Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/ptrace.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/netdevice.h>
  35#include <linux/etherdevice.h>
  36#include <linux/skbuff.h>
  37#include <linux/in.h>
  38#include <linux/ip.h>
  39#include <net/ip.h>
  40#include <net/tso.h>
  41#include <linux/tcp.h>
  42#include <linux/udp.h>
  43#include <linux/icmp.h>
  44#include <linux/spinlock.h>
  45#include <linux/workqueue.h>
  46#include <linux/bitops.h>
  47#include <linux/io.h>
  48#include <linux/irq.h>
  49#include <linux/clk.h>
  50#include <linux/platform_device.h>
  51#include <linux/mdio.h>
  52#include <linux/phy.h>
  53#include <linux/fec.h>
  54#include <linux/of.h>
  55#include <linux/of_device.h>
  56#include <linux/of_gpio.h>
  57#include <linux/of_mdio.h>
  58#include <linux/of_net.h>
  59#include <linux/regulator/consumer.h>
  60#include <linux/if_vlan.h>
  61#include <linux/pinctrl/consumer.h>
  62#include <linux/prefetch.h>
  63#include <soc/imx/cpuidle.h>
  64
  65#include <asm/cacheflush.h>
  66
  67#include "fec.h"
  68
  69static void set_multicast_list(struct net_device *ndev);
  70static void fec_enet_itr_coal_init(struct net_device *ndev);
  71
  72#define DRIVER_NAME	"fec"
  73
  74#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  75
  76/* Pause frame feild and FIFO threshold */
  77#define FEC_ENET_FCE	(1 << 5)
  78#define FEC_ENET_RSEM_V	0x84
  79#define FEC_ENET_RSFL_V	16
  80#define FEC_ENET_RAEM_V	0x8
  81#define FEC_ENET_RAFL_V	0x8
  82#define FEC_ENET_OPD_V	0xFFF0
  83#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  84
  85static struct platform_device_id fec_devtype[] = {
  86	{
  87		/* keep it for coldfire */
  88		.name = DRIVER_NAME,
  89		.driver_data = 0,
  90	}, {
  91		.name = "imx25-fec",
  92		.driver_data = FEC_QUIRK_USE_GASKET,
  93	}, {
  94		.name = "imx27-fec",
  95		.driver_data = 0,
  96	}, {
  97		.name = "imx28-fec",
  98		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
  99				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
 100	}, {
 101		.name = "imx6q-fec",
 102		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 103				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 104				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 105				FEC_QUIRK_HAS_RACC,
 106	}, {
 107		.name = "mvf600-fec",
 108		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 109	}, {
 110		.name = "imx6sx-fec",
 111		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 112				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 113				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 114				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 115				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 116	}, {
 117		.name = "imx6ul-fec",
 118		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 119				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 120				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_BUG_CAPTURE |
 121				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 122	}, {
 123		/* sentinel */
 124	}
 125};
 126MODULE_DEVICE_TABLE(platform, fec_devtype);
 127
 128enum imx_fec_type {
 129	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 130	IMX27_FEC,	/* runs on i.mx27/35/51 */
 131	IMX28_FEC,
 132	IMX6Q_FEC,
 133	MVF600_FEC,
 134	IMX6SX_FEC,
 135	IMX6UL_FEC,
 136};
 137
 138static const struct of_device_id fec_dt_ids[] = {
 139	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 140	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 141	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 142	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 143	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 144	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 145	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 146	{ /* sentinel */ }
 147};
 148MODULE_DEVICE_TABLE(of, fec_dt_ids);
 149
 150static unsigned char macaddr[ETH_ALEN];
 151module_param_array(macaddr, byte, NULL, 0);
 152MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 153
 154#if defined(CONFIG_M5272)
 155/*
 156 * Some hardware gets it MAC address out of local flash memory.
 157 * if this is non-zero then assume it is the address to get MAC from.
 158 */
 159#if defined(CONFIG_NETtel)
 160#define	FEC_FLASHMAC	0xf0006006
 161#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 162#define	FEC_FLASHMAC	0xf0006000
 163#elif defined(CONFIG_CANCam)
 164#define	FEC_FLASHMAC	0xf0020000
 165#elif defined (CONFIG_M5272C3)
 166#define	FEC_FLASHMAC	(0xffe04000 + 4)
 167#elif defined(CONFIG_MOD5272)
 168#define FEC_FLASHMAC	0xffc0406b
 169#else
 170#define	FEC_FLASHMAC	0
 171#endif
 172#endif /* CONFIG_M5272 */
 173
 174/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 175 */
 176#define PKT_MAXBUF_SIZE		1522
 177#define PKT_MINBUF_SIZE		64
 178#define PKT_MAXBLR_SIZE		1536
 179
 180/* FEC receive acceleration */
 181#define FEC_RACC_IPDIS		(1 << 1)
 182#define FEC_RACC_PRODIS		(1 << 2)
 183#define FEC_RACC_SHIFT16	BIT(7)
 184#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 185
 186/*
 187 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 188 * size bits. Other FEC hardware does not, so we need to take that into
 189 * account when setting it.
 190 */
 191#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 192    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 193#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 194#else
 195#define	OPT_FRAME_SIZE	0
 196#endif
 197
 198/* FEC MII MMFR bits definition */
 199#define FEC_MMFR_ST		(1 << 30)
 200#define FEC_MMFR_OP_READ	(2 << 28)
 201#define FEC_MMFR_OP_WRITE	(1 << 28)
 202#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 203#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 204#define FEC_MMFR_TA		(2 << 16)
 205#define FEC_MMFR_DATA(v)	(v & 0xffff)
 206/* FEC ECR bits definition */
 207#define FEC_ECR_MAGICEN		(1 << 2)
 208#define FEC_ECR_SLEEP		(1 << 3)
 209
 210#define FEC_MII_TIMEOUT		30000 /* us */
 211
 212/* Transmitter timeout */
 213#define TX_TIMEOUT (2 * HZ)
 214
 215#define FEC_PAUSE_FLAG_AUTONEG	0x1
 216#define FEC_PAUSE_FLAG_ENABLE	0x2
 217#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 218#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 219#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 220
 221#define COPYBREAK_DEFAULT	256
 222
 223#define TSO_HEADER_SIZE		128
 224/* Max number of allowed TCP segments for software TSO */
 225#define FEC_MAX_TSO_SEGS	100
 226#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 227
 228#define IS_TSO_HEADER(txq, addr) \
 229	((addr >= txq->tso_hdrs_dma) && \
 230	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 231
 232static int mii_cnt;
 233
 234static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 235					     struct bufdesc_prop *bd)
 236{
 237	return (bdp >= bd->last) ? bd->base
 238			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
 239}
 240
 241static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 242					     struct bufdesc_prop *bd)
 243{
 244	return (bdp <= bd->base) ? bd->last
 245			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
 246}
 247
 248static int fec_enet_get_bd_index(struct bufdesc *bdp,
 249				 struct bufdesc_prop *bd)
 250{
 251	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 252}
 253
 254static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 255{
 256	int entries;
 257
 258	entries = (((const char *)txq->dirty_tx -
 259			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 260
 261	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 262}
 263
 264static void swap_buffer(void *bufaddr, int len)
 265{
 266	int i;
 267	unsigned int *buf = bufaddr;
 268
 269	for (i = 0; i < len; i += 4, buf++)
 270		swab32s(buf);
 271}
 272
 273static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 274{
 275	int i;
 276	unsigned int *src = src_buf;
 277	unsigned int *dst = dst_buf;
 278
 279	for (i = 0; i < len; i += 4, src++, dst++)
 280		*dst = swab32p(src);
 281}
 282
 283static void fec_dump(struct net_device *ndev)
 284{
 285	struct fec_enet_private *fep = netdev_priv(ndev);
 286	struct bufdesc *bdp;
 287	struct fec_enet_priv_tx_q *txq;
 288	int index = 0;
 289
 290	netdev_info(ndev, "TX ring dump\n");
 291	pr_info("Nr     SC     addr       len  SKB\n");
 292
 293	txq = fep->tx_queue[0];
 294	bdp = txq->bd.base;
 295
 296	do {
 297		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 298			index,
 299			bdp == txq->bd.cur ? 'S' : ' ',
 300			bdp == txq->dirty_tx ? 'H' : ' ',
 301			fec16_to_cpu(bdp->cbd_sc),
 302			fec32_to_cpu(bdp->cbd_bufaddr),
 303			fec16_to_cpu(bdp->cbd_datlen),
 304			txq->tx_skbuff[index]);
 305		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 306		index++;
 307	} while (bdp != txq->bd.base);
 308}
 309
 310static inline bool is_ipv4_pkt(struct sk_buff *skb)
 311{
 312	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 313}
 314
 315static int
 316fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 317{
 318	/* Only run for packets requiring a checksum. */
 319	if (skb->ip_summed != CHECKSUM_PARTIAL)
 320		return 0;
 321
 322	if (unlikely(skb_cow_head(skb, 0)))
 323		return -1;
 324
 325	if (is_ipv4_pkt(skb))
 326		ip_hdr(skb)->check = 0;
 327	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 328
 329	return 0;
 330}
 331
 332static struct bufdesc *
 333fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 334			     struct sk_buff *skb,
 335			     struct net_device *ndev)
 336{
 337	struct fec_enet_private *fep = netdev_priv(ndev);
 338	struct bufdesc *bdp = txq->bd.cur;
 339	struct bufdesc_ex *ebdp;
 340	int nr_frags = skb_shinfo(skb)->nr_frags;
 341	int frag, frag_len;
 342	unsigned short status;
 343	unsigned int estatus = 0;
 344	skb_frag_t *this_frag;
 345	unsigned int index;
 346	void *bufaddr;
 347	dma_addr_t addr;
 348	int i;
 349
 350	for (frag = 0; frag < nr_frags; frag++) {
 351		this_frag = &skb_shinfo(skb)->frags[frag];
 352		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 353		ebdp = (struct bufdesc_ex *)bdp;
 354
 355		status = fec16_to_cpu(bdp->cbd_sc);
 356		status &= ~BD_ENET_TX_STATS;
 357		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 358		frag_len = skb_shinfo(skb)->frags[frag].size;
 359
 360		/* Handle the last BD specially */
 361		if (frag == nr_frags - 1) {
 362			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 363			if (fep->bufdesc_ex) {
 364				estatus |= BD_ENET_TX_INT;
 365				if (unlikely(skb_shinfo(skb)->tx_flags &
 366					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 367					estatus |= BD_ENET_TX_TS;
 368			}
 369		}
 370
 371		if (fep->bufdesc_ex) {
 372			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 373				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 374			if (skb->ip_summed == CHECKSUM_PARTIAL)
 375				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 376			ebdp->cbd_bdu = 0;
 377			ebdp->cbd_esc = cpu_to_fec32(estatus);
 378		}
 379
 380		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 381
 382		index = fec_enet_get_bd_index(bdp, &txq->bd);
 383		if (((unsigned long) bufaddr) & fep->tx_align ||
 384			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 385			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 386			bufaddr = txq->tx_bounce[index];
 387
 388			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 389				swap_buffer(bufaddr, frag_len);
 390		}
 391
 392		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 393				      DMA_TO_DEVICE);
 394		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 395			if (net_ratelimit())
 396				netdev_err(ndev, "Tx DMA memory map failed\n");
 397			goto dma_mapping_error;
 398		}
 399
 400		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 401		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 402		/* Make sure the updates to rest of the descriptor are
 403		 * performed before transferring ownership.
 404		 */
 405		wmb();
 406		bdp->cbd_sc = cpu_to_fec16(status);
 407	}
 408
 409	return bdp;
 410dma_mapping_error:
 411	bdp = txq->bd.cur;
 412	for (i = 0; i < frag; i++) {
 413		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 414		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 415				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 416	}
 417	return ERR_PTR(-ENOMEM);
 418}
 419
 420static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 421				   struct sk_buff *skb, struct net_device *ndev)
 422{
 423	struct fec_enet_private *fep = netdev_priv(ndev);
 424	int nr_frags = skb_shinfo(skb)->nr_frags;
 425	struct bufdesc *bdp, *last_bdp;
 426	void *bufaddr;
 427	dma_addr_t addr;
 428	unsigned short status;
 429	unsigned short buflen;
 430	unsigned int estatus = 0;
 431	unsigned int index;
 432	int entries_free;
 433
 434	entries_free = fec_enet_get_free_txdesc_num(txq);
 435	if (entries_free < MAX_SKB_FRAGS + 1) {
 436		dev_kfree_skb_any(skb);
 437		if (net_ratelimit())
 438			netdev_err(ndev, "NOT enough BD for SG!\n");
 439		return NETDEV_TX_OK;
 440	}
 441
 442	/* Protocol checksum off-load for TCP and UDP. */
 443	if (fec_enet_clear_csum(skb, ndev)) {
 444		dev_kfree_skb_any(skb);
 445		return NETDEV_TX_OK;
 446	}
 447
 448	/* Fill in a Tx ring entry */
 449	bdp = txq->bd.cur;
 450	last_bdp = bdp;
 451	status = fec16_to_cpu(bdp->cbd_sc);
 452	status &= ~BD_ENET_TX_STATS;
 453
 454	/* Set buffer length and buffer pointer */
 455	bufaddr = skb->data;
 456	buflen = skb_headlen(skb);
 457
 458	index = fec_enet_get_bd_index(bdp, &txq->bd);
 459	if (((unsigned long) bufaddr) & fep->tx_align ||
 460		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 461		memcpy(txq->tx_bounce[index], skb->data, buflen);
 462		bufaddr = txq->tx_bounce[index];
 463
 464		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 465			swap_buffer(bufaddr, buflen);
 466	}
 467
 468	/* Push the data cache so the CPM does not get stale memory data. */
 469	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 470	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 471		dev_kfree_skb_any(skb);
 472		if (net_ratelimit())
 473			netdev_err(ndev, "Tx DMA memory map failed\n");
 474		return NETDEV_TX_OK;
 475	}
 476
 477	if (nr_frags) {
 478		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 479		if (IS_ERR(last_bdp)) {
 480			dma_unmap_single(&fep->pdev->dev, addr,
 481					 buflen, DMA_TO_DEVICE);
 482			dev_kfree_skb_any(skb);
 483			return NETDEV_TX_OK;
 484		}
 485	} else {
 486		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 487		if (fep->bufdesc_ex) {
 488			estatus = BD_ENET_TX_INT;
 489			if (unlikely(skb_shinfo(skb)->tx_flags &
 490				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 491				estatus |= BD_ENET_TX_TS;
 492		}
 493	}
 494	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 495	bdp->cbd_datlen = cpu_to_fec16(buflen);
 496
 497	if (fep->bufdesc_ex) {
 498
 499		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 500
 501		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 502			fep->hwts_tx_en))
 503			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 504
 505		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 506			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 507
 508		if (skb->ip_summed == CHECKSUM_PARTIAL)
 509			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 510
 511		ebdp->cbd_bdu = 0;
 512		ebdp->cbd_esc = cpu_to_fec32(estatus);
 513	}
 514
 515	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 516	/* Save skb pointer */
 517	txq->tx_skbuff[index] = skb;
 518
 519	/* Make sure the updates to rest of the descriptor are performed before
 520	 * transferring ownership.
