Loading...
Note: File does not exist in v3.1.
1/*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 * Daniel Vetter <daniel.vetter@ffwll.ch>
26 *
27 */
28
29#include <linux/pm_runtime.h>
30#include <linux/vgaarb.h>
31
32#include "i915_drv.h"
33#include "intel_drv.h"
34
35/**
36 * DOC: runtime pm
37 *
38 * The i915 driver supports dynamic enabling and disabling of entire hardware
39 * blocks at runtime. This is especially important on the display side where
40 * software is supposed to control many power gates manually on recent hardware,
41 * since on the GT side a lot of the power management is done by the hardware.
42 * But even there some manual control at the device level is required.
43 *
44 * Since i915 supports a diverse set of platforms with a unified codebase and
45 * hardware engineers just love to shuffle functionality around between power
46 * domains there's a sizeable amount of indirection required. This file provides
47 * generic functions to the driver for grabbing and releasing references for
48 * abstract power domains. It then maps those to the actual power wells
49 * present for a given platform.
50 */
51
52#define for_each_power_well(i, power_well, domain_mask, power_domains) \
53 for (i = 0; \
54 i < (power_domains)->power_well_count && \
55 ((power_well) = &(power_domains)->power_wells[i]); \
56 i++) \
57 for_each_if ((power_well)->domains & (domain_mask))
58
59#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 for (i = (power_domains)->power_well_count - 1; \
61 i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 i--) \
63 for_each_if ((power_well)->domains & (domain_mask))
64
65bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 int power_well_id);
67
68static struct i915_power_well *
69lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70
71const char *
72intel_display_power_domain_str(enum intel_display_power_domain domain)
73{
74 switch (domain) {
75 case POWER_DOMAIN_PIPE_A:
76 return "PIPE_A";
77 case POWER_DOMAIN_PIPE_B:
78 return "PIPE_B";
79 case POWER_DOMAIN_PIPE_C:
80 return "PIPE_C";
81 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 return "PIPE_A_PANEL_FITTER";
83 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 return "PIPE_B_PANEL_FITTER";
85 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 return "PIPE_C_PANEL_FITTER";
87 case POWER_DOