Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interconnect framework core driver
   4 *
   5 * Copyright (c) 2017-2019, Linaro Ltd.
   6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
   7 */
   8
   9#include <linux/debugfs.h>
  10#include <linux/device.h>
  11#include <linux/idr.h>
  12#include <linux/init.h>
  13#include <linux/interconnect.h>
  14#include <linux/interconnect-provider.h>
  15#include <linux/list.h>
  16#include <linux/mutex.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/overflow.h>
  20
  21#include "internal.h"
  22
  23#define CREATE_TRACE_POINTS
  24#include "trace.h"
  25
  26static DEFINE_IDR(icc_idr);
  27static LIST_HEAD(icc_providers);
  28static int providers_count;
  29static bool synced_state;
  30static DEFINE_MUTEX(icc_lock);
  31static DEFINE_MUTEX(icc_bw_lock);
  32static struct dentry *icc_debugfs_dir;
  33
  34static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
  35{
  36	if (!n)
  37		return;
  38
  39	seq_printf(s, "%-42s %12u %12u\n",
  40		   n->name, n->avg_bw, n->peak_bw);
  41}
  42
  43static int icc_summary_show(struct seq_file *s, void *data)
  44{
  45	struct icc_provider *provider;
  46
  47	seq_puts(s, " node                                  tag          avg         peak\n");
  48	seq_puts(s, "--------------------------------------------------------------------\n");
  49
  50	mutex_lock(&icc_lock);
  51
  52	list_for_each_entry(provider, &icc_providers, provider_list) {
  53		struct icc_node *n;
  54
  55		list_for_each_entry(n, &provider->nodes, node_list) {
  56			struct icc_req *r;
  57
  58			icc_summary_show_one(s, n);
  59			hlist_for_each_entry(r, &n->req_list, req_node) {
  60				u32 avg_bw = 0, peak_bw = 0;
  61
  62				if (!r->dev)
  63					continue;
  64
  65				if (r->enabled) {
  66					avg_bw = r->avg_bw;
  67					peak_bw = r->peak_bw;
  68				}
  69
  70				seq_printf(s, "  %-27s %12u %12u %12u\n",
  71					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
  72			}
  73		}
  74	}
  75
  76	mutex_unlock(&icc_lock);
  77
  78	return 0;
  79}
  80DEFINE_SHOW_ATTRIBUTE(icc_summary);
  81
  82static void icc_graph_show_link(struct seq_file *s, int level,
  83				struct icc_node *n, struct icc_node *m)
  84{
  85	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
  86		   level == 2 ? "\t\t" : "\t",
  87		   n->id, n->name, m->id, m->name);
  88}
  89
  90static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
  91{
  92	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
  93		   n->id, n->name, n->id, n->name);
  94	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
  95	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
  96	seq_puts(s, "\"]\n");
  97}
  98
  99static int icc_graph_show(struct seq_file *s, void *data)
 100{
 101	struct icc_provider *provider;
 102	struct icc_node *n;
 103	int cluster_index = 0;
 104	int i;
 105
 106	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
 107	mutex_lock(&icc_lock);
 108
 109	/* draw providers as cluster subgraphs */
 110	cluster_index = 0;
 111	list_for_each_entry(provider, &icc_providers, provider_list) {
 112		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
 113		if (provider->dev)
 114			seq_printf(s, "\t\tlabel = \"%s\"\n",
 115				   dev_name(provider->dev));
 116
 117		/* draw nodes */
 118		list_for_each_entry(n, &provider->nodes, node_list)
 119			icc_graph_show_node(s, n);
 120
 121		/* draw internal links */
 122		list_for_each_entry(n, &provider->nodes, node_list)
 123			for (i = 0; i < n->num_links; ++i)
 124				if (n->provider == n->links[i]->provider)
 125					icc_graph_show_link(s, 2, n,
 126							    n->links[i]);
 127
