Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Interconnect framework core driver
  4 *
  5 * Copyright (c) 2017-2019, Linaro Ltd.
  6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
  7 */
  8
  9#include <linux/debugfs.h>
 10#include <linux/device.h>
 11#include <linux/idr.h>
 12#include <linux/init.h>
 13#include <linux/interconnect.h>
 14#include <linux/interconnect-provider.h>
 15#include <linux/list.h>
 16#include <linux/module.h>
 17#include <linux/mutex.h>
 18#include <linux/slab.h>
 19#include <linux/of.h>
 20#include <linux/overflow.h>
 21
 22static DEFINE_IDR(icc_idr);
 23static LIST_HEAD(icc_providers);
 24static DEFINE_MUTEX(icc_lock);
 25static struct dentry *icc_debugfs_dir;
 26
 27/**
 28 * struct icc_req - constraints that are attached to each node
 29 * @req_node: entry in list of requests for the particular @node
 30 * @node: the interconnect node to which this constraint applies
 31 * @dev: reference to the device that sets the constraints
 32 * @tag: path tag (optional)
 33 * @avg_bw: an integer describing the average bandwidth in kBps
 34 * @peak_bw: an integer describing the peak bandwidth in kBps
 35 */
 36struct icc_req {
 37	struct hlist_node req_node;
 38	struct icc_node *node;
 39	struct device *dev;
 40	u32 tag;
 41	u32 avg_bw;
 42	u32 peak_bw;
 43};
 44
 45/**
 46 * struct icc_path - interconnect path structure
 47 * @num_nodes: number of hops (nodes)
 48 * @reqs: array of the requests applicable to this path of nodes
 49 */
 50struct icc_path {
 51	size_t num_nodes;
 52	struct icc_req reqs[];
 53};
 54
 55static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
 56{
 57	if (!n)
 58		return;
 59
 60	seq_printf(s, "%-30s %12u %12u\n",
 61		   n->name, n->avg_bw, n->peak_bw);
 62}
 63
 64static int icc_summary_show(struct seq_file *s, void *data)
 65{
 66	struct icc_provider *provider;
 67
 68	seq_puts(s, " node                                   avg         peak\n");
 69	seq_puts(s, "--------------------------------------------------------\n");
 70
 71	mutex_lock(&icc_lock);
 72
 73	list_for_each_entry(provider, &icc_providers, provider_list) {
 74		struct icc_node *n;
 75
 76		list_for_each_entry(n, &provider->nodes, node_list) {
 77			struct icc_req *r;
 78
 79			icc_summary_show_one(s, n);
 80			hlist_for_each_entry(r, &n->req_list, req_node) {
 81				if (!r->dev)
 82					continue;
 83
 84				seq_printf(s, "    %-26s %12u %12u\n",
 85					   dev_name(r->dev), r->avg_bw,
 86					   r->peak_bw);
 87			}
 88		}
 89	}
 90
 91	mutex_unlock(&icc_lock);
 92
 93	return 0;
 94}
 95DEFINE_SHOW_ATTRIBUTE(icc_summary);
 96
 97static struct icc_node *node_find(const int id)
 98{
 99	return idr_find(&icc_idr, id);
100}
101
102static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
103				  ssize_t num_nodes)
104{
105	struct icc_node *node = dst;
106	struct icc_path *path;
107	int i;
108
109	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
110	if (!path)
111		return ERR_PTR(-ENOMEM);
112
113	path->num_nodes = num_nodes;
114
115	for (i = num_nodes - 1; i >= 0; i--) {
116		node->provider->users++;
117		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
118		path->reqs[i].node = node;
119		path->reqs[i].dev = dev;
120		/* reference to previous node was saved during path traversal */
121		node = node->reverse;
122	}
123
124	return path;
125}
126
127static struct icc_path *path_find(struct device *dev, struct icc_node *src,
128				  struct icc_node *dst)
129{
130	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
131	struct icc_node *n, *node = NULL;
132	struct list_head traverse_list;
133	struct list_head edge_list;
134	struct list_head visited_list;
135	size_t i, depth = 1;
136	bool found = false;
137
138	INIT_LIST_HEAD(&traverse_list);
139	INIT_LIST_HEAD(&edge_list);