 521	 */
 522	wmb();
 523
 524	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 525	 * it's the last BD of the frame, and to put the CRC on the end.
 526	 */
 527	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 528	bdp->cbd_sc = cpu_to_fec16(status);
 529
 530	/* If this was the last BD in the ring, start at the beginning again. */
 531	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 532
 533	skb_tx_timestamp(skb);
 534
 535	/* Make sure the update to bdp and tx_skbuff are performed before
 536	 * txq->bd.cur.
 537	 */
 538	wmb();
 539	txq->bd.cur = bdp;
 540
 541	/* Trigger transmission start */
 542	writel(0, txq->bd.reg_desc_active);
 543
 544	return 0;
 545}
 546
 547static int
 548fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 549			  struct net_device *ndev,
 550			  struct bufdesc *bdp, int index, char *data,
 551			  int size, bool last_tcp, bool is_last)
 552{
 553	struct fec_enet_private *fep = netdev_priv(ndev);
 554	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 555	unsigned short status;
 556	unsigned int estatus = 0;
 557	dma_addr_t addr;
 558
 559	status = fec16_to_cpu(bdp->cbd_sc);
 560	status &= ~BD_ENET_TX_STATS;
 561
 562	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 563
 564	if (((unsigned long) data) & fep->tx_align ||
 565		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 566		memcpy(txq->tx_bounce[index], data, size);
 567		data = txq->tx_bounce[index];
 568
 569		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 570			swap_buffer(data, size);
 571	}
 572
 573	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 574	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 575		dev_kfree_skb_any(skb);
 576		if (net_ratelimit())
 577			netdev_err(ndev, "Tx DMA memory map failed\n");
 578		return NETDEV_TX_BUSY;
 579	}
 580
 581	bdp->cbd_datlen = cpu_to_fec16(size);
 582	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 583
 584	if (fep->bufdesc_ex) {
 585		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 586			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 587		if (skb->ip_summed == CHECKSUM_PARTIAL)
 588			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 589		ebdp->cbd_bdu = 0;
 590		ebdp->cbd_esc = cpu_to_fec32(estatus);
 591	}
 592
 593	/* Handle the last BD specially */
 594	if (last_tcp)
 595		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 596	if (is_last) {
 597		status |= BD_ENET_TX_INTR;
 598		if (fep->bufdesc_ex)
 599			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 600	}
 601
 602	bdp->cbd_sc = cpu_to_fec16(status);
 603
 604	return 0;
 605}
 606
 607static int
 608fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 609			 struct sk_buff *skb, struct net_device *ndev,
 610			 struct bufdesc *bdp, int index)
 611{
 612	struct fec_enet_private *fep = netdev_priv(ndev);
 613	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 614	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 615	void *bufaddr;
 616	unsigned long dmabuf;
 617	unsigned short status;
 618	unsigned int estatus = 0;
 619
 620	status = fec16_to_cpu(bdp->cbd_sc);
 621	status &= ~BD_ENET_TX_STATS;
 622	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 623
 624	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 625	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 626	if (((unsigned long)bufaddr) & fep->tx_align ||
 627		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 628		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 629		bufaddr = txq->tx_bounce[index];
 630
 631		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 632			swap_buffer(bufaddr, hdr_len);
 633
 634		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 635					hdr_len, DMA_TO_DEVICE);
 636		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 637			dev_kfree_skb_any(skb);
 638			if (net_ratelimit())
 639				netdev_err(ndev, "Tx DMA memory map failed\n");
 640			return NETDEV_TX_BUSY;
 641		}
 642	}
 643
 644	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 645	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 646
 647	if (fep->bufdesc_ex) {
 648		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 649			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 650		if (skb->ip_summed == CHECKSUM_PARTIAL)
 651			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 652		ebdp->cbd_bdu = 0;
 653		ebdp->cbd_esc = cpu_to_fec32(estatus);
 654	}
 655
 656	bdp->cbd_sc = cpu_to_fec16(status);
 657
 658	return 0;
 659}
 660
 661static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 662				   struct sk_buff *skb,
 663				   struct net_device *ndev)
 664{
 665	struct fec_enet_private *fep = netdev_priv(ndev);
 666	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 667	int total_len, data_left;
 668	struct bufdesc *bdp = txq->bd.cur;
 669	struct tso_t tso;
 670	unsigned int index = 0;
 671	int ret;
 672
 673	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 674		dev_kfree_skb_any(skb);
 675		if (net_ratelimit())
 676			netdev_err(ndev, "NOT enough BD for TSO!\n");
 677		return NETDEV_TX_OK;
 678	}
 679
 680	/* Protocol checksum off-load for TCP and UDP. */
 681	if (fec_enet_clear_csum(skb, ndev)) {
 682		dev_kfree_skb_any(skb);
 683		return NETDEV_TX_OK;
 684	}
 685
 686	/* Initialize the TSO handler, and prepare the first payload */
 687	tso_start(skb, &tso);
 688
 689	total_len = skb->len - hdr_len;
 690	while (total_len > 0) {
 691		char *hdr;
 692
 693		index = fec_enet_get_bd_index(bdp, &txq->bd);
 694		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 695		total_len -= data_left;
 696
 697		/* prepare packet headers: MAC + IP + TCP */
 698		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 699		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 700		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 701		if (ret)
 702			goto err_release;
 703
 704		while (data_left > 0) {
 705			int size;
 706
 707			size = min_t(int, tso.size, data_left);
 708			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 709			index = fec_enet_get_bd_index(bdp, &txq->bd);
 710			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 711							bdp, index,
 712							tso.data, size,
 713							size == data_left,
 714							total_len == 0);
 715			if (ret)
 716				goto err_release;
 717
 718			data_left -= size;
 719			tso_build_data(skb, &tso, size);
 720		}
 721
 722		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 723	}
 724
 725	/* Save skb pointer */
 726	txq->tx_skbuff[index] = skb;
 727
 728	skb_tx_timestamp(skb);
 729	txq->bd.cur = bdp;
 730
 731	/* Trigger transmission start */
 732	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 733	    !readl(txq->bd.reg_desc_active) ||
 734	    !readl(txq->bd.reg_desc_active) ||
 735	    !readl(txq->bd.reg_desc_active) ||
 736	    !readl(txq->bd.reg_desc_active))
 737		writel(0, txq->bd.reg_desc_active);
 738
 739	return 0;
 740
 741err_release:
 742	/* TODO: Release all used data descriptors for TSO */
 743	return ret;
 744}
 745
 746static netdev_tx_t
 747fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 748{
 749	struct fec_enet_private *fep = netdev_priv(ndev);
 750	int entries_free;
 751	unsigned short queue;
 752	struct fec_enet_priv_tx_q *txq;
 753	struct netdev_queue *nq;
 754	int ret;
 755
 756	queue = skb_get_queue_mapping(skb);
 757	txq = fep->tx_queue[queue];
 758	nq = netdev_get_tx_queue(ndev, queue);
 759
 760	if (skb_is_gso(skb))
 761		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 762	else
 763		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 764	if (ret)
 765		return ret;
 766
 767	entries_free = fec_enet_get_free_txdesc_num(txq);
 768	if (entries_free <= txq->tx_stop_threshold)
 769		netif_tx_stop_queue(nq);
 770
 771	return NETDEV_TX_OK;
 772}
 773
 774/* Init RX & TX buffer descriptors
 775 */
 776static void fec_enet_bd_init(struct net_device *dev)
 777{
 778	struct fec_enet_private *fep = netdev_priv(dev);
 779	struct fec_enet_priv_tx_q *txq;
 780	struct fec_enet_priv_rx_q *rxq;
 781	struct bufdesc *bdp;
 782	unsigned int i;
 783	unsigned int q;
 784
 785	for (q = 0; q < fep->num_rx_queues; q++) {
 786		/* Initialize the receive buffer descriptors. */
 787		rxq = fep->rx_queue[q];
 788		bdp = rxq->bd.base;
 789
 790		for (i = 0; i < rxq->bd.ring_size; i++) {
 791
 792			/* Initialize the BD for every fragment in the page. */
 793			if (bdp->cbd_bufaddr)
 794				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 795			else
 796				bdp->cbd_sc = cpu_to_fec16(0);
 797			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 798		}
 799
 800		/* Set the last buffer to wrap */
 801		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 802		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 803
 804		rxq->bd.cur = rxq->bd.base;
 805	}
 806
 807	for (q = 0; q < fep->num_tx_queues; q++) {
 808		/* ...and the same for transmit */
 809		txq = fep->tx_queue[q];
 810		bdp = txq->bd.base;
 811		txq->bd.cur = bdp;
 812
 813		for (i = 0; i < txq->bd.ring_size; i++) {
 814			/* Initialize the BD for every fragment in the page. */
 815			bdp->cbd_sc = cpu_to_fec16(0);
 816			if (txq->tx_skbuff[i]) {
 817				dev_kfree_skb_any(txq->tx_skbuff[i]);
 818				txq->tx_skbuff[i] = NULL;
 819			}
 820			bdp->cbd_bufaddr = cpu_to_fec32(0);
 821			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 822		}
 823
 824		/* Set the last buffer to wrap */
 825		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 826		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 827		txq->dirty_tx = bdp;
 828	}
 829}
 830
 831static void fec_enet_active_rxring(struct net_device *ndev)
 832{
 833	struct fec_enet_private *fep = netdev_priv(ndev);
 834	int i;
 835
 836	for (i = 0; i < fep->num_rx_queues; i++)
 837		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 838}
 839
 840static void fec_enet_enable_ring(struct net_device *ndev)
 841{
 842	struct fec_enet_private *fep = netdev_priv(ndev);
 843	struct fec_enet_priv_tx_q *txq;
 844	struct fec_enet_priv_rx_q *rxq;
 845	int i;
 846
 847	for (i = 0; i < fep->num_rx_queues; i++) {
 848		rxq = fep->rx_queue[i];
 849		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 850		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 851
 852		/* enable DMA1/2 */
 853		if (i)
 854			writel(RCMR_MATCHEN | RCMR_CMP(i),
 855			       fep->hwp + FEC_RCMR(i));
 856	}
 857
 858	for (i = 0; i < fep->num_tx_queues; i++) {
 859		txq = fep->tx_queue[i];
 860		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 861
 862		/* enable DMA1/2 */
 863		if (i)
 864			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 865			       fep->hwp + FEC_DMA_CFG(i));
 866	}
 867}
 868
 869static void fec_enet_reset_skb(struct net_device *ndev)
 870{
 871	struct fec_enet_private *fep = netdev_priv(ndev);
 872	struct fec_enet_priv_tx_q *txq;
 873	int i, j;
 874
 875	for (i = 0; i < fep->num_tx_queues; i++) {
 876		txq = fep->tx_queue[i];
 877
 878		for (j = 0; j < txq->bd.ring_size; j++) {
 879			if (txq->tx_skbuff[j]) {
 880				dev_kfree_skb_any(txq->tx_skbuff[j]);
 881				txq->tx_skbuff[j] = NULL;
 882			}
 883		}
 884	}
 885}
 886
 887/*
 888 * This function is called to start or restart the FEC during a link
 889 * change, transmit timeout, or to reconfigure the FEC.  The network
 890 * packet processing for this device must be stopped before this call.
 891 */
 892static void
 893fec_restart(struct net_device *ndev)
 894{
 895	struct fec_enet_private *fep = netdev_priv(ndev);
 896	u32 val;
 897	u32 temp_mac[2];
 898	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 899	u32 ecntl = 0x2; /* ETHEREN */
 900
 901	/* Whack a reset.  We should wait for this.
 902	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 903	 * instead of reset MAC itself.
 904	 */
 905	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 906		writel(0, fep->hwp + FEC_ECNTRL);
 907	} else {
 908		writel(1, fep->hwp + FEC_ECNTRL);
 909		udelay(10);
 910	}
 911
 912	/*
 913	 * enet-mac reset will reset mac address registers too,
 914	 * so need to reconfigure it.