 128		seq_puts(s, "\t}\n");
 129	}
 130
 131	/* draw external links */
 132	list_for_each_entry(provider, &icc_providers, provider_list)
 133		list_for_each_entry(n, &provider->nodes, node_list)
 134			for (i = 0; i < n->num_links; ++i)
 135				if (n->provider != n->links[i]->provider)
 136					icc_graph_show_link(s, 1, n,
 137							    n->links[i]);
 138
 139	mutex_unlock(&icc_lock);
 140	seq_puts(s, "}");
 141
 142	return 0;
 143}
 144DEFINE_SHOW_ATTRIBUTE(icc_graph);
 145
 146static struct icc_node *node_find(const int id)
 147{
 148	return idr_find(&icc_idr, id);
 149}
 150
 151static struct icc_node *node_find_by_name(const char *name)
 152{
 153	struct icc_provider *provider;
 154	struct icc_node *n;
 155
 156	list_for_each_entry(provider, &icc_providers, provider_list) {
 157		list_for_each_entry(n, &provider->nodes, node_list) {
 158			if (!strcmp(n->name, name))
 159				return n;
 160		}
 161	}
 162
 163	return NULL;
 164}
 165
 166static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
 167				  ssize_t num_nodes)
 168{
 169	struct icc_node *node = dst;
 170	struct icc_path *path;
 171	int i;
 172
 173	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
 174	if (!path)
 175		return ERR_PTR(-ENOMEM);
 176
 177	path->num_nodes = num_nodes;
 178
 179	for (i = num_nodes - 1; i >= 0; i--) {
 180		node->provider->users++;
 181		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
 182		path->reqs[i].node = node;
 183		path->reqs[i].dev = dev;
 184		path->reqs[i].enabled = true;
 185		/* reference to previous node was saved during path traversal */
 186		node = node->reverse;
 187	}
 188
 189	return path;
 190}
 191
 192static struct icc_path *path_find(struct device *dev, struct icc_node *src,
 193				  struct icc_node *dst)
 194{
 195	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 196	struct icc_node *n, *node = NULL;
 197	struct list_head traverse_list;
 198	struct list_head edge_list;
 199	struct list_head visited_list;
 200	size_t i, depth = 1;
 201	bool found = false;
 202
 203	INIT_LIST_HEAD(&traverse_list);
 204	INIT_LIST_HEAD(&edge_list);
 205	INIT_LIST_HEAD(&visited_list);
 206
 207	list_add(&src->search_list, &traverse_list);
 208	src->reverse = NULL;
 209
 210	do {
 211		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
 212			if (node == dst) {
 213				found = true;
 214				list_splice_init(&edge_list, &visited_list);
 215				list_splice_init(&traverse_list, &visited_list);
 216				break;
 217			}
 218			for (i = 0; i < node->num_links; i++) {
 219				struct icc_node *tmp = node->links[i];
 220
 221				if (!tmp) {
 222					path = ERR_PTR(-ENOENT);
 223					goto out;
 224				}
 225
 226				if (tmp->is_traversed)
 227					continue;
 228
 229				tmp->is_traversed = true;
 230				tmp->reverse = node;
 231				list_add_tail(&tmp->search_list, &edge_list);
 232			}
 233		}
 234
 235		if (found)
 236			break;
 237
 238		list_splice_init(&traverse_list, &visited_list);
 239		list_splice_init(&edge_list, &traverse_list);
 240
 241		/* count the hops including the source */
 242		depth++;
 243
 244	} while (!list_empty(&traverse_list));
 245
 246out:
 247
 248	/* reset the traversed state */
 249	list_for_each_entry_reverse(n, &visited_list, search_list)
 250		n->is_traversed = false;
 251
 252	if (found)
 253		path = path_init(dev, dst, depth);
 254
 255	return path;
 256}
 257
 258/*
 259 * We want the path to honor all bandwidth requests, so the average and peak
 260 * bandwidth requirements from each consumer are aggregated at each node.
 261 * The aggregation is platform specific, so each platform can customize it by
 262 * implementing its own aggregate() function.
