
226	 * Because the software might not able to set the comparison time into
227	 * the FEC_TCCR register in time and missed the start time.
228	 */
229	if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
230		dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
231		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
232		return -1;
233	}
234
235	compare_val = fep->perout_stime - curr_time + ptp_hc;
236	compare_val &= fep->cc.mask;
237
238	writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
239	fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
240
241	/* Enable compare event when overflow */
242	temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
243	temp_val |= FEC_T_CTRL_PINPER;
244	writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
245
246	/* Compare channel setting. */
247	temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
248	temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
249	temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
250	temp_val &= ~(FEC_T_TMODE_MASK);
251	temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
252	writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
253
254	/* Write the second compare event timestamp and calculate
255	 * the third timestamp. Refer the TCCR register detail in the spec.
256	 */
257	writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
258	fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
259	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
260
261	return 0;
262}
263
264static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
265{
266	struct fec_enet_private *fep = container_of(timer,
267					struct fec_enet_private, perout_timer);
268
269	fec_ptp_pps_perout(fep);
270
271	return HRTIMER_NORESTART;
272}
273
274/**
275 * fec_ptp_read - read raw cycle counter (to be used by time counter)
276 * @cc: the cyclecounter structure
277 *
278 * this function reads the cyclecounter registers and is called by the
279 * cyclecounter structure used to construct a ns counter from the
280 * arbitrary fixed point registers
281 */
282static u64 fec_ptp_read(const struct cyclecounter *cc)
283{
284	struct fec_enet_private *fep =
285		container_of(cc, struct fec_enet_private, cc);
286	u32 tempval;
287
288	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
289	tempval |= FEC_T_CTRL_CAPTURE;
290	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
291
292	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
293		udelay(1);
294
295	return readl(fep->hwp + FEC_ATIME);
296}
297
298/**
299 * fec_ptp_start_cyclecounter - create the cycle counter from hw
300 * @ndev: network device
301 *
302 * this function initializes the timecounter and cyclecounter
303 * structures for use in generated a ns counter from the arbitrary
304 * fixed point cycles registers in the hardware.
305 */
306void fec_ptp_start_cyclecounter(struct net_device *ndev)
307{
308	struct fec_enet_private *fep = netdev_priv(ndev);
309	unsigned long flags;
310	int inc;
311
312	inc = 1000000000 / fep->cycle_speed;
313
314	/* grab the ptp lock */
315	spin_lock_irqsave(&fep->tmreg_lock, flags);
316
317	/* 1ns counter */
318	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
319
320	/* use 31-bit timer counter */
321	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
322
323	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
324		fep->hwp + FEC_ATIME_CTRL);
325
326	memset(&fep->cc, 0, sizeof(fep->cc));
327	fep->cc.read = fec_ptp_read;
328	fep->cc.mask = CLOCKSOURCE_MASK(31);
329	fep->cc.shift = 31;
330	fep->cc.mult = FEC_CC_MULT;
331
332	/* reset the ns time counter */
333	timecounter_init(&fep->tc, &fep->cc, 0);
334
335	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
336}
337
338/**
339 * fec_ptp_adjfine - adjust ptp cycle frequency
340 * @ptp: the ptp clock structure
341 * @scaled_ppm: scaled parts per million adjustment from base
342 *
343 * Adjust the frequency of the ptp cycle counter by the
344 * indicated amount from the base frequency.
345 *
346 * Scaled parts per million is ppm with a 16-bit binary fractional field.
347 *
348 * Because ENET hardware frequency adjust is complex,
349 * using software method to do that.
350 */
351static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
352{
353	s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
354	unsigned long flags;
355	int neg_adj = 0;
356	u32 i, tmp;
357	u32 corr_inc, corr_period;
358	u32 corr_ns;
359	u64 lhs, rhs;
360
361	struct fec_enet_private *fep =
362	    container_of(ptp, struct fec_enet_private, ptp_caps);
363
364	if (ppb == 0)
365		return 0;
366
367	if (ppb < 0) {
368		ppb = -ppb;
369		neg_adj = 1;
370	}
371
372	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
373	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
374	 * meet adjustment requirement.
375	 */
376	lhs = NSEC_PER_SEC;
377	rhs = (u64)ppb * (u64)fep->ptp_inc;
378	for (i = 1; i <= fep->ptp_inc; i++) {
379		if (lhs >= rhs) {
380			corr_inc = i;
381			corr_period = div_u64(lhs, rhs);
382			break;
383		}
384		lhs += NSEC_PER_SEC;
385	}
386	/* Not found? Set it to high value - double speed
387	 * correct in every clock step.
388	 */
389	if (i > fep->ptp_inc) {
390		corr_inc = fep->ptp_inc;
391		corr_period = 1;
392	}
393
394	if (neg_adj)
395		corr_ns = fep->ptp_inc - corr_inc;
396	else
397		corr_ns = fep->ptp_inc + corr_inc;
398
399	spin_lock_irqsave(&fep->tmreg_lock, flags);
400
401	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
402	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
403	writel(tmp, fep->hwp + FEC_ATIME_INC);
404	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
405	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
406	/* dummy read to update the timer. */
407	timecounter_read(&fep->tc);
408
409	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
410
411	return 0;
412}
413
414/**
415 * fec_ptp_adjtime
416 * @ptp: the ptp clock structure
417 * @delta: offset to adjust the cycle counter by
418 *
419 * adjust the timer by resetting the timecounter structure.
420 */
421static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
422{
423	struct fec_enet_private *fep =
424	    container_of(ptp, struct fec_enet_private, ptp_caps);
425	unsigned long flags;
426
427	spin_lock_irqsave(&fep->tmreg_lock, flags);
428	timecounter_adjtime(&fep->tc, delta);
429	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
430
431	return 0;
432}
433
434/**
435 * fec_ptp_gettime
436 * @ptp: the ptp clock structure
437 * @ts: timespec structure to hold the current time value
438 *
439 * read the timecounter and return the correct value on ns,
440 * after converting it into a struct timespec.
441 */
442static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
443{
444	struct fec_enet_private *fep =
445	    container_of(ptp, struct fec_enet_private, ptp_caps);
446	u64 ns;
447	unsigned long flags;
448
449	mutex_lock(&fep->ptp_clk_mutex);
450	/* Check the ptp clock */
451	if (!fep->ptp_clk_on) {
452		mutex_unlock(&fep->ptp_clk_mutex);
453		return -EINVAL;
454	}
455	spin_lock_irqsave(&fep->tmreg_lock, flags);
456	ns = timecounter_read(&fep->tc);
457	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
458	mutex_unlock(&fep->ptp_clk_mutex);
459
460	*ts = ns_to_timespec64(ns);
461
462	return 0;
463}
464
465/**
466 * fec_ptp_settime
467 * @ptp: the ptp clock structure
468 * @ts: the timespec containing the new time for the cycle counter
469 *
470 * reset the timecounter to use a new base value instead of the kernel
471 * wall timer value.
472 */
473static int fec_ptp_settime(struct ptp_clock_info *ptp,
474			   const struct timespec64 *ts)
475{
476	struct fec_enet_private *fep =
477	    container_of(ptp, struct fec_enet_private, ptp_caps);
478
479	u64 ns;
480	unsigned long flags;
481	u32 counter;
482
483	mutex_lock(&fep->ptp_clk_mutex);
484	/* Check the ptp clock */
485	if (!fep->ptp_clk_on) {
486		mutex_unlock(&fep->ptp_clk_mutex);
487		return -EINVAL;
488	}
489
490	ns = timespec64_to_ns(ts);
491	/* Get the timer value based on timestamp.
492	 * Update the counter with the masked value.
