Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/tso.h>
  42#include <linux/tcp.h>
  43#include <linux/udp.h>
  44#include <linux/icmp.h>
  45#include <linux/spinlock.h>
  46#include <linux/workqueue.h>
  47#include <linux/bitops.h>
  48#include <linux/io.h>
  49#include <linux/irq.h>
  50#include <linux/clk.h>
  51#include <linux/crc32.h>
  52#include <linux/platform_device.h>
  53#include <linux/mdio.h>
  54#include <linux/phy.h>
  55#include <linux/fec.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/of_gpio.h>
  59#include <linux/of_mdio.h>
  60#include <linux/of_net.h>
  61#include <linux/regulator/consumer.h>
  62#include <linux/if_vlan.h>
  63#include <linux/pinctrl/consumer.h>
  64#include <linux/prefetch.h>
  65#include <soc/imx/cpuidle.h>
  66
  67#include <asm/cacheflush.h>
  68
  69#include "fec.h"
  70
  71static void set_multicast_list(struct net_device *ndev);
  72static void fec_enet_itr_coal_init(struct net_device *ndev);
  73
  74#define DRIVER_NAME	"fec"
  75
  76#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  77
  78/* Pause frame feild and FIFO threshold */
  79#define FEC_ENET_FCE	(1 << 5)
  80#define FEC_ENET_RSEM_V	0x84
  81#define FEC_ENET_RSFL_V	16
  82#define FEC_ENET_RAEM_V	0x8
  83#define FEC_ENET_RAFL_V	0x8
  84#define FEC_ENET_OPD_V	0xFFF0
  85#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  86
  87static struct platform_device_id fec_devtype[] = {
  88	{
  89		/* keep it for coldfire */
  90		.name = DRIVER_NAME,
  91		.driver_data = 0,
  92	}, {
  93		.name = "imx25-fec",
  94		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
  95			       FEC_QUIRK_HAS_FRREG,
  96	}, {
  97		.name = "imx27-fec",
  98		.driver_data = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
  99	}, {
 100		.name = "imx28-fec",
 101		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 102				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 103				FEC_QUIRK_HAS_FRREG,
 104	}, {
 105		.name = "imx6q-fec",
 106		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 107				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 108				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 109				FEC_QUIRK_HAS_RACC,
 110	}, {
 111		.name = "mvf600-fec",
 112		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 113	}, {
 114		.name = "imx6sx-fec",
 115		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 116				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 117				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 118				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 119				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 120	}, {
 121		.name = "imx6ul-fec",
 122		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 123				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 124				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 125				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 126				FEC_QUIRK_HAS_COALESCE,
 127	}, {
 128		/* sentinel */
 129	}
 130};
 131MODULE_DEVICE_TABLE(platform, fec_devtype);
 132
 133enum imx_fec_type {
 134	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 135	IMX27_FEC,	/* runs on i.mx27/35/51 */
 136	IMX28_FEC,
 137	IMX6Q_FEC,
 138	MVF600_FEC,
 139	IMX6SX_FEC,
 140	IMX6UL_FEC,
 141};
 142
 143static const struct of_device_id fec_dt_ids[] = {
 144	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 145	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 146	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 147	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 148	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 149	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 150	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 151	{ /* sentinel */ }
 152};
 153MODULE_DEVICE_TABLE(of, fec_dt_ids);
 154
 155static unsigned char macaddr[ETH_ALEN];
 156module_param_array(macaddr, byte, NULL, 0);
 157MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 158
 159#if defined(CONFIG_M5272)
 160/*
 161 * Some hardware gets it MAC address out of local flash memory.
 162 * if this is non-zero then assume it is the address to get MAC from.
 163 */
 164#if defined(CONFIG_NETtel)
 165#define	FEC_FLASHMAC	0xf0006006
 166#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 167#define	FEC_FLASHMAC	0xf0006000
 168#elif defined(CONFIG_CANCam)
 169#define	FEC_FLASHMAC	0xf0020000
 170#elif defined (CONFIG_M5272C3)
 171#define	FEC_FLASHMAC	(0xffe04000 + 4)
 172#elif defined(CONFIG_MOD5272)
 173#define FEC_FLASHMAC	0xffc0406b
 174#else
 175#define	FEC_FLASHMAC	0
 176#endif
 177#endif /* CONFIG_M5272 */
 178
 179/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 180 *
 181 * 2048 byte skbufs are allocated. However, alignment requirements
 182 * varies between FEC variants. Worst case is 64, so round down by 64.
 183 */
 184#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 185#define PKT_MINBUF_SIZE		64
 186
 187/* FEC receive acceleration */
 188#define FEC_RACC_IPDIS		(1 << 1)
 189#define FEC_RACC_PRODIS		(1 << 2)
 190#define FEC_RACC_SHIFT16	BIT(7)
 191#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 192
 193/* MIB Control Register */
 194#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 195
 196/*
 197 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 198 * size bits. Other FEC hardware does not, so we need to take that into
 199 * account when setting it.
 200 */
 201#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 202    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 203    defined(CONFIG_ARM64)
 204#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 205#else
 206#define	OPT_FRAME_SIZE	0
 207#endif
 208
 209/* FEC MII MMFR bits definition */
 210#define FEC_MMFR_ST		(1 << 30)
 211#define FEC_MMFR_ST_C45		(0)
 212#define FEC_MMFR_OP_READ	(2 << 28)
 213#define FEC_MMFR_OP_READ_C45	(3 << 28)
 214#define FEC_MMFR_OP_WRITE	(1 << 28)
 215#define FEC_MMFR_OP_ADDR_WRITE	(0)
 216#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 217#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 218#define FEC_MMFR_TA		(2 << 16)
 219#define FEC_MMFR_DATA(v)	(v & 0xffff)
 220/* FEC ECR bits definition */
 221#define FEC_ECR_MAGICEN		(1 << 2)
 222#define FEC_ECR_SLEEP		(1 << 3)
 223
 224#define FEC_MII_TIMEOUT		30000 /* us */
 225
 226/* Transmitter timeout */
 227#define TX_TIMEOUT (2 * HZ)
 228
 229#define FEC_PAUSE_FLAG_AUTONEG	0x1
 230#define FEC_PAUSE_FLAG_ENABLE	0x2
 231#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 232#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 233#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 234
 235#define COPYBREAK_DEFAULT	256
 236
 237/* Max number of allowed TCP segments for software TSO */
 238#define FEC_MAX_TSO_SEGS	100
 239#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 240
 241#define IS_TSO_HEADER(txq, addr) \
 242	((addr >= txq->tso_hdrs_dma) && \
 243	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 244
 245static int mii_cnt;
 246
 247static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 248					     struct bufdesc_prop *bd)
 249{
 250	return (bdp >= bd->last) ? bd->base
 251			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 252}
 253
 254static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 255					     struct bufdesc_prop *bd)
 256{
 257	return (bdp <= bd->base) ? bd->last
 258			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 259}
 260
 261static int fec_enet_get_bd_index(struct bufdesc *bdp,
 262				 struct bufdesc_prop *bd)
 263{
 264	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 265}
 266
 267static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 268{
 269	int entries;
 270
 271	entries = (((const char *)txq->dirty_tx -
 272			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 273
 274	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 275}
 276
 277static void swap_buffer(void *bufaddr, int len)
 278{
 279	int i;
 280	unsigned int *buf = bufaddr;
 281
 282	for (i = 0; i < len; i += 4, buf++)
 283		swab32s(buf);
 284}
 285
 286static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 287{
 288	int i;
 289	unsigned int *src = src_buf;
 290	unsigned int *dst = dst_buf;
 291
 292	for (i = 0; i < len; i += 4, src++, dst++)
 293		*dst = swab32p(src);
 294}
 295
 296static void fec_dump(struct net_device *ndev)
 297{
 298	struct fec_enet_private *fep = netdev_priv(ndev);
 299	struct bufdesc *bdp;
 300	struct fec_enet_priv_tx_q *txq;
 301	int index = 0;
 302
 303	netdev_info(ndev, "TX ring dump\n");
 304	pr_info("Nr     SC     addr       len  SKB\n");
 305
 306	txq = fep->tx_queue[0];
 307	bdp = txq->bd.base;
 308
 309	do {
 310		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 311			index,
 312			bdp == txq->bd.cur ? 'S' : ' ',
 313			bdp == txq->dirty_tx ? 'H' : ' ',
 314			fec16_to_cpu(bdp->cbd_sc),
 315			fec32_to_cpu(bdp->cbd_bufaddr),
 316			fec16_to_cpu(bdp->cbd_datlen),
 317			txq->tx_skbuff[index]);
 318		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 319		index++;
 320	} while (bdp != txq->bd.base);
 321}
 322
 323static inline bool is_ipv4_pkt(struct sk_buff *skb)
 324{
 325	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 326}
 327
 328static int
 329fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 330{
 331	/* Only run for packets requiring a checksum. */
 332	if (skb->ip_summed != CHECKSUM_PARTIAL)
 333		return 0;
 334
 335	if (unlikely(skb_cow_head(skb, 0)))
 336		return -1;
 337
 338	if (is_ipv4_pkt(skb))
 339		ip_hdr(skb)->check = 0;
 340	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 341
 342	return 0;
 343}
 344
 345static struct bufdesc *
 346fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 347			     struct sk_buff *skb,
 348			     struct net_device *ndev)
 349{
 350	struct fec_enet_private *fep = netdev_priv(ndev);
 351	struct bufdesc *bdp = txq->bd.cur;
 352	struct bufdesc_ex *ebdp;
 353	int nr_frags = skb_shinfo(skb)->nr_frags;
 354	int frag, frag_len;
 355	unsigned short status;
 356	unsigned int estatus = 0;
 357	skb_frag_t *this_frag;
 358	unsigned int index;
 359	void *bufaddr;
 360	dma_addr_t addr;
 361	int i;
 362
 363	for (frag = 0; frag < nr_frags; frag++) {
 364		this_frag = &skb_shinfo(skb)->frags[frag];
 365		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 366		ebdp = (struct bufdesc_ex *)bdp;
 367
 368		status = fec16_to_cpu(bdp->cbd_sc);
 369		status &= ~BD_ENET_TX_STATS;
 370		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 371		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 372
 373		/* Handle the last BD specially */
 374		if (frag == nr_frags - 1) {
 375			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 376			if (fep->bufdesc_ex) {
 377				estatus |= BD_ENET_TX_INT;
 378				if (unlikely(skb_shinfo(skb)->tx_flags &
 379					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 380					estatus |= BD_ENET_TX_TS;
 381			}
 382		}
 383
 384		if (fep->bufdesc_ex) {
 385			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 386				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 387			if (skb->ip_summed == CHECKSUM_PARTIAL)
 388				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 389			ebdp->cbd_bdu = 0;
 390			ebdp->cbd_esc = cpu_to_fec32(estatus);
 391		}
 392
 393		bufaddr = skb_frag_address(this_frag);
 394
 395		index = fec_enet_get_bd_index(bdp, &txq->bd);
 396		if (((unsigned long) bufaddr) & fep->tx_align ||
 397			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 398			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 399			bufaddr = txq->tx_bounce[index];
 400
 401			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 402				swap_buffer(bufaddr, frag_len);
 403		}
 404
 405		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 406				      DMA_TO_DEVICE);
 407		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 408			if (net_ratelimit())
 409				netdev_err(ndev, "Tx DMA memory map failed\n");
 410			goto dma_mapping_error;
 411		}
 412
 413		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 414		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 415		/* Make sure the updates to rest of the descriptor are
 416		 * performed before transferring ownership.
 417		 */
 418		wmb();
 419		bdp->cbd_sc = cpu_to_fec16(status);
 420	}
 421
 422	return bdp;
 423dma_mapping_error:
 424	bdp = txq->bd.cur;
 425	for (i = 0; i < frag; i++) {
 426		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 427		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 428				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 429	}
 430	return ERR_PTR(-ENOMEM);
 431}
 432
 433static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 434				   struct sk_buff *skb, struct net_device *ndev)
 435{
 436	struct fec_enet_private *fep = netdev_priv(ndev);
 437	int nr_frags = skb_shinfo(skb)->nr_frags;
 438	struct bufdesc *bdp, *last_bdp;
 439	void *bufaddr;
 440	dma_addr_t addr;
 441	unsigned short status;
 442	unsigned short buflen;
 443	unsigned int estatus = 0;
 444	unsigned int index;
 445	int entries_free;
 446
 447	entries_free = fec_enet_get_free_txdesc_num(txq);
 448	if (entries_free < MAX_SKB_FRAGS + 1) {
 449		dev_kfree_skb_any(skb);
 450		if (net_ratelimit())
 451			netdev_err(ndev, "NOT enough BD for SG!\n");
 452		return NETDEV_TX_OK;
 453	}
 454
 455	/* Protocol checksum off-load for TCP and UDP. */
 456	if (fec_enet_clear_csum(skb, ndev)) {
 457		dev_kfree_skb_any(skb);
 458		return NETDEV_TX_OK;
 459	}
 460
 461	/* Fill in a Tx ring entry */
 462	bdp = txq->bd.cur;
 463	last_bdp = bdp;
 464	status = fec16_to_cpu(bdp->cbd_sc);
 465	status &= ~BD_ENET_TX_STATS;
 466
 467	/* Set buffer length and buffer pointer */
 468	bufaddr = skb->data;
 469	buflen = skb_headlen(skb);
 470
 471	index = fec_enet_get_bd_index(bdp, &txq->bd);
 472	if (((unsigned long) bufaddr) & fep->tx_align ||
 473		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 474		memcpy(txq->tx_bounce[index], skb->data, buflen);
 475		bufaddr = txq->tx_bounce[index];
 476
 477		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 478			swap_buffer(bufaddr, buflen);
 479	}
 480
 481	/* Push the data cache so the CPM does not get stale memory data. */
 482	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 483	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 484		dev_kfree_skb_any(skb);
 485		if (net_ratelimit())
 486			netdev_err(ndev, "Tx DMA memory map failed\n");
 487		return NETDEV_TX_OK;
 488	}
 489
 490	if (nr_frags) {
 491		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 492		if (IS_ERR(last_bdp)) {
 493			dma_unmap_single(&fep->pdev->dev, addr,
 494					 buflen, DMA_TO_DEVICE);
 495			dev_kfree_skb_any(skb);
 496			return NETDEV_TX_OK;
 497		}
 498	} else {
 499		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 500		if (fep->bufdesc_ex) {
 501			estatus = BD_ENET_TX_INT;
 502			if (unlikely(skb_shinfo(skb)->tx_flags &
 503				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 504				estatus |= BD_ENET_TX_TS;
 505		}
 506	}
 507	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 508	bdp->cbd_datlen = cpu_to_fec16(buflen);
 509
 510	if (fep->bufdesc_ex) {
 511
 512		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 513
 514		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 515			fep->hwts_tx_en))
 516			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 517
 518		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 519			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 520
 521		if (skb->ip_summed == CHECKSUM_PARTIAL)
 522			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 523
 524		ebdp->cbd_bdu = 0;
 525		ebdp->cbd_esc = cpu_to_fec32(estatus);
 526	}
 527
 528	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 529	/* Save skb pointer */
 530	txq->tx_skbuff[index] = skb;
 531
 532	/* Make sure the updates to rest of the descriptor are performed before
 533	 * transferring ownership.
 534	 */
 535	wmb();
 536
 537	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 538	 * it's the last BD of the frame, and to put the CRC on the end.
 539	 */
 540	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 541	bdp->cbd_sc = cpu_to_fec16(status);
 542
 543	/* If this was the last BD in the ring, start at the beginning again. */
 544	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 545
 546	skb_tx_timestamp(skb);
 547
 548	/* Make sure the update to bdp and tx_skbuff are performed before
 549	 * txq->bd.cur.
 550	 */
 551	wmb();
 552	txq->bd.cur = bdp;
 553
 554	/* Trigger transmission start */
 555	writel(0, txq->bd.reg_desc_active);
 556
 557	return 0;
 558}
 559
 560static int
 561fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 562			  struct net_device *ndev,
 563			  struct bufdesc *bdp, int index, char *data,
 564			  int size, bool last_tcp, bool is_last)
 565{
 566	struct fec_enet_private *fep = netdev_priv(ndev);
 567	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 568	unsigned short status;
 569	unsigned int estatus = 0;
 570	dma_addr_t addr;
 571
 572	status = fec16_to_cpu(bdp->cbd_sc);
 573	status &= ~BD_ENET_TX_STATS;
 574
 575	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 576
 577	if (((unsigned long) data) & fep->tx_align ||
 578		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 579		memcpy(txq->tx_bounce[index], data, size);
 580		data = txq->tx_bounce[index];
 581
 582		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 583			swap_buffer(data, size);
 584	}
 585
 586	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 587	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 588		dev_kfree_skb_any(skb);
 589		if (net_ratelimit())
 590			netdev_err(ndev, "Tx DMA memory map failed\n");
 591		return NETDEV_TX_BUSY;
 592	}
 593
 594	bdp->cbd_datlen = cpu_to_fec16(size);
 595	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 596
 597	if (fep->bufdesc_ex) {
 598		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 599			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 600		if (skb->ip_summed == CHECKSUM_PARTIAL)
 601			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 602		ebdp->cbd_bdu = 0;
 603		ebdp->cbd_esc = cpu_to_fec32(estatus);
 604	}
 605
 606	/* Handle the last BD specially */
 607	if (last_tcp)
 608		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 609	if (is_last) {
 610		status |= BD_ENET_TX_INTR;
 611		if (fep->bufdesc_ex)
 612			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 613	}
 614
 615	bdp->cbd_sc = cpu_to_fec16(status);
 616
 617	return 0;
 618}
 619
 620static int
 621fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 622			 struct sk_buff *skb, struct net_device *ndev,
 623			 struct bufdesc *bdp, int index)
 624{
 625	struct fec_enet_private *fep = netdev_priv(ndev);
 626	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 627	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 628	void *bufaddr;
 629	unsigned long dmabuf;
 630	unsigned short status;
 631	unsigned int estatus = 0;
 632
 633	status = fec16_to_cpu(bdp->cbd_sc);
 634	status &= ~BD_ENET_TX_STATS;
 635	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 636
 637	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 638	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 639	if (((unsigned long)bufaddr) & fep->tx_align ||
 640		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 641		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 642		bufaddr = txq->tx_bounce[index];
 643
 644		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 645			swap_buffer(bufaddr, hdr_len);
 646
 647		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 648					hdr_len, DMA_TO_DEVICE);
 649		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 650			dev_kfree_skb_any(skb);
 651			if (net_ratelimit())
 652				netdev_err(ndev, "Tx DMA memory map failed\n");
 653			return NETDEV_TX_BUSY;
 654		}
 655	}
 656
 657	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 658	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 659
 660	if (fep->bufdesc_ex) {
 661		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 662			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 663		if (skb->ip_summed == CHECKSUM_PARTIAL)
 664			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 665		ebdp->cbd_bdu = 0;
 666		ebdp->cbd_esc = cpu_to_fec32(estatus);
 667	}
 668
 669	bdp->cbd_sc = cpu_to_fec16(status);
 670
 671	return 0;
 672}
 673
 674static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 675				   struct sk_buff *skb,
 676				   struct net_device *ndev)
 677{
 678	struct fec_enet_private *fep = netdev_priv(ndev);
 679	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 680	int total_len, data_left;
 681	struct bufdesc *bdp = txq->bd.cur;
 682	struct tso_t tso;
 683	unsigned int index = 0;
 684	int ret;
 685
 686	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 687		dev_kfree_skb_any(skb);
 688		if (net_ratelimit())
 689			netdev_err(ndev, "NOT enough BD for TSO!\n");
 690		return NETDEV_TX_OK;
 691	}
 692
 693	/* Protocol checksum off-load for TCP and UDP. */
 694	if (fec_enet_clear_csum(skb, ndev)) {
 695		dev_kfree_skb_any(skb);
 696		return NETDEV_TX_OK;
 697	}
 698
 699	/* Initialize the TSO handler, and prepare the first payload */
 700	tso_start(skb, &tso);
 701
 702	total_len = skb->len - hdr_len;
 703	while (total_len > 0) {
 704		char *hdr;
 705
 706		index = fec_enet_get_bd_index(bdp, &txq->bd);
 707		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 708		total_len -= data_left;
 709
 710		/* prepare packet headers: MAC + IP + TCP */
 711		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 712		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 713		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 714		if (ret)
 715			goto err_release;
 716
 717		while (data_left > 0) {
 718			int size;
 719
 720			size = min_t(int, tso.size, data_left);
 721			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 722			index = fec_enet_get_bd_index(bdp, &txq->bd);
 723			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 724							bdp, index,
 725							tso.data, size,
 726							size == data_left,
 727							total_len == 0);
 728			if (ret)
 729				goto err_release;
 730
 731			data_left -= size;
 732			tso_build_data(skb, &tso, size);
 733		}
 734
 735		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 736	}
 737
 738	/* Save skb pointer */
 739	txq->tx_skbuff[index] = skb;
 740
 741	skb_tx_timestamp(skb);
 742	txq->bd.cur = bdp;
 743
 744	/* Trigger transmission start */
 745	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 746	    !readl(txq->bd.reg_desc_active) ||
 747	    !readl(txq->bd.reg_desc_active) ||
 748	    !readl(txq->bd.reg_desc_active) ||
 749	    !readl(txq->bd.reg_desc_active))
 750		writel(0, txq->bd.reg_desc_active);
 751
 752	return 0;
 753
 754err_release:
 755	/* TODO: Release all used data descriptors for TSO */
 756	return ret;
 757}
 758
 759static netdev_tx_t
 760fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 761{
 762	struct fec_enet_private *fep = netdev_priv(ndev);
 763	int entries_free;
 764	unsigned short queue;
 765	struct fec_enet_priv_tx_q *txq;
 766	struct netdev_queue *nq;
 767	int ret;
 768
 769	queue = skb_get_queue_mapping(skb);
 770	txq = fep->tx_queue[queue];
 771	nq = netdev_get_tx_queue(ndev, queue);
 772
 773	if (skb_is_gso(skb))
 774		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 775	else
 776		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 777	if (ret)
 778		return ret;
 779
 780	entries_free = fec_enet_get_free_txdesc_num(txq);
 781	if (entries_free <= txq->tx_stop_threshold)
 782		netif_tx_stop_queue(nq);
 783
 784	return NETDEV_TX_OK;
 785}
 786
 787/* Init RX & TX buffer descriptors
 788 */
 789static void fec_enet_bd_init(struct net_device *dev)
 790{
 791	struct fec_enet_private *fep = netdev_priv(dev);
 792	struct fec_enet_priv_tx_q *txq;
 793	struct fec_enet_priv_rx_q *rxq;
 794	struct bufdesc *bdp;
 795	unsigned int i;
 796	unsigned int q;
 797
 798	for (q = 0; q < fep->num_rx_queues; q++) {
 799		/* Initialize the receive buffer descriptors. */
 800		rxq = fep->rx_queue[q];
 801		bdp = rxq->bd.base;
 802
 803		for (i = 0; i < rxq->bd.ring_size; i++) {
 804
 805			/* Initialize the BD for every fragment in the page. */
 806			if (bdp->cbd_bufaddr)
 807				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 808			else
 809				bdp->cbd_sc = cpu_to_fec16(0);
 810			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 811		}
 812
 813		/* Set the last buffer to wrap */
 814		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 815		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 816
 817		rxq->bd.cur = rxq->bd.base;
 818	}
 819
 820	for (q = 0; q < fep->num_tx_queues; q++) {
 821		/* ...and the same for transmit */
 822		txq = fep->tx_queue[q];
 823		bdp = txq->bd.base;
 824		txq->bd.cur = bdp;
 825
 826		for (i = 0; i < txq->bd.ring_size; i++) {
 827			/* Initialize the BD for every fragment in the page. */
 828			bdp->cbd_sc = cpu_to_fec16(0);
 829			if (bdp->cbd_bufaddr &&
 830			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 831				dma_unmap_single(&fep->pdev->dev,
 832						 fec32_to_cpu(bdp->cbd_bufaddr),
 833						 fec16_to_cpu(bdp->cbd_datlen),
 834						 DMA_TO_DEVICE);
 835			if (txq->tx_skbuff[i]) {
 836				dev_kfree_skb_any(txq->tx_skbuff[i]);
 837				txq->tx_skbuff[i] = NULL;
 838			}
 839			bdp->cbd_bufaddr = cpu_to_fec32(0);
 840			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 841		}
 842
 843		/* Set the last buffer to wrap */
 844		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 845		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 846		txq->dirty_tx = bdp;
 847	}
 848}
 849
 850static void fec_enet_active_rxring(struct net_device *ndev)
 851{
 852	struct fec_enet_private *fep = netdev_priv(ndev);
 853	int i;
 854
 855	for (i = 0; i < fep->num_rx_queues; i++)
 856		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 857}
 858
 859static void fec_enet_enable_ring(struct net_device *ndev)
 860{
 861	struct fec_enet_private *fep = netdev_priv(ndev);
 862	struct fec_enet_priv_tx_q *txq;
 863	struct fec_enet_priv_rx_q *rxq;
 864	int i;
 865
 866	for (i = 0; i < fep->num_rx_queues; i++) {
 867		rxq = fep->rx_queue[i];
 868		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 869		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 870
 871		/* enable DMA1/2 */
 872		if (i)
 873			writel(RCMR_MATCHEN | RCMR_CMP(i),
 874			       fep->hwp + FEC_RCMR(i));
 875	}
 876
 877	for (i = 0; i < fep->num_tx_queues; i++) {
 878		txq = fep->tx_queue[i];
 879		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 880
 881		/* enable DMA1/2 */
 882		if (i)
 883			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 884			       fep->hwp + FEC_DMA_CFG(i));
 885	}
 886}
 887
 888static void fec_enet_reset_skb(struct net_device *ndev)
 889{
 890	struct fec_enet_private *fep = netdev_priv(ndev);
 891	struct fec_enet_priv_tx_q *txq;
 892	int i, j;
 893
 894	for (i = 0; i < fep->num_tx_queues; i++) {
 895		txq = fep->tx_queue[i];
 896
 897		for (j = 0; j < txq->bd.ring_size; j++) {
 898			if (txq->tx_skbuff[j]) {
 899				dev_kfree_skb_any(txq->tx_skbuff[j]);
 900				txq->tx_skbuff[j] = NULL;
 901			}
 902		}
 903	}
 904}
 905
 906/*
 907 * This function is called to start or restart the FEC during a link
 908 * change, transmit timeout, or to reconfigure the FEC.  The network
 909 * packet processing for this device must be stopped before this call.
 910 */
 911static void
 912fec_restart(struct net_device *ndev)
 913{
 914	struct fec_enet_private *fep = netdev_priv(ndev);
 915	u32 val;
 916	u32 temp_mac[2];
 917	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 918	u32 ecntl = 0x2; /* ETHEREN */
 919
 920	/* Whack a reset.  We should wait for this.
 921	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 922	 * instead of reset MAC itself.
 923	 */
 924	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 925		writel(0, fep->hwp + FEC_ECNTRL);
 926	} else {
 927		writel(1, fep->hwp + FEC_ECNTRL);
 928		udelay(10);
 929	}
 930
 931	/*
 932	 * enet-mac reset will reset mac address registers too,
 933	 * so need to reconfigure it.
 934	 */
 935	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 936	writel((__force u32)cpu_to_be32(temp_mac[0]),
 937	       fep->hwp + FEC_ADDR_LOW);
 938	writel((__force u32)cpu_to_be32(temp_mac[1]),
 939	       fep->hwp + FEC_ADDR_HIGH);
 940
 941	/* Clear any outstanding interrupt. */
 942	writel(0xffffffff, fep->hwp + FEC_IEVENT);
 943
 944	fec_enet_bd_init(ndev);
 945
 946	fec_enet_enable_ring(ndev);
 947
 948	/* Reset tx SKB buffers. */
 949	fec_enet_reset_skb(ndev);
 950
 951	/* Enable MII mode */
 952	if (fep->full_duplex == DUPLEX_FULL) {
 953		/* FD enable */
 954		writel(0x04, fep->hwp + FEC_X_CNTRL);
 955	} else {
 956		/* No Rcv on Xmit */
 957		rcntl |= 0x02;
 958		writel(0x0, fep->hwp + FEC_X_CNTRL);
 959	}
 960
 961	/* Set MII speed */
 962	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 963
 964#if !defined(CONFIG_M5272)
 965	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 966		val = readl(fep->hwp + FEC_RACC);
 967		/* align IP header */
 968		val |= FEC_RACC_SHIFT16;
 969		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 970			/* set RX checksum */
 971			val |= FEC_RACC_OPTIONS;
 972		else
 973			val &= ~FEC_RACC_OPTIONS;
 974		writel(val, fep->hwp + FEC_RACC);
 975		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 976	}
 977#endif
 978
 979	/*
 980	 * The phy interface and speed need to get configured
 981	 * differently on enet-mac.
 982	 */
 983	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 984		/* Enable flow control and length check */
 985		rcntl |= 0x40000000 | 0x00000020;
 986
 987		/* RGMII, RMII or MII */
 988		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 989		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 990		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 991		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 992			rcntl |= (1 << 6);
 993		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 994			rcntl |= (1 << 8);
 995		else
 996			rcntl &= ~(1 << 8);
 997
 998		/* 1G, 100M or 10M */
 999		if (ndev->phydev) {
1000			if (ndev->phydev->speed == SPEED_1000)
1001				ecntl |= (1 << 5);
1002			else if (ndev->phydev->speed == SPEED_100)
1003				rcntl &= ~(1 << 9);
1004			else
1005				rcntl |= (1 << 9);
1006		}
1007	} else {
1008#ifdef FEC_MIIGSK_ENR
1009		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1010			u32 cfgr;
1011			/* disable the gasket and wait */
1012			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1013			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1014				udelay(1);
1015
1016			/*
1017			 * configure the gasket:
1018			 *   RMII, 50 MHz, no loopback, no echo
1019			 *   MII, 25 MHz, no loopback, no echo
1020			 */
1021			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1022				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1023			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1024				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1025			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1026
1027			/* re-enable the gasket */
1028			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1029		}
1030#endif
1031	}
1032
1033#if !defined(CONFIG_M5272)
1034	/* enable pause frame*/
1035	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1036	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1037	     ndev->phydev && ndev->phydev->pause)) {
1038		rcntl |= FEC_ENET_FCE;
1039
1040		/* set FIFO threshold parameter to reduce overrun */
1041		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1042		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1043		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1044		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1045
1046		/* OPD */
1047		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1048	} else {
1049		rcntl &= ~FEC_ENET_FCE;
1050	}
1051#endif /* !defined(CONFIG_M5272) */
1052
1053	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1054
1055	/* Setup multicast filter. */
1056	set_multicast_list(ndev);
1057#ifndef CONFIG_M5272
1058	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1059	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1060#endif
1061
1062	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1063		/* enable ENET endian swap */
1064		ecntl |= (1 << 8);
1065		/* enable ENET store and forward mode */
1066		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1067	}
1068
1069	if (fep->bufdesc_ex)
1070		ecntl |= (1 << 4);
1071
1072#ifndef CONFIG_M5272
1073	/* Enable the MIB statistic event counters */
1074	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1075#endif
1076
1077	/* And last, enable the transmit and receive processing */
1078	writel(ecntl, fep->hwp + FEC_ECNTRL);
1079	fec_enet_active_rxring(ndev);
1080
1081	if (fep->bufdesc_ex)
1082		fec_ptp_start_cyclecounter(ndev);
1083
1084	/* Enable interrupts we wish to service */
1085	if (fep->link)
1086		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1087	else
1088		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1089
1090	/* Init the interrupt coalescing */
1091	fec_enet_itr_coal_init(ndev);
1092
1093}
1094
1095static void
1096fec_stop(struct net_device *ndev)
1097{
1098	struct fec_enet_private *fep = netdev_priv(ndev);
1099	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1100	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1101	u32 val;
1102
1103	/* We cannot expect a graceful transmit stop without link !!! */
1104	if (fep->link) {
1105		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1106		udelay(10);
1107		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1108			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1109	}
1110
1111	/* Whack a reset.  We should wait for this.
1112	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1113	 * instead of reset MAC itself.
1114	 */
1115	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1116		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1117			writel(0, fep->hwp + FEC_ECNTRL);
1118		} else {
1119			writel(1, fep->hwp + FEC_ECNTRL);
1120			udelay(10);
1121		}
1122		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1123	} else {
1124		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1125		val = readl(fep->hwp + FEC_ECNTRL);
1126		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1127		writel(val, fep->hwp + FEC_ECNTRL);
1128
1129		if (pdata && pdata->sleep_mode_enable)
1130			pdata->sleep_mode_enable(true);
1131	}
1132	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1133
1134	/* We have to keep ENET enabled to have MII interrupt stay working */
1135	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1136		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1137		writel(2, fep->hwp + FEC_ECNTRL);
1138		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1139	}
1140}
1141
1142
1143static void
1144fec_timeout(struct net_device *ndev)
1145{
1146	struct fec_enet_private *fep = netdev_priv(ndev);
1147
1148	fec_dump(ndev);
1149
1150	ndev->stats.tx_errors++;
1151
1152	schedule_work(&fep->tx_timeout_work);
1153}
1154
1155static void fec_enet_timeout_work(struct work_struct *work)
1156{
1157	struct fec_enet_private *fep =
1158		container_of(work, struct fec_enet_private, tx_timeout_work);
1159	struct net_device *ndev = fep->netdev;
1160
1161	rtnl_lock();
1162	if (netif_device_present(ndev) || netif_running(ndev)) {
1163		napi_disable(&fep->napi);
1164		netif_tx_lock_bh(ndev);
1165		fec_restart(ndev);
1166		netif_tx_wake_all_queues(ndev);
1167		netif_tx_unlock_bh(ndev);
1168		napi_enable(&fep->napi);
1169	}
1170	rtnl_unlock();
1171}
1172
1173static void
1174fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1175	struct skb_shared_hwtstamps *hwtstamps)
1176{
1177	unsigned long flags;
1178	u64 ns;
1179
1180	spin_lock_irqsave(&fep->tmreg_lock, flags);
1181	ns = timecounter_cyc2time(&fep->tc, ts);
1182	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1183
1184	memset(hwtstamps, 0, sizeof(*hwtstamps));
1185	hwtstamps->hwtstamp = ns_to_ktime(ns);
1186}
1187
1188static void
1189fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1190{
1191	struct	fec_enet_private *fep;
1192	struct bufdesc *bdp;
1193	unsigned short status;
1194	struct	sk_buff	*skb;
1195	struct fec_enet_priv_tx_q *txq;
1196	struct netdev_queue *nq;
1197	int	index = 0;
1198	int	entries_free;
1199
1200	fep = netdev_priv(ndev);
1201
1202	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1203
1204	txq = fep->tx_queue[queue_id];
1205	/* get next bdp of dirty_tx */
1206	nq = netdev_get_tx_queue(ndev, queue_id);
1207	bdp = txq->dirty_tx;
1208
1209	/* get next bdp of dirty_tx */
1210	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1211
1212	while (bdp != READ_ONCE(txq->bd.cur)) {
1213		/* Order the load of bd.cur and cbd_sc */
1214		rmb();
1215		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1216		if (status & BD_ENET_TX_READY)
1217			break;
1218
1219		index = fec_enet_get_bd_index(bdp, &txq->bd);
1220
1221		skb = txq->tx_skbuff[index];
1222		txq->tx_skbuff[index] = NULL;
1223		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1224			dma_unmap_single(&fep->pdev->dev,
1225					 fec32_to_cpu(bdp->cbd_bufaddr),
1226					 fec16_to_cpu(bdp->cbd_datlen),
1227					 DMA_TO_DEVICE);
1228		bdp->cbd_bufaddr = cpu_to_fec32(0);
1229		if (!skb)
1230			goto skb_done;
1231
1232		/* Check for errors. */
1233		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1234				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1235				   BD_ENET_TX_CSL)) {
1236			ndev->stats.tx_errors++;
1237			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1238				ndev->stats.tx_heartbeat_errors++;
1239			if (status & BD_ENET_TX_LC)  /* Late collision */
1240				ndev->stats.tx_window_errors++;
1241			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1242				ndev->stats.tx_aborted_errors++;
1243			if (status & BD_ENET_TX_UN)  /* Underrun */
1244				ndev->stats.tx_fifo_errors++;
1245			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1246				ndev->stats.tx_carrier_errors++;
1247		} else {
1248			ndev->stats.tx_packets++;
1249			ndev->stats.tx_bytes += skb->len;
1250		}
1251
1252		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1253			fep->bufdesc_ex) {
1254			struct skb_shared_hwtstamps shhwtstamps;
1255			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1256
1257			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1258			skb_tstamp_tx(skb, &shhwtstamps);
1259		}
1260
1261		/* Deferred means some collisions occurred during transmit,
1262		 * but we eventually sent the packet OK.
1263		 */
1264		if (status & BD_ENET_TX_DEF)
1265			ndev->stats.collisions++;
1266
1267		/* Free the sk buffer associated with this last transmit */
1268		dev_kfree_skb_any(skb);
1269skb_done:
1270		/* Make sure the update to bdp and tx_skbuff are performed
1271		 * before dirty_tx
1272		 */
1273		wmb();
1274		txq->dirty_tx = bdp;
1275
1276		/* Update pointer to next buffer descriptor to be transmitted */
1277		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1278
1279		/* Since we have freed up a buffer, the ring is no longer full
1280		 */
1281		if (netif_tx_queue_stopped(nq)) {
1282			entries_free = fec_enet_get_free_txdesc_num(txq);
1283			if (entries_free >= txq->tx_wake_threshold)
1284				netif_tx_wake_queue(nq);
1285		}
1286	}
1287
1288	/* ERR006358: Keep the transmitter going */
1289	if (bdp != txq->bd.cur &&
1290	    readl(txq->bd.reg_desc_active) == 0)
1291		writel(0, txq->bd.reg_desc_active);
1292}
1293
1294static void
1295fec_enet_tx(struct net_device *ndev)
1296{
1297	struct fec_enet_private *fep = netdev_priv(ndev);
1298	u16 queue_id;
1299	/* First process class A queue, then Class B and Best Effort queue */
1300	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1301		clear_bit(queue_id, &fep->work_tx);
1302		fec_enet_tx_queue(ndev, queue_id);
1303	}
1304	return;
1305}
1306
1307static int
1308fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1309{
1310	struct  fec_enet_private *fep = netdev_priv(ndev);
1311	int off;
1312
1313	off = ((unsigned long)skb->data) & fep->rx_align;
1314	if (off)
1315		skb_reserve(skb, fep->rx_align + 1 - off);
1316
1317	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1318	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1319		if (net_ratelimit())
1320			netdev_err(ndev, "Rx DMA memory map failed\n");
1321		return -ENOMEM;
1322	}
1323
1324	return 0;
1325}
1326
1327static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1328			       struct bufdesc *bdp, u32 length, bool swap)
1329{
1330	struct  fec_enet_private *fep = netdev_priv(ndev);
1331	struct sk_buff *new_skb;
1332
1333	if (length > fep->rx_copybreak)
1334		return false;
1335
1336	new_skb = netdev_alloc_skb(ndev, length);
1337	if (!new_skb)
1338		return false;
1339
1340	dma_sync_single_for_cpu(&fep->pdev->dev,
1341				fec32_to_cpu(bdp->cbd_bufaddr),
1342				FEC_ENET_RX_FRSIZE - fep->rx_align,
1343				DMA_FROM_DEVICE);
1344	if (!swap)
1345		memcpy(new_skb->data, (*skb)->data, length);
1346	else
1347		swap_buffer2(new_skb->data, (*skb)->data, length);
1348	*skb = new_skb;
1349
1350	return true;
1351}
1352
1353/* During a receive, the bd_rx.cur points to the current incoming buffer.
1354 * When we update through the ring, if the next incoming buffer has
1355 * not been given to the system, we just set the empty indicator,
1356 * effectively tossing the packet.
1357 */
1358static int
1359fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1360{
1361	struct fec_enet_private *fep = netdev_priv(ndev);
1362	struct fec_enet_priv_rx_q *rxq;
1363	struct bufdesc *bdp;
1364	unsigned short status;
1365	struct  sk_buff *skb_new = NULL;
1366	struct  sk_buff *skb;
1367	ushort	pkt_len;
1368	__u8 *data;
1369	int	pkt_received = 0;
1370	struct	bufdesc_ex *ebdp = NULL;
1371	bool	vlan_packet_rcvd = false;
1372	u16	vlan_tag;
1373	int	index = 0;
1374	bool	is_copybreak;
1375	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1376
1377#ifdef CONFIG_M532x
1378	flush_cache_all();
1379#endif
1380	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1381	rxq = fep->rx_queue[queue_id];
1382
1383	/* First, grab all of the stats for the incoming packet.
1384	 * These get messed up if we get called due to a busy condition.
1385	 */
1386	bdp = rxq->bd.cur;
1387
1388	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1389
1390		if (pkt_received >= budget)
1391			break;
1392		pkt_received++;
1393
1394		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1395
1396		/* Check for errors. */
1397		status ^= BD_ENET_RX_LAST;
1398		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1399			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1400			   BD_ENET_RX_CL)) {
1401			ndev->stats.rx_errors++;
1402			if (status & BD_ENET_RX_OV) {
1403				/* FIFO overrun */
1404				ndev->stats.rx_fifo_errors++;
1405				goto rx_processing_done;
1406			}
1407			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1408						| BD_ENET_RX_LAST)) {
1409				/* Frame too long or too short. */
1410				ndev->stats.rx_length_errors++;
1411				if (status & BD_ENET_RX_LAST)
1412					netdev_err(ndev, "rcv is not +last\n");
1413			}
1414			if (status & BD_ENET_RX_CR)	/* CRC Error */
1415				ndev->stats.rx_crc_errors++;
1416			/* Report late collisions as a frame error. */
1417			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1418				ndev->stats.rx_frame_errors++;
1419			goto rx_processing_done;
1420		}
1421
1422		/* Process the incoming frame. */
1423		ndev->stats.rx_packets++;
1424		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1425		ndev->stats.rx_bytes += pkt_len;
1426
1427		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1428		skb = rxq->rx_skbuff[index];
1429
1430		/* The packet length includes FCS, but we don't want to
1431		 * include that when passing upstream as it messes up
1432		 * bridging applications.
1433		 */
1434		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1435						  need_swap);
1436		if (!is_copybreak) {
1437			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1438			if (unlikely(!skb_new)) {
1439				ndev->stats.rx_dropped++;
1440				goto rx_processing_done;
1441			}
1442			dma_unmap_single(&fep->pdev->dev,
1443					 fec32_to_cpu(bdp->cbd_bufaddr),
1444					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1445					 DMA_FROM_DEVICE);
1446		}
1447
1448		prefetch(skb->data - NET_IP_ALIGN);
1449		skb_put(skb, pkt_len - 4);
1450		data = skb->data;
1451
1452		if (!is_copybreak && need_swap)
1453			swap_buffer(data, pkt_len);
1454
1455#if !defined(CONFIG_M5272)
1456		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1457			data = skb_pull_inline(skb, 2);
1458#endif
1459
1460		/* Extract the enhanced buffer descriptor */
1461		ebdp = NULL;
1462		if (fep->bufdesc_ex)
1463			ebdp = (struct bufdesc_ex *)bdp;
1464
1465		/* If this is a VLAN packet remove the VLAN Tag */
1466		vlan_packet_rcvd = false;
1467		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1468		    fep->bufdesc_ex &&
1469		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1470			/* Push and remove the vlan tag */
1471			struct vlan_hdr *vlan_header =
1472					(struct vlan_hdr *) (data + ETH_HLEN);
1473			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1474
1475			vlan_packet_rcvd = true;
1476
1477			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1478			skb_pull(skb, VLAN_HLEN);
1479		}
1480
1481		skb->protocol = eth_type_trans(skb, ndev);
1482
1483		/* Get receive timestamp from the skb */
1484		if (fep->hwts_rx_en && fep->bufdesc_ex)
1485			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1486					  skb_hwtstamps(skb));
1487
1488		if (fep->bufdesc_ex &&
1489		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1490			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1491				/* don't check it */
1492				skb->ip_summed = CHECKSUM_UNNECESSARY;
1493			} else {
1494				skb_checksum_none_assert(skb);
1495			}
1496		}
1497
1498		/* Handle received VLAN packets */
1499		if (vlan_packet_rcvd)
1500			__vlan_hwaccel_put_tag(skb,
1501					       htons(ETH_P_8021Q),
1502					       vlan_tag);
1503
1504		napi_gro_receive(&fep->napi, skb);
1505
1506		if (is_copybreak) {
1507			dma_sync_single_for_device(&fep->pdev->dev,
1508						   fec32_to_cpu(bdp->cbd_bufaddr),
1509						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1510						   DMA_FROM_DEVICE);
1511		} else {
1512			rxq->rx_skbuff[index] = skb_new;
1513			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1514		}
1515
1516rx_processing_done:
1517		/* Clear the status flags for this buffer */
1518		status &= ~BD_ENET_RX_STATS;
1519
1520		/* Mark the buffer empty */
1521		status |= BD_ENET_RX_EMPTY;
1522
1523		if (fep->bufdesc_ex) {
1524			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1525
1526			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1527			ebdp->cbd_prot = 0;
1528			ebdp->cbd_bdu = 0;
1529		}
1530		/* Make sure the updates to rest of the descriptor are
1531		 * performed before transferring ownership.
1532		 */
1533		wmb();
1534		bdp->cbd_sc = cpu_to_fec16(status);
1535
1536		/* Update BD pointer to next entry */
1537		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1538
1539		/* Doing this here will keep the FEC running while we process
1540		 * incoming frames.  On a heavily loaded network, we should be
1541		 * able to keep up at the expense of system resources.
1542		 */
1543		writel(0, rxq->bd.reg_desc_active);
1544	}
1545	rxq->bd.cur = bdp;
1546	return pkt_received;
1547}
1548
1549static int
1550fec_enet_rx(struct net_device *ndev, int budget)
1551{
1552	int     pkt_received = 0;
1553	u16	queue_id;
1554	struct fec_enet_private *fep = netdev_priv(ndev);
1555
1556	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1557		int ret;
1558
1559		ret = fec_enet_rx_queue(ndev,
1560					budget - pkt_received, queue_id);
1561
1562		if (ret < budget - pkt_received)
1563			clear_bit(queue_id, &fep->work_rx);
1564
1565		pkt_received += ret;
1566	}
1567	return pkt_received;
1568}
1569
1570static bool
1571fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1572{
1573	if (int_events == 0)
1574		return false;
1575
1576	if (int_events & FEC_ENET_RXF_0)
1577		fep->work_rx |= (1 << 2);
1578	if (int_events & FEC_ENET_RXF_1)
1579		fep->work_rx |= (1 << 0);
1580	if (int_events & FEC_ENET_RXF_2)
1581		fep->work_rx |= (1 << 1);
1582
1583	if (int_events & FEC_ENET_TXF_0)
1584		fep->work_tx |= (1 << 2);
1585	if (int_events & FEC_ENET_TXF_1)
1586		fep->work_tx |= (1 << 0);
1587	if (int_events & FEC_ENET_TXF_2)
1588		fep->work_tx |= (1 << 1);
1589
1590	return true;
1591}
1592
1593static irqreturn_t
1594fec_enet_interrupt(int irq, void *dev_id)
1595{
1596	struct net_device *ndev = dev_id;
1597	struct fec_enet_private *fep = netdev_priv(ndev);
1598	uint int_events;
1599	irqreturn_t ret = IRQ_NONE;
1600
1601	int_events = readl(fep->hwp + FEC_IEVENT);
1602	writel(int_events, fep->hwp + FEC_IEVENT);
1603	fec_enet_collect_events(fep, int_events);
1604
1605	if ((fep->work_tx || fep->work_rx) && fep->link) {
1606		ret = IRQ_HANDLED;
1607
1608		if (napi_schedule_prep(&fep->napi)) {
1609			/* Disable the NAPI interrupts */
1610			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1611			__napi_schedule(&fep->napi);
1612		}
1613	}
1614
1615	if (int_events & FEC_ENET_MII) {
1616		ret = IRQ_HANDLED;
1617		complete(&fep->mdio_done);
1618	}
1619	return ret;
1620}
1621
1622static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1623{
1624	struct net_device *ndev = napi->dev;
1625	struct fec_enet_private *fep = netdev_priv(ndev);
1626	int pkts;
1627
1628	pkts = fec_enet_rx(ndev, budget);
1629
1630	fec_enet_tx(ndev);
1631
1632	if (pkts < budget) {
1633		napi_complete_done(napi, pkts);
1634		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1635	}
1636	return pkts;
1637}
1638
1639/* ------------------------------------------------------------------------- */
1640static void fec_get_mac(struct net_device *ndev)
1641{
1642	struct fec_enet_private *fep = netdev_priv(ndev);
1643	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1644	unsigned char *iap, tmpaddr[ETH_ALEN];
1645
1646	/*
1647	 * try to get mac address in following order:
1648	 *
1649	 * 1) module parameter via kernel command line in form
1650	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1651	 */
1652	iap = macaddr;
1653
1654	/*
1655	 * 2) from device tree data
1656	 */
1657	if (!is_valid_ether_addr(iap)) {
1658		struct device_node *np = fep->pdev->dev.of_node;
1659		if (np) {
1660			const char *mac = of_get_mac_address(np);
1661			if (!IS_ERR(mac))
1662				iap = (unsigned char *) mac;
1663		}
1664	}
1665
1666	/*
1667	 * 3) from flash or fuse (via platform data)
1668	 */
1669	if (!is_valid_ether_addr(iap)) {
1670#ifdef CONFIG_M5272
1671		if (FEC_FLASHMAC)
1672			iap = (unsigned char *)FEC_FLASHMAC;
1673#else
1674		if (pdata)
1675			iap = (unsigned char *)&pdata->mac;
1676#endif
1677	}
1678
1679	/*
1680	 * 4) FEC mac registers set by bootloader
1681	 */
1682	if (!is_valid_ether_addr(iap)) {
1683		*((__be32 *) &tmpaddr[0]) =
1684			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1685		*((__be16 *) &tmpaddr[4]) =
1686			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1687		iap = &tmpaddr[0];
1688	}
1689
1690	/*
1691	 * 5) random mac address
1692	 */
1693	if (!is_valid_ether_addr(iap)) {
1694		/* Report it and use a random ethernet address instead */
1695		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1696		eth_hw_addr_random(ndev);
1697		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1698			 ndev->dev_addr);
1699		return;
1700	}
1701
1702	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1703
1704	/* Adjust MAC if using macaddr */
1705	if (iap == macaddr)
1706		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1707}
1708
1709/* ------------------------------------------------------------------------- */
1710
1711/*
1712 * Phy section
1713 */
1714static void fec_enet_adjust_link(struct net_device *ndev)
1715{
1716	struct fec_enet_private *fep = netdev_priv(ndev);
1717	struct phy_device *phy_dev = ndev->phydev;
1718	int status_change = 0;
1719
1720	/*
1721	 * If the netdev is down, or is going down, we're not interested
1722	 * in link state events, so just mark our idea of the link as down
1723	 * and ignore the event.
1724	 */
1725	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1726		fep->link = 0;
1727	} else if (phy_dev->link) {
1728		if (!fep->link) {
1729			fep->link = phy_dev->link;
1730			status_change = 1;
1731		}
1732
1733		if (fep->full_duplex != phy_dev->duplex) {
1734			fep->full_duplex = phy_dev->duplex;
1735			status_change = 1;
1736		}
1737
1738		if (phy_dev->speed != fep->speed) {
1739			fep->speed = phy_dev->speed;
1740			status_change = 1;
1741		}
1742
1743		/* if any of the above changed restart the FEC */
1744		if (status_change) {
1745			napi_disable(&fep->napi);
1746			netif_tx_lock_bh(ndev);
1747			fec_restart(ndev);
1748			netif_tx_wake_all_queues(ndev);
1749			netif_tx_unlock_bh(ndev);
1750			napi_enable(&fep->napi);
1751		}
1752	} else {
1753		if (fep->link) {
1754			napi_disable(&fep->napi);
1755			netif_tx_lock_bh(ndev);
1756			fec_stop(ndev);
1757			netif_tx_unlock_bh(ndev);
1758			napi_enable(&fep->napi);
1759			fep->link = phy_dev->link;
1760			status_change = 1;
1761		}
1762	}
1763
1764	if (status_change)
1765		phy_print_status(phy_dev);
1766}
1767
1768static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1769{
1770	struct fec_enet_private *fep = bus->priv;
1771	struct device *dev = &fep->pdev->dev;
1772	unsigned long time_left;
1773	int ret = 0, frame_start, frame_addr, frame_op;
1774	bool is_c45 = !!(regnum & MII_ADDR_C45);
1775
1776	ret = pm_runtime_get_sync(dev);
1777	if (ret < 0)
1778		return ret;
1779
1780	reinit_completion(&fep->mdio_done);
1781
1782	if (is_c45) {
1783		frame_start = FEC_MMFR_ST_C45;
1784
1785		/* write address */
1786		frame_addr = (regnum >> 16);
1787		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1788		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1789		       FEC_MMFR_TA | (regnum & 0xFFFF),
1790		       fep->hwp + FEC_MII_DATA);
1791
1792		/* wait for end of transfer */
1793		time_left = wait_for_completion_timeout(&fep->mdio_done,
1794				usecs_to_jiffies(FEC_MII_TIMEOUT));
1795		if (time_left == 0) {
1796			netdev_err(fep->netdev, "MDIO address write timeout\n");
1797			ret = -ETIMEDOUT;
1798			goto out;
1799		}
1800
1801		frame_op = FEC_MMFR_OP_READ_C45;
1802
1803	} else {
1804		/* C22 read */
1805		frame_op = FEC_MMFR_OP_READ;
1806		frame_start = FEC_MMFR_ST;
1807		frame_addr = regnum;
1808	}
1809
1810	/* start a read op */
1811	writel(frame_start | frame_op |
1812		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1813		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1814
1815	/* wait for end of transfer */
1816	time_left = wait_for_completion_timeout(&fep->mdio_done,
1817			usecs_to_jiffies(FEC_MII_TIMEOUT));
1818	if (time_left == 0) {
1819		netdev_err(fep->netdev, "MDIO read timeout\n");
1820		ret = -ETIMEDOUT;
1821		goto out;
1822	}
1823
1824	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1825
1826out:
1827	pm_runtime_mark_last_busy(dev);
1828	pm_runtime_put_autosuspend(dev);
1829
1830	return ret;
1831}
1832
1833static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1834			   u16 value)
1835{
1836	struct fec_enet_private *fep = bus->priv;
1837	struct device *dev = &fep->pdev->dev;
1838	unsigned long time_left;
1839	int ret, frame_start, frame_addr;
1840	bool is_c45 = !!(regnum & MII_ADDR_C45);
1841
1842	ret = pm_runtime_get_sync(dev);
1843	if (ret < 0)
1844		return ret;
1845	else
1846		ret = 0;
1847
1848	reinit_completion(&fep->mdio_done);
1849
1850	if (is_c45) {
1851		frame_start = FEC_MMFR_ST_C45;
1852
1853		/* write address */
1854		frame_addr = (regnum >> 16);
1855		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1856		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1857		       FEC_MMFR_TA | (regnum & 0xFFFF),
1858		       fep->hwp + FEC_MII_DATA);
1859
1860		/* wait for end of transfer */
1861		time_left = wait_for_completion_timeout(&fep->mdio_done,
1862			usecs_to_jiffies(FEC_MII_TIMEOUT));
1863		if (time_left == 0) {
1864			netdev_err(fep->netdev, "MDIO address write timeout\n");
1865			ret = -ETIMEDOUT;
1866			goto out;
1867		}
1868	} else {
1869		/* C22 write */
1870		frame_start = FEC_MMFR_ST;
1871		frame_addr = regnum;
1872	}
1873
1874	/* start a write op */
1875	writel(frame_start | FEC_MMFR_OP_WRITE |
1876		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1877		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1878		fep->hwp + FEC_MII_DATA);
1879
1880	/* wait for end of transfer */
1881	time_left = wait_for_completion_timeout(&fep->mdio_done,
1882			usecs_to_jiffies(FEC_MII_TIMEOUT));
1883	if (time_left == 0) {
1884		netdev_err(fep->netdev, "MDIO write timeout\n");
1885		ret  = -ETIMEDOUT;
1886	}
1887
1888out:
1889	pm_runtime_mark_last_busy(dev);
1890	pm_runtime_put_autosuspend(dev);
1891
1892	return ret;
1893}
1894
1895static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1896{
1897	struct fec_enet_private *fep = netdev_priv(ndev);
1898	int ret;
1899
1900	if (enable) {
1901		ret = clk_prepare_enable(fep->clk_enet_out);
1902		if (ret)
1903			return ret;
1904
1905		if (fep->clk_ptp) {
1906			mutex_lock(&fep->ptp_clk_mutex);
1907			ret = clk_prepare_enable(fep->clk_ptp);
1908			if (ret) {
1909				mutex_unlock(&fep->ptp_clk_mutex);
1910				goto failed_clk_ptp;
1911			} else {
1912				fep->ptp_clk_on = true;
1913			}
1914			mutex_unlock(&fep->ptp_clk_mutex);
1915		}
1916
1917		ret = clk_prepare_enable(fep->clk_ref);
1918		if (ret)
1919			goto failed_clk_ref;
1920
1921		phy_reset_after_clk_enable(ndev->phydev);
1922	} else {
1923		clk_disable_unprepare(fep->clk_enet_out);
1924		if (fep->clk_ptp) {
1925			mutex_lock(&fep->ptp_clk_mutex);
1926			clk_disable_unprepare(fep->clk_ptp);
1927			fep->ptp_clk_on = false;
1928			mutex_unlock(&fep->ptp_clk_mutex);
1929		}
1930		clk_disable_unprepare(fep->clk_ref);
1931	}
1932
1933	return 0;
1934
1935failed_clk_ref:
1936	if (fep->clk_ref)
1937		clk_disable_unprepare(fep->clk_ref);
1938failed_clk_ptp:
1939	if (fep->clk_enet_out)
1940		clk_disable_unprepare(fep->clk_enet_out);
1941
1942	return ret;
1943}
1944
1945static int fec_enet_mii_probe(struct net_device *ndev)
1946{
1947	struct fec_enet_private *fep = netdev_priv(ndev);
1948	struct phy_device *phy_dev = NULL;
1949	char mdio_bus_id[MII_BUS_ID_SIZE];
1950	char phy_name[MII_BUS_ID_SIZE + 3];
1951	int phy_id;
1952	int dev_id = fep->dev_id;
1953
1954	if (fep->phy_node) {
1955		phy_dev = of_phy_connect(ndev, fep->phy_node,
1956					 &fec_enet_adjust_link, 0,
1957					 fep->phy_interface);
1958		if (!phy_dev) {
1959			netdev_err(ndev, "Unable to connect to phy\n");
1960			return -ENODEV;
1961		}
1962	} else {
1963		/* check for attached phy */
1964		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1965			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1966				continue;
1967			if (dev_id--)
1968				continue;
1969			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1970			break;
1971		}
1972
1973		if (phy_id >= PHY_MAX_ADDR) {
1974			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1975			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1976			phy_id = 0;
1977		}
1978
1979		snprintf(phy_name, sizeof(phy_name),
1980			 PHY_ID_FMT, mdio_bus_id, phy_id);
1981		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1982				      fep->phy_interface);
1983	}
1984
1985	if (IS_ERR(phy_dev)) {
1986		netdev_err(ndev, "could not attach to PHY\n");
1987		return PTR_ERR(phy_dev);
1988	}
1989
1990	/* mask with MAC supported features */
1991	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1992		phy_set_max_speed(phy_dev, 1000);
1993		phy_remove_link_mode(phy_dev,
1994				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1995#if !defined(CONFIG_M5272)
1996		phy_support_sym_pause(phy_dev);
1997#endif
1998	}
1999	else
2000		phy_set_max_speed(phy_dev, 100);
2001
2002	fep->link = 0;
2003	fep->full_duplex = 0;
2004
2005	phy_attached_info(phy_dev);
2006
2007	return 0;
2008}
2009
2010static int fec_enet_mii_init(struct platform_device *pdev)
2011{
2012	static struct mii_bus *fec0_mii_bus;
2013	struct net_device *ndev = platform_get_drvdata(pdev);
2014	struct fec_enet_private *fep = netdev_priv(ndev);
2015	struct device_node *node;
2016	int err = -ENXIO;
2017	u32 mii_speed, holdtime;
2018
2019	/*
2020	 * The i.MX28 dual fec interfaces are not equal.