 263 */
 264
 265static int aggregate_requests(struct icc_node *node)
 266{
 267	struct icc_provider *p = node->provider;
 268	struct icc_req *r;
 269	u32 avg_bw, peak_bw;
 270
 271	node->avg_bw = 0;
 272	node->peak_bw = 0;
 273
 274	if (p->pre_aggregate)
 275		p->pre_aggregate(node);
 276
 277	hlist_for_each_entry(r, &node->req_list, req_node) {
 278		if (r->enabled) {
 279			avg_bw = r->avg_bw;
 280			peak_bw = r->peak_bw;
 281		} else {
 282			avg_bw = 0;
 283			peak_bw = 0;
 284		}
 285		p->aggregate(node, r->tag, avg_bw, peak_bw,
 286			     &node->avg_bw, &node->peak_bw);
 287
 288		/* during boot use the initial bandwidth as a floor value */
 289		if (!synced_state) {
 290			node->avg_bw = max(node->avg_bw, node->init_avg);
 291			node->peak_bw = max(node->peak_bw, node->init_peak);
 292		}
 293	}
 294
 295	return 0;
 296}
 297
 298static int apply_constraints(struct icc_path *path)
 299{
 300	struct icc_node *next, *prev = NULL;
 301	struct icc_provider *p;
 302	int ret = -EINVAL;
 303	int i;
 304
 305	for (i = 0; i < path->num_nodes; i++) {
 306		next = path->reqs[i].node;
 307		p = next->provider;
 308
 309		/* both endpoints should be valid master-slave pairs */
 310		if (!prev || (p != prev->provider && !p->inter_set)) {
 311			prev = next;
 312			continue;
 313		}
 314
 315		/* set the constraints */
 316		ret = p->set(prev, next);
 317		if (ret)
 318			goto out;
 319
 320		prev = next;
 321	}
 322out:
 323	return ret;
 324}
 325
 326int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
 327		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
 328{
 329	*agg_avg += avg_bw;
 330	*agg_peak = max(*agg_peak, peak_bw);
 331
 332	return 0;
 333}
 334EXPORT_SYMBOL_GPL(icc_std_aggregate);
 335
 336/* of_icc_xlate_onecell() - Translate function using a single index.
 337 * @spec: OF phandle args to map into an interconnect node.
 338 * @data: private data (pointer to struct icc_onecell_data)
 339 *
 340 * This is a generic translate function that can be used to model simple
 341 * interconnect providers that have one device tree node and provide
 342 * multiple interconnect nodes. A single cell is used as an index into
 343 * an array of icc nodes specified in the icc_onecell_data struct when
 344 * registering the provider.
 345 */
 346struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
 347				      void *data)
 348{
 349	struct icc_onecell_data *icc_data = data;
 350	unsigned int idx = spec->args[0];
 351
 352	if (idx >= icc_data->num_nodes) {
 353		pr_err("%s: invalid index %u\n", __func__, idx);
 354		return ERR_PTR(-EINVAL);
 355	}
 356
 357	return icc_data->nodes[idx];
 358}
 359EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
 360
 361/**
 362 * of_icc_get_from_provider() - Look-up interconnect node
 363 * @spec: OF phandle args to use for look-up
 364 *
 365 * Looks for interconnect provider under the node specified by @spec and if
 366 * found, uses xlate function of the provider to map phandle args to node.
 367 *
 368 * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
 369 * on failure.
 370 */
 371struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
 372{
 373	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
 374	struct icc_node_data *data = NULL;
 375	struct icc_provider *provider;
 376
 377	if (!spec)
 378		return ERR_PTR(-EINVAL);
 379
 380	mutex_lock(&icc_lock);
 381	list_for_each_entry(provider, &icc_providers, provider_list) {
 382		if (provider->dev->of_node == spec->np) {
 383			if (provider->xlate_extended) {
 384				data = provider->xlate_extended(spec, provider->data);
 385				if (!IS_ERR(data)) {
 386					node = data->node;
 387					break;
 388				}
 389			} else {
 390				node = provider->xlate(spec, provider->data);
 391				if (!IS_ERR(node))
 392					break;
 393			}
 394		}
 395	}
 396	mutex_unlock(&icc_lock);
 397
 398	if (!node)
 399		return ERR_PTR(-EINVAL);
 400
 401	if (IS_ERR(node))
 402		return ERR_CAST(node);
 403
 404	if (!data) {
 405		data = kzalloc(sizeof(*data), GFP_KERNEL);
 406		if (!data)
 407			return ERR_PTR(-ENOMEM);
 408		data->node = node;
 409	}
 410
 411	return data;
 412}
 413EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
 414
 415static void devm_icc_release(struct device *dev, void *res)
 416{
 417	icc_put(*(struct icc_path **)res);
 418}
 419
 420struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
 421{
 422	struct icc_path **ptr, *path;
 423
 424	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
 425	if (!ptr)
 426		return ERR_PTR(-ENOMEM);
 427
 428	path = of_icc_get(dev, name);
 429	if (!IS_ERR(path)) {
 430		*ptr = path;
 431		devres_add(dev, ptr);
 432	} else {
 433		devres_free(ptr);
 434	}
 435
 436	return path;
 437}
 438EXPORT_SYMBOL_GPL(devm_of_icc_get);
 439
 440/**
 441 * of_icc_get_by_index() - get a path handle from a DT node based on index
 442 * @dev: device pointer for the consumer device
 443 * @idx: interconnect path index
 444 *
 445 * This function will search for a path between two endpoints and return an
 446 * icc_path handle on success. Use icc_put() to release constraints when they
 447 * are not needed anymore.
 448 * If the interconnect API is disabled, NULL is returned and the consumer
 449 * drivers will still build. Drivers are free to handle this specifically,
 450 * but they don't have to.
 451 *
 452 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 453 * when the API is disabled or the "interconnects" DT property is missing.
 454 */
 455struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
 456{
 457	struct icc_path *path;
 458	struct icc_node_data *src_data, *dst_data;
 459	struct device_node *np;
 460	struct of_phandle_args src_args, dst_args;
 461	int ret;
 462
 463	if (!dev || !dev->of_node)
 464		return ERR_PTR(-ENODEV);
 465
 466	np = dev->of_node;
 467
 468	/*
 469	 * When the consumer DT node do not have "interconnects" property
 470	 * return a NULL path to skip setting constraints.
 471	 */
 472	if (!of_property_present(np, "interconnects"))
 473		return NULL;
 474
 475	/*
 476	 * We use a combination of phandle and specifier for endpoint. For now
 477	 * lets support only global ids and extend this in the future if needed
 478	 * without breaking DT compatibility.
 479	 */
 480	ret = of_parse_phandle_with_args(np, "interconnects",
 481					 "#interconnect-cells", idx * 2,
 482					 &src_args);
 483	if (ret)
 484		return ERR_PTR(ret);
 485
 486	of_node_put(src_args.np);
 487
 488	ret = of_parse_phandle_with_args(np, "interconnects",
 489					 "#interconnect-cells", idx * 2 + 1,
 490					 &dst_args);
 491	if (ret)
 492		return ERR_PTR(ret);
 493
 494	of_node_put(dst_args.np);
 495
 496	src_data = of_icc_get_from_provider(&src_args);
 497
 498	if (IS_ERR(src_data)) {
 499		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
 500		return ERR_CAST(src_data);
 501	}
 502
 503	dst_data = of_icc_get_from_provider(&dst_args);
 504
 505	if (IS_ERR(dst_data)) {
 506		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
 507		kfree(src_data);
 508		return ERR_CAST(dst_data);
 509	}
 510
 511	mutex_lock(&icc_lock);
 512	path = path_find(dev, src_data->node, dst_data->node);
 513	mutex_unlock(&icc_lock);
 514	if (IS_ERR(path)) {
 515		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 516		goto free_icc_data;
 517	}
 518
 519	if (src_data->tag && src_data->tag == dst_data->tag)
 520		icc_set_tag(path, src_data->tag);
 521
 522	path->name = kasprintf(GFP_KERNEL, "%s-%s",
 523			       src_data->node->name, dst_data->node->name);
 524	if (!path->name) {
 525		kfree(path);
 526		path = ERR_PTR(-ENOMEM);
 527	}
 528
 529free_icc_data:
 530	kfree(src_data);
 531	kfree(dst_data);
 532	return path;
 533}
 534EXPORT_SYMBOL_GPL(of_icc_get_by_index);
 535
 536/**
 537 * of_icc_get() - get a path handle from a DT node based on name
 538 * @dev: device pointer for the consumer device
 539 * @name: interconnect path name
 540 *
 541 * This function will search for a path between two endpoints and return an
 542 * icc_path handle on success. Use icc_put() to release constraints when they
 543 * are not needed anymore.
 544 * If the interconnect API is disabled, NULL is returned and the consumer
 545 * drivers will still build. Drivers are free to handle this specifically,
 546 * but they don't have to.
 547 *
 548 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 549 * when the API is disabled or the "interconnects" DT property is missing.
 550 */
 551struct icc_path *of_icc_get(struct device *dev, const char *name)
 552{
 553	struct device_node *np;
 554	int idx = 0;
 555
 556	if (!dev || !dev->of_node)
 557		return ERR_PTR(-ENODEV);
 558
 559	np = dev->of_node;
 560
 561	/*
 562	 * When the consumer DT node do not have "interconnects" property
 563	 * return a NULL path to skip setting constraints.
 564	 */
 565	if (!of_property_present(np, "interconnects"))
 566		return NULL;
 567
 568	/*
 569	 * We use a combination of phandle and specifier for endpoint. For now
 570	 * lets support only global ids and extend this in the future if needed
 571	 * without breaking DT compatibility.
