Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright © 2012-2014 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 21 * IN THE SOFTWARE.
 22 *
 23 * Authors:
 24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 25 *    Daniel Vetter <daniel.vetter@ffwll.ch>
 26 *
 27 */
 28
 29#include <linux/pm_runtime.h>
 30#include <linux/vgaarb.h>
 31
 32#include <drm/drm_print.h>
 33
 34#include "i915_drv.h"
 35#include "i915_trace.h"
 36
 37/**
 38 * DOC: runtime pm
 39 *
 40 * The i915 driver supports dynamic enabling and disabling of entire hardware
 41 * blocks at runtime. This is especially important on the display side where
 42 * software is supposed to control many power gates manually on recent hardware,
 43 * since on the GT side a lot of the power management is done by the hardware.
 44 * But even there some manual control at the device level is required.
 45 *
 46 * Since i915 supports a diverse set of platforms with a unified codebase and
 47 * hardware engineers just love to shuffle functionality around between power
 48 * domains there's a sizeable amount of indirection required. This file provides
 49 * generic functions to the driver for grabbing and releasing references for
 50 * abstract power domains. It then maps those to the actual power wells
 51 * present for a given platform.
 52 */
 53
 54#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
 55
 56#include <linux/sort.h>
 57
 58#define STACKDEPTH 8
 59
 60static noinline depot_stack_handle_t __save_depot_stack(void)
 61{
 62	unsigned long entries[STACKDEPTH];
 63	unsigned int n;
 64
 65	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
 66	return stack_depot_save(entries, n, GFP_NOWAIT | __GFP_NOWARN);
 67}
 68
 69static void __print_depot_stack(depot_stack_handle_t stack,
 70				char *buf, int sz, int indent)
 71{
 72	unsigned long *entries;
 73	unsigned int nr_entries;
 74
 75	nr_entries = stack_depot_fetch(stack, &entries);
 76	stack_trace_snprint(buf, sz, entries, nr_entries, indent);
 77}
 78
 79static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
 80{
 81	spin_lock_init(&rpm->debug.lock);
 82}
 83
 84static noinline depot_stack_handle_t
 85track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
 86{
 87	depot_stack_handle_t stack, *stacks;
 88	unsigned long flags;
 89
 90	if (!rpm->available)
 91		return -1;
 92
 93	stack = __save_depot_stack();
 94	if (!stack)
 95		return -1;
 96
 97	spin_lock_irqsave(&rpm->debug.lock, flags);
 98
 99	if (!rpm->debug.count)
100		rpm->debug.last_acquire = stack;
101
102	stacks = krealloc(rpm->debug.owners,
103			  (rpm->debug.count + 1) * sizeof(*stacks),
104			  GFP_NOWAIT | __GFP_NOWARN);
105	if (stacks) {
106		stacks[rpm->debug.count++] = stack;
107		rpm->debug.owners = stacks;
108	} else {
109		stack = -1;
110	}
111
112	spin_unlock_irqrestore(&rpm->debug.lock, flags);
113
114	return stack;
115}
116
117static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
118					     depot_stack_handle_t stack)
119{
120	unsigned long flags, n;
121	bool found = false;
122
123	if (unlikely(stack == -1))
124		return;
125
126	spin_lock_irqsave(&rpm->debug.lock, flags);
127	for (n = rpm->debug.count; n--; ) {
128		if (rpm->debug.owners[n] == stack) {
129			memmove(rpm->debug.owners + n,
130				rpm->debug.owners + n + 1,
131				(--rpm->debug.count - n) * sizeof(stack));
132			found = true;
133			break;
134		}
135	}
136	spin_unlock_irqrestore(&rpm->debug.lock, flags);
137
138	if (WARN(!found,
139		 "Unmatched wakeref (tracking %lu), count %u\n",
140		 rpm->debug.count, atomic_read(&rpm->wakeref_count))) {
141		char *buf;
142
143		buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
144		if (!buf)
145			return;
146
147		__print_depot_stack(stack, buf, PAGE_SIZE, 2);
148		DRM_DEBUG_DRIVER("wakeref %x from\n%s", stack, buf);
149
150		stack = READ_ONCE(rpm->debug.last_release);
151		if (stack) {
152			__print_depot_stack(stack, buf, PAGE_SIZE, 2);
153			DRM_DEBUG_DRIVER("wakeref last released at\n%s", buf);
154		}
155
156		kfree(buf);
157	}
158}
159
160static int cmphandle(const void *_a, const void *_b)
161{
162	const depot_stack_handle_t * const a = _a, * const b = _b;
163
164	if (*a < *b)
165		return -1;
166	else if (*a > *b)
167		return 1;
168	else
169		return 0;
170}
171
172static void
173__print_intel_runtime_pm_wakeref(struct drm_printer *p,
174				 const struct intel_runtime_pm_debug *dbg)
175{
176	unsigned long i;
177	char *buf;
178
179	buf = kmalloc(PAGE_SIZE, GFP_NOWAIT | __GFP_NOWARN);
180	if (!buf)
181		return;
182
183	if (dbg->last_acquire) {
184		__print_depot_stack(dbg->last_acquire, buf, PAGE_SIZE, 2);
185		drm_printf(p, "Wakeref last acquired:\n%s", buf);
186	}
187