493	 */
494	counter = ns & fep->cc.mask;
495
496	spin_lock_irqsave(&fep->tmreg_lock, flags);
497	writel(counter, fep->hwp + FEC_ATIME);
498	timecounter_init(&fep->tc, &fep->cc, ns);
499	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
500	mutex_unlock(&fep->ptp_clk_mutex);
501	return 0;
502}
503
504static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
505{
506	unsigned long flags;
507
508	spin_lock_irqsave(&fep->tmreg_lock, flags);
509	writel(0, fep->hwp + FEC_TCSR(channel));
510	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
511
512	return 0;
513}
514
515/**
516 * fec_ptp_enable
517 * @ptp: the ptp clock structure
518 * @rq: the requested feature to change
519 * @on: whether to enable or disable the feature
520 *
521 */
522static int fec_ptp_enable(struct ptp_clock_info *ptp,
523			  struct ptp_clock_request *rq, int on)
524{
525	struct fec_enet_private *fep =
526	    container_of(ptp, struct fec_enet_private, ptp_caps);
527	ktime_t timeout;
528	struct timespec64 start_time, period;
529	u64 curr_time, delta, period_ns;
530	unsigned long flags;
531	int ret = 0;
532
533	if (rq->type == PTP_CLK_REQ_PPS) {
534		fep->pps_channel = DEFAULT_PPS_CHANNEL;
535		fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
536
537		ret = fec_ptp_enable_pps(fep, on);
538
539		return ret;
540	} else if (rq->type == PTP_CLK_REQ_PEROUT) {
541		/* Reject requests with unsupported flags */
542		if (rq->perout.flags)
543			return -EOPNOTSUPP;
544
545		if (rq->perout.index != DEFAULT_PPS_CHANNEL)
546			return -EOPNOTSUPP;
547
548		fep->pps_channel = DEFAULT_PPS_CHANNEL;
549		period.tv_sec = rq->perout.period.sec;
550		period.tv_nsec = rq->perout.period.nsec;
551		period_ns = timespec64_to_ns(&period);
552
553		/* FEC PTP timer only has 31 bits, so if the period exceed
554		 * 4s is not supported.
555		 */
556		if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
557			dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
558			return -EOPNOTSUPP;
559		}
560
561		fep->reload_period = div_u64(period_ns, 2);
562		if (on && fep->reload_period) {
563			/* Convert 1588 timestamp to ns*/
564			start_time.tv_sec = rq->perout.start.sec;
565			start_time.tv_nsec = rq->perout.start.nsec;
566			fep->perout_stime = timespec64_to_ns(&start_time);
567
568			mutex_lock(&fep->ptp_clk_mutex);
569			if (!fep->ptp_clk_on) {
570				dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
571				mutex_unlock(&fep->ptp_clk_mutex);
572				return -EOPNOTSUPP;
573			}
574			spin_lock_irqsave(&fep->tmreg_lock, flags);
575			/* Read current timestamp */
576			curr_time = timecounter_read(&fep->tc);
577			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
578			mutex_unlock(&fep->ptp_clk_mutex);
579
580			/* Calculate time difference */
581			delta = fep->perout_stime - curr_time;
582
583			if (fep->perout_stime <= curr_time) {
584				dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
585				return -EINVAL;
586			}
587
588			/* Because the timer counter of FEC only has 31-bits, correspondingly,
589			 * the time comparison register FEC_TCCR also only low 31 bits can be
590			 * set. If the start time of pps signal exceeds current time more than
591			 * 0x80000000 ns, a software timer is used and the timer expires about
592			 * 1 second before the start time to be able to set FEC_TCCR.
593			 */
594			if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
595				timeout = ns_to_ktime(delta - NSEC_PER_SEC);
596				hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
597			} else {
598				return fec_ptp_pps_perout(fep);
599			}
600		} else {
601			fec_ptp_pps_disable(fep, fep->pps_channel);
602		}
603
604		return 0;
605	} else {
606		return -EOPNOTSUPP;
607	}
608}
609
610int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
611		struct netlink_ext_ack *extack)
612{
613	struct fec_enet_private *fep = netdev_priv(ndev);
614
615	switch (config->tx_type) {
616	case HWTSTAMP_TX_OFF:
617		fep->hwts_tx_en = 0;
618		break;
619	case HWTSTAMP_TX_ON:
620		fep->hwts_tx_en = 1;
621		break;
622	default:
623		return -ERANGE;
624	}
625
626	switch (config->rx_filter) {
627	case HWTSTAMP_FILTER_NONE:
628		fep->hwts_rx_en = 0;
629		break;
630
631	default:
632		fep->hwts_rx_en = 1;
633		config->rx_filter = HWTSTAMP_FILTER_ALL;
634		break;
635	}
636
637	return 0;
638}
639
640void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
641{
642	struct fec_enet_private *fep = netdev_priv(ndev);
643
644	config->flags = 0;
645	config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
646	config->rx_filter = (fep->hwts_rx_en ?