 572	 */
 573	if (name) {
 574		idx = of_property_match_string(np, "interconnect-names", name);
 575		if (idx < 0)
 576			return ERR_PTR(idx);
 577	}
 578
 579	return of_icc_get_by_index(dev, idx);
 580}
 581EXPORT_SYMBOL_GPL(of_icc_get);
 582
 583/**
 584 * icc_get() - get a path handle between two endpoints
 585 * @dev: device pointer for the consumer device
 586 * @src: source node name
 587 * @dst: destination node name
 588 *
 589 * This function will search for a path between two endpoints and return an
 590 * icc_path handle on success. Use icc_put() to release constraints when they
 591 * are not needed anymore.
 592 *
 593 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 594 * when the API is disabled.
 595 */
 596struct icc_path *icc_get(struct device *dev, const char *src, const char *dst)
 597{
 598	struct icc_node *src_node, *dst_node;
 599	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 600
 601	mutex_lock(&icc_lock);
 602
 603	src_node = node_find_by_name(src);
 604	if (!src_node) {
 605		dev_err(dev, "%s: invalid src=%s\n", __func__, src);
 606		goto out;
 607	}
 608
 609	dst_node = node_find_by_name(dst);
 610	if (!dst_node) {
 611		dev_err(dev, "%s: invalid dst=%s\n", __func__, dst);
 612		goto out;
 613	}
 614
 615	path = path_find(dev, src_node, dst_node);
 616	if (IS_ERR(path)) {
 617		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 618		goto out;
 619	}
 620
 621	path->name = kasprintf(GFP_KERNEL, "%s-%s", src_node->name, dst_node->name);
 622	if (!path->name) {
 623		kfree(path);
 624		path = ERR_PTR(-ENOMEM);
 625	}
 626out:
 627	mutex_unlock(&icc_lock);
 628	return path;
 629}
 630
 631/**
 632 * icc_set_tag() - set an optional tag on a path
 633 * @path: the path we want to tag
 634 * @tag: the tag value
 635 *
 636 * This function allows consumers to append a tag to the requests associated
 637 * with a path, so that a different aggregation could be done based on this tag.
 638 */
 639void icc_set_tag(struct icc_path *path, u32 tag)
 640{
 641	int i;
 642
 643	if (!path)
 644		return;
 645
 646	mutex_lock(&icc_lock);
 647
 648	for (i = 0; i < path->num_nodes; i++)
 649		path->reqs[i].tag = tag;
 650
 651	mutex_unlock(&icc_lock);
 652}
 653EXPORT_SYMBOL_GPL(icc_set_tag);
 654
 655/**
 656 * icc_get_name() - Get name of the icc path
 657 * @path: interconnect path
 658 *
 659 * This function is used by an interconnect consumer to get the name of the icc
 660 * path.
 661 *
 662 * Returns a valid pointer on success, or NULL otherwise.
 663 */
 664const char *icc_get_name(struct icc_path *path)
 665{
 666	if (!path)
 667		return NULL;
 668
 669	return path->name;
 670}
 671EXPORT_SYMBOL_GPL(icc_get_name);
 672
 673/**
 674 * icc_set_bw() - set bandwidth constraints on an interconnect path
 675 * @path: interconnect path
 676 * @avg_bw: average bandwidth in kilobytes per second
 677 * @peak_bw: peak bandwidth in kilobytes per second
 678 *
 679 * This function is used by an interconnect consumer to express its own needs
 680 * in terms of bandwidth for a previously requested path between two endpoints.
 681 * The requests are aggregated and each node is updated accordingly. The entire
 682 * path is locked by a mutex to ensure that the set() is completed.
 683 * The @path can be NULL when the "interconnects" DT properties is missing,
 684 * which will mean that no constraints will be set.
 685 *
 686 * Returns 0 on success, or an appropriate error code otherwise.