188	if (dbg->last_release) {
189		__print_depot_stack(dbg->last_release, buf, PAGE_SIZE, 2);
190		drm_printf(p, "Wakeref last released:\n%s", buf);
191	}
192
193	drm_printf(p, "Wakeref count: %lu\n", dbg->count);
194
195	sort(dbg->owners, dbg->count, sizeof(*dbg->owners), cmphandle, NULL);
196
197	for (i = 0; i < dbg->count; i++) {
198		depot_stack_handle_t stack = dbg->owners[i];
199		unsigned long rep;
200
201		rep = 1;
202		while (i + 1 < dbg->count && dbg->owners[i + 1] == stack)
203			rep++, i++;
204		__print_depot_stack(stack, buf, PAGE_SIZE, 2);
205		drm_printf(p, "Wakeref x%lu taken at:\n%s", rep, buf);
206	}
207
208	kfree(buf);
209}
210
211static noinline void
212__untrack_all_wakerefs(struct intel_runtime_pm_debug *debug,
213		       struct intel_runtime_pm_debug *saved)
214{
215	*saved = *debug;
216
217	debug->owners = NULL;
218	debug->count = 0;
219	debug->last_release = __save_depot_stack();
220}
221
222static void
223dump_and_free_wakeref_tracking(struct intel_runtime_pm_debug *debug)
224{
225	if (debug->count) {
226		struct drm_printer p = drm_debug_printer("i915");
227
228		__print_intel_runtime_pm_wakeref(&p, debug);
229	}
230
231	kfree(debug->owners);
232}
233
234static noinline void
235__intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
236{
237	struct intel_runtime_pm_debug dbg = {};
238	unsigned long flags;
239
240	if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count,
241					 &rpm->debug.lock,
242					 flags))
243		return;
244
245	__untrack_all_wakerefs(&rpm->debug, &dbg);
246	spin_unlock_irqrestore(&rpm->debug.lock, flags);
247
248	dump_and_free_wakeref_tracking(&dbg);
249}
250
251static noinline void
252untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
253{
254	struct intel_runtime_pm_debug dbg = {};
255	unsigned long flags;
256
257	spin_lock_irqsave(&rpm->debug.lock, flags);
258	__untrack_all_wakerefs(&rpm->debug, &dbg);
259	spin_unlock_irqrestore(&rpm->debug.lock, flags);
260
261	dump_and_free_wakeref_tracking(&dbg);
262}
263
264void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
265				    struct drm_printer *p)
266{
267	struct intel_runtime_pm_debug dbg = {};
268
269	do {
270		unsigned long alloc = dbg.count;
271		depot_stack_handle_t *s;
272
273		spin_lock_irq(&rpm->debug.lock);
274		dbg.count = rpm->debug.count;
275		if (dbg.count <= alloc) {
276			memcpy(dbg.owners,
277			       rpm->debug.owners,
278			       dbg.count * sizeof(*s));
279		}
280		dbg.last_acquire = rpm->debug.last_acquire;
281		dbg.last_release = rpm->debug.last_release;
282		spin_unlock_irq(&rpm->debug.lock);
283		if (dbg.count <= alloc)
284			break;
285
286		s = krealloc(dbg.owners,
287			     dbg.count * sizeof(*s),
288			     GFP_NOWAIT | __GFP_NOWARN);
289		if (!s)
290			goto out;
291
292		dbg.owners = s;
293	} while (1);
294
295	__print_intel_runtime_pm_wakeref(p, &dbg);
296
297out:
298	kfree(dbg.owners);
299}
300
301#else
302
303static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
304{
305}
306
307static depot_stack_handle_t
308track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
309{
310	return -1;
311}
312
313static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
314					     intel_wakeref_t wref)
315{
316}
317
318static void
319__intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
320{
321	atomic_dec(&rpm->wakeref_count);
322}
323
324static void
325untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
326{
327}
328
329#endif
330
331static void
332intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock)
333{
334	if (wakelock) {
335		atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
336		assert_rpm_wakelock_held(rpm);
337	} else {
338		atomic_inc(&rpm->wakeref_count);
339		assert_rpm_raw_wakeref_held(rpm);
340	}
341}
342
343static void
344intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock)
345{
346	if (wakelock) {
347		assert_rpm_wakelock_held(rpm);
348		atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
349	} else {
350		assert_rpm_raw_wakeref_held(rpm);
351	}
352
353	__intel_wakeref_dec_and_check_tracking(rpm);
354}
355
356static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm,
357					      bool wakelock)
358{
359	int ret;
360
361	ret = pm_runtime_get_sync(rpm->kdev);
362	WARN_ONCE(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
363
364	intel_runtime_pm_acquire(rpm, wakelock);
365
366	return track_intel_runtime_pm_wakeref(rpm);
367}
368
369/**
370 * intel_runtime_pm_get_raw - grab a raw runtime pm reference
371 * @rpm: the intel_runtime_pm structure
372 *
373 * This is the unlocked version of intel_display_power_is_enabled() and should
374 * only be used from error capture and recovery code where deadlocks are
375 * possible.