647			     HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
648}
649
650/*
651 * fec_time_keep - call timecounter_read every second to avoid timer overrun
652 *                 because ENET just support 32bit counter, will timeout in 4s
653 */
654static void fec_time_keep(struct work_struct *work)
655{
656	struct delayed_work *dwork = to_delayed_work(work);
657	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
658	unsigned long flags;
659
660	mutex_lock(&fep->ptp_clk_mutex);
661	if (fep->ptp_clk_on) {
662		spin_lock_irqsave(&fep->tmreg_lock, flags);
663		timecounter_read(&fep->tc);
664		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
665	}
666	mutex_unlock(&fep->ptp_clk_mutex);
667
668	schedule_delayed_work(&fep->time_keep, HZ);
669}
670
671/* This function checks the pps event and reloads the timer compare counter. */
672static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
673{
674	struct net_device *ndev = dev_id;
675	struct fec_enet_private *fep = netdev_priv(ndev);
676	u32 val;
677	u8 channel = fep->pps_channel;
678	struct ptp_clock_event event;
679
680	val = readl(fep->hwp + FEC_TCSR(channel));
681	if (val & FEC_T_TF_MASK) {
682		/* Write the next next compare(not the next according the spec)
683		 * value to the register
684		 */
685		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
686		do {
687			writel(val, fep->hwp + FEC_TCSR(channel));
688		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
689
690		/* Update the counter; */
691		fep->next_counter = (fep->next_counter + fep->reload_period) &
692				fep->cc.mask;
693
694		event.type = PTP_CLOCK_PPS;
695		ptp_clock_event(fep->ptp_clock, &event);
696		return IRQ_HANDLED;
697	}
698
699	return IRQ_NONE;
700}
701
702/**
703 * fec_ptp_init
704 * @pdev: The FEC network adapter
705 * @irq_idx: the interrupt index
706 *
707 * This function performs the required steps for enabling ptp
708 * support. If ptp support has already been loaded it simply calls the
709 * cyclecounter init routine and exits.
710 */
711
712void fec_ptp_init(struct platform_device *pdev, int irq_idx)
713{
714	struct net_device *ndev = platform_get_drvdata(pdev);
715	struct fec_enet_private *fep = netdev_priv(ndev);
716	int irq;
717	int ret;
718
719	fep->ptp_caps.owner = THIS_MODULE;
720	strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
721
722	fep->ptp_caps.max_adj = 250000000;
723	fep->ptp_caps.n_alarm = 0;
724	fep->ptp_caps.n_ext_ts = 0;
725	fep->ptp_caps.n_per_out = 1;
726	fep->ptp_caps.n_pins = 0;
727	fep->ptp_caps.pps = 1;
728	fep->ptp_caps.adjfine = fec_ptp_adjfine;
729	fep->ptp_caps.adjtime = fec_ptp_adjtime;
730	fep->ptp_caps.gettime64 = fec_ptp_gettime;
731	fep->ptp_caps.settime64 = fec_ptp_settime;
732	fep->ptp_caps.enable = fec_ptp_enable;
733
734	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
735	if (!fep->cycle_speed) {
736		fep->cycle_speed = NSEC_PER_SEC;
737		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
738	}
739	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
740
741	spin_lock_init(&fep->tmreg_lock);
742
743	fec_ptp_start_cyclecounter(ndev);
744
745	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
746
747	hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
748	fep->perout_timer.function = fec_ptp_pps_perout_handler;
749
750	irq = platform_get_irq_byname_optional(pdev, "pps");
751	if (irq < 0)
752		irq = platform_get_irq_optional(pdev, irq_idx);
753	/* Failure to get an irq is not fatal,
754	 * only the PTP_CLOCK_PPS clock events should stop
755	 */
756	if (irq >= 0) {
757		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
758				       0, pdev->name, ndev);
759		if (ret < 0)
760			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
761				 ret);
762	}
763
764	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
765	if (IS_ERR(fep->ptp_clock)) {
766		fep->ptp_clock = NULL;
767		dev_err(&pdev->dev, "ptp_clock_register failed\n");
768	}
769
770	schedule_delayed_work(&fep->time_keep, HZ);
771}
772
773void fec_ptp_stop(struct platform_device *pdev)
774{
775	struct net_device *ndev = platform_get_drvdata(pdev);
776	struct fec_enet_private *fep = netdev_priv(ndev);
777
778	cancel_delayed_work_sync(&fep->time_keep);
779	hrtimer_cancel(&fep->perout_timer);
780	if (fep->ptp_clock)
781		ptp_clock_unregister(fep->ptp_clock);
782}