 915	 */
 916	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 917	writel((__force u32)cpu_to_be32(temp_mac[0]),
 918	       fep->hwp + FEC_ADDR_LOW);
 919	writel((__force u32)cpu_to_be32(temp_mac[1]),
 920	       fep->hwp + FEC_ADDR_HIGH);
 921
 922	/* Clear any outstanding interrupt. */
 923	writel(0xffffffff, fep->hwp + FEC_IEVENT);
 924
 925	fec_enet_bd_init(ndev);
 926
 927	fec_enet_enable_ring(ndev);
 928
 929	/* Reset tx SKB buffers. */
 930	fec_enet_reset_skb(ndev);
 931
 932	/* Enable MII mode */
 933	if (fep->full_duplex == DUPLEX_FULL) {
 934		/* FD enable */
 935		writel(0x04, fep->hwp + FEC_X_CNTRL);
 936	} else {
 937		/* No Rcv on Xmit */
 938		rcntl |= 0x02;
 939		writel(0x0, fep->hwp + FEC_X_CNTRL);
 940	}
 941
 942	/* Set MII speed */
 943	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 944
 945#if !defined(CONFIG_M5272)
 946	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 947		val = readl(fep->hwp + FEC_RACC);
 948		/* align IP header */
 949		val |= FEC_RACC_SHIFT16;
 950		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 951			/* set RX checksum */
 952			val |= FEC_RACC_OPTIONS;
 953		else
 954			val &= ~FEC_RACC_OPTIONS;
 955		writel(val, fep->hwp + FEC_RACC);
 956		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 957	}
 958#endif
 959
 960	/*
 961	 * The phy interface and speed need to get configured
 962	 * differently on enet-mac.
 963	 */
 964	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 965		/* Enable flow control and length check */
 966		rcntl |= 0x40000000 | 0x00000020;
 967
 968		/* RGMII, RMII or MII */
 969		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 970		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 971		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 972		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 973			rcntl |= (1 << 6);
 974		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 975			rcntl |= (1 << 8);
 976		else
 977			rcntl &= ~(1 << 8);
 978
 979		/* 1G, 100M or 10M */
 980		if (ndev->phydev) {
 981			if (ndev->phydev->speed == SPEED_1000)
 982				ecntl |= (1 << 5);
 983			else if (ndev->phydev->speed == SPEED_100)
 984				rcntl &= ~(1 << 9);
 985			else
 986				rcntl |= (1 << 9);
 987		}
 988	} else {
 989#ifdef FEC_MIIGSK_ENR
 990		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
 991			u32 cfgr;
 992			/* disable the gasket and wait */
 993			writel(0, fep->hwp + FEC_MIIGSK_ENR);
 994			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 995				udelay(1);
 996
 997			/*
 998			 * configure the gasket:
 999			 *   RMII, 50 MHz, no loopback, no echo
1000			 *   MII, 25 MHz, no loopback, no echo
1001			 */
1002			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1004			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1005				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1006			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1007
1008			/* re-enable the gasket */
1009			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1010		}
1011#endif
1012	}
1013
1014#if !defined(CONFIG_M5272)
1015	/* enable pause frame*/
1016	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1017	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1018	     ndev->phydev && ndev->phydev->pause)) {
1019		rcntl |= FEC_ENET_FCE;
1020
1021		/* set FIFO threshold parameter to reduce overrun */
1022		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1023		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1024		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1025		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1026
1027		/* OPD */
1028		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1029	} else {
1030		rcntl &= ~FEC_ENET_FCE;
1031	}
1032#endif /* !defined(CONFIG_M5272) */
1033
1034	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1035
1036	/* Setup multicast filter. */
1037	set_multicast_list(ndev);
1038#ifndef CONFIG_M5272
1039	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1040	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1041#endif
1042
1043	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1044		/* enable ENET endian swap */
1045		ecntl |= (1 << 8);
1046		/* enable ENET store and forward mode */
1047		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1048	}
1049
1050	if (fep->bufdesc_ex)
1051		ecntl |= (1 << 4);
1052
1053#ifndef CONFIG_M5272
1054	/* Enable the MIB statistic event counters */
1055	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1056#endif
1057
1058	/* And last, enable the transmit and receive processing */
1059	writel(ecntl, fep->hwp + FEC_ECNTRL);
1060	fec_enet_active_rxring(ndev);
1061
1062	if (fep->bufdesc_ex)
1063		fec_ptp_start_cyclecounter(ndev);
1064
1065	/* Enable interrupts we wish to service */
1066	if (fep->link)
1067		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1068	else
1069		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1070
1071	/* Init the interrupt coalescing */
1072	fec_enet_itr_coal_init(ndev);
1073
1074}
1075
1076static void
1077fec_stop(struct net_device *ndev)
1078{
1079	struct fec_enet_private *fep = netdev_priv(ndev);
1080	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1081	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1082	u32 val;
1083
1084	/* We cannot expect a graceful transmit stop without link !!! */
1085	if (fep->link) {
1086		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1087		udelay(10);
1088		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1089			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1090	}
1091
1092	/* Whack a reset.  We should wait for this.
1093	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1094	 * instead of reset MAC itself.
1095	 */
1096	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1097		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1098			writel(0, fep->hwp + FEC_ECNTRL);
1099		} else {
1100			writel(1, fep->hwp + FEC_ECNTRL);
1101			udelay(10);
1102		}
1103		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1104	} else {
1105		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1106		val = readl(fep->hwp + FEC_ECNTRL);
1107		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1108		writel(val, fep->hwp + FEC_ECNTRL);
1109
1110		if (pdata && pdata->sleep_mode_enable)
1111			pdata->sleep_mode_enable(true);
1112	}
1113	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1114
1115	/* We have to keep ENET enabled to have MII interrupt stay working */
1116	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1117		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1118		writel(2, fep->hwp + FEC_ECNTRL);
1119		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1120	}
1121}
1122
1123
1124static void
1125fec_timeout(struct net_device *ndev)
1126{
1127	struct fec_enet_private *fep = netdev_priv(ndev);
1128
1129	fec_dump(ndev);
1130
1131	ndev->stats.tx_errors++;
1132
1133	schedule_work(&fep->tx_timeout_work);
1134}
1135
1136static void fec_enet_timeout_work(struct work_struct *work)
1137{
1138	struct fec_enet_private *fep =
1139		container_of(work, struct fec_enet_private, tx_timeout_work);
1140	struct net_device *ndev = fep->netdev;
1141
1142	rtnl_lock();
1143	if (netif_device_present(ndev) || netif_running(ndev)) {
1144		napi_disable(&fep->napi);
1145		netif_tx_lock_bh(ndev);
1146		fec_restart(ndev);
1147		netif_wake_queue(ndev);
1148		netif_tx_unlock_bh(ndev);
1149		napi_enable(&fep->napi);
1150	}
1151	rtnl_unlock();
1152}
1153
1154static void
1155fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1156	struct skb_shared_hwtstamps *hwtstamps)
1157{
1158	unsigned long flags;
1159	u64 ns;
1160
1161	spin_lock_irqsave(&fep->tmreg_lock, flags);
1162	ns = timecounter_cyc2time(&fep->tc, ts);
1163	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1164
1165	memset(hwtstamps, 0, sizeof(*hwtstamps));
1166	hwtstamps->hwtstamp = ns_to_ktime(ns);
1167}
1168
1169static void
1170fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1171{
1172	struct	fec_enet_private *fep;
1173	struct bufdesc *bdp;
1174	unsigned short status;
1175	struct	sk_buff	*skb;
1176	struct fec_enet_priv_tx_q *txq;
1177	struct netdev_queue *nq;
1178	int	index = 0;
1179	int	entries_free;
1180
1181	fep = netdev_priv(ndev);
1182
1183	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1184
1185	txq = fep->tx_queue[queue_id];
1186	/* get next bdp of dirty_tx */
1187	nq = netdev_get_tx_queue(ndev, queue_id);
1188	bdp = txq->dirty_tx;
1189
1190	/* get next bdp of dirty_tx */
1191	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1192
1193	while (bdp != READ_ONCE(txq->bd.cur)) {
1194		/* Order the load of bd.cur and cbd_sc */
1195		rmb();
1196		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1197		if (status & BD_ENET_TX_READY)
1198			break;
1199
1200		index = fec_enet_get_bd_index(bdp, &txq->bd);
1201
1202		skb = txq->tx_skbuff[index];
1203		txq->tx_skbuff[index] = NULL;
1204		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1205			dma_unmap_single(&fep->pdev->dev,
1206					 fec32_to_cpu(bdp->cbd_bufaddr),
1207					 fec16_to_cpu(bdp->cbd_datlen),
1208					 DMA_TO_DEVICE);
1209		bdp->cbd_bufaddr = cpu_to_fec32(0);
1210		if (!skb)
1211			goto skb_done;
1212
1213		/* Check for errors. */
1214		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1215				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1216				   BD_ENET_TX_CSL)) {
1217			ndev->stats.tx_errors++;
1218			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1219				ndev->stats.tx_heartbeat_errors++;
1220			if (status & BD_ENET_TX_LC)  /* Late collision */
1221				ndev->stats.tx_window_errors++;
1222			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1223				ndev->stats.tx_aborted_errors++;
1224			if (status & BD_ENET_TX_UN)  /* Underrun */
1225				ndev->stats.tx_fifo_errors++;
1226			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1227				ndev->stats.tx_carrier_errors++;
1228		} else {
1229			ndev->stats.tx_packets++;
1230			ndev->stats.tx_bytes += skb->len;
1231		}
1232
1233		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1234			fep->bufdesc_ex) {
1235			struct skb_shared_hwtstamps shhwtstamps;
1236			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1237
1238			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1239			skb_tstamp_tx(skb, &shhwtstamps);
1240		}
1241
1242		/* Deferred means some collisions occurred during transmit,
1243		 * but we eventually sent the packet OK.
1244		 */
1245		if (status & BD_ENET_TX_DEF)
1246			ndev->stats.collisions++;
1247
1248		/* Free the sk buffer associated with this last transmit */
1249		dev_kfree_skb_any(skb);
1250skb_done:
1251		/* Make sure the update to bdp and tx_skbuff are performed
1252		 * before dirty_tx
1253		 */
1254		wmb();
1255		txq->dirty_tx = bdp;
1256
1257		/* Update pointer to next buffer descriptor to be transmitted */
1258		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1259
1260		/* Since we have freed up a buffer, the ring is no longer full
1261		 */
1262		if (netif_queue_stopped(ndev)) {
1263			entries_free = fec_enet_get_free_txdesc_num(txq);
1264			if (entries_free >= txq->tx_wake_threshold)
1265				netif_tx_wake_queue(nq);
1266		}
1267	}
1268
1269	/* ERR006538: Keep the transmitter going */
1270	if (bdp != txq->bd.cur &&
1271	    readl(txq->bd.reg_desc_active) == 0)
1272		writel(0, txq->bd.reg_desc_active);
1273}
1274
1275static void
1276fec_enet_tx(struct net_device *ndev)
1277{
1278	struct fec_enet_private *fep = netdev_priv(ndev);
1279	u16 queue_id;
1280	/* First process class A queue, then Class B and Best Effort queue */
1281	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1282		clear_bit(queue_id, &fep->work_tx);
1283		fec_enet_tx_queue(ndev, queue_id);
1284	}
1285	return;
1286}
1287
1288static int
1289fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1290{
1291	struct  fec_enet_private *fep = netdev_priv(ndev);
1292	int off;
1293
1294	off = ((unsigned long)skb->data) & fep->rx_align;
1295	if (off)
1296		skb_reserve(skb, fep->rx_align + 1 - off);
1297
1298	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1299	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1300		if (net_ratelimit())
1301			netdev_err(ndev, "Rx DMA memory map failed\n");
1302		return -ENOMEM;
1303	}
1304
1305	return 0;
1306}
1307
1308static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1309			       struct bufdesc *bdp, u32 length, bool swap)
1310{
1311	struct  fec_enet_private *fep = netdev_priv(ndev);
1312	struct sk_buff *new_skb;
1313
1314	if (length > fep->rx_copybreak)
1315		return false;
1316
1317	new_skb = netdev_alloc_skb(ndev, length);
1318	if (!new_skb)
1319		return false;
1320
1321	dma_sync_single_for_cpu(&fep->pdev->dev,
1322				fec32_to_cpu(bdp->cbd_bufaddr),
1323				FEC_ENET_RX_FRSIZE - fep->rx_align,
1324				DMA_FROM_DEVICE);
1325	if (!swap)
1326		memcpy(new_skb->data, (*skb)->data, length);
1327	else
1328		swap_buffer2(new_skb->data, (*skb)->data, length);
1329	*skb = new_skb;
1330
1331	return true;
1332}
1333
1334/* During a receive, the bd_rx.cur points to the current incoming buffer.
1335 * When we update through the ring, if the next incoming buffer has
1336 * not been given to the system, we just set the empty indicator,
1337 * effectively tossing the packet.
1338 */
1339static int
1340fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1341{
1342	struct fec_enet_private *fep = netdev_priv(ndev);
1343	struct fec_enet_priv_rx_q *rxq;
1344	struct bufdesc *bdp;
1345	unsigned short status;
1346	struct  sk_buff *skb_new = NULL;
1347	struct  sk_buff *skb;
1348	ushort	pkt_len;
1349	__u8 *data;
1350	int	pkt_received = 0;
1351	struct	bufdesc_ex *ebdp = NULL;
1352	bool	vlan_packet_rcvd = false;
1353	u16	vlan_tag;
1354	int	index = 0;
1355	bool	is_copybreak;
1356	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1357
1358#ifdef CONFIG_M532x
1359	flush_cache_all();
1360#endif
1361	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1362	rxq = fep->rx_queue[queue_id];
1363
1364	/* First, grab all of the stats for the incoming packet.
1365	 * These get messed up if we get called due to a busy condition.
1366	 */
1367	bdp = rxq->bd.cur;
1368
1369	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1370
1371		if (pkt_received >= budget)
1372			break;
1373		pkt_received++;
1374
1375		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1376
1377		/* Check for errors. */
1378		status ^= BD_ENET_RX_LAST;
1379		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1380			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1381			   BD_ENET_RX_CL)) {
1382			ndev->stats.rx_errors++;
1383			if (status & BD_ENET_RX_OV) {
1384				/* FIFO overrun */
1385				ndev->stats.rx_fifo_errors++;
1386				goto rx_processing_done;
1387			}
1388			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1389						| BD_ENET_RX_LAST)) {
1390				/* Frame too long or too short. */
1391				ndev->stats.rx_length_errors++;
1392				if (status & BD_ENET_RX_LAST)
1393					netdev_err(ndev, "rcv is not +last\n");
1394			}
1395			if (status & BD_ENET_RX_CR)	/* CRC Error */
1396				ndev->stats.rx_crc_errors++;
1397			/* Report late collisions as a frame error. */
1398			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1399				ndev->stats.rx_frame_errors++;
1400			goto rx_processing_done;
1401		}
1402
1403		/* Process the incoming frame. */
1404		ndev->stats.rx_packets++;
1405		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1406		ndev->stats.rx_bytes += pkt_len;
1407
1408		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1409		skb = rxq->rx_skbuff[index];
1410
1411		/* The packet length includes FCS, but we don't want to
1412		 * include that when passing upstream as it messes up
1413		 * bridging applications.
1414		 */
1415		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1416						  need_swap);
1417		if (!is_copybreak) {
1418			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1419			if (unlikely(!skb_new)) {
1420				ndev->stats.rx_dropped++;
1421				goto rx_processing_done;
1422			}
1423			dma_unmap_single(&fep->pdev->dev,
1424					 fec32_to_cpu(bdp->cbd_bufaddr),
1425					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1426					 DMA_FROM_DEVICE);
1427		}
1428
1429		prefetch(skb->data - NET_IP_ALIGN);
1430		skb_put(skb, pkt_len - 4);
1431		data = skb->data;
1432
1433		if (!is_copybreak && need_swap)
1434			swap_buffer(data, pkt_len);
1435
1436#if !defined(CONFIG_M5272)
1437		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1438			data = skb_pull_inline(skb, 2);
1439#endif
1440
1441		/* Extract the enhanced buffer descriptor */
1442		ebdp = NULL;
1443		if (fep->bufdesc_ex)
1444			ebdp = (struct bufdesc_ex *)bdp;
1445
1446		/* If this is a VLAN packet remove the VLAN Tag */
1447		vlan_packet_rcvd = false;
1448		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1449		    fep->bufdesc_ex &&
1450		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1451			/* Push and remove the vlan tag */
1452			struct vlan_hdr *vlan_header =
1453					(struct vlan_hdr *) (data + ETH_HLEN);
1454			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1455
1456			vlan_packet_rcvd = true;
1457
1458			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1459			skb_pull(skb, VLAN_HLEN);
1460		}
1461
1462		skb->protocol = eth_type_trans(skb, ndev);
1463
1464		/* Get receive timestamp from the skb */
1465		if (fep->hwts_rx_en && fep->bufdesc_ex)
1466			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1467					  skb_hwtstamps(skb));
1468
1469		if (fep->bufdesc_ex &&
1470		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1471			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1472				/* don't check it */
1473				skb->ip_summed = CHECKSUM_UNNECESSARY;
1474			} else {
1475				skb_checksum_none_assert(skb);
1476			}
1477		}
1478
1479		/* Handle received VLAN packets */
1480		if (vlan_packet_rcvd)
1481			__vlan_hwaccel_put_tag(skb,
1482					       htons(ETH_P_8021Q),
1483					       vlan_tag);
1484
1485		napi_gro_receive(&fep->napi, skb);
1486
1487		if (is_copybreak) {
1488			dma_sync_single_for_device(&fep->pdev->dev,
1489						   fec32_to_cpu(bdp->cbd_bufaddr),
1490						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1491						   DMA_FROM_DEVICE);
1492		} else {
1493			rxq->rx_skbuff[index] = skb_new;
1494			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1495		}
1496
1497rx_processing_done:
1498		/* Clear the status flags for this buffer */
1499		status &= ~BD_ENET_RX_STATS;
1500
1501		/* Mark the buffer empty */
1502		status |= BD_ENET_RX_EMPTY;
1503
1504		if (fep->bufdesc_ex) {
1505			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1506
1507			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1508			ebdp->cbd_prot = 0;
1509			ebdp->cbd_bdu = 0;
1510		}
1511		/* Make sure the updates to rest of the descriptor are
1512		 * performed before transferring ownership.
1513		 */
1514		wmb();
1515		bdp->cbd_sc = cpu_to_fec16(status);
1516
1517		/* Update BD pointer to next entry */
1518		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1519
1520		/* Doing this here will keep the FEC running while we process
1521		 * incoming frames.  On a heavily loaded network, we should be
1522		 * able to keep up at the expense of system resources.
1523		 */
1524		writel(0, rxq->bd.reg_desc_active);
1525	}
1526	rxq->bd.cur = bdp;
1527	return pkt_received;
1528}
1529
1530static int
1531fec_enet_rx(struct net_device *ndev, int budget)
1532{
1533	int     pkt_received = 0;
1534	u16	queue_id;
1535	struct fec_enet_private *fep = netdev_priv(ndev);
1536
1537	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1538		int ret;
1539
1540		ret = fec_enet_rx_queue(ndev,
1541					budget - pkt_received, queue_id);
1542
1543		if (ret < budget - pkt_received)
1544			clear_bit(queue_id, &fep->work_rx);
1545
1546		pkt_received += ret;
1547	}
1548	return pkt_received;
1549}
1550
1551static bool
1552fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1553{
1554	if (int_events == 0)
1555		return false;
1556
1557	if (int_events & FEC_ENET_RXF)
1558		fep->work_rx |= (1 << 2);
1559	if (int_events & FEC_ENET_RXF_1)
1560		fep->work_rx |= (1 << 0);
1561	if (int_events & FEC_ENET_RXF_2)
1562		fep->work_rx |= (1 << 1);
1563
1564	if (int_events & FEC_ENET_TXF)
1565		fep->work_tx |= (1 << 2);
1566	if (int_events & FEC_ENET_TXF_1)
1567		fep->work_tx |= (1 << 0);
1568	if (int_events & FEC_ENET_TXF_2)
1569		fep->work_tx |= (1 << 1);
1570
1571	return true;
1572}
1573
1574static irqreturn_t
1575fec_enet_interrupt(int irq, void *dev_id)
1576{
1577	struct net_device *ndev = dev_id;
1578	struct fec_enet_private *fep = netdev_priv(ndev);
1579	uint int_events;
1580	irqreturn_t ret = IRQ_NONE;
1581
1582	int_events = readl(fep->hwp + FEC_IEVENT);
1583	writel(int_events, fep->hwp + FEC_IEVENT);
1584	fec_enet_collect_events(fep, int_events);
1585
1586	if ((fep->work_tx || fep->work_rx) && fep->link) {
1587		ret = IRQ_HANDLED;
1588
1589		if (napi_schedule_prep(&fep->napi)) {
1590			/* Disable the NAPI interrupts */
1591			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1592			__napi_schedule(&fep->napi);
1593		}
1594	}
1595
1596	if (int_events & FEC_ENET_MII) {
1597		ret = IRQ_HANDLED;
1598		complete(&fep->mdio_done);
1599	}
1600
1601	if (fep->ptp_clock)
1602		fec_ptp_check_pps_event(fep);
1603
1604	return ret;
1605}
1606
1607static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1608{
1609	struct net_device *ndev = napi->dev;
1610	struct fec_enet_private *fep = netdev_priv(ndev);
1611	int pkts;
1612
1613	pkts = fec_enet_rx(ndev, budget);
1614
1615	fec_enet_tx(ndev);
1616
1617	if (pkts < budget) {
1618		napi_complete(napi);
1619		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1620	}
1621	return pkts;
1622}
1623
1624/* ------------------------------------------------------------------------- */
1625static void fec_get_mac(struct net_device *ndev)
1626{
1627	struct fec_enet_private *fep = netdev_priv(ndev);
1628	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1629	unsigned char *iap, tmpaddr[ETH_ALEN];
1630
1631	/*
1632	 * try to get mac address in following order:
1633	 *
1634	 * 1) module parameter via kernel command line in form
1635	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1636	 */
1637	iap = macaddr;
1638
1639	/*
1640	 * 2) from device tree data
1641	 */
1642	if (!is_valid_ether_addr(iap)) {
1643		struct device_node *np = fep->pdev->dev.of_node;
1644		if (np) {
1645			const char *mac = of_get_mac_address(np);
1646			if (mac)
1647				iap = (unsigned char *) mac;
1648		}
1649	}
1650
1651	/*
1652	 * 3) from flash or fuse (via platform data)
1653	 */
1654	if (!is_valid_ether_addr(iap)) {
1655#ifdef CONFIG_M5272
1656		if (FEC_FLASHMAC)
1657			iap = (unsigned char *)FEC_FLASHMAC;
1658#else
1659		if (pdata)
1660			iap = (unsigned char *)&pdata->mac;
1661#endif
1662	}
1663
1664	/*
1665	 * 4) FEC mac registers set by bootloader
1666	 */
1667	if (!is_valid_ether_addr(iap)) {
1668		*((__be32 *) &tmpaddr[0]) =
1669			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1670		*((__be16 *) &tmpaddr[4]) =
1671			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1672		iap = &tmpaddr[0];
1673	}
1674
1675	/*
1676	 * 5) random mac address
1677	 */
1678	if (!is_valid_ether_addr(iap)) {
1679		/* Report it and use a random ethernet address instead */
1680		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1681		eth_hw_addr_random(ndev);
1682		netdev_info(ndev, "Using random MAC address: %pM\n",
1683			    ndev->dev_addr);
1684		return;
1685	}
1686
1687	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1688
1689	/* Adjust MAC if using macaddr */
1690	if (iap == macaddr)
1691		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1692}
1693
1694/* ------------------------------------------------------------------------- */
1695
1696/*
1697 * Phy section
1698 */
1699static void fec_enet_adjust_link(struct net_device *ndev)
1700{
1701	struct fec_enet_private *fep = netdev_priv(ndev);
1702	struct phy_device *phy_dev = ndev->phydev;
1703	int status_change = 0;
1704
1705	/* Prevent a state halted on mii error */
1706	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1707		phy_dev->state = PHY_RESUMING;
1708		return;
1709	}
1710
1711	/*
1712	 * If the netdev is down, or is going down, we're not interested
1713	 * in link state events, so just mark our idea of the link as down
1714	 * and ignore the event.