 687 */
 688int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
 689{
 690	struct icc_node *node;
 691	u32 old_avg, old_peak;
 692	size_t i;
 693	int ret;
 694
 695	if (!path)
 696		return 0;
 697
 698	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
 699		return -EINVAL;
 700
 701	mutex_lock(&icc_bw_lock);
 702
 703	old_avg = path->reqs[0].avg_bw;
 704	old_peak = path->reqs[0].peak_bw;
 705
 706	for (i = 0; i < path->num_nodes; i++) {
 707		node = path->reqs[i].node;
 708
 709		/* update the consumer request for this path */
 710		path->reqs[i].avg_bw = avg_bw;
 711		path->reqs[i].peak_bw = peak_bw;
 712
 713		/* aggregate requests for this node */
 714		aggregate_requests(node);
 715
 716		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
 717	}
 718
 719	ret = apply_constraints(path);
 720	if (ret) {
 721		pr_debug("interconnect: error applying constraints (%d)\n",
 722			 ret);
 723
 724		for (i = 0; i < path->num_nodes; i++) {
 725			node = path->reqs[i].node;
 726			path->reqs[i].avg_bw = old_avg;
 727			path->reqs[i].peak_bw = old_peak;
 728			aggregate_requests(node);
 729		}
 730		apply_constraints(path);
 731	}
 732
 733	mutex_unlock(&icc_bw_lock);
 734
 735	trace_icc_set_bw_end(path, ret);
 736
 737	return ret;
 738}
 739EXPORT_SYMBOL_GPL(icc_set_bw);
 740
 741static int __icc_enable(struct icc_path *path, bool enable)
 742{
 743	int i;
 744
 745	if (!path)
 746		return 0;
 747
 748	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
 749		return -EINVAL;
 750
 751	mutex_lock(&icc_lock);
 752
 753	for (i = 0; i < path->num_nodes; i++)
 754		path->reqs[i].enabled = enable;
 755
 756	mutex_unlock(&icc_lock);
 757
 758	return icc_set_bw(path, path->reqs[0].avg_bw,
 759			  path->reqs[0].peak_bw);
 760}
 761
 762int icc_enable(struct icc_path *path)
 763{
 764	return __icc_enable(path, true);
 765}
 766EXPORT_SYMBOL_GPL(icc_enable);
 767
 768int icc_disable(struct icc_path *path)
 769{
 770	return __icc_enable(path, false);
 771}
 772EXPORT_SYMBOL_GPL(icc_disable);
 773
 774/**
 775 * icc_put() - release the reference to the icc_path
 776 * @path: interconnect path
 777 *
 778 * Use this function to release the constraints on a path when the path is
 779 * no longer needed. The constraints will be re-aggregated.
 780 */
 781void icc_put(struct icc_path *path)
 782{
 783	struct icc_node *node;
 784	size_t i;
 785	int ret;
 786
 787	if (!path || WARN_ON(IS_ERR(path)))
 788		return;
 789
 790	ret = icc_set_bw(path, 0, 0);
 791	if (ret)
 792		pr_err("%s: error (%d)\n", __func__, ret);
 793
 794	mutex_lock(&icc_lock);
 795	for (i = 0; i < path->num_nodes; i++) {
 796		node = path->reqs[i].node;
 797		hlist_del(&path->reqs[i].req_node);
 798		if (!WARN_ON(!node->provider->users))
 799			node->provider->users--;
 800	}
 801	mutex_unlock(&icc_lock);
 802
 803	kfree_const(path->name);
 804	kfree(path);
 805}
 806EXPORT_SYMBOL_GPL(icc_put);
 807
 808static struct icc_node *icc_node_create_nolock(int id)
 809{
 810	struct icc_node *node;
 811
 812	/* check if node already exists */
 813	node = node_find(id);
 814	if (node)
 815		return node;
 816
 817	node = kzalloc(sizeof(*node), GFP_KERNEL);
 818	if (!node)
 819		return ERR_PTR(-ENOMEM);
 820
 821	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
 822	if (id < 0) {
 823		WARN(1, "%s: couldn't get idr\n", __func__);
 824		kfree(node);
 825		return ERR_PTR(id);
 826	}
 827
 828	node->id = id;
 829
 830	return node;
 831}
 832
 833/**
 834 * icc_node_create() - create a node
 835 * @id: node id
 836 *
 837 * Return: icc_node pointer on success, or ERR_PTR() on error
 838 */
 839struct icc_node *icc_node_create(int id)
 840{
 841	struct icc_node *node;
 842
 843	mutex_lock(&icc_lock);
 844
 845	node = icc_node_create_nolock(id);
 846
 847	mutex_unlock(&icc_lock);
 848
 849	return node;
 850}
 851EXPORT_SYMBOL_GPL(icc_node_create);
 852
 853/**
 854 * icc_node_destroy() - destroy a node
 855 * @id: node id
 856 */
 857void icc_node_destroy(int id)
 858{
 859	struct icc_node *node;
 860
 861	mutex_lock(&icc_lock);
 862
 863	node = node_find(id);
 864	if (node) {
 865		idr_remove(&icc_idr, node->id);
 866		WARN_ON(!hlist_empty(&node->req_list));
 867	}
 868
 869	mutex_unlock(&icc_lock);
 870
 871	if (!node)
 872		return;
 873
 874	kfree(node->links);
 875	kfree(node);
 876}
 877EXPORT_SYMBOL_GPL(icc_node_destroy);
 878
 879/**
 880 * icc_link_create() - create a link between two nodes
 881 * @node: source node id
 882 * @dst_id: destination node id
 883 *
 884 * Create a link between two nodes. The nodes might belong to different
 885 * interconnect providers and the @dst_id node might not exist (if the
 886 * provider driver has not probed yet). So just create the @dst_id node
 887 * and when the actual provider driver is probed, the rest of the node
 888 * data is filled.