2021	 * Here are the differences:
2022	 *
2023	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2024	 *  - fec0 acts as the 1588 time master while fec1 is slave
2025	 *  - external phys can only be configured by fec0
2026	 *
2027	 * That is to say fec1 can not work independently. It only works
2028	 * when fec0 is working. The reason behind this design is that the
2029	 * second interface is added primarily for Switch mode.
2030	 *
2031	 * Because of the last point above, both phys are attached on fec0
2032	 * mdio interface in board design, and need to be configured by
2033	 * fec0 mii_bus.
2034	 */
2035	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2036		/* fec1 uses fec0 mii_bus */
2037		if (mii_cnt && fec0_mii_bus) {
2038			fep->mii_bus = fec0_mii_bus;
2039			mii_cnt++;
2040			return 0;
2041		}
2042		return -ENOENT;
2043	}
2044
2045	/*
2046	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2047	 *
2048	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2049	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2050	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2051	 * document.
2052	 */
2053	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2054	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2055		mii_speed--;
2056	if (mii_speed > 63) {
2057		dev_err(&pdev->dev,
2058			"fec clock (%lu) too fast to get right mii speed\n",
2059			clk_get_rate(fep->clk_ipg));
2060		err = -EINVAL;
2061		goto err_out;
2062	}
2063
2064	/*
2065	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2066	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2067	 * versions are RAZ there, so just ignore the difference and write the
2068	 * register always.
2069	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2070	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2071	 * output.
2072	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2073	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2074	 * holdtime cannot result in a value greater than 3.
2075	 */
2076	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2077
2078	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2079
2080	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2081
2082	fep->mii_bus = mdiobus_alloc();
2083	if (fep->mii_bus == NULL) {
2084		err = -ENOMEM;
2085		goto err_out;
2086	}
2087
2088	fep->mii_bus->name = "fec_enet_mii_bus";
2089	fep->mii_bus->read = fec_enet_mdio_read;
2090	fep->mii_bus->write = fec_enet_mdio_write;
2091	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2092		pdev->name, fep->dev_id + 1);
2093	fep->mii_bus->priv = fep;
2094	fep->mii_bus->parent = &pdev->dev;
2095
2096	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2097	err = of_mdiobus_register(fep->mii_bus, node);
2098	of_node_put(node);
2099	if (err)
2100		goto err_out_free_mdiobus;
2101
2102	mii_cnt++;
2103
2104	/* save fec0 mii_bus */
2105	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2106		fec0_mii_bus = fep->mii_bus;
2107
2108	return 0;
2109
2110err_out_free_mdiobus:
2111	mdiobus_free(fep->mii_bus);
2112err_out:
2113	return err;
2114}
2115
2116static void fec_enet_mii_remove(struct fec_enet_private *fep)
2117{
2118	if (--mii_cnt == 0) {
2119		mdiobus_unregister(fep->mii_bus);
2120		mdiobus_free(fep->mii_bus);
2121	}
2122}
2123
2124static void fec_enet_get_drvinfo(struct net_device *ndev,
2125				 struct ethtool_drvinfo *info)
2126{
2127	struct fec_enet_private *fep = netdev_priv(ndev);
2128
2129	strlcpy(info->driver, fep->pdev->dev.driver->name,
2130		sizeof(info->driver));
2131	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2132	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2133}
2134
2135static int fec_enet_get_regs_len(struct net_device *ndev)
2136{
2137	struct fec_enet_private *fep = netdev_priv(ndev);
2138	struct resource *r;
2139	int s = 0;
2140
2141	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2142	if (r)
2143		s = resource_size(r);
2144
2145	return s;
2146}
2147
2148/* List of registers that can be safety be read to dump them with ethtool */
2149#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2150	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2151	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2152static __u32 fec_enet_register_version = 2;
2153static u32 fec_enet_register_offset[] = {
2154	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2155	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2156	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2157	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2158	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2159	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2160	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2161	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2162	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2163	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2164	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2165	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2166	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2167	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2168	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2169	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2170	RMON_T_P_GTE2048, RMON_T_OCTETS,
2171	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2172	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2173	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2174	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2175	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2176	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2177	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2178	RMON_R_P_GTE2048, RMON_R_OCTETS,
2179	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2180	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2181};
2182#else
2183static __u32 fec_enet_register_version = 1;
2184static u32 fec_enet_register_offset[] = {
2185	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2186	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2187	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2188	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2189	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2190	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2191	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2192	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2193	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2194};
2195#endif
2196
2197static void fec_enet_get_regs(struct net_device *ndev,
2198			      struct ethtool_regs *regs, void *regbuf)
2199{
2200	struct fec_enet_private *fep = netdev_priv(ndev);
2201	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2202	u32 *buf = (u32 *)regbuf;
2203	u32 i, off;
2204
2205	regs->version = fec_enet_register_version;
2206
2207	memset(buf, 0, regs->len);
2208
2209	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2210		off = fec_enet_register_offset[i];
2211
2212		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2213		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2214			continue;
2215
2216		off >>= 2;
2217		buf[off] = readl(&theregs[off]);
2218	}
2219}
2220
2221static int fec_enet_get_ts_info(struct net_device *ndev,
2222				struct ethtool_ts_info *info)
2223{
2224	struct fec_enet_private *fep = netdev_priv(ndev);
2225
2226	if (fep->bufdesc_ex) {
2227
2228		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2229					SOF_TIMESTAMPING_RX_SOFTWARE |
2230					SOF_TIMESTAMPING_SOFTWARE |
2231					SOF_TIMESTAMPING_TX_HARDWARE |
2232					SOF_TIMESTAMPING_RX_HARDWARE |
2233					SOF_TIMESTAMPING_RAW_HARDWARE;
2234		if (fep->ptp_clock)
2235			info->phc_index = ptp_clock_index(fep->ptp_clock);
2236		else
2237			info->phc_index = -1;
2238
2239		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2240				 (1 << HWTSTAMP_TX_ON);
2241
2242		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2243				   (1 << HWTSTAMP_FILTER_ALL);
2244		return 0;
2245	} else {
2246		return ethtool_op_get_ts_info(ndev, info);
2247	}
2248}
2249
2250#if !defined(CONFIG_M5272)
2251
2252static void fec_enet_get_pauseparam(struct net_device *ndev,
2253				    struct ethtool_pauseparam *pause)
2254{
2255	struct fec_enet_private *fep = netdev_priv(ndev);
2256
2257	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2258	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2259	pause->rx_pause = pause->tx_pause;
2260}
2261
2262static int fec_enet_set_pauseparam(struct net_device *ndev,
2263				   struct ethtool_pauseparam *pause)
2264{
2265	struct fec_enet_private *fep = netdev_priv(ndev);
2266
2267	if (!ndev->phydev)
2268		return -ENODEV;
2269
2270	if (pause->tx_pause != pause->rx_pause) {
2271		netdev_info(ndev,
2272			"hardware only support enable/disable both tx and rx");
2273		return -EINVAL;
2274	}
2275
2276	fep->pause_flag = 0;
2277
2278	/* tx pause must be same as rx pause */
2279	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2280	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2281
2282	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2283			  pause->autoneg);
2284
2285	if (pause->autoneg) {
2286		if (netif_running(ndev))
2287			fec_stop(ndev);
2288		phy_start_aneg(ndev->phydev);
2289	}
2290	if (netif_running(ndev)) {
2291		napi_disable(&fep->napi);
2292		netif_tx_lock_bh(ndev);
2293		fec_restart(ndev);
2294		netif_tx_wake_all_queues(ndev);
2295		netif_tx_unlock_bh(ndev);
2296		napi_enable(&fep->napi);
2297	}
2298
2299	return 0;
2300}
2301
2302static const struct fec_stat {
2303	char name[ETH_GSTRING_LEN];
2304	u16 offset;
2305} fec_stats[] = {
2306	/* RMON TX */
2307	{ "tx_dropped", RMON_T_DROP },
2308	{ "tx_packets", RMON_T_PACKETS },
2309	{ "tx_broadcast", RMON_T_BC_PKT },
2310	{ "tx_multicast", RMON_T_MC_PKT },
2311	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2312	{ "tx_undersize", RMON_T_UNDERSIZE },
2313	{ "tx_oversize", RMON_T_OVERSIZE },
2314	{ "tx_fragment", RMON_T_FRAG },
2315	{ "tx_jabber", RMON_T_JAB },
2316	{ "tx_collision", RMON_T_COL },
2317	{ "tx_64byte", RMON_T_P64 },
2318	{ "tx_65to127byte", RMON_T_P65TO127 },
2319	{ "tx_128to255byte", RMON_T_P128TO255 },
2320	{ "tx_256to511byte", RMON_T_P256TO511 },
2321	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2322	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2323	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2324	{ "tx_octets", RMON_T_OCTETS },
2325
2326	/* IEEE TX */
2327	{ "IEEE_tx_drop", IEEE_T_DROP },
2328	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2329	{ "IEEE_tx_1col", IEEE_T_1COL },
2330	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2331	{ "IEEE_tx_def", IEEE_T_DEF },
2332	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2333	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2334	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2335	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2336	{ "IEEE_tx_sqe", IEEE_T_SQE },
2337	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2338	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2339
2340	/* RMON RX */
2341	{ "rx_packets", RMON_R_PACKETS },
2342	{ "rx_broadcast", RMON_R_BC_PKT },
2343	{ "rx_multicast", RMON_R_MC_PKT },
2344	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2345	{ "rx_undersize", RMON_R_UNDERSIZE },
2346	{ "rx_oversize", RMON_R_OVERSIZE },
2347	{ "rx_fragment", RMON_R_FRAG },
2348	{ "rx_jabber", RMON_R_JAB },
2349	{ "rx_64byte", RMON_R_P64 },
2350	{ "rx_65to127byte", RMON_R_P65TO127 },
2351	{ "rx_128to255byte", RMON_R_P128TO255 },
2352	{ "rx_256to511byte", RMON_R_P256TO511 },
2353	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2354	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2355	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2356	{ "rx_octets", RMON_R_OCTETS },
2357
2358	/* IEEE RX */
2359	{ "IEEE_rx_drop", IEEE_R_DROP },
2360	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2361	{ "IEEE_rx_crc", IEEE_R_CRC },
2362	{ "IEEE_rx_align", IEEE_R_ALIGN },
2363	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2364	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2365	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2366};
2367
2368#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2369
2370static void fec_enet_update_ethtool_stats(struct net_device *dev)
2371{
2372	struct fec_enet_private *fep = netdev_priv(dev);
2373	int i;
2374
2375	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2376		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2377}
2378
2379static void fec_enet_get_ethtool_stats(struct net_device *dev,
2380				       struct ethtool_stats *stats, u64 *data)
2381{
2382	struct fec_enet_private *fep = netdev_priv(dev);
2383
2384	if (netif_running(dev))
2385		fec_enet_update_ethtool_stats(dev);
2386
2387	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2388}
2389
2390static void fec_enet_get_strings(struct net_device *netdev,
2391	u32 stringset, u8 *data)
2392{
2393	int i;
2394	switch (stringset) {
2395	case ETH_SS_STATS:
2396		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2397			memcpy(data + i * ETH_GSTRING_LEN,
2398				fec_stats[i].name, ETH_GSTRING_LEN);
2399		break;
2400	}
2401}
2402
2403static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2404{
2405	switch (sset) {
2406	case ETH_SS_STATS:
2407		return ARRAY_SIZE(fec_stats);
2408	default:
2409		return -EOPNOTSUPP;
2410	}
2411}
2412
2413static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2414{
2415	struct fec_enet_private *fep = netdev_priv(dev);
2416	int i;
2417
2418	/* Disable MIB statistics counters */
2419	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2420
2421	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2422		writel(0, fep->hwp + fec_stats[i].offset);
2423
2424	/* Don't disable MIB statistics counters */
2425	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2426}
2427
2428#else	/* !defined(CONFIG_M5272) */
2429#define FEC_STATS_SIZE	0
2430static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2431{
2432}
2433
2434static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2435{
2436}
2437#endif /* !defined(CONFIG_M5272) */
2438
2439/* ITR clock source is enet system clock (clk_ahb).