1715	 */
1716	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1717		fep->link = 0;
1718	} else if (phy_dev->link) {
1719		if (!fep->link) {
1720			fep->link = phy_dev->link;
1721			status_change = 1;
1722		}
1723
1724		if (fep->full_duplex != phy_dev->duplex) {
1725			fep->full_duplex = phy_dev->duplex;
1726			status_change = 1;
1727		}
1728
1729		if (phy_dev->speed != fep->speed) {
1730			fep->speed = phy_dev->speed;
1731			status_change = 1;
1732		}
1733
1734		/* if any of the above changed restart the FEC */
1735		if (status_change) {
1736			napi_disable(&fep->napi);
1737			netif_tx_lock_bh(ndev);
1738			fec_restart(ndev);
1739			netif_wake_queue(ndev);
1740			netif_tx_unlock_bh(ndev);
1741			napi_enable(&fep->napi);
1742		}
1743	} else {
1744		if (fep->link) {
1745			napi_disable(&fep->napi);
1746			netif_tx_lock_bh(ndev);
1747			fec_stop(ndev);
1748			netif_tx_unlock_bh(ndev);
1749			napi_enable(&fep->napi);
1750			fep->link = phy_dev->link;
1751			status_change = 1;
1752		}
1753	}
1754
1755	if (status_change)
1756		phy_print_status(phy_dev);
1757}
1758
1759static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1760{
1761	struct fec_enet_private *fep = bus->priv;
1762	struct device *dev = &fep->pdev->dev;
1763	unsigned long time_left;
1764	int ret = 0;
1765
1766	ret = pm_runtime_get_sync(dev);
1767	if (ret < 0)
1768		return ret;
1769
1770	fep->mii_timeout = 0;
1771	reinit_completion(&fep->mdio_done);
1772
1773	/* start a read op */
1774	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1775		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1776		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1777
1778	/* wait for end of transfer */
1779	time_left = wait_for_completion_timeout(&fep->mdio_done,
1780			usecs_to_jiffies(FEC_MII_TIMEOUT));
1781	if (time_left == 0) {
1782		fep->mii_timeout = 1;
1783		netdev_err(fep->netdev, "MDIO read timeout\n");
1784		ret = -ETIMEDOUT;
1785		goto out;
1786	}
1787
1788	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1789
1790out:
1791	pm_runtime_mark_last_busy(dev);
1792	pm_runtime_put_autosuspend(dev);
1793
1794	return ret;
1795}
1796
1797static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1798			   u16 value)
1799{
1800	struct fec_enet_private *fep = bus->priv;
1801	struct device *dev = &fep->pdev->dev;
1802	unsigned long time_left;
1803	int ret;
1804
1805	ret = pm_runtime_get_sync(dev);
1806	if (ret < 0)
1807		return ret;
1808	else
1809		ret = 0;
1810
1811	fep->mii_timeout = 0;
1812	reinit_completion(&fep->mdio_done);
1813
1814	/* start a write op */
1815	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1816		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1817		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1818		fep->hwp + FEC_MII_DATA);
1819
1820	/* wait for end of transfer */
1821	time_left = wait_for_completion_timeout(&fep->mdio_done,
1822			usecs_to_jiffies(FEC_MII_TIMEOUT));
1823	if (time_left == 0) {
1824		fep->mii_timeout = 1;
1825		netdev_err(fep->netdev, "MDIO write timeout\n");
1826		ret  = -ETIMEDOUT;
1827	}
1828
1829	pm_runtime_mark_last_busy(dev);
1830	pm_runtime_put_autosuspend(dev);
1831
1832	return ret;
1833}
1834
1835static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1836{
1837	struct fec_enet_private *fep = netdev_priv(ndev);
1838	int ret;
1839
1840	if (enable) {
1841		ret = clk_prepare_enable(fep->clk_ahb);
1842		if (ret)
1843			return ret;
1844
1845		ret = clk_prepare_enable(fep->clk_enet_out);
1846		if (ret)
1847			goto failed_clk_enet_out;
1848
1849		if (fep->clk_ptp) {
1850			mutex_lock(&fep->ptp_clk_mutex);
1851			ret = clk_prepare_enable(fep->clk_ptp);
1852			if (ret) {
1853				mutex_unlock(&fep->ptp_clk_mutex);
1854				goto failed_clk_ptp;
1855			} else {
1856				fep->ptp_clk_on = true;
1857			}
1858			mutex_unlock(&fep->ptp_clk_mutex);
1859		}
1860
1861		ret = clk_prepare_enable(fep->clk_ref);
1862		if (ret)
1863			goto failed_clk_ref;
1864	} else {
1865		clk_disable_unprepare(fep->clk_ahb);
1866		clk_disable_unprepare(fep->clk_enet_out);
1867		if (fep->clk_ptp) {
1868			mutex_lock(&fep->ptp_clk_mutex);
1869			clk_disable_unprepare(fep->clk_ptp);
1870			fep->ptp_clk_on = false;
1871			mutex_unlock(&fep->ptp_clk_mutex);
1872		}
1873		clk_disable_unprepare(fep->clk_ref);
1874	}
1875
1876	return 0;
1877
1878failed_clk_ref:
1879	if (fep->clk_ref)
1880		clk_disable_unprepare(fep->clk_ref);
1881failed_clk_ptp:
1882	if (fep->clk_enet_out)
1883		clk_disable_unprepare(fep->clk_enet_out);
1884failed_clk_enet_out:
1885		clk_disable_unprepare(fep->clk_ahb);
1886
1887	return ret;
1888}
1889
1890static int fec_enet_mii_probe(struct net_device *ndev)
1891{
1892	struct fec_enet_private *fep = netdev_priv(ndev);
1893	struct phy_device *phy_dev = NULL;
1894	char mdio_bus_id[MII_BUS_ID_SIZE];
1895	char phy_name[MII_BUS_ID_SIZE + 3];
1896	int phy_id;
1897	int dev_id = fep->dev_id;
1898
1899	if (fep->phy_node) {
1900		phy_dev = of_phy_connect(ndev, fep->phy_node,
1901					 &fec_enet_adjust_link, 0,
1902					 fep->phy_interface);
1903		if (!phy_dev)
1904			return -ENODEV;
1905	} else {
1906		/* check for attached phy */
1907		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1908			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1909				continue;
1910			if (dev_id--)
1911				continue;
1912			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1913			break;
1914		}
1915
1916		if (phy_id >= PHY_MAX_ADDR) {
1917			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1918			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1919			phy_id = 0;
1920		}
1921
1922		snprintf(phy_name, sizeof(phy_name),
1923			 PHY_ID_FMT, mdio_bus_id, phy_id);
1924		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1925				      fep->phy_interface);
1926	}
1927
1928	if (IS_ERR(phy_dev)) {
1929		netdev_err(ndev, "could not attach to PHY\n");
1930		return PTR_ERR(phy_dev);
1931	}
1932
1933	/* mask with MAC supported features */
1934	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1935		phy_dev->supported &= PHY_GBIT_FEATURES;
1936		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1937#if !defined(CONFIG_M5272)
1938		phy_dev->supported |= SUPPORTED_Pause;
1939#endif
1940	}
1941	else
1942		phy_dev->supported &= PHY_BASIC_FEATURES;
1943
1944	phy_dev->advertising = phy_dev->supported;
1945
1946	fep->link = 0;
1947	fep->full_duplex = 0;
1948
1949	phy_attached_info(phy_dev);
1950
1951	return 0;
1952}
1953
1954static int fec_enet_mii_init(struct platform_device *pdev)
1955{
1956	static struct mii_bus *fec0_mii_bus;
1957	struct net_device *ndev = platform_get_drvdata(pdev);
1958	struct fec_enet_private *fep = netdev_priv(ndev);
1959	struct device_node *node;
1960	int err = -ENXIO;
1961	u32 mii_speed, holdtime;
1962
1963	/*
1964	 * The i.MX28 dual fec interfaces are not equal.
1965	 * Here are the differences:
1966	 *
1967	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1968	 *  - fec0 acts as the 1588 time master while fec1 is slave
1969	 *  - external phys can only be configured by fec0
1970	 *
1971	 * That is to say fec1 can not work independently. It only works
1972	 * when fec0 is working. The reason behind this design is that the
1973	 * second interface is added primarily for Switch mode.
1974	 *
1975	 * Because of the last point above, both phys are attached on fec0
1976	 * mdio interface in board design, and need to be configured by
1977	 * fec0 mii_bus.
1978	 */
1979	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1980		/* fec1 uses fec0 mii_bus */
1981		if (mii_cnt && fec0_mii_bus) {
1982			fep->mii_bus = fec0_mii_bus;
1983			mii_cnt++;
1984			return 0;
1985		}
1986		return -ENOENT;
1987	}
1988
1989	fep->mii_timeout = 0;
1990
1991	/*
1992	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1993	 *
1994	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1995	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1996	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1997	 * document.
1998	 */
1999	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2000	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2001		mii_speed--;
2002	if (mii_speed > 63) {
2003		dev_err(&pdev->dev,
2004			"fec clock (%lu) to fast to get right mii speed\n",
2005			clk_get_rate(fep->clk_ipg));
2006		err = -EINVAL;
2007		goto err_out;
2008	}
2009
2010	/*
2011	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2012	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2013	 * versions are RAZ there, so just ignore the difference and write the
2014	 * register always.
2015	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2016	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2017	 * output.
2018	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2019	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2020	 * holdtime cannot result in a value greater than 3.
2021	 */
2022	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2023
2024	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2025
2026	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2027
2028	fep->mii_bus = mdiobus_alloc();
2029	if (fep->mii_bus == NULL) {
2030		err = -ENOMEM;
2031		goto err_out;
2032	}
2033
2034	fep->mii_bus->name = "fec_enet_mii_bus";
2035	fep->mii_bus->read = fec_enet_mdio_read;
2036	fep->mii_bus->write = fec_enet_mdio_write;
2037	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2038		pdev->name, fep->dev_id + 1);
2039	fep->mii_bus->priv = fep;
2040	fep->mii_bus->parent = &pdev->dev;
2041
2042	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2043	if (node) {
2044		err = of_mdiobus_register(fep->mii_bus, node);
2045		of_node_put(node);
2046	} else {
2047		err = mdiobus_register(fep->mii_bus);
2048	}
2049
2050	if (err)
2051		goto err_out_free_mdiobus;
2052
2053	mii_cnt++;
2054
2055	/* save fec0 mii_bus */
2056	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2057		fec0_mii_bus = fep->mii_bus;
2058
2059	return 0;
2060
2061err_out_free_mdiobus:
2062	mdiobus_free(fep->mii_bus);
2063err_out:
2064	return err;
2065}
2066
2067static void fec_enet_mii_remove(struct fec_enet_private *fep)
2068{
2069	if (--mii_cnt == 0) {
2070		mdiobus_unregister(fep->mii_bus);
2071		mdiobus_free(fep->mii_bus);
2072	}
2073}
2074
2075static void fec_enet_get_drvinfo(struct net_device *ndev,
2076				 struct ethtool_drvinfo *info)
2077{
2078	struct fec_enet_private *fep = netdev_priv(ndev);
2079
2080	strlcpy(info->driver, fep->pdev->dev.driver->name,
2081		sizeof(info->driver));
2082	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2083	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2084}
2085
2086static int fec_enet_get_regs_len(struct net_device *ndev)
2087{
2088	struct fec_enet_private *fep = netdev_priv(ndev);
2089	struct resource *r;
2090	int s = 0;
2091
2092	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2093	if (r)
2094		s = resource_size(r);
2095
2096	return s;
2097}
2098
2099/* List of registers that can be safety be read to dump them with ethtool */
2100#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2101	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2102static u32 fec_enet_register_offset[] = {
2103	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2104	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2105	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2106	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2107	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2108	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2109	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2110	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2111	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2112	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2113	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2114	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2115	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2116	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2117	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2118	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2119	RMON_T_P_GTE2048, RMON_T_OCTETS,
2120	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2121	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2122	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2123	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2124	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2125	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2126	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2127	RMON_R_P_GTE2048, RMON_R_OCTETS,
2128	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2129	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2130};
2131#else
2132static u32 fec_enet_register_offset[] = {
2133	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2134	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2135	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2136	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2137	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2138	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2139	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2140	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2141	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2142};
2143#endif
2144
2145static void fec_enet_get_regs(struct net_device *ndev,
2146			      struct ethtool_regs *regs, void *regbuf)
2147{
2148	struct fec_enet_private *fep = netdev_priv(ndev);
2149	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2150	u32 *buf = (u32 *)regbuf;
2151	u32 i, off;
2152
2153	memset(buf, 0, regs->len);
2154
2155	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2156		off = fec_enet_register_offset[i] / 4;
2157		buf[off] = readl(&theregs[off]);
2158	}
2159}
2160
2161static int fec_enet_get_ts_info(struct net_device *ndev,
2162				struct ethtool_ts_info *info)
2163{
2164	struct fec_enet_private *fep = netdev_priv(ndev);
2165
2166	if (fep->bufdesc_ex) {
2167
2168		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2169					SOF_TIMESTAMPING_RX_SOFTWARE |
2170					SOF_TIMESTAMPING_SOFTWARE |
2171					SOF_TIMESTAMPING_TX_HARDWARE |
2172					SOF_TIMESTAMPING_RX_HARDWARE |
2173					SOF_TIMESTAMPING_RAW_HARDWARE;
2174		if (fep->ptp_clock)
2175			info->phc_index = ptp_clock_index(fep->ptp_clock);
2176		else
2177			info->phc_index = -1;
2178
2179		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2180				 (1 << HWTSTAMP_TX_ON);
2181
2182		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2183				   (1 << HWTSTAMP_FILTER_ALL);
2184		return 0;
2185	} else {
2186		return ethtool_op_get_ts_info(ndev, info);
2187	}
2188}
2189
2190#if !defined(CONFIG_M5272)
2191
2192static void fec_enet_get_pauseparam(struct net_device *ndev,
2193				    struct ethtool_pauseparam *pause)
2194{
2195	struct fec_enet_private *fep = netdev_priv(ndev);
2196
2197	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2198	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2199	pause->rx_pause = pause->tx_pause;
2200}
2201
2202static int fec_enet_set_pauseparam(struct net_device *ndev,
2203				   struct ethtool_pauseparam *pause)
2204{
2205	struct fec_enet_private *fep = netdev_priv(ndev);
2206
2207	if (!ndev->phydev)
2208		return -ENODEV;
2209
2210	if (pause->tx_pause != pause->rx_pause) {
2211		netdev_info(ndev,
2212			"hardware only support enable/disable both tx and rx");
2213		return -EINVAL;
2214	}
2215
2216	fep->pause_flag = 0;
2217
2218	/* tx pause must be same as rx pause */
2219	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2220	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2221
2222	if (pause->rx_pause || pause->autoneg) {
2223		ndev->phydev->supported |= ADVERTISED_Pause;
2224		ndev->phydev->advertising |= ADVERTISED_Pause;
2225	} else {
2226		ndev->phydev->supported &= ~ADVERTISED_Pause;
2227		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2228	}
2229
2230	if (pause->autoneg) {
2231		if (netif_running(ndev))
2232			fec_stop(ndev);
2233		phy_start_aneg(ndev->phydev);
2234	}
2235	if (netif_running(ndev)) {
2236		napi_disable(&fep->napi);
2237		netif_tx_lock_bh(ndev);
2238		fec_restart(ndev);
2239		netif_wake_queue(ndev);
2240		netif_tx_unlock_bh(ndev);
2241		napi_enable(&fep->napi);
2242	}
2243
2244	return 0;
2245}
2246
2247static const struct fec_stat {
2248	char name[ETH_GSTRING_LEN];
2249	u16 offset;
2250} fec_stats[] = {
2251	/* RMON TX */
2252	{ "tx_dropped", RMON_T_DROP },
2253	{ "tx_packets", RMON_T_PACKETS },
2254	{ "tx_broadcast", RMON_T_BC_PKT },
2255	{ "tx_multicast", RMON_T_MC_PKT },
2256	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2257	{ "tx_undersize", RMON_T_UNDERSIZE },
2258	{ "tx_oversize", RMON_T_OVERSIZE },
2259	{ "tx_fragment", RMON_T_FRAG },
2260	{ "tx_jabber", RMON_T_JAB },
2261	{ "tx_collision", RMON_T_COL },
2262	{ "tx_64byte", RMON_T_P64 },
2263	{ "tx_65to127byte", RMON_T_P65TO127 },
2264	{ "tx_128to255byte", RMON_T_P128TO255 },
2265	{ "tx_256to511byte", RMON_T_P256TO511 },
2266	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2267	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2268	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2269	{ "tx_octets", RMON_T_OCTETS },
2270
2271	/* IEEE TX */
2272	{ "IEEE_tx_drop", IEEE_T_DROP },
2273	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2274	{ "IEEE_tx_1col", IEEE_T_1COL },
2275	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2276	{ "IEEE_tx_def", IEEE_T_DEF },
2277	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2278	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2279	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2280	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2281	{ "IEEE_tx_sqe", IEEE_T_SQE },
2282	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2283	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2284
2285	/* RMON RX */
2286	{ "rx_packets", RMON_R_PACKETS },
2287	{ "rx_broadcast", RMON_R_BC_PKT },
2288	{ "rx_multicast", RMON_R_MC_PKT },
2289	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2290	{ "rx_undersize", RMON_R_UNDERSIZE },
2291	{ "rx_oversize", RMON_R_OVERSIZE },
2292	{ "rx_fragment", RMON_R_FRAG },
2293	{ "rx_jabber", RMON_R_JAB },
2294	{ "rx_64byte", RMON_R_P64 },
2295	{ "rx_65to127byte", RMON_R_P65TO127 },
2296	{ "rx_128to255byte", RMON_R_P128TO255 },
2297	{ "rx_256to511byte", RMON_R_P256TO511 },
2298	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2299	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2300	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2301	{ "rx_octets", RMON_R_OCTETS },
2302
2303	/* IEEE RX */
2304	{ "IEEE_rx_drop", IEEE_R_DROP },
2305	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2306	{ "IEEE_rx_crc", IEEE_R_CRC },
2307	{ "IEEE_rx_align", IEEE_R_ALIGN },
2308	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2309	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2310	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2311};
2312
2313#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2314
2315static void fec_enet_update_ethtool_stats(struct net_device *dev)
2316{
2317	struct fec_enet_private *fep = netdev_priv(dev);
2318	int i;
2319
2320	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2321		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2322}
2323
2324static void fec_enet_get_ethtool_stats(struct net_device *dev,
2325				       struct ethtool_stats *stats, u64 *data)
2326{
2327	struct fec_enet_private *fep = netdev_priv(dev);
2328
2329	if (netif_running(dev))
2330		fec_enet_update_ethtool_stats(dev);
2331
2332	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2333}
2334
2335static void fec_enet_get_strings(struct net_device *netdev,
2336	u32 stringset, u8 *data)
2337{
2338	int i;
2339	switch (stringset) {
2340	case ETH_SS_STATS:
2341		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2342			memcpy(data + i * ETH_GSTRING_LEN,
2343				fec_stats[i].name, ETH_GSTRING_LEN);
2344		break;
2345	}
2346}
2347
2348static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2349{
2350	switch (sset) {
2351	case ETH_SS_STATS:
2352		return ARRAY_SIZE(fec_stats);
2353	default:
2354		return -EOPNOTSUPP;
2355	}
2356}
2357
2358#else	/* !defined(CONFIG_M5272) */
2359#define FEC_STATS_SIZE	0
2360static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2361{
2362}
2363#endif /* !defined(CONFIG_M5272) */
2364
2365/* ITR clock source is enet system clock (clk_ahb).
2366 * TCTT unit is cycle_ns * 64 cycle
2367 * So, the ICTT value = X us / (cycle_ns * 64)
2368 */
2369static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2370{
2371	struct fec_enet_private *fep = netdev_priv(ndev);
2372
2373	return us * (fep->itr_clk_rate / 64000) / 1000;
2374}
2375
2376/* Set threshold for interrupt coalescing */
2377static void fec_enet_itr_coal_set(struct net_device *ndev)
2378{
2379	struct fec_enet_private *fep = netdev_priv(ndev);
2380	int rx_itr, tx_itr;
2381
2382	/* Must be greater than zero to avoid unpredictable behavior */
2383	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2384	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2385		return;
2386
2387	/* Select enet system clock as Interrupt Coalescing
2388	 * timer Clock Source
2389	 */
2390	rx_itr = FEC_ITR_CLK_SEL;
2391	tx_itr = FEC_ITR_CLK_SEL;
2392
2393	/* set ICFT and ICTT */
2394	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2395	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2396	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2397	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2398
2399	rx_itr |= FEC_ITR_EN;
2400	tx_itr |= FEC_ITR_EN;
2401
2402	writel(tx_itr, fep->hwp + FEC_TXIC0);
2403	writel(rx_itr, fep->hwp + FEC_RXIC0);
2404	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2405		writel(tx_itr, fep->hwp + FEC_TXIC1);
2406		writel(rx_itr, fep->hwp + FEC_RXIC1);
2407		writel(tx_itr, fep->hwp + FEC_TXIC2);
2408		writel(rx_itr, fep->hwp + FEC_RXIC2);
2409	}
2410}
2411
2412static int
2413fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2414{
2415	struct fec_enet_private *fep = netdev_priv(ndev);
2416
2417	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2418		return -EOPNOTSUPP;
2419
2420	ec->rx_coalesce_usecs = fep->rx_time_itr;
2421	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2422
2423	ec->tx_coalesce_usecs = fep->tx_time_itr;
2424	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2425
2426	return 0;
2427}
2428
2429static int
2430fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2431{
2432	struct fec_enet_private *fep = netdev_priv(ndev);
2433	unsigned int cycle;
2434
2435	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2436		return -EOPNOTSUPP;
2437
2438	if (ec->rx_max_coalesced_frames > 255) {
2439		pr_err("Rx coalesced frames exceed hardware limitation\n");
2440		return -EINVAL;
2441	}
2442
2443	if (ec->tx_max_coalesced_frames > 255) {
2444		pr_err("Tx coalesced frame exceed hardware limitation\n");
2445		return -EINVAL;
2446	}
2447
2448	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2449	if (cycle > 0xFFFF) {
2450		pr_err("Rx coalesced usec exceed hardware limitation\n");
2451		return -EINVAL;
2452	}
2453
2454	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2455	if (cycle > 0xFFFF) {
2456		pr_err("Rx coalesced usec exceed hardware limitation\n");
2457		return -EINVAL;
2458	}
2459
2460	fep->rx_time_itr = ec->rx_coalesce_usecs;
2461	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2462
2463	fep->tx_time_itr = ec->tx_coalesce_usecs;
2464	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2465
2466	fec_enet_itr_coal_set(ndev);
2467
2468	return 0;
2469}
2470
2471static void fec_enet_itr_coal_init(struct net_device *ndev)
2472{
2473	struct ethtool_coalesce ec;
2474
2475	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2476	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2477
2478	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2479	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2480
2481	fec_enet_set_coalesce(ndev, &ec);
2482}
2483
2484static int fec_enet_get_tunable(struct net_device *netdev,
2485				const struct ethtool_tunable *tuna,
2486				void *data)
2487{
2488	struct fec_enet_private *fep = netdev_priv(netdev);
2489	int ret = 0;
2490
2491	switch (tuna->id) {
2492	case ETHTOOL_RX_COPYBREAK:
2493		*(u32 *)data = fep->rx_copybreak;
2494		break;
2495	default:
2496		ret = -EINVAL;
2497		break;
2498	}
2499
2500	return ret;
2501}
2502
2503static int fec_enet_set_tunable(struct net_device *netdev,
2504				const struct ethtool_tunable *tuna,
2505				const void *data)
2506{
2507	struct fec_enet_private *fep = netdev_priv(netdev);
2508	int ret = 0;
2509
2510	switch (tuna->id) {
2511	case ETHTOOL_RX_COPYBREAK:
2512		fep->rx_copybreak = *(u32 *)data;
2513		break;
2514	default:
2515		ret = -EINVAL;
2516		break;
2517	}
2518
2519	return ret;
2520}
2521
2522static void
2523fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2524{
2525	struct fec_enet_private *fep = netdev_priv(ndev);
2526
2527	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2528		wol->supported = WAKE_MAGIC;
2529		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2530	} else {
2531		wol->supported = wol->wolopts = 0;
2532	}
2533}
2534
2535static int
2536fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2537{
2538	struct fec_enet_private *fep = netdev_priv(ndev);
2539
2540	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2541		return -EINVAL;
2542
2543	if (wol->wolopts & ~WAKE_MAGIC)
2544		return -EINVAL;
2545
2546	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2547	if (device_may_wakeup(&ndev->dev)) {
2548		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2549		if (fep->irq[0] > 0)
2550			enable_irq_wake(fep->irq[0]);
2551	} else {
2552		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2553		if (fep->irq[0] > 0)
2554			disable_irq_wake(fep->irq[0]);
2555	}
2556
2557	return 0;
2558}
2559
2560static const struct ethtool_ops fec_enet_ethtool_ops = {
2561	.get_drvinfo		= fec_enet_get_drvinfo,
2562	.get_regs_len		= fec_enet_get_regs_len,
2563	.get_regs		= fec_enet_get_regs,
2564	.nway_reset		= phy_ethtool_nway_reset,
2565	.get_link		= ethtool_op_get_link,
2566	.get_coalesce		= fec_enet_get_coalesce,
2567	.set_coalesce		= fec_enet_set_coalesce,
2568#ifndef CONFIG_M5272
2569	.get_pauseparam		= fec_enet_get_pauseparam,
2570	.set_pauseparam		= fec_enet_set_pauseparam,
2571	.get_strings		= fec_enet_get_strings,
2572	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2573	.get_sset_count		= fec_enet_get_sset_count,
2574#endif
2575	.get_ts_info		= fec_enet_get_ts_info,
2576	.get_tunable		= fec_enet_get_tunable,
2577	.set_tunable		= fec_enet_set_tunable,
2578	.get_wol		= fec_enet_get_wol,
2579	.set_wol		= fec_enet_set_wol,
2580	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2581	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2582};
2583
2584static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2585{
2586	struct fec_enet_private *fep = netdev_priv(ndev);
2587	struct phy_device *phydev = ndev->phydev;
2588
2589	if (!netif_running(ndev))
2590		return -EINVAL;
2591
2592	if (!phydev)
2593		return -ENODEV;
2594
2595	if (fep->bufdesc_ex) {
2596		if (cmd == SIOCSHWTSTAMP)
2597			return fec_ptp_set(ndev, rq);
2598		if (cmd == SIOCGHWTSTAMP)
2599			return fec_ptp_get(ndev, rq);
2600	}
2601
2602	return phy_mii_ioctl(phydev, rq, cmd);
2603}
2604
2605static void fec_enet_free_buffers(struct net_device *ndev)
2606{
2607	struct fec_enet_private *fep = netdev_priv(ndev);
2608	unsigned int i;
2609	struct sk_buff *skb;
2610	struct bufdesc	*bdp;
2611	struct fec_enet_priv_tx_q *txq;
2612	struct fec_enet_priv_rx_q *rxq;
2613	unsigned int q;
2614
2615	for (q = 0; q < fep->num_rx_queues; q++) {
2616		rxq = fep->rx_queue[q];
2617		bdp = rxq->bd.base;
2618		for (i = 0; i < rxq->bd.ring_size; i++) {
2619			skb = rxq->rx_skbuff[i];
2620			rxq->rx_skbuff[i] = NULL;
2621			if (skb) {
2622				dma_unmap_single(&fep->pdev->dev,
2623						 fec32_to_cpu(bdp->cbd_bufaddr),
2624						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2625						 DMA_FROM_DEVICE);
2626				dev_kfree_skb(skb);
2627			}
2628			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2629		}
2630	}
2631
2632	for (q = 0; q < fep->num_tx_queues; q++) {
2633		txq = fep->tx_queue[q];
2634		bdp = txq->bd.base;
2635		for (i = 0; i < txq->bd.ring_size; i++) {
2636			kfree(txq->tx_bounce[i]);
2637			txq->tx_bounce[i] = NULL;
2638			skb = txq->tx_skbuff[i];
2639			txq->tx_skbuff[i] = NULL;
2640			dev_kfree_skb(skb);
2641		}
2642	}
2643}
2644
2645static void fec_enet_free_queue(struct net_device *ndev)
2646{
2647	struct fec_enet_private *fep = netdev_priv(ndev);
2648	int i;
2649	struct fec_enet_priv_tx_q *txq;
2650
2651	for (i = 0; i < fep->num_tx_queues; i++)
2652		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2653			txq = fep->tx_queue[i];
2654			dma_free_coherent(NULL,
2655					  txq->bd.ring_size * TSO_HEADER_SIZE,
2656					  txq->tso_hdrs,
2657					  txq->tso_hdrs_dma);
2658		}
2659
2660	for (i = 0; i < fep->num_rx_queues; i++)
2661		kfree(fep->rx_queue[i]);
2662	for (i = 0; i < fep->num_tx_queues; i++)
2663		kfree(fep->tx_queue[i]);
2664}
2665
2666static int fec_enet_alloc_queue(struct net_device *ndev)
2667{
2668	struct fec_enet_private *fep = netdev_priv(ndev);
2669	int i;
2670	int ret = 0;
2671	struct fec_enet_priv_tx_q *txq;
2672
2673	for (i = 0; i < fep->num_tx_queues; i++) {
2674		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2675		if (!txq) {
2676			ret = -ENOMEM;
2677			goto alloc_failed;
2678		}
2679
2680		fep->tx_queue[i] = txq;
2681		txq->bd.ring_size = TX_RING_SIZE;
2682		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2683
2684		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2685		txq->tx_wake_threshold =
2686			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2687
2688		txq->tso_hdrs = dma_alloc_coherent(NULL,
2689					txq->bd.ring_size * TSO_HEADER_SIZE,
2690					&txq->tso_hdrs_dma,
2691					GFP_KERNEL);
2692		if (!txq->tso_hdrs) {
2693			ret = -ENOMEM;
2694			goto alloc_failed;
2695		}
2696	}
2697
2698	for (i = 0; i < fep->num_rx_queues; i++) {
2699		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2700					   GFP_KERNEL);
2701		if (!fep->rx_queue[i]) {
2702			ret = -ENOMEM;
2703			goto alloc_failed;
2704		}
2705
2706		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2707		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2708	}
2709	return ret;
2710
2711alloc_failed:
2712	fec_enet_free_queue(ndev);
2713	return ret;
2714}
2715
2716static int
2717fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2718{
2719	struct fec_enet_private *fep = netdev_priv(ndev);
2720	unsigned int i;
2721	struct sk_buff *skb;
2722	struct bufdesc	*bdp;
2723	struct fec_enet_priv_rx_q *rxq;
2724
2725	rxq = fep->rx_queue[queue];
2726	bdp = rxq->bd.base;
2727	for (i = 0; i < rxq->bd.ring_size; i++) {
2728		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2729		if (!skb)
2730			goto err_alloc;
2731
2732		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2733			dev_kfree_skb(skb);
2734			goto err_alloc;
2735		}
2736
2737		rxq->rx_skbuff[i] = skb;
2738		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2739
2740		if (fep->bufdesc_ex) {
2741			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2742			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2743		}
2744
2745		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2746	}
2747
2748	/* Set the last buffer to wrap. */
2749	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2750	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2751	return 0;
2752
2753 err_alloc:
2754	fec_enet_free_buffers(ndev);
2755	return -ENOMEM;
2756}
2757
2758static int
2759fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2760{
2761	struct fec_enet_private *fep = netdev_priv(ndev);
2762	unsigned int i;
2763	struct bufdesc  *bdp;
2764	struct fec_enet_priv_tx_q *txq;
2765
2766	txq = fep->tx_queue[queue];
2767	bdp = txq->bd.base;
2768	for (i = 0; i < txq->bd.ring_size; i++) {
2769		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2770		if (!txq->tx_bounce[i])
2771			goto err_alloc;
2772
2773		bdp->cbd_sc = cpu_to_fec16(0);
2774		bdp->cbd_bufaddr = cpu_to_fec32(0);
2775
2776		if (fep->bufdesc_ex) {
2777			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2778			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2779		}
2780
2781		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2782	}
2783
2784	/* Set the last buffer to wrap. */
2785	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2786	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2787
2788	return 0;
2789
2790 err_alloc:
2791	fec_enet_free_buffers(ndev);
2792	return -ENOMEM;
2793}
2794
2795static int fec_enet_alloc_buffers(struct net_device *ndev)
2796{
2797	struct fec_enet_private *fep = netdev_priv(ndev);
2798	unsigned int i;
2799
2800	for (i = 0; i < fep->num_rx_queues; i++)
2801		if (fec_enet_alloc_rxq_buffers(ndev, i))
2802			return -ENOMEM;
2803
2804	for (i = 0; i < fep->num_tx_queues; i++)
2805		if (fec_enet_alloc_txq_buffers(ndev, i))
2806			return -ENOMEM;
2807	return 0;
2808}
2809
2810static int
2811fec_enet_open(struct net_device *ndev)
2812{
2813	struct fec_enet_private *fep = netdev_priv(ndev);
2814	int ret;
2815
2816	ret = pm_runtime_get_sync(&fep->pdev->dev);
2817	if (ret < 0)
2818		return ret;
2819
2820	pinctrl_pm_select_default_state(&fep->pdev->dev);
2821	ret = fec_enet_clk_enable(ndev, true);
2822	if (ret)
2823		goto clk_enable;
2824
2825	/* I should reset the ring buffers here, but I don't yet know
2826	 * a simple way to do that.