 889 *
 890 * Return: 0 on success, or an error code otherwise
 891 */
 892int icc_link_create(struct icc_node *node, const int dst_id)
 893{
 894	struct icc_node *dst;
 895	struct icc_node **new;
 896	int ret = 0;
 897
 898	if (!node->provider)
 899		return -EINVAL;
 900
 901	mutex_lock(&icc_lock);
 902
 903	dst = node_find(dst_id);
 904	if (!dst) {
 905		dst = icc_node_create_nolock(dst_id);
 906
 907		if (IS_ERR(dst)) {
 908			ret = PTR_ERR(dst);
 909			goto out;
 910		}
 911	}
 912
 913	new = krealloc(node->links,
 914		       (node->num_links + 1) * sizeof(*node->links),
 915		       GFP_KERNEL);
 916	if (!new) {
 917		ret = -ENOMEM;
 918		goto out;
 919	}
 920
 921	node->links = new;
 922	node->links[node->num_links++] = dst;
 923
 924out:
 925	mutex_unlock(&icc_lock);
 926
 927	return ret;
 928}
 929EXPORT_SYMBOL_GPL(icc_link_create);
 930
 931/**
 932 * icc_node_add() - add interconnect node to interconnect provider
 933 * @node: pointer to the interconnect node
 934 * @provider: pointer to the interconnect provider
 935 */
 936void icc_node_add(struct icc_node *node, struct icc_provider *provider)
 937{
 938	if (WARN_ON(node->provider))
 939		return;
 940
 941	mutex_lock(&icc_lock);
 942	mutex_lock(&icc_bw_lock);
 943
 944	node->provider = provider;
 945	list_add_tail(&node->node_list, &provider->nodes);
 946
 947	/* get the initial bandwidth values and sync them with hardware */
 948	if (provider->get_bw) {
 949		provider->get_bw(node, &node->init_avg, &node->init_peak);
 950	} else {
 951		node->init_avg = INT_MAX;
 952		node->init_peak = INT_MAX;
 953	}
 954	node->avg_bw = node->init_avg;
 955	node->peak_bw = node->init_peak;
 956
 957	if (node->avg_bw || node->peak_bw) {
 958		if (provider->pre_aggregate)
 959			provider->pre_aggregate(node);
 960
 961		if (provider->aggregate)
 962			provider->aggregate(node, 0, node->init_avg, node->init_peak,
 963					    &node->avg_bw, &node->peak_bw);
 964		if (provider->set)
 965			provider->set(node, node);
 966	}
 967
 968	node->avg_bw = 0;
 969	node->peak_bw = 0;
 970
 971	mutex_unlock(&icc_bw_lock);
 972	mutex_unlock(&icc_lock);
 973}
 974EXPORT_SYMBOL_GPL(icc_node_add);
 975
 976/**
 977 * icc_node_del() - delete interconnect node from interconnect provider
 978 * @node: pointer to the interconnect node
 979 */
 980void icc_node_del(struct icc_node *node)
 981{
 982	mutex_lock(&icc_lock);
 983
 984	list_del(&node->node_list);
 985
 986	mutex_unlock(&icc_lock);
 987}
 988EXPORT_SYMBOL_GPL(icc_node_del);
 989
 990/**
 991 * icc_nodes_remove() - remove all previously added nodes from provider
 992 * @provider: the interconnect provider we are removing nodes from
 993 *
 994 * Return: 0 on success, or an error code otherwise
 995 */
 996int icc_nodes_remove(struct icc_provider *provider)
 997{
 998	struct icc_node *n, *tmp;
 999
1000	if (WARN_ON(IS_ERR_OR_NULL(provider)))
1001		return -EINVAL;
1002
1003	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1004		icc_node_del(n);
1005		icc_node_destroy(n->id);
1006	}
1007
1008	return 0;
1009}
1010EXPORT_SYMBOL_GPL(icc_nodes_remove);
1011
1012/**
1013 * icc_provider_init() - initialize a new interconnect provider
1014 * @provider: the interconnect provider to initialize
1015 *
1016 * Must be called before adding nodes to the provider.