140	INIT_LIST_HEAD(&visited_list);
141
142	list_add(&src->search_list, &traverse_list);
143	src->reverse = NULL;
144
145	do {
146		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
147			if (node == dst) {
148				found = true;
149				list_splice_init(&edge_list, &visited_list);
150				list_splice_init(&traverse_list, &visited_list);
151				break;
152			}
153			for (i = 0; i < node->num_links; i++) {
154				struct icc_node *tmp = node->links[i];
155
156				if (!tmp) {
157					path = ERR_PTR(-ENOENT);
158					goto out;
159				}
160
161				if (tmp->is_traversed)
162					continue;
163
164				tmp->is_traversed = true;
165				tmp->reverse = node;
166				list_add_tail(&tmp->search_list, &edge_list);
167			}
168		}
169
170		if (found)
171			break;
172
173		list_splice_init(&traverse_list, &visited_list);
174		list_splice_init(&edge_list, &traverse_list);
175
176		/* count the hops including the source */
177		depth++;
178
179	} while (!list_empty(&traverse_list));
180
181out:
182
183	/* reset the traversed state */
184	list_for_each_entry_reverse(n, &visited_list, search_list)
185		n->is_traversed = false;
186
187	if (found)
188		path = path_init(dev, dst, depth);
189
190	return path;
191}
192
193/*
194 * We want the path to honor all bandwidth requests, so the average and peak
195 * bandwidth requirements from each consumer are aggregated at each node.
196 * The aggregation is platform specific, so each platform can customize it by
197 * implementing its own aggregate() function.
198 */
199
200static int aggregate_requests(struct icc_node *node)
201{
202	struct icc_provider *p = node->provider;
203	struct icc_req *r;
204
205	node->avg_bw = 0;
206	node->peak_bw = 0;
207
208	if (p->pre_aggregate)
209		p->pre_aggregate(node);
210
211	hlist_for_each_entry(r, &node->req_list, req_node)
212		p->aggregate(node, r->tag, r->avg_bw, r->peak_bw,
213			     &node->avg_bw, &node->peak_bw);
214
215	return 0;
216}
217
218static int apply_constraints(struct icc_path *path)
219{
220	struct icc_node *next, *prev = NULL;
221	int ret = -EINVAL;
222	int i;
223
224	for (i = 0; i < path->num_nodes; i++) {
225		next = path->reqs[i].node;
226
227		/*
228		 * Both endpoints should be valid master-slave pairs of the
229		 * same interconnect provider that will be configured.
230		 */
231		if (!prev || next->provider != prev->provider) {
232			prev = next;
233			continue;
234		}
235
236		/* set the constraints */
237		ret = next->provider->set(prev, next);
238		if (ret)
239			goto out;
240
241		prev = next;
242	}
243out:
244	return ret;
245}
246
247/* of_icc_xlate_onecell() - Translate function using a single index.
248 * @spec: OF phandle args to map into an interconnect node.
249 * @data: private data (pointer to struct icc_onecell_data)
250 *
251 * This is a generic translate function that can be used to model simple
252 * interconnect providers that have one device tree node and provide
253 * multiple interconnect nodes. A single cell is used as an index into
254 * an array of icc nodes specified in the icc_onecell_data struct when
255 * registering the provider.
256 */
257struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
258				      void *data)
259{
260	struct icc_onecell_data *icc_data = data;
261	unsigned int idx = spec->args[0];
262
263	if (idx >= icc_data->num_nodes) {
264		pr_err("%s: invalid index %u\n", __func__, idx);
265		return ERR_PTR(-EINVAL);
266	}
267
268	return icc_data->nodes[idx];
269}
270EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
271
272/**
273 * of_icc_get_from_provider() - Look-up interconnect node
274 * @spec: OF phandle args to use for look-up
275 *
276 * Looks for interconnect provider under the node specified by @spec and if
277 * found, uses xlate function of the provider to map phandle args to node.