2827	 */
2828
2829	ret = fec_enet_alloc_buffers(ndev);
2830	if (ret)
2831		goto err_enet_alloc;
2832
2833	/* Init MAC prior to mii bus probe */
2834	fec_restart(ndev);
2835
2836	/* Probe and connect to PHY when open the interface */
2837	ret = fec_enet_mii_probe(ndev);
2838	if (ret)
2839		goto err_enet_mii_probe;
2840
2841	if (fep->quirks & FEC_QUIRK_ERR006687)
2842		imx6q_cpuidle_fec_irqs_used();
2843
2844	napi_enable(&fep->napi);
2845	phy_start(ndev->phydev);
2846	netif_tx_start_all_queues(ndev);
2847
2848	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2849				 FEC_WOL_FLAG_ENABLE);
2850
2851	return 0;
2852
2853err_enet_mii_probe:
2854	fec_enet_free_buffers(ndev);
2855err_enet_alloc:
2856	fec_enet_clk_enable(ndev, false);
2857clk_enable:
2858	pm_runtime_mark_last_busy(&fep->pdev->dev);
2859	pm_runtime_put_autosuspend(&fep->pdev->dev);
2860	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2861	return ret;
2862}
2863
2864static int
2865fec_enet_close(struct net_device *ndev)
2866{
2867	struct fec_enet_private *fep = netdev_priv(ndev);
2868
2869	phy_stop(ndev->phydev);
2870
2871	if (netif_device_present(ndev)) {
2872		napi_disable(&fep->napi);
2873		netif_tx_disable(ndev);
2874		fec_stop(ndev);
2875	}
2876
2877	phy_disconnect(ndev->phydev);
2878
2879	if (fep->quirks & FEC_QUIRK_ERR006687)
2880		imx6q_cpuidle_fec_irqs_unused();
2881
2882	fec_enet_update_ethtool_stats(ndev);
2883
2884	fec_enet_clk_enable(ndev, false);
2885	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2886	pm_runtime_mark_last_busy(&fep->pdev->dev);
2887	pm_runtime_put_autosuspend(&fep->pdev->dev);
2888
2889	fec_enet_free_buffers(ndev);
2890
2891	return 0;
2892}
2893
2894/* Set or clear the multicast filter for this adaptor.
2895 * Skeleton taken from sunlance driver.
2896 * The CPM Ethernet implementation allows Multicast as well as individual
2897 * MAC address filtering.  Some of the drivers check to make sure it is
2898 * a group multicast address, and discard those that are not.  I guess I
2899 * will do the same for now, but just remove the test if you want
2900 * individual filtering as well (do the upper net layers want or support
2901 * this kind of feature?).
2902 */
2903
2904#define FEC_HASH_BITS	6		/* #bits in hash */
2905#define CRC32_POLY	0xEDB88320
2906
2907static void set_multicast_list(struct net_device *ndev)
2908{
2909	struct fec_enet_private *fep = netdev_priv(ndev);
2910	struct netdev_hw_addr *ha;
2911	unsigned int i, bit, data, crc, tmp;
2912	unsigned char hash;
2913	unsigned int hash_high = 0, hash_low = 0;
2914
2915	if (ndev->flags & IFF_PROMISC) {
2916		tmp = readl(fep->hwp + FEC_R_CNTRL);
2917		tmp |= 0x8;
2918		writel(tmp, fep->hwp + FEC_R_CNTRL);
2919		return;
2920	}
2921
2922	tmp = readl(fep->hwp + FEC_R_CNTRL);
2923	tmp &= ~0x8;
2924	writel(tmp, fep->hwp + FEC_R_CNTRL);
2925
2926	if (ndev->flags & IFF_ALLMULTI) {
2927		/* Catch all multicast addresses, so set the
2928		 * filter to all 1's
2929		 */
2930		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2931		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2932
2933		return;
2934	}
2935
2936	/* Add the addresses in hash register */
2937	netdev_for_each_mc_addr(ha, ndev) {
2938		/* calculate crc32 value of mac address */
2939		crc = 0xffffffff;
2940
2941		for (i = 0; i < ndev->addr_len; i++) {
2942			data = ha->addr[i];
2943			for (bit = 0; bit < 8; bit++, data >>= 1) {
2944				crc = (crc >> 1) ^
2945				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2946			}
2947		}
2948
2949		/* only upper 6 bits (FEC_HASH_BITS) are used
2950		 * which point to specific bit in he hash registers
2951		 */
2952		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
2953
2954		if (hash > 31)
2955			hash_high |= 1 << (hash - 32);
2956		else
2957			hash_low |= 1 << hash;
2958	}
2959
2960	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2961	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2962}
2963
2964/* Set a MAC change in hardware. */
2965static int
2966fec_set_mac_address(struct net_device *ndev, void *p)
2967{
2968	struct fec_enet_private *fep = netdev_priv(ndev);
2969	struct sockaddr *addr = p;
2970
2971	if (addr) {
2972		if (!is_valid_ether_addr(addr->sa_data))
2973			return -EADDRNOTAVAIL;
2974		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2975	}
2976
2977	/* Add netif status check here to avoid system hang in below case:
2978	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2979	 * After ethx down, fec all clocks are gated off and then register
2980	 * access causes system hang.
2981	 */
2982	if (!netif_running(ndev))
2983		return 0;
2984
2985	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2986		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2987		fep->hwp + FEC_ADDR_LOW);
2988	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2989		fep->hwp + FEC_ADDR_HIGH);
2990	return 0;
2991}
2992
2993#ifdef CONFIG_NET_POLL_CONTROLLER
2994/**
2995 * fec_poll_controller - FEC Poll controller function
2996 * @dev: The FEC network adapter
2997 *
2998 * Polled functionality used by netconsole and others in non interrupt mode
2999 *
3000 */
3001static void fec_poll_controller(struct net_device *dev)
3002{
3003	int i;
3004	struct fec_enet_private *fep = netdev_priv(dev);
3005
3006	for (i = 0; i < FEC_IRQ_NUM; i++) {
3007		if (fep->irq[i] > 0) {
3008			disable_irq(fep->irq[i]);
3009			fec_enet_interrupt(fep->irq[i], dev);
3010			enable_irq(fep->irq[i]);
3011		}
3012	}
3013}
3014#endif
3015
3016static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3017	netdev_features_t features)
3018{
3019	struct fec_enet_private *fep = netdev_priv(netdev);
3020	netdev_features_t changed = features ^ netdev->features;
3021
3022	netdev->features = features;
3023
3024	/* Receive checksum has been changed */
3025	if (changed & NETIF_F_RXCSUM) {
3026		if (features & NETIF_F_RXCSUM)
3027			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3028		else
3029			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3030	}
3031}
3032
3033static int fec_set_features(struct net_device *netdev,
3034	netdev_features_t features)
3035{
3036	struct fec_enet_private *fep = netdev_priv(netdev);
3037	netdev_features_t changed = features ^ netdev->features;
3038
3039	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3040		napi_disable(&fep->napi);
3041		netif_tx_lock_bh(netdev);
3042		fec_stop(netdev);
3043		fec_enet_set_netdev_features(netdev, features);
3044		fec_restart(netdev);
3045		netif_tx_wake_all_queues(netdev);
3046		netif_tx_unlock_bh(netdev);
3047		napi_enable(&fep->napi);
3048	} else {
3049		fec_enet_set_netdev_features(netdev, features);
3050	}
3051
3052	return 0;
3053}
3054
3055static const struct net_device_ops fec_netdev_ops = {
3056	.ndo_open		= fec_enet_open,
3057	.ndo_stop		= fec_enet_close,
3058	.ndo_start_xmit		= fec_enet_start_xmit,
3059	.ndo_set_rx_mode	= set_multicast_list,
3060	.ndo_validate_addr	= eth_validate_addr,
3061	.ndo_tx_timeout		= fec_timeout,
3062	.ndo_set_mac_address	= fec_set_mac_address,
3063	.ndo_do_ioctl		= fec_enet_ioctl,
3064#ifdef CONFIG_NET_POLL_CONTROLLER
3065	.ndo_poll_controller	= fec_poll_controller,
3066#endif
3067	.ndo_set_features	= fec_set_features,
3068};
3069
3070static const unsigned short offset_des_active_rxq[] = {
3071	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3072};
3073
3074static const unsigned short offset_des_active_txq[] = {
3075	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3076};
3077
3078 /*
3079  * XXX:  We need to clean up on failure exits here.
3080  *
3081  */
3082static int fec_enet_init(struct net_device *ndev)
3083{
3084	struct fec_enet_private *fep = netdev_priv(ndev);
3085	struct bufdesc *cbd_base;
3086	dma_addr_t bd_dma;
3087	int bd_size;
3088	unsigned int i;
3089	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3090			sizeof(struct bufdesc);
3091	unsigned dsize_log2 = __fls(dsize);
3092
3093	WARN_ON(dsize != (1 << dsize_log2));
3094#if defined(CONFIG_ARM)
3095	fep->rx_align = 0xf;
3096	fep->tx_align = 0xf;
3097#else
3098	fep->rx_align = 0x3;
3099	fep->tx_align = 0x3;
3100#endif
3101
3102	fec_enet_alloc_queue(ndev);
3103
3104	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3105
3106	/* Allocate memory for buffer descriptors. */
3107	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3108				       GFP_KERNEL);
3109	if (!cbd_base) {
3110		return -ENOMEM;
3111	}
3112
3113	memset(cbd_base, 0, bd_size);
3114
3115	/* Get the Ethernet address */
3116	fec_get_mac(ndev);
3117	/* make sure MAC we just acquired is programmed into the hw */
3118	fec_set_mac_address(ndev, NULL);
3119
3120	/* Set receive and transmit descriptor base. */
3121	for (i = 0; i < fep->num_rx_queues; i++) {
3122		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3123		unsigned size = dsize * rxq->bd.ring_size;
3124
3125		rxq->bd.qid = i;
3126		rxq->bd.base = cbd_base;
3127		rxq->bd.cur = cbd_base;
3128		rxq->bd.dma = bd_dma;
3129		rxq->bd.dsize = dsize;
3130		rxq->bd.dsize_log2 = dsize_log2;
3131		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3132		bd_dma += size;
3133		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3134		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3135	}
3136
3137	for (i = 0; i < fep->num_tx_queues; i++) {
3138		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3139		unsigned size = dsize * txq->bd.ring_size;
3140
3141		txq->bd.qid = i;
3142		txq->bd.base = cbd_base;
3143		txq->bd.cur = cbd_base;
3144		txq->bd.dma = bd_dma;
3145		txq->bd.dsize = dsize;
3146		txq->bd.dsize_log2 = dsize_log2;
3147		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3148		bd_dma += size;
3149		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3150		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3151	}
3152
3153
3154	/* The FEC Ethernet specific entries in the device structure */
3155	ndev->watchdog_timeo = TX_TIMEOUT;
3156	ndev->netdev_ops = &fec_netdev_ops;
3157	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3158
3159	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3160	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3161
3162	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3163		/* enable hw VLAN support */
3164		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3165
3166	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3167		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3168
3169		/* enable hw accelerator */
3170		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3171				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3172		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3173	}
3174
3175	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3176		fep->tx_align = 0;
3177		fep->rx_align = 0x3f;
3178	}
3179
3180	ndev->hw_features = ndev->features;
3181
3182	fec_restart(ndev);
3183
3184	fec_enet_update_ethtool_stats(ndev);
3185
3186	return 0;
3187}
3188
3189#ifdef CONFIG_OF
3190static void fec_reset_phy(struct platform_device *pdev)
3191{
3192	int err, phy_reset;
3193	bool active_high = false;
3194	int msec = 1;
3195	struct device_node *np = pdev->dev.of_node;
3196
3197	if (!np)
3198		return;
3199
3200	of_property_read_u32(np, "phy-reset-duration", &msec);
3201	/* A sane reset duration should not be longer than 1s */
3202	if (msec > 1000)
3203		msec = 1;
3204
3205	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3206	if (!gpio_is_valid(phy_reset))
3207		return;
3208
3209	active_high = of_property_read_bool(np, "phy-reset-active-high");
3210
3211	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3212			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3213			"phy-reset");
3214	if (err) {
3215		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3216		return;
3217	}
3218
3219	if (msec > 20)
3220		msleep(msec);
3221	else
3222		usleep_range(msec * 1000, msec * 1000 + 1000);
3223
3224	gpio_set_value_cansleep(phy_reset, !active_high);
3225}
3226#else /* CONFIG_OF */
3227static void fec_reset_phy(struct platform_device *pdev)
3228{
3229	/*
3230	 * In case of platform probe, the reset has been done
3231	 * by machine code.
3232	 */
3233}
3234#endif /* CONFIG_OF */
3235
3236static void
3237fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3238{
3239	struct device_node *np = pdev->dev.of_node;
3240
3241	*num_tx = *num_rx = 1;
3242
3243	if (!np || !of_device_is_available(np))
3244		return;
3245
3246	/* parse the num of tx and rx queues */
3247	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3248
3249	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3250
3251	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3252		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3253			 *num_tx);
3254		*num_tx = 1;
3255		return;
3256	}
3257
3258	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3259		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3260			 *num_rx);
3261		*num_rx = 1;
3262		return;
3263	}
3264
3265}
3266
3267static int
3268fec_probe(struct platform_device *pdev)
3269{
3270	struct fec_enet_private *fep;
3271	struct fec_platform_data *pdata;
3272	struct net_device *ndev;
3273	int i, irq, ret = 0;
3274	struct resource *r;
3275	const struct of_device_id *of_id;
3276	static int dev_id;
3277	struct device_node *np = pdev->dev.of_node, *phy_node;
3278	int num_tx_qs;
3279	int num_rx_qs;
3280
3281	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3282
3283	/* Init network device */
3284	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3285				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3286	if (!ndev)
3287		return -ENOMEM;
3288
3289	SET_NETDEV_DEV(ndev, &pdev->dev);
3290
3291	/* setup board info structure */
3292	fep = netdev_priv(ndev);
3293
3294	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3295	if (of_id)
3296		pdev->id_entry = of_id->data;
3297	fep->quirks = pdev->id_entry->driver_data;
3298
3299	fep->netdev = ndev;
3300	fep->num_rx_queues = num_rx_qs;
3301	fep->num_tx_queues = num_tx_qs;
3302
3303#if !defined(CONFIG_M5272)
3304	/* default enable pause frame auto negotiation */
3305	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3306		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3307#endif
3308
3309	/* Select default pin state */
3310	pinctrl_pm_select_default_state(&pdev->dev);
3311
3312	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3313	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3314	if (IS_ERR(fep->hwp)) {
3315		ret = PTR_ERR(fep->hwp);
3316		goto failed_ioremap;
3317	}
3318
3319	fep->pdev = pdev;
3320	fep->dev_id = dev_id++;
3321
3322	platform_set_drvdata(pdev, ndev);
3323
3324	if ((of_machine_is_compatible("fsl,imx6q") ||
3325	     of_machine_is_compatible("fsl,imx6dl")) &&
3326	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3327		fep->quirks |= FEC_QUIRK_ERR006687;
3328
3329	if (of_get_property(np, "fsl,magic-packet", NULL))
3330		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3331
3332	phy_node = of_parse_phandle(np, "phy-handle", 0);
3333	if (!phy_node && of_phy_is_fixed_link(np)) {
3334		ret = of_phy_register_fixed_link(np);
3335		if (ret < 0) {
3336			dev_err(&pdev->dev,
3337				"broken fixed-link specification\n");
3338			goto failed_phy;
3339		}
3340		phy_node = of_node_get(np);
3341	}
3342	fep->phy_node = phy_node;
3343
3344	ret = of_get_phy_mode(pdev->dev.of_node);
3345	if (ret < 0) {
3346		pdata = dev_get_platdata(&pdev->dev);
3347		if (pdata)
3348			fep->phy_interface = pdata->phy;
3349		else
3350			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3351	} else {
3352		fep->phy_interface = ret;
3353	}
3354
3355	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3356	if (IS_ERR(fep->clk_ipg)) {
3357		ret = PTR_ERR(fep->clk_ipg);
3358		goto failed_clk;
3359	}
3360
3361	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3362	if (IS_ERR(fep->clk_ahb)) {
3363		ret = PTR_ERR(fep->clk_ahb);
3364		goto failed_clk;
3365	}
3366
3367	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3368
3369	/* enet_out is optional, depends on board */
3370	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3371	if (IS_ERR(fep->clk_enet_out))
3372		fep->clk_enet_out = NULL;
3373
3374	fep->ptp_clk_on = false;
3375	mutex_init(&fep->ptp_clk_mutex);
3376
3377	/* clk_ref is optional, depends on board */
3378	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3379	if (IS_ERR(fep->clk_ref))
3380		fep->clk_ref = NULL;
3381
3382	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3383	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3384	if (IS_ERR(fep->clk_ptp)) {
3385		fep->clk_ptp = NULL;
3386		fep->bufdesc_ex = false;
3387	}
3388
3389	ret = fec_enet_clk_enable(ndev, true);
3390	if (ret)
3391		goto failed_clk;
3392
3393	ret = clk_prepare_enable(fep->clk_ipg);
3394	if (ret)
3395		goto failed_clk_ipg;
3396
3397	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3398	if (!IS_ERR(fep->reg_phy)) {
3399		ret = regulator_enable(fep->reg_phy);
3400		if (ret) {
3401			dev_err(&pdev->dev,
3402				"Failed to enable phy regulator: %d\n", ret);
3403			goto failed_regulator;
3404		}
3405	} else {
3406		fep->reg_phy = NULL;
3407	}
3408
3409	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3410	pm_runtime_use_autosuspend(&pdev->dev);
3411	pm_runtime_get_noresume(&pdev->dev);
3412	pm_runtime_set_active(&pdev->dev);
3413	pm_runtime_enable(&pdev->dev);
3414
3415	fec_reset_phy(pdev);
3416
3417	if (fep->bufdesc_ex)
3418		fec_ptp_init(pdev);
3419
3420	ret = fec_enet_init(ndev);
3421	if (ret)
3422		goto failed_init;
3423
3424	for (i = 0; i < FEC_IRQ_NUM; i++) {
3425		irq = platform_get_irq(pdev, i);
3426		if (irq < 0) {
3427			if (i)
3428				break;
3429			ret = irq;
3430			goto failed_irq;
3431		}
3432		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3433				       0, pdev->name, ndev);
3434		if (ret)
3435			goto failed_irq;
3436
3437		fep->irq[i] = irq;
3438	}
3439
3440	init_completion(&fep->mdio_done);
3441	ret = fec_enet_mii_init(pdev);
3442	if (ret)
3443		goto failed_mii_init;
3444
3445	/* Carrier starts down, phylib will bring it up */
3446	netif_carrier_off(ndev);
3447	fec_enet_clk_enable(ndev, false);
3448	pinctrl_pm_select_sleep_state(&pdev->dev);
3449
3450	ret = register_netdev(ndev);
3451	if (ret)
3452		goto failed_register;
3453
3454	device_init_wakeup(&ndev->dev, fep->wol_flag &
3455			   FEC_WOL_HAS_MAGIC_PACKET);
3456
3457	if (fep->bufdesc_ex && fep->ptp_clock)
3458		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3459
3460	fep->rx_copybreak = COPYBREAK_DEFAULT;
3461	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3462
3463	pm_runtime_mark_last_busy(&pdev->dev);
3464	pm_runtime_put_autosuspend(&pdev->dev);
3465
3466	return 0;
3467
3468failed_register:
3469	fec_enet_mii_remove(fep);
3470failed_mii_init:
3471failed_irq:
3472failed_init:
3473	fec_ptp_stop(pdev);
3474	if (fep->reg_phy)
3475		regulator_disable(fep->reg_phy);
3476failed_regulator:
3477	clk_disable_unprepare(fep->clk_ipg);
3478failed_clk_ipg:
3479	fec_enet_clk_enable(ndev, false);
3480failed_clk:
3481	if (of_phy_is_fixed_link(np))
3482		of_phy_deregister_fixed_link(np);
3483failed_phy:
3484	of_node_put(phy_node);
3485failed_ioremap:
3486	free_netdev(ndev);
3487
3488	return ret;
3489}
3490
3491static int
3492fec_drv_remove(struct platform_device *pdev)
3493{
3494	struct net_device *ndev = platform_get_drvdata(pdev);
3495	struct fec_enet_private *fep = netdev_priv(ndev);
3496	struct device_node *np = pdev->dev.of_node;
3497
3498	cancel_work_sync(&fep->tx_timeout_work);
3499	fec_ptp_stop(pdev);
3500	unregister_netdev(ndev);
3501	fec_enet_mii_remove(fep);
3502	if (fep->reg_phy)
3503		regulator_disable(fep->reg_phy);
3504	if (of_phy_is_fixed_link(np))
3505		of_phy_deregister_fixed_link(np);
3506	of_node_put(fep->phy_node);
3507	free_netdev(ndev);
3508
3509	return 0;
3510}
3511
3512static int __maybe_unused fec_suspend(struct device *dev)
3513{
3514	struct net_device *ndev = dev_get_drvdata(dev);
3515	struct fec_enet_private *fep = netdev_priv(ndev);
3516
3517	rtnl_lock();
3518	if (netif_running(ndev)) {
3519		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3520			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3521		phy_stop(ndev->phydev);
3522		napi_disable(&fep->napi);
3523		netif_tx_lock_bh(ndev);
3524		netif_device_detach(ndev);
3525		netif_tx_unlock_bh(ndev);
3526		fec_stop(ndev);
3527		fec_enet_clk_enable(ndev, false);
3528		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3529			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3530	}
3531	rtnl_unlock();
3532
3533	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3534		regulator_disable(fep->reg_phy);
3535
3536	/* SOC supply clock to phy, when clock is disabled, phy link down
3537	 * SOC control phy regulator, when regulator is disabled, phy link down
3538	 */
3539	if (fep->clk_enet_out || fep->reg_phy)
3540		fep->link = 0;
3541
3542	return 0;
3543}
3544
3545static int __maybe_unused fec_resume(struct device *dev)
3546{
3547	struct net_device *ndev = dev_get_drvdata(dev);
3548	struct fec_enet_private *fep = netdev_priv(ndev);
3549	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3550	int ret;
3551	int val;
3552
3553	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3554		ret = regulator_enable(fep->reg_phy);
3555		if (ret)
3556			return ret;
3557	}
3558
3559	rtnl_lock();
3560	if (netif_running(ndev)) {
3561		ret = fec_enet_clk_enable(ndev, true);
3562		if (ret) {
3563			rtnl_unlock();
3564			goto failed_clk;
3565		}
3566		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3567			if (pdata && pdata->sleep_mode_enable)
3568				pdata->sleep_mode_enable(false);
3569			val = readl(fep->hwp + FEC_ECNTRL);
3570			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3571			writel(val, fep->hwp + FEC_ECNTRL);
3572			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3573		} else {
3574			pinctrl_pm_select_default_state(&fep->pdev->dev);
3575		}
3576		fec_restart(ndev);
3577		netif_tx_lock_bh(ndev);
3578		netif_device_attach(ndev);
3579		netif_tx_unlock_bh(ndev);
3580		napi_enable(&fep->napi);
3581		phy_start(ndev->phydev);
3582	}
3583	rtnl_unlock();
3584
3585	return 0;
3586
3587failed_clk:
3588	if (fep->reg_phy)
3589		regulator_disable(fep->reg_phy);
3590	return ret;
3591}
3592
3593static int __maybe_unused fec_runtime_suspend(struct device *dev)
3594{
3595	struct net_device *ndev = dev_get_drvdata(dev);
3596	struct fec_enet_private *fep = netdev_priv(ndev);
3597
3598	clk_disable_unprepare(fep->clk_ipg);
3599
3600	return 0;
3601}
3602
3603static int __maybe_unused fec_runtime_resume(struct device *dev)
3604{
3605	struct net_device *ndev = dev_get_drvdata(dev);
3606	struct fec_enet_private *fep = netdev_priv(ndev);
3607
3608	return clk_prepare_enable(fep->clk_ipg);
3609}
3610
3611static const struct dev_pm_ops fec_pm_ops = {
3612	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3613	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3614};
3615
3616static struct platform_driver fec_driver = {
3617	.driver	= {
3618		.name	= DRIVER_NAME,
3619		.pm	= &fec_pm_ops,
3620		.of_match_table = fec_dt_ids,
3621	},
3622	.id_table = fec_devtype,
3623	.probe	= fec_probe,
3624	.remove	= fec_drv_remove,
3625};
3626
3627module_platform_driver(fec_driver);
3628
3629MODULE_ALIAS("platform:"DRIVER_NAME);
3630MODULE_LICENSE("GPL");