376 * This function grabs a device-level runtime pm reference (mostly used for
377 * asynchronous PM management from display code) and ensures that it is powered
378 * up. Raw references are not considered during wakelock assert checks.
379 *
380 * Any runtime pm reference obtained by this function must have a symmetric
381 * call to intel_runtime_pm_put_raw() to release the reference again.
382 *
383 * Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates
384 * as True if the wakeref was acquired, or False otherwise.
385 */
386intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm)
387{
388	return __intel_runtime_pm_get(rpm, false);
389}
390
391/**
392 * intel_runtime_pm_get - grab a runtime pm reference
393 * @rpm: the intel_runtime_pm structure
394 *
395 * This function grabs a device-level runtime pm reference (mostly used for GEM
396 * code to ensure the GTT or GT is on) and ensures that it is powered up.
397 *
398 * Any runtime pm reference obtained by this function must have a symmetric
399 * call to intel_runtime_pm_put() to release the reference again.
400 *
401 * Returns: the wakeref cookie to pass to intel_runtime_pm_put()
402 */
403intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm)
404{
405	return __intel_runtime_pm_get(rpm, true);
406}
407
408/**
409 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
410 * @rpm: the intel_runtime_pm structure
411 *
412 * This function grabs a device-level runtime pm reference if the device is
413 * already in use and ensures that it is powered up. It is illegal to try
414 * and access the HW should intel_runtime_pm_get_if_in_use() report failure.
415 *
416 * Any runtime pm reference obtained by this function must have a symmetric
417 * call to intel_runtime_pm_put() to release the reference again.
418 *
419 * Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates
420 * as True if the wakeref was acquired, or False otherwise.
421 */
422intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm)
423{
424	if (IS_ENABLED(CONFIG_PM)) {
425		/*
426		 * In cases runtime PM is disabled by the RPM core and we get
427		 * an -EINVAL return value we are not supposed to call this
428		 * function, since the power state is undefined. This applies
429		 * atm to the late/early system suspend/resume handlers.
430		 */
431		if (pm_runtime_get_if_in_use(rpm->kdev) <= 0)
432			return 0;
433	}
434
435	intel_runtime_pm_acquire(rpm, true);
436
437	return track_intel_runtime_pm_wakeref(rpm);
438}
439
440/**
441 * intel_runtime_pm_get_noresume - grab a runtime pm reference
442 * @rpm: the intel_runtime_pm structure
443 *
444 * This function grabs a device-level runtime pm reference (mostly used for GEM
445 * code to ensure the GTT or GT is on).
446 *
447 * It will _not_ power up the device but instead only check that it's powered
448 * on.  Therefore it is only valid to call this functions from contexts where
449 * the device is known to be powered up and where trying to power it up would
450 * result in hilarity and deadlocks. That pretty much means only the system
451 * suspend/resume code where this is used to grab runtime pm references for
452 * delayed setup down in work items.
453 *
454 * Any runtime pm reference obtained by this function must have a symmetric
455 * call to intel_runtime_pm_put() to release the reference again.
456 *
457 * Returns: the wakeref cookie to pass to intel_runtime_pm_put()
458 */
459intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm)
460{
461	assert_rpm_wakelock_held(rpm);
462	pm_runtime_get_noresume(rpm->kdev);
463
464	intel_runtime_pm_acquire(rpm, true);
465
466	return track_intel_runtime_pm_wakeref(rpm);
467}
468
469static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm,
470				   intel_wakeref_t wref,
471				   bool wakelock)
472{
473	struct device *kdev = rpm->kdev;
474
475	untrack_intel_runtime_pm_wakeref(rpm, wref);
476
477	intel_runtime_pm_release(rpm, wakelock);
478
479	pm_runtime_mark_last_busy(kdev);
480	pm_runtime_put_autosuspend(kdev);
481}
482
483/**
484 * intel_runtime_pm_put_raw - release a raw runtime pm reference
485 * @rpm: the intel_runtime_pm structure
486 * @wref: wakeref acquired for the reference that is being released
487 *
488 * This function drops the device-level runtime pm reference obtained by
489 * intel_runtime_pm_get_raw() and might power down the corresponding
490 * hardware block right away if this is the last reference.