278 *
279 * Returns a valid pointer to struct icc_node on success or ERR_PTR()
280 * on failure.
281 */
282static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
283{
284	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
285	struct icc_provider *provider;
286
287	if (!spec || spec->args_count != 1)
288		return ERR_PTR(-EINVAL);
289
290	mutex_lock(&icc_lock);
291	list_for_each_entry(provider, &icc_providers, provider_list) {
292		if (provider->dev->of_node == spec->np)
293			node = provider->xlate(spec, provider->data);
294		if (!IS_ERR(node))
295			break;
296	}
297	mutex_unlock(&icc_lock);
298
299	return node;
300}
301
302/**
303 * of_icc_get() - get a path handle from a DT node based on name
304 * @dev: device pointer for the consumer device
305 * @name: interconnect path name
306 *
307 * This function will search for a path between two endpoints and return an
308 * icc_path handle on success. Use icc_put() to release constraints when they
309 * are not needed anymore.
310 * If the interconnect API is disabled, NULL is returned and the consumer
311 * drivers will still build. Drivers are free to handle this specifically,
312 * but they don't have to.
313 *
314 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
315 * when the API is disabled or the "interconnects" DT property is missing.
316 */
317struct icc_path *of_icc_get(struct device *dev, const char *name)
318{
319	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
320	struct icc_node *src_node, *dst_node;
321	struct device_node *np = NULL;
322	struct of_phandle_args src_args, dst_args;
323	int idx = 0;
324	int ret;
325
326	if (!dev || !dev->of_node)
327		return ERR_PTR(-ENODEV);
328
329	np = dev->of_node;
330
331	/*
332	 * When the consumer DT node do not have "interconnects" property
333	 * return a NULL path to skip setting constraints.
334	 */
335	if (!of_find_property(np, "interconnects", NULL))
336		return NULL;
337
338	/*
339	 * We use a combination of phandle and specifier for endpoint. For now
340	 * lets support only global ids and extend this in the future if needed
341	 * without breaking DT compatibility.
342	 */
343	if (name) {
344		idx = of_property_match_string(np, "interconnect-names", name);
345		if (idx < 0)
346			return ERR_PTR(idx);
347	}
348
349	ret = of_parse_phandle_with_args(np, "interconnects",
350					 "#interconnect-cells", idx * 2,
351					 &src_args);
352	if (ret)
353		return ERR_PTR(ret);
354
355	of_node_put(src_args.np);
356
357	ret = of_parse_phandle_with_args(np, "interconnects",
358					 "#interconnect-cells", idx * 2 + 1,
359					 &dst_args);
360	if (ret)
361		return ERR_PTR(ret);
362
363	of_node_put(dst_args.np);
364
365	src_node = of_icc_get_from_provider(&src_args);
366
367	if (IS_ERR(src_node)) {
368		if (PTR_ERR(src_node) != -EPROBE_DEFER)
369			dev_err(dev, "error finding src node: %ld\n",
370				PTR_ERR(src_node));
371		return ERR_CAST(src_node);
372	}
373
374	dst_node = of_icc_get_from_provider(&dst_args);
375
376	if (IS_ERR(dst_node)) {
377		if (PTR_ERR(dst_node) != -EPROBE_DEFER)
378			dev_err(dev, "error finding dst node: %ld\n",
379				PTR_ERR(dst_node));
380		return ERR_CAST(dst_node);
381	}
382
383	mutex_lock(&icc_lock);
384	path = path_find(dev, src_node, dst_node);
385	if (IS_ERR(path))
386		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
387	mutex_unlock(&icc_lock);
388
389	return path;
390}
391EXPORT_SYMBOL_GPL(of_icc_get);
392
393/**
394 * icc_set_tag() - set an optional tag on a path
395 * @path: the path we want to tag
396 * @tag: the tag value
397 *
398 * This function allows consumers to append a tag to the requests associated
399 * with a path, so that a different aggregation could be done based on this tag.
400 */
401void icc_set_tag(struct icc_path *path, u32 tag)
402{
403	int i;
404
405	if (!path)
406		return;
407
408	mutex_lock(&icc_lock);
409
410	for (i = 0; i < path->num_nodes; i++)
411		path->reqs[i].tag = tag;
412
413	mutex_unlock(&icc_lock);
414}
415EXPORT_SYMBOL_GPL(icc_set_tag);
416
417/**
418 * icc_set_bw() - set bandwidth constraints on an interconnect path
419 * @path: reference to the path returned by icc_get()
420 * @avg_bw: average bandwidth in kilobytes per second
421 * @peak_bw: peak bandwidth in kilobytes per second
422 *
423 * This function is used by an interconnect consumer to express its own needs
424 * in terms of bandwidth for a previously requested path between two endpoints.
425 * The requests are aggregated and each node is updated accordingly. The entire
426 * path is locked by a mutex to ensure that the set() is completed.
427 * The @path can be NULL when the "interconnects" DT properties is missing,
428 * which will mean that no constraints will be set.
429 *
430 * Returns 0 on success, or an appropriate error code otherwise.
431 */
432int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
433{
434	struct icc_node *node;
435	u32 old_avg, old_peak;
436	size_t i;
437	int ret;
438
439	if (!path || !path->num_nodes)
440		return 0;
441
442	mutex_lock(&icc_lock);
443
444	old_avg = path->reqs[0].avg_bw;
445	old_peak = path->reqs[0].peak_bw;
446
447	for (i = 0; i < path->num_nodes; i++) {
448		node = path->reqs[i].node;
449
450		/* update the consumer request for this path */
451		path->reqs[i].avg_bw = avg_bw;
452		path->reqs[i].peak_bw = peak_bw;
453
454		/* aggregate requests for this node */
455		aggregate_requests(node);
456	}
457
458	ret = apply_constraints(path);
459	if (ret) {
460		pr_debug("interconnect: error applying constraints (%d)\n",
461			 ret);
462
463		for (i = 0; i < path->num_nodes; i++) {
464			node = path->reqs[i].node;
465			path->reqs[i].avg_bw = old_avg;
466			path->reqs[i].peak_bw = old_peak;
467			aggregate_requests(node);
468		}
469		apply_constraints(path);
470	}
471
472	mutex_unlock(&icc_lock);
473
474	return ret;
475}
476EXPORT_SYMBOL_GPL(icc_set_bw);
477
478/**
479 * icc_get() - return a handle for path between two endpoints
480 * @dev: the device requesting the path
481 * @src_id: source device port id
482 * @dst_id: destination device port id
483 *
484 * This function will search for a path between two endpoints and return an
485 * icc_path handle on success. Use icc_put() to release
486 * constraints when they are not needed anymore.
487 * If the interconnect API is disabled, NULL is returned and the consumer
488 * drivers will still build. Drivers are free to handle this specifically,
489 * but they don't have to.
490 *
491 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
492 * interconnect API is disabled.
493 */
494struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
495{
496	struct icc_node *src, *dst;
497	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
498
499	mutex_lock(&icc_lock);
500
501	src = node_find(src_id);
502	if (!src)
503		goto out;
504
505	dst = node_find(dst_id);
506	if (!dst)
507		goto out;
508
509	path = path_find(dev, src, dst);
510	if (IS_ERR(path))
511		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
512
513out:
514	mutex_unlock(&icc_lock);
515	return path;
516}
517EXPORT_SYMBOL_GPL(icc_get);
518
519/**
520 * icc_put() - release the reference to the icc_path
521 * @path: interconnect path
522 *
523 * Use this function to release the constraints on a path when the path is
524 * no longer needed. The constraints will be re-aggregated.