1017 */
1018void icc_provider_init(struct icc_provider *provider)
1019{
1020	WARN_ON(!provider->set);
1021
1022	INIT_LIST_HEAD(&provider->nodes);
1023}
1024EXPORT_SYMBOL_GPL(icc_provider_init);
1025
1026/**
1027 * icc_provider_register() - register a new interconnect provider
1028 * @provider: the interconnect provider to register
1029 *
1030 * Return: 0 on success, or an error code otherwise
1031 */
1032int icc_provider_register(struct icc_provider *provider)
1033{
1034	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1035		return -EINVAL;
1036
1037	mutex_lock(&icc_lock);
1038	list_add_tail(&provider->provider_list, &icc_providers);
1039	mutex_unlock(&icc_lock);
1040
1041	dev_dbg(provider->dev, "interconnect provider registered\n");
1042
1043	return 0;
1044}
1045EXPORT_SYMBOL_GPL(icc_provider_register);
1046
1047/**
1048 * icc_provider_deregister() - deregister an interconnect provider
1049 * @provider: the interconnect provider to deregister
1050 */
1051void icc_provider_deregister(struct icc_provider *provider)
1052{
1053	mutex_lock(&icc_lock);
1054	WARN_ON(provider->users);
1055
1056	list_del(&provider->provider_list);
1057	mutex_unlock(&icc_lock);
1058}
1059EXPORT_SYMBOL_GPL(icc_provider_deregister);
1060
1061static const struct of_device_id __maybe_unused ignore_list[] = {
1062	{ .compatible = "qcom,sc7180-ipa-virt" },
1063	{ .compatible = "qcom,sc8180x-ipa-virt" },
1064	{ .compatible = "qcom,sdx55-ipa-virt" },
1065	{ .compatible = "qcom,sm8150-ipa-virt" },
1066	{ .compatible = "qcom,sm8250-ipa-virt" },
1067	{}
1068};
1069
1070static int of_count_icc_providers(struct device_node *np)
1071{
1072	struct device_node *child;
1073	int count = 0;
1074
1075	for_each_available_child_of_node(np, child) {
1076		if (of_property_read_bool(child, "#interconnect-cells") &&
1077		    likely(!of_match_node(ignore_list, child)))
1078			count++;
1079		count += of_count_icc_providers(child);
1080	}
1081
1082	return count;
1083}
1084
1085void icc_sync_state(struct device *dev)
1086{
1087	struct icc_provider *p;
1088	struct icc_node *n;
1089	static int count;
1090
1091	count++;
1092
1093	if (count < providers_count)
1094		return;
1095
1096	mutex_lock(&icc_lock);
1097	mutex_lock(&icc_bw_lock);
1098	synced_state = true;
1099	list_for_each_entry(p, &icc_providers, provider_list) {
1100		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1101		list_for_each_entry(n, &p->nodes, node_list) {
1102			if (n->init_avg || n->init_peak) {
1103				n->init_avg = 0;
1104				n->init_peak = 0;
1105				aggregate_requests(n);
1106				p->set(n, n);
1107			}
1108		}
1109	}
1110	mutex_unlock(&icc_bw_lock);
1111	mutex_unlock(&icc_lock);
1112}
1113EXPORT_SYMBOL_GPL(icc_sync_state);
1114
1115static int __init icc_init(void)
1116{
1117	struct device_node *root;
1118
1119	/* Teach lockdep about lock ordering wrt. shrinker: */
1120	fs_reclaim_acquire(GFP_KERNEL);
1121	might_lock(&icc_bw_lock);
1122	fs_reclaim_release(GFP_KERNEL);
1123
1124	root = of_find_node_by_path("/");
1125
1126	providers_count = of_count_icc_providers(root);
1127	of_node_put(root);
1128
1129	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1130	debugfs_create_file("interconnect_summary", 0444,
1131			    icc_debugfs_dir, NULL, &icc_summary_fops);
1132	debugfs_create_file("interconnect_graph", 0444,
1133			    icc_debugfs_dir, NULL, &icc_graph_fops);
1134
1135	icc_debugfs_client_init(icc_debugfs_dir);
1136
1137	return 0;
1138}
1139
1140device_initcall(icc_init);