2440 * TCTT unit is cycle_ns * 64 cycle
2441 * So, the ICTT value = X us / (cycle_ns * 64)
2442 */
2443static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2444{
2445	struct fec_enet_private *fep = netdev_priv(ndev);
2446
2447	return us * (fep->itr_clk_rate / 64000) / 1000;
2448}
2449
2450/* Set threshold for interrupt coalescing */
2451static void fec_enet_itr_coal_set(struct net_device *ndev)
2452{
2453	struct fec_enet_private *fep = netdev_priv(ndev);
2454	int rx_itr, tx_itr;
2455
2456	/* Must be greater than zero to avoid unpredictable behavior */
2457	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2458	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2459		return;
2460
2461	/* Select enet system clock as Interrupt Coalescing
2462	 * timer Clock Source
2463	 */
2464	rx_itr = FEC_ITR_CLK_SEL;
2465	tx_itr = FEC_ITR_CLK_SEL;
2466
2467	/* set ICFT and ICTT */
2468	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2469	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2470	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2471	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2472
2473	rx_itr |= FEC_ITR_EN;
2474	tx_itr |= FEC_ITR_EN;
2475
2476	writel(tx_itr, fep->hwp + FEC_TXIC0);
2477	writel(rx_itr, fep->hwp + FEC_RXIC0);
2478	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2479		writel(tx_itr, fep->hwp + FEC_TXIC1);
2480		writel(rx_itr, fep->hwp + FEC_RXIC1);
2481		writel(tx_itr, fep->hwp + FEC_TXIC2);
2482		writel(rx_itr, fep->hwp + FEC_RXIC2);
2483	}
2484}
2485
2486static int
2487fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2488{
2489	struct fec_enet_private *fep = netdev_priv(ndev);
2490
2491	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2492		return -EOPNOTSUPP;
2493
2494	ec->rx_coalesce_usecs = fep->rx_time_itr;
2495	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2496
2497	ec->tx_coalesce_usecs = fep->tx_time_itr;
2498	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2499
2500	return 0;
2501}
2502
2503static int
2504fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2505{
2506	struct fec_enet_private *fep = netdev_priv(ndev);
2507	struct device *dev = &fep->pdev->dev;
2508	unsigned int cycle;
2509
2510	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2511		return -EOPNOTSUPP;
2512
2513	if (ec->rx_max_coalesced_frames > 255) {
2514		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2515		return -EINVAL;
2516	}
2517
2518	if (ec->tx_max_coalesced_frames > 255) {
2519		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2520		return -EINVAL;
2521	}
2522
2523	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2524	if (cycle > 0xFFFF) {
2525		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2526		return -EINVAL;
2527	}
2528
2529	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2530	if (cycle > 0xFFFF) {
2531		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2532		return -EINVAL;
2533	}
2534
2535	fep->rx_time_itr = ec->rx_coalesce_usecs;
2536	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2537
2538	fep->tx_time_itr = ec->tx_coalesce_usecs;
2539	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2540
2541	fec_enet_itr_coal_set(ndev);
2542
2543	return 0;
2544}
2545
2546static void fec_enet_itr_coal_init(struct net_device *ndev)
2547{
2548	struct ethtool_coalesce ec;
2549
2550	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2551	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2552
2553	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2554	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2555
2556	fec_enet_set_coalesce(ndev, &ec);
2557}
2558
2559static int fec_enet_get_tunable(struct net_device *netdev,
2560				const struct ethtool_tunable *tuna,
2561				void *data)
2562{
2563	struct fec_enet_private *fep = netdev_priv(netdev);
2564	int ret = 0;
2565
2566	switch (tuna->id) {
2567	case ETHTOOL_RX_COPYBREAK:
2568		*(u32 *)data = fep->rx_copybreak;
2569		break;
2570	default:
2571		ret = -EINVAL;
2572		break;
2573	}
2574
2575	return ret;
2576}
2577
2578static int fec_enet_set_tunable(struct net_device *netdev,
2579				const struct ethtool_tunable *tuna,
2580				const void *data)
2581{
2582	struct fec_enet_private *fep = netdev_priv(netdev);
2583	int ret = 0;
2584
2585	switch (tuna->id) {
2586	case ETHTOOL_RX_COPYBREAK:
2587		fep->rx_copybreak = *(u32 *)data;
2588		break;
2589	default:
2590		ret = -EINVAL;
2591		break;
2592	}
2593
2594	return ret;
2595}
2596
2597static void
2598fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2599{
2600	struct fec_enet_private *fep = netdev_priv(ndev);
2601
2602	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2603		wol->supported = WAKE_MAGIC;
2604		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2605	} else {
2606		wol->supported = wol->wolopts = 0;
2607	}
2608}
2609
2610static int
2611fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2612{
2613	struct fec_enet_private *fep = netdev_priv(ndev);
2614
2615	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2616		return -EINVAL;
2617
2618	if (wol->wolopts & ~WAKE_MAGIC)
2619		return -EINVAL;
2620
2621	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2622	if (device_may_wakeup(&ndev->dev)) {
2623		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2624		if (fep->irq[0] > 0)
2625			enable_irq_wake(fep->irq[0]);
2626	} else {
2627		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2628		if (fep->irq[0] > 0)
2629			disable_irq_wake(fep->irq[0]);
2630	}
2631
2632	return 0;
2633}
2634
2635static const struct ethtool_ops fec_enet_ethtool_ops = {
2636	.get_drvinfo		= fec_enet_get_drvinfo,
2637	.get_regs_len		= fec_enet_get_regs_len,
2638	.get_regs		= fec_enet_get_regs,
2639	.nway_reset		= phy_ethtool_nway_reset,
2640	.get_link		= ethtool_op_get_link,
2641	.get_coalesce		= fec_enet_get_coalesce,
2642	.set_coalesce		= fec_enet_set_coalesce,
2643#ifndef CONFIG_M5272
2644	.get_pauseparam		= fec_enet_get_pauseparam,
2645	.set_pauseparam		= fec_enet_set_pauseparam,
2646	.get_strings		= fec_enet_get_strings,
2647	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2648	.get_sset_count		= fec_enet_get_sset_count,
2649#endif
2650	.get_ts_info		= fec_enet_get_ts_info,
2651	.get_tunable		= fec_enet_get_tunable,
2652	.set_tunable		= fec_enet_set_tunable,
2653	.get_wol		= fec_enet_get_wol,
2654	.set_wol		= fec_enet_set_wol,
2655	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2656	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2657};
2658
2659static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2660{
2661	struct fec_enet_private *fep = netdev_priv(ndev);
2662	struct phy_device *phydev = ndev->phydev;
2663
2664	if (!netif_running(ndev))
2665		return -EINVAL;
2666
2667	if (!phydev)
2668		return -ENODEV;
2669
2670	if (fep->bufdesc_ex) {
2671		if (cmd == SIOCSHWTSTAMP)
2672			return fec_ptp_set(ndev, rq);
2673		if (cmd == SIOCGHWTSTAMP)
2674			return fec_ptp_get(ndev, rq);
2675	}
2676
2677	return phy_mii_ioctl(phydev, rq, cmd);
2678}
2679
2680static void fec_enet_free_buffers(struct net_device *ndev)
2681{
2682	struct fec_enet_private *fep = netdev_priv(ndev);
2683	unsigned int i;
2684	struct sk_buff *skb;
2685	struct bufdesc	*bdp;
2686	struct fec_enet_priv_tx_q *txq;
2687	struct fec_enet_priv_rx_q *rxq;
2688	unsigned int q;
2689
2690	for (q = 0; q < fep->num_rx_queues; q++) {
2691		rxq = fep->rx_queue[q];
2692		bdp = rxq->bd.base;
2693		for (i = 0; i < rxq->bd.ring_size; i++) {
2694			skb = rxq->rx_skbuff[i];
2695			rxq->rx_skbuff[i] = NULL;
2696			if (skb) {
2697				dma_unmap_single(&fep->pdev->dev,
2698						 fec32_to_cpu(bdp->cbd_bufaddr),
2699						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2700						 DMA_FROM_DEVICE);
2701				dev_kfree_skb(skb);
2702			}
2703			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2704		}
2705	}
2706
2707	for (q = 0; q < fep->num_tx_queues; q++) {
2708		txq = fep->tx_queue[q];
2709		bdp = txq->bd.base;
2710		for (i = 0; i < txq->bd.ring_size; i++) {
2711			kfree(txq->tx_bounce[i]);
2712			txq->tx_bounce[i] = NULL;
2713			skb = txq->tx_skbuff[i];
2714			txq->tx_skbuff[i] = NULL;
2715			dev_kfree_skb(skb);
2716		}
2717	}
2718}
2719
2720static void fec_enet_free_queue(struct net_device *ndev)
2721{
2722	struct fec_enet_private *fep = netdev_priv(ndev);
2723	int i;
2724	struct fec_enet_priv_tx_q *txq;
2725
2726	for (i = 0; i < fep->num_tx_queues; i++)
2727		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2728			txq = fep->tx_queue[i];
2729			dma_free_coherent(&fep->pdev->dev,
2730					  txq->bd.ring_size * TSO_HEADER_SIZE,
2731					  txq->tso_hdrs,
2732					  txq->tso_hdrs_dma);
2733		}
2734
2735	for (i = 0; i < fep->num_rx_queues; i++)
2736		kfree(fep->rx_queue[i]);
2737	for (i = 0; i < fep->num_tx_queues; i++)
2738		kfree(fep->tx_queue[i]);
2739}
2740
2741static int fec_enet_alloc_queue(struct net_device *ndev)
2742{
2743	struct fec_enet_private *fep = netdev_priv(ndev);
2744	int i;
2745	int ret = 0;
2746	struct fec_enet_priv_tx_q *txq;
2747
2748	for (i = 0; i < fep->num_tx_queues; i++) {
2749		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2750		if (!txq) {
2751			ret = -ENOMEM;
2752			goto alloc_failed;
2753		}
2754
2755		fep->tx_queue[i] = txq;
2756		txq->bd.ring_size = TX_RING_SIZE;
2757		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2758
2759		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2760		txq->tx_wake_threshold =
2761			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2762
2763		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2764					txq->bd.ring_size * TSO_HEADER_SIZE,
2765					&txq->tso_hdrs_dma,
2766					GFP_KERNEL);
2767		if (!txq->tso_hdrs) {
2768			ret = -ENOMEM;
2769			goto alloc_failed;
2770		}
2771	}
2772
2773	for (i = 0; i < fep->num_rx_queues; i++) {
2774		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2775					   GFP_KERNEL);
2776		if (!fep->rx_queue[i]) {
2777			ret = -ENOMEM;
2778			goto alloc_failed;
2779		}
2780
2781		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2782		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2783	}
2784	return ret;
2785
2786alloc_failed:
2787	fec_enet_free_queue(ndev);
2788	return ret;
2789}
2790
2791static int
2792fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2793{
2794	struct fec_enet_private *fep = netdev_priv(ndev);
2795	unsigned int i;
2796	struct sk_buff *skb;
2797	struct bufdesc	*bdp;
2798	struct fec_enet_priv_rx_q *rxq;
2799
2800	rxq = fep->rx_queue[queue];
2801	bdp = rxq->bd.base;
2802	for (i = 0; i < rxq->bd.ring_size; i++) {
2803		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2804		if (!skb)
2805			goto err_alloc;
2806
2807		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2808			dev_kfree_skb(skb);
2809			goto err_alloc;
2810		}
2811
2812		rxq->rx_skbuff[i] = skb;
2813		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2814
2815		if (fep->bufdesc_ex) {
2816			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2817			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2818		}
2819
2820		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2821	}
2822
2823	/* Set the last buffer to wrap. */
2824	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2825	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2826	return 0;
2827
2828 err_alloc:
2829	fec_enet_free_buffers(ndev);
2830	return -ENOMEM;
2831}
2832
2833static int
2834fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2835{
2836	struct fec_enet_private *fep = netdev_priv(ndev);
2837	unsigned int i;
2838	struct bufdesc  *bdp;
2839	struct fec_enet_priv_tx_q *txq;
2840
2841	txq = fep->tx_queue[queue];
2842	bdp = txq->bd.base;
2843	for (i = 0; i < txq->bd.ring_size; i++) {
2844		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2845		if (!txq->tx_bounce[i])
2846			goto err_alloc;
2847
2848		bdp->cbd_sc = cpu_to_fec16(0);
2849		bdp->cbd_bufaddr = cpu_to_fec32(0);
2850
2851		if (fep->bufdesc_ex) {
2852			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2853			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2854		}
2855
2856		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2857	}
2858
2859	/* Set the last buffer to wrap. */
2860	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2861	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2862
2863	return 0;
2864
2865 err_alloc:
2866	fec_enet_free_buffers(ndev);
2867	return -ENOMEM;
2868}
2869
2870static int fec_enet_alloc_buffers(struct net_device *ndev)
2871{
2872	struct fec_enet_private *fep = netdev_priv(ndev);
2873	unsigned int i;
2874
2875	for (i = 0; i < fep->num_rx_queues; i++)
2876		if (fec_enet_alloc_rxq_buffers(ndev, i))
2877			return -ENOMEM;
2878
2879	for (i = 0; i < fep->num_tx_queues; i++)
2880		if (fec_enet_alloc_txq_buffers(ndev, i))
2881			return -ENOMEM;
2882	return 0;
2883}
2884
2885static int
2886fec_enet_open(struct net_device *ndev)
2887{
2888	struct fec_enet_private *fep = netdev_priv(ndev);
2889	int ret;
2890	bool reset_again;
2891
2892	ret = pm_runtime_get_sync(&fep->pdev->dev);
2893	if (ret < 0)
2894		return ret;
2895
2896	pinctrl_pm_select_default_state(&fep->pdev->dev);
2897	ret = fec_enet_clk_enable(ndev, true);
2898	if (ret)
2899		goto clk_enable;
2900
2901	/* During the first fec_enet_open call the PHY isn't probed at this
2902	 * point. Therefore the phy_reset_after_clk_enable() call within
2903	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2904	 * sure the PHY is working correctly we check if we need to reset again
2905	 * later when the PHY is probed
2906	 */
2907	if (ndev->phydev && ndev->phydev->drv)
2908		reset_again = false;
2909	else
2910		reset_again = true;
2911
2912	/* I should reset the ring buffers here, but I don't yet know
2913	 * a simple way to do that.