525 */
526void icc_put(struct icc_path *path)
527{
528	struct icc_node *node;
529	size_t i;
530	int ret;
531
532	if (!path || WARN_ON(IS_ERR(path)))
533		return;
534
535	ret = icc_set_bw(path, 0, 0);
536	if (ret)
537		pr_err("%s: error (%d)\n", __func__, ret);
538
539	mutex_lock(&icc_lock);
540	for (i = 0; i < path->num_nodes; i++) {
541		node = path->reqs[i].node;
542		hlist_del(&path->reqs[i].req_node);
543		if (!WARN_ON(!node->provider->users))
544			node->provider->users--;
545	}
546	mutex_unlock(&icc_lock);
547
548	kfree(path);
549}
550EXPORT_SYMBOL_GPL(icc_put);
551
552static struct icc_node *icc_node_create_nolock(int id)
553{
554	struct icc_node *node;
555
556	/* check if node already exists */
557	node = node_find(id);
558	if (node)
559		return node;
560
561	node = kzalloc(sizeof(*node), GFP_KERNEL);
562	if (!node)
563		return ERR_PTR(-ENOMEM);
564
565	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
566	if (id < 0) {
567		WARN(1, "%s: couldn't get idr\n", __func__);
568		kfree(node);
569		return ERR_PTR(id);
570	}
571
572	node->id = id;
573
574	return node;
575}
576
577/**
578 * icc_node_create() - create a node
579 * @id: node id
580 *
581 * Return: icc_node pointer on success, or ERR_PTR() on error
582 */
583struct icc_node *icc_node_create(int id)
584{
585	struct icc_node *node;
586
587	mutex_lock(&icc_lock);
588
589	node = icc_node_create_nolock(id);
590
591	mutex_unlock(&icc_lock);
592
593	return node;
594}
595EXPORT_SYMBOL_GPL(icc_node_create);
596
597/**
598 * icc_node_destroy() - destroy a node
599 * @id: node id
600 */
601void icc_node_destroy(int id)
602{
603	struct icc_node *node;
604
605	mutex_lock(&icc_lock);
606
607	node = node_find(id);
608	if (node) {
609		idr_remove(&icc_idr, node->id);
610		WARN_ON(!hlist_empty(&node->req_list));
611	}
612
613	mutex_unlock(&icc_lock);
614
615	kfree(node);
616}
617EXPORT_SYMBOL_GPL(icc_node_destroy);
618
619/**
620 * icc_link_create() - create a link between two nodes
621 * @node: source node id
622 * @dst_id: destination node id
623 *
624 * Create a link between two nodes. The nodes might belong to different
625 * interconnect providers and the @dst_id node might not exist (if the
626 * provider driver has not probed yet). So just create the @dst_id node
627 * and when the actual provider driver is probed, the rest of the node
628 * data is filled.
629 *
630 * Return: 0 on success, or an error code otherwise
631 */
632int icc_link_create(struct icc_node *node, const int dst_id)
633{
634	struct icc_node *dst;
635	struct icc_node **new;
636	int ret = 0;
637
638	if (!node->provider)
639		return -EINVAL;
640
641	mutex_lock(&icc_lock);
642
643	dst = node_find(dst_id);
644	if (!dst) {
645		dst = icc_node_create_nolock(dst_id);
646
647		if (IS_ERR(dst)) {
648			ret = PTR_ERR(dst);
649			goto out;
650		}
651	}
652
653	new = krealloc(node->links,
654		       (node->num_links + 1) * sizeof(*node->links),
655		       GFP_KERNEL);
656	if (!new) {
657		ret = -ENOMEM;
658		goto out;
659	}
660
661	node->links = new;
662	node->links[node->num_links++] = dst;
663
664out:
665	mutex_unlock(&icc_lock);
666
667	return ret;
668}
669EXPORT_SYMBOL_GPL(icc_link_create);
670
671/**
672 * icc_link_destroy() - destroy a link between two nodes
673 * @src: pointer to source node
674 * @dst: pointer to destination node
675 *
676 * Return: 0 on success, or an error code otherwise
677 */
678int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
679{
680	struct icc_node **new;
681	size_t slot;
682	int ret = 0;
683
684	if (IS_ERR_OR_NULL(src))
685		return -EINVAL;
686
687	if (IS_ERR_OR_NULL(dst))
688		return -EINVAL;
689
690	mutex_lock(&icc_lock);
691
692	for (slot = 0; slot < src->num_links; slot++)
693		if (src->links[slot] == dst)
694			break;
695
696	if (WARN_ON(slot == src->num_links)) {
697		ret = -ENXIO;
698		goto out;
699	}
700
701	src->links[slot] = src->links[--src->num_links];
702
703	new = krealloc(src->links, src->num_links * sizeof(*src->links),
704		       GFP_KERNEL);
705	if (new)
706		src->links = new;
707
708out:
709	mutex_unlock(&icc_lock);
710
711	return ret;
712}
713EXPORT_SYMBOL_GPL(icc_link_destroy);
714
715/**
716 * icc_node_add() - add interconnect node to interconnect provider
717 * @node: pointer to the interconnect node
718 * @provider: pointer to the interconnect provider
719 */
720void icc_node_add(struct icc_node *node, struct icc_provider *provider)
721{
722	mutex_lock(&icc_lock);
723
724	node->provider = provider;
725	list_add_tail(&node->node_list, &provider->nodes);
726
727	mutex_unlock(&icc_lock);
728}
729EXPORT_SYMBOL_GPL(icc_node_add);
730
731/**
732 * icc_node_del() - delete interconnect node from interconnect provider
733 * @node: pointer to the interconnect node
734 */
735void icc_node_del(struct icc_node *node)
736{
737	mutex_lock(&icc_lock);
738
739	list_del(&node->node_list);
740
741	mutex_unlock(&icc_lock);
742}
743EXPORT_SYMBOL_GPL(icc_node_del);
744
745/**
746 * icc_provider_add() - add a new interconnect provider
747 * @provider: the interconnect provider that will be added into topology
748 *
749 * Return: 0 on success, or an error code otherwise
750 */
751int icc_provider_add(struct icc_provider *provider)
752{
753	if (WARN_ON(!provider->set))
754		return -EINVAL;
755	if (WARN_ON(!provider->xlate))
756		return -EINVAL;
757
758	mutex_lock(&icc_lock);
759
760	INIT_LIST_HEAD(&provider->nodes);
761	list_add_tail(&provider->provider_list, &icc_providers);
762
763	mutex_unlock(&icc_lock);
764
765	dev_dbg(provider->dev, "interconnect provider added to topology\n");
766
767	return 0;
768}
769EXPORT_SYMBOL_GPL(icc_provider_add);
770
771/**
772 * icc_provider_del() - delete previously added interconnect provider
773 * @provider: the interconnect provider that will be removed from topology
774 *
775 * Return: 0 on success, or an error code otherwise
776 */
777int icc_provider_del(struct icc_provider *provider)
778{
779	mutex_lock(&icc_lock);
780	if (provider->users) {
781		pr_warn("interconnect provider still has %d users\n",
782			provider->users);
783		mutex_unlock(&icc_lock);
784		return -EBUSY;
785	}
786
787	if (!list_empty(&provider->nodes)) {
788		pr_warn("interconnect provider still has nodes\n");
789		mutex_unlock(&icc_lock);
790		return -EBUSY;
791	}
792
793	list_del(&provider->provider_list);
794	mutex_unlock(&icc_lock);
795
796	return 0;
797}
798EXPORT_SYMBOL_GPL(icc_provider_del);
799
800static int __init icc_init(void)
801{
802	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
803	debugfs_create_file("interconnect_summary", 0444,
804			    icc_debugfs_dir, NULL, &icc_summary_fops);
805	return 0;
806}
807
808static void __exit icc_exit(void)
809{
810	debugfs_remove_recursive(icc_debugfs_dir);
811}
812module_init(icc_init);
813module_exit(icc_exit);
814
815MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
816MODULE_DESCRIPTION("Interconnect Driver Core");
817MODULE_LICENSE("GPL v2");