491 */
492void
493intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
494{
495	__intel_runtime_pm_put(rpm, wref, false);
496}
497
498/**
499 * intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference
500 * @rpm: the intel_runtime_pm structure
501 *
502 * This function drops the device-level runtime pm reference obtained by
503 * intel_runtime_pm_get() and might power down the corresponding
504 * hardware block right away if this is the last reference.
505 *
506 * This function exists only for historical reasons and should be avoided in
507 * new code, as the correctness of its use cannot be checked. Always use
508 * intel_runtime_pm_put() instead.
509 */
510void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm)
511{
512	__intel_runtime_pm_put(rpm, -1, true);
513}
514
515#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
516/**
517 * intel_runtime_pm_put - release a runtime pm reference
518 * @rpm: the intel_runtime_pm structure
519 * @wref: wakeref acquired for the reference that is being released
520 *
521 * This function drops the device-level runtime pm reference obtained by
522 * intel_runtime_pm_get() and might power down the corresponding
523 * hardware block right away if this is the last reference.
524 */
525void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
526{
527	__intel_runtime_pm_put(rpm, wref, true);
528}
529#endif
530
531/**
532 * intel_runtime_pm_enable - enable runtime pm
533 * @rpm: the intel_runtime_pm structure
534 *
535 * This function enables runtime pm at the end of the driver load sequence.
536 *
537 * Note that this function does currently not enable runtime pm for the
538 * subordinate display power domains. That is done by
539 * intel_power_domains_enable().
540 */
541void intel_runtime_pm_enable(struct intel_runtime_pm *rpm)
542{
543	struct device *kdev = rpm->kdev;
544
545	/*
546	 * Disable the system suspend direct complete optimization, which can
547	 * leave the device suspended skipping the driver's suspend handlers
548	 * if the device was already runtime suspended. This is needed due to
549	 * the difference in our runtime and system suspend sequence and
550	 * becaue the HDA driver may require us to enable the audio power
551	 * domain during system suspend.
552	 */
553	dev_pm_set_driver_flags(kdev, DPM_FLAG_NEVER_SKIP);
554
555	pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
556	pm_runtime_mark_last_busy(kdev);
557
558	/*
559	 * Take a permanent reference to disable the RPM functionality and drop
560	 * it only when unloading the driver. Use the low level get/put helpers,
561	 * so the driver's own RPM reference tracking asserts also work on
562	 * platforms without RPM support.
563	 */
564	if (!rpm->available) {
565		int ret;
566
567		pm_runtime_dont_use_autosuspend(kdev);
568		ret = pm_runtime_get_sync(kdev);
569		WARN(ret < 0, "pm_runtime_get_sync() failed: %d\n", ret);
570	} else {
571		pm_runtime_use_autosuspend(kdev);
572	}
573
574	/*
575	 * The core calls the driver load handler with an RPM reference held.
576	 * We drop that here and will reacquire it during unloading in
577	 * intel_power_domains_fini().
578	 */
579	pm_runtime_put_autosuspend(kdev);
580}
581
582void intel_runtime_pm_disable(struct intel_runtime_pm *rpm)
583{
584	struct device *kdev = rpm->kdev;
585
586	/* Transfer rpm ownership back to core */
587	WARN(pm_runtime_get_sync(kdev) < 0,
588	     "Failed to pass rpm ownership back to core\n");
589
590	pm_runtime_dont_use_autosuspend(kdev);
591
592	if (!rpm->available)
593		pm_runtime_put(kdev);
594}
595
596void intel_runtime_pm_driver_release(struct intel_runtime_pm *rpm)
597{
598	int count = atomic_read(&rpm->wakeref_count);
599
600	WARN(count,
601	     "i915 raw-wakerefs=%d wakelocks=%d on cleanup\n",
602	     intel_rpm_raw_wakeref_count(count),
603	     intel_rpm_wakelock_count(count));
604
605	untrack_all_intel_runtime_pm_wakerefs(rpm);
606}
607
608void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm)
609{
610	struct drm_i915_private *i915 =
611			container_of(rpm, struct drm_i915_private, runtime_pm);
612	struct pci_dev *pdev = i915->drm.pdev;
613	struct device *kdev = &pdev->dev;
614
615	rpm->kdev = kdev;
616	rpm->available = HAS_RUNTIME_PM(i915);
617
618	init_intel_runtime_pm_wakeref(rpm);
619}