2914	 */
2915
2916	ret = fec_enet_alloc_buffers(ndev);
2917	if (ret)
2918		goto err_enet_alloc;
2919
2920	/* Init MAC prior to mii bus probe */
2921	fec_restart(ndev);
2922
2923	/* Probe and connect to PHY when open the interface */
2924	ret = fec_enet_mii_probe(ndev);
2925	if (ret)
2926		goto err_enet_mii_probe;
2927
2928	/* Call phy_reset_after_clk_enable() again if it failed during
2929	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2930	 */
2931	if (reset_again)
2932		phy_reset_after_clk_enable(ndev->phydev);
2933
2934	if (fep->quirks & FEC_QUIRK_ERR006687)
2935		imx6q_cpuidle_fec_irqs_used();
2936
2937	napi_enable(&fep->napi);
2938	phy_start(ndev->phydev);
2939	netif_tx_start_all_queues(ndev);
2940
2941	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2942				 FEC_WOL_FLAG_ENABLE);
2943
2944	return 0;
2945
2946err_enet_mii_probe:
2947	fec_enet_free_buffers(ndev);
2948err_enet_alloc:
2949	fec_enet_clk_enable(ndev, false);
2950clk_enable:
2951	pm_runtime_mark_last_busy(&fep->pdev->dev);
2952	pm_runtime_put_autosuspend(&fep->pdev->dev);
2953	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2954	return ret;
2955}
2956
2957static int
2958fec_enet_close(struct net_device *ndev)
2959{
2960	struct fec_enet_private *fep = netdev_priv(ndev);
2961
2962	phy_stop(ndev->phydev);
2963
2964	if (netif_device_present(ndev)) {
2965		napi_disable(&fep->napi);
2966		netif_tx_disable(ndev);
2967		fec_stop(ndev);
2968	}
2969
2970	phy_disconnect(ndev->phydev);
2971
2972	if (fep->quirks & FEC_QUIRK_ERR006687)
2973		imx6q_cpuidle_fec_irqs_unused();
2974
2975	fec_enet_update_ethtool_stats(ndev);
2976
2977	fec_enet_clk_enable(ndev, false);
2978	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2979	pm_runtime_mark_last_busy(&fep->pdev->dev);
2980	pm_runtime_put_autosuspend(&fep->pdev->dev);
2981
2982	fec_enet_free_buffers(ndev);
2983
2984	return 0;
2985}
2986
2987/* Set or clear the multicast filter for this adaptor.
2988 * Skeleton taken from sunlance driver.
2989 * The CPM Ethernet implementation allows Multicast as well as individual
2990 * MAC address filtering.  Some of the drivers check to make sure it is
2991 * a group multicast address, and discard those that are not.  I guess I
2992 * will do the same for now, but just remove the test if you want
2993 * individual filtering as well (do the upper net layers want or support
2994 * this kind of feature?).
2995 */
2996
2997#define FEC_HASH_BITS	6		/* #bits in hash */
2998
2999static void set_multicast_list(struct net_device *ndev)
3000{
3001	struct fec_enet_private *fep = netdev_priv(ndev);
3002	struct netdev_hw_addr *ha;
3003	unsigned int crc, tmp;
3004	unsigned char hash;
3005	unsigned int hash_high = 0, hash_low = 0;
3006
3007	if (ndev->flags & IFF_PROMISC) {
3008		tmp = readl(fep->hwp + FEC_R_CNTRL);
3009		tmp |= 0x8;
3010		writel(tmp, fep->hwp + FEC_R_CNTRL);
3011		return;
3012	}
3013
3014	tmp = readl(fep->hwp + FEC_R_CNTRL);
3015	tmp &= ~0x8;
3016	writel(tmp, fep->hwp + FEC_R_CNTRL);
3017
3018	if (ndev->flags & IFF_ALLMULTI) {
3019		/* Catch all multicast addresses, so set the
3020		 * filter to all 1's
3021		 */
3022		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3023		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3024
3025		return;
3026	}
3027
3028	/* Add the addresses in hash register */
3029	netdev_for_each_mc_addr(ha, ndev) {
3030		/* calculate crc32 value of mac address */
3031		crc = ether_crc_le(ndev->addr_len, ha->addr);
3032
3033		/* only upper 6 bits (FEC_HASH_BITS) are used
3034		 * which point to specific bit in the hash registers
3035		 */
3036		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3037
3038		if (hash > 31)
3039			hash_high |= 1 << (hash - 32);
3040		else
3041			hash_low |= 1 << hash;
3042	}
3043
3044	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3045	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3046}
3047
3048/* Set a MAC change in hardware. */
3049static int
3050fec_set_mac_address(struct net_device *ndev, void *p)
3051{
3052	struct fec_enet_private *fep = netdev_priv(ndev);
3053	struct sockaddr *addr = p;
3054
3055	if (addr) {
3056		if (!is_valid_ether_addr(addr->sa_data))
3057			return -EADDRNOTAVAIL;
3058		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3059	}
3060
3061	/* Add netif status check here to avoid system hang in below case:
3062	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3063	 * After ethx down, fec all clocks are gated off and then register
3064	 * access causes system hang.
3065	 */
3066	if (!netif_running(ndev))
3067		return 0;
3068
3069	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3070		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3071		fep->hwp + FEC_ADDR_LOW);
3072	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3073		fep->hwp + FEC_ADDR_HIGH);
3074	return 0;
3075}
3076
3077#ifdef CONFIG_NET_POLL_CONTROLLER
3078/**
3079 * fec_poll_controller - FEC Poll controller function
3080 * @dev: The FEC network adapter
3081 *
3082 * Polled functionality used by netconsole and others in non interrupt mode
3083 *
3084 */
3085static void fec_poll_controller(struct net_device *dev)
3086{
3087	int i;
3088	struct fec_enet_private *fep = netdev_priv(dev);
3089
3090	for (i = 0; i < FEC_IRQ_NUM; i++) {
3091		if (fep->irq[i] > 0) {
3092			disable_irq(fep->irq[i]);
3093			fec_enet_interrupt(fep->irq[i], dev);
3094			enable_irq(fep->irq[i]);
3095		}
3096	}
3097}
3098#endif
3099
3100static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3101	netdev_features_t features)
3102{
3103	struct fec_enet_private *fep = netdev_priv(netdev);
3104	netdev_features_t changed = features ^ netdev->features;
3105
3106	netdev->features = features;
3107
3108	/* Receive checksum has been changed */
3109	if (changed & NETIF_F_RXCSUM) {
3110		if (features & NETIF_F_RXCSUM)
3111			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3112		else
3113			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3114	}
3115}
3116
3117static int fec_set_features(struct net_device *netdev,
3118	netdev_features_t features)
3119{
3120	struct fec_enet_private *fep = netdev_priv(netdev);
3121	netdev_features_t changed = features ^ netdev->features;
3122
3123	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3124		napi_disable(&fep->napi);
3125		netif_tx_lock_bh(netdev);
3126		fec_stop(netdev);
3127		fec_enet_set_netdev_features(netdev, features);
3128		fec_restart(netdev);
3129		netif_tx_wake_all_queues(netdev);
3130		netif_tx_unlock_bh(netdev);
3131		napi_enable(&fep->napi);
3132	} else {
3133		fec_enet_set_netdev_features(netdev, features);
3134	}
3135
3136	return 0;
3137}
3138
3139static const struct net_device_ops fec_netdev_ops = {
3140	.ndo_open		= fec_enet_open,
3141	.ndo_stop		= fec_enet_close,
3142	.ndo_start_xmit		= fec_enet_start_xmit,
3143	.ndo_set_rx_mode	= set_multicast_list,
3144	.ndo_validate_addr	= eth_validate_addr,
3145	.ndo_tx_timeout		= fec_timeout,
3146	.ndo_set_mac_address	= fec_set_mac_address,
3147	.ndo_do_ioctl		= fec_enet_ioctl,
3148#ifdef CONFIG_NET_POLL_CONTROLLER
3149	.ndo_poll_controller	= fec_poll_controller,
3150#endif
3151	.ndo_set_features	= fec_set_features,
3152};
3153
3154static const unsigned short offset_des_active_rxq[] = {
3155	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3156};
3157
3158static const unsigned short offset_des_active_txq[] = {
3159	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3160};
3161
3162 /*
3163  * XXX:  We need to clean up on failure exits here.
3164  *
3165  */
3166static int fec_enet_init(struct net_device *ndev)
3167{
3168	struct fec_enet_private *fep = netdev_priv(ndev);
3169	struct bufdesc *cbd_base;
3170	dma_addr_t bd_dma;
3171	int bd_size;
3172	unsigned int i;
3173	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3174			sizeof(struct bufdesc);
3175	unsigned dsize_log2 = __fls(dsize);
3176	int ret;
3177
3178	WARN_ON(dsize != (1 << dsize_log2));
3179#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3180	fep->rx_align = 0xf;
3181	fep->tx_align = 0xf;
3182#else
3183	fep->rx_align = 0x3;
3184	fep->tx_align = 0x3;
3185#endif
3186
3187	/* Check mask of the streaming and coherent API */
3188	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3189	if (ret < 0) {
3190		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3191		return ret;
3192	}
3193
3194	fec_enet_alloc_queue(ndev);
3195
3196	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3197
3198	/* Allocate memory for buffer descriptors. */
3199	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3200				       GFP_KERNEL);
3201	if (!cbd_base) {
3202		return -ENOMEM;
3203	}
3204
3205	/* Get the Ethernet address */
3206	fec_get_mac(ndev);
3207	/* make sure MAC we just acquired is programmed into the hw */
3208	fec_set_mac_address(ndev, NULL);
3209
3210	/* Set receive and transmit descriptor base. */
3211	for (i = 0; i < fep->num_rx_queues; i++) {
3212		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3213		unsigned size = dsize * rxq->bd.ring_size;
3214
3215		rxq->bd.qid = i;
3216		rxq->bd.base = cbd_base;
3217		rxq->bd.cur = cbd_base;
3218		rxq->bd.dma = bd_dma;
3219		rxq->bd.dsize = dsize;
3220		rxq->bd.dsize_log2 = dsize_log2;
3221		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3222		bd_dma += size;
3223		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3224		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3225	}
3226
3227	for (i = 0; i < fep->num_tx_queues; i++) {
3228		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3229		unsigned size = dsize * txq->bd.ring_size;
3230
3231		txq->bd.qid = i;
3232		txq->bd.base = cbd_base;
3233		txq->bd.cur = cbd_base;
3234		txq->bd.dma = bd_dma;
3235		txq->bd.dsize = dsize;
3236		txq->bd.dsize_log2 = dsize_log2;
3237		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3238		bd_dma += size;
3239		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3240		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3241	}
3242
3243
3244	/* The FEC Ethernet specific entries in the device structure */
3245	ndev->watchdog_timeo = TX_TIMEOUT;
3246	ndev->netdev_ops = &fec_netdev_ops;
3247	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3248
3249	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3250	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3251
3252	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3253		/* enable hw VLAN support */
3254		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3255
3256	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3257		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3258
3259		/* enable hw accelerator */
3260		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3261				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3262		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3263	}
3264
3265	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3266		fep->tx_align = 0;
3267		fep->rx_align = 0x3f;
3268	}
3269
3270	ndev->hw_features = ndev->features;
3271
3272	fec_restart(ndev);
3273
3274	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3275		fec_enet_clear_ethtool_stats(ndev);
3276	else
3277		fec_enet_update_ethtool_stats(ndev);
3278
3279	return 0;
3280}
3281
3282#ifdef CONFIG_OF
3283static int fec_reset_phy(struct platform_device *pdev)
3284{
3285	int err, phy_reset;
3286	bool active_high = false;
3287	int msec = 1, phy_post_delay = 0;
3288	struct device_node *np = pdev->dev.of_node;
3289
3290	if (!np)
3291		return 0;
3292
3293	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3294	/* A sane reset duration should not be longer than 1s */
3295	if (!err && msec > 1000)
3296		msec = 1;
3297
3298	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3299	if (phy_reset == -EPROBE_DEFER)
3300		return phy_reset;
3301	else if (!gpio_is_valid(phy_reset))
3302		return 0;
3303
3304	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3305	/* valid reset duration should be less than 1s */
3306	if (!err && phy_post_delay > 1000)
3307		return -EINVAL;
3308
3309	active_high = of_property_read_bool(np, "phy-reset-active-high");
3310
3311	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3312			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3313			"phy-reset");
3314	if (err) {
3315		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3316		return err;
3317	}
3318
3319	if (msec > 20)
3320		msleep(msec);
3321	else
3322		usleep_range(msec * 1000, msec * 1000 + 1000);
3323
3324	gpio_set_value_cansleep(phy_reset, !active_high);
3325
3326	if (!phy_post_delay)
3327		return 0;
3328
3329	if (phy_post_delay > 20)
3330		msleep(phy_post_delay);
3331	else
3332		usleep_range(phy_post_delay * 1000,
3333			     phy_post_delay * 1000 + 1000);
3334
3335	return 0;
3336}
3337#else /* CONFIG_OF */
3338static int fec_reset_phy(struct platform_device *pdev)
3339{
3340	/*
3341	 * In case of platform probe, the reset has been done
3342	 * by machine code.
3343	 */
3344	return 0;
3345}
3346#endif /* CONFIG_OF */
3347
3348static void
3349fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3350{
3351	struct device_node *np = pdev->dev.of_node;
3352
3353	*num_tx = *num_rx = 1;
3354
3355	if (!np || !of_device_is_available(np))
3356		return;
3357
3358	/* parse the num of tx and rx queues */
3359	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3360
3361	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3362
3363	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3364		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3365			 *num_tx);
3366		*num_tx = 1;
3367		return;
3368	}
3369
3370	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3371		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3372			 *num_rx);
3373		*num_rx = 1;
3374		return;
3375	}
3376
3377}
3378
3379static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3380{
3381	int irq_cnt = platform_irq_count(pdev);
3382
3383	if (irq_cnt > FEC_IRQ_NUM)
3384		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3385	else if (irq_cnt == 2)
3386		irq_cnt = 1;	/* last for pps */
3387	else if (irq_cnt <= 0)
3388		irq_cnt = 1;	/* At least 1 irq is needed */
3389	return irq_cnt;
3390}
3391
3392static int
3393fec_probe(struct platform_device *pdev)
3394{
3395	struct fec_enet_private *fep;
3396	struct fec_platform_data *pdata;
3397	struct net_device *ndev;
3398	int i, irq, ret = 0;
3399	const struct of_device_id *of_id;
3400	static int dev_id;
3401	struct device_node *np = pdev->dev.of_node, *phy_node;
3402	int num_tx_qs;
3403	int num_rx_qs;
3404	char irq_name[8];
3405	int irq_cnt;
3406
3407	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3408
3409	/* Init network device */
3410	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3411				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3412	if (!ndev)
3413		return -ENOMEM;
3414
3415	SET_NETDEV_DEV(ndev, &pdev->dev);
3416
3417	/* setup board info structure */
3418	fep = netdev_priv(ndev);
3419
3420	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3421	if (of_id)
3422		pdev->id_entry = of_id->data;
3423	fep->quirks = pdev->id_entry->driver_data;
3424
3425	fep->netdev = ndev;
3426	fep->num_rx_queues = num_rx_qs;
3427	fep->num_tx_queues = num_tx_qs;
3428
3429#if !defined(CONFIG_M5272)
3430	/* default enable pause frame auto negotiation */
3431	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3432		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3433#endif
3434
3435	/* Select default pin state */
3436	pinctrl_pm_select_default_state(&pdev->dev);
3437
3438	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3439	if (IS_ERR(fep->hwp)) {
3440		ret = PTR_ERR(fep->hwp);
3441		goto failed_ioremap;
3442	}
3443
3444	fep->pdev = pdev;
3445	fep->dev_id = dev_id++;
3446
3447	platform_set_drvdata(pdev, ndev);
3448
3449	if ((of_machine_is_compatible("fsl,imx6q") ||
3450	     of_machine_is_compatible("fsl,imx6dl")) &&
3451	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3452		fep->quirks |= FEC_QUIRK_ERR006687;
3453
3454	if (of_get_property(np, "fsl,magic-packet", NULL))
3455		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3456
3457	phy_node = of_parse_phandle(np, "phy-handle", 0);
3458	if (!phy_node && of_phy_is_fixed_link(np)) {
3459		ret = of_phy_register_fixed_link(np);
3460		if (ret < 0) {
3461			dev_err(&pdev->dev,
3462				"broken fixed-link specification\n");
3463			goto failed_phy;
3464		}
3465		phy_node = of_node_get(np);
3466	}
3467	fep->phy_node = phy_node;
3468
3469	ret = of_get_phy_mode(pdev->dev.of_node);
3470	if (ret < 0) {
3471		pdata = dev_get_platdata(&pdev->dev);
3472		if (pdata)
3473			fep->phy_interface = pdata->phy;
3474		else
3475			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3476	} else {
3477		fep->phy_interface = ret;
3478	}
3479
3480	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3481	if (IS_ERR(fep->clk_ipg)) {
3482		ret = PTR_ERR(fep->clk_ipg);
3483		goto failed_clk;
3484	}
3485
3486	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3487	if (IS_ERR(fep->clk_ahb)) {
3488		ret = PTR_ERR(fep->clk_ahb);
3489		goto failed_clk;
3490	}
3491
3492	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3493
3494	/* enet_out is optional, depends on board */
3495	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3496	if (IS_ERR(fep->clk_enet_out))
3497		fep->clk_enet_out = NULL;
3498
3499	fep->ptp_clk_on = false;
3500	mutex_init(&fep->ptp_clk_mutex);
3501
3502	/* clk_ref is optional, depends on board */
3503	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3504	if (IS_ERR(fep->clk_ref))
3505		fep->clk_ref = NULL;
3506
3507	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3508	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3509	if (IS_ERR(fep->clk_ptp)) {
3510		fep->clk_ptp = NULL;
3511		fep->bufdesc_ex = false;
3512	}
3513
3514	ret = fec_enet_clk_enable(ndev, true);
3515	if (ret)
3516		goto failed_clk;
3517
3518	ret = clk_prepare_enable(fep->clk_ipg);
3519	if (ret)
3520		goto failed_clk_ipg;
3521	ret = clk_prepare_enable(fep->clk_ahb);
3522	if (ret)
3523		goto failed_clk_ahb;
3524
3525	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3526	if (!IS_ERR(fep->reg_phy)) {
3527		ret = regulator_enable(fep->reg_phy);
3528		if (ret) {
3529			dev_err(&pdev->dev,
3530				"Failed to enable phy regulator: %d\n", ret);
3531			goto failed_regulator;
3532		}
3533	} else {
3534		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3535			ret = -EPROBE_DEFER;
3536			goto failed_regulator;
3537		}
3538		fep->reg_phy = NULL;
3539	}
3540
3541	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3542	pm_runtime_use_autosuspend(&pdev->dev);
3543	pm_runtime_get_noresume(&pdev->dev);
3544	pm_runtime_set_active(&pdev->dev);
3545	pm_runtime_enable(&pdev->dev);
3546
3547	ret = fec_reset_phy(pdev);
3548	if (ret)
3549		goto failed_reset;
3550
3551	irq_cnt = fec_enet_get_irq_cnt(pdev);
3552	if (fep->bufdesc_ex)
3553		fec_ptp_init(pdev, irq_cnt);
3554
3555	ret = fec_enet_init(ndev);
3556	if (ret)
3557		goto failed_init;
3558
3559	for (i = 0; i < irq_cnt; i++) {
3560		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3561		irq = platform_get_irq_byname_optional(pdev, irq_name);
3562		if (irq < 0)
3563			irq = platform_get_irq(pdev, i);
3564		if (irq < 0) {
3565			ret = irq;
3566			goto failed_irq;
3567		}
3568		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3569				       0, pdev->name, ndev);
3570		if (ret)
3571			goto failed_irq;
3572
3573		fep->irq[i] = irq;
3574	}
3575
3576	init_completion(&fep->mdio_done);
3577	ret = fec_enet_mii_init(pdev);
3578	if (ret)
3579		goto failed_mii_init;
3580
3581	/* Carrier starts down, phylib will bring it up */
3582	netif_carrier_off(ndev);
3583	fec_enet_clk_enable(ndev, false);
3584	pinctrl_pm_select_sleep_state(&pdev->dev);
3585
3586	ret = register_netdev(ndev);
3587	if (ret)
3588		goto failed_register;
3589
3590	device_init_wakeup(&ndev->dev, fep->wol_flag &
3591			   FEC_WOL_HAS_MAGIC_PACKET);
3592
3593	if (fep->bufdesc_ex && fep->ptp_clock)
3594		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3595
3596	fep->rx_copybreak = COPYBREAK_DEFAULT;
3597	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3598
3599	pm_runtime_mark_last_busy(&pdev->dev);
3600	pm_runtime_put_autosuspend(&pdev->dev);
3601
3602	return 0;
3603
3604failed_register:
3605	fec_enet_mii_remove(fep);
3606failed_mii_init:
3607failed_irq:
3608failed_init:
3609	fec_ptp_stop(pdev);
3610	if (fep->reg_phy)
3611		regulator_disable(fep->reg_phy);
3612failed_reset:
3613	pm_runtime_put_noidle(&pdev->dev);
3614	pm_runtime_disable(&pdev->dev);
3615failed_regulator:
3616	clk_disable_unprepare(fep->clk_ahb);
3617failed_clk_ahb:
3618	clk_disable_unprepare(fep->clk_ipg);
3619failed_clk_ipg:
3620	fec_enet_clk_enable(ndev, false);
3621failed_clk:
3622	if (of_phy_is_fixed_link(np))
3623		of_phy_deregister_fixed_link(np);
3624	of_node_put(phy_node);
3625failed_phy:
3626	dev_id--;
3627failed_ioremap:
3628	free_netdev(ndev);
3629
3630	return ret;
3631}
3632
3633static int
3634fec_drv_remove(struct platform_device *pdev)
3635{
3636	struct net_device *ndev = platform_get_drvdata(pdev);
3637	struct fec_enet_private *fep = netdev_priv(ndev);
3638	struct device_node *np = pdev->dev.of_node;
3639	int ret;
3640
3641	ret = pm_runtime_get_sync(&pdev->dev);
3642	if (ret < 0)
3643		return ret;
3644
3645	cancel_work_sync(&fep->tx_timeout_work);
3646	fec_ptp_stop(pdev);
3647	unregister_netdev(ndev);
3648	fec_enet_mii_remove(fep);
3649	if (fep->reg_phy)
3650		regulator_disable(fep->reg_phy);
3651
3652	if (of_phy_is_fixed_link(np))
3653		of_phy_deregister_fixed_link(np);
3654	of_node_put(fep->phy_node);
3655	free_netdev(ndev);
3656
3657	clk_disable_unprepare(fep->clk_ahb);
3658	clk_disable_unprepare(fep->clk_ipg);
3659	pm_runtime_put_noidle(&pdev->dev);
3660	pm_runtime_disable(&pdev->dev);
3661
3662	return 0;
3663}
3664
3665static int __maybe_unused fec_suspend(struct device *dev)
3666{
3667	struct net_device *ndev = dev_get_drvdata(dev);
3668	struct fec_enet_private *fep = netdev_priv(ndev);
3669
3670	rtnl_lock();
3671	if (netif_running(ndev)) {
3672		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3673			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3674		phy_stop(ndev->phydev);
3675		napi_disable(&fep->napi);
3676		netif_tx_lock_bh(ndev);
3677		netif_device_detach(ndev);
3678		netif_tx_unlock_bh(ndev);
3679		fec_stop(ndev);
3680		fec_enet_clk_enable(ndev, false);
3681		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3682			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3683	}
3684	rtnl_unlock();
3685
3686	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3687		regulator_disable(fep->reg_phy);
3688
3689	/* SOC supply clock to phy, when clock is disabled, phy link down
3690	 * SOC control phy regulator, when regulator is disabled, phy link down
3691	 */
3692	if (fep->clk_enet_out || fep->reg_phy)
3693		fep->link = 0;
3694
3695	return 0;
3696}
3697
3698static int __maybe_unused fec_resume(struct device *dev)
3699{
3700	struct net_device *ndev = dev_get_drvdata(dev);
3701	struct fec_enet_private *fep = netdev_priv(ndev);
3702	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3703	int ret;
3704	int val;
3705
3706	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3707		ret = regulator_enable(fep->reg_phy);
3708		if (ret)
3709			return ret;
3710	}
3711
3712	rtnl_lock();
3713	if (netif_running(ndev)) {
3714		ret = fec_enet_clk_enable(ndev, true);
3715		if (ret) {
3716			rtnl_unlock();
3717			goto failed_clk;
3718		}
3719		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3720			if (pdata && pdata->sleep_mode_enable)
3721				pdata->sleep_mode_enable(false);
3722			val = readl(fep->hwp + FEC_ECNTRL);
3723			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3724			writel(val, fep->hwp + FEC_ECNTRL);
3725			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3726		} else {
3727			pinctrl_pm_select_default_state(&fep->pdev->dev);
3728		}
3729		fec_restart(ndev);
3730		netif_tx_lock_bh(ndev);
3731		netif_device_attach(ndev);
3732		netif_tx_unlock_bh(ndev);
3733		napi_enable(&fep->napi);
3734		phy_start(ndev->phydev);
3735	}
3736	rtnl_unlock();
3737
3738	return 0;
3739
3740failed_clk:
3741	if (fep->reg_phy)
3742		regulator_disable(fep->reg_phy);
3743	return ret;
3744}
3745
3746static int __maybe_unused fec_runtime_suspend(struct device *dev)
3747{
3748	struct net_device *ndev = dev_get_drvdata(dev);
3749	struct fec_enet_private *fep = netdev_priv(ndev);
3750
3751	clk_disable_unprepare(fep->clk_ahb);
3752	clk_disable_unprepare(fep->clk_ipg);
3753
3754	return 0;
3755}
3756
3757static int __maybe_unused fec_runtime_resume(struct device *dev)
3758{
3759	struct net_device *ndev = dev_get_drvdata(dev);
3760	struct fec_enet_private *fep = netdev_priv(ndev);
3761	int ret;
3762
3763	ret = clk_prepare_enable(fep->clk_ahb);
3764	if (ret)
3765		return ret;
3766	ret = clk_prepare_enable(fep->clk_ipg);
3767	if (ret)
3768		goto failed_clk_ipg;
3769
3770	return 0;
3771
3772failed_clk_ipg:
3773	clk_disable_unprepare(fep->clk_ahb);
3774	return ret;
3775}
3776
3777static const struct dev_pm_ops fec_pm_ops = {
3778	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3779	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3780};
3781
3782static struct platform_driver fec_driver = {
3783	.driver	= {
3784		.name	= DRIVER_NAME,
3785		.pm	= &fec_pm_ops,
3786		.of_match_table = fec_dt_ids,
3787	},
3788	.id_table = fec_devtype,
3789	.probe	= fec_probe,
3790	.remove	= fec_drv_remove,
3791};
3792
3793module_platform_driver(fec_driver);
3794
3795MODULE_ALIAS("platform:"DRIVER_NAME);
3796MODULE_LICENSE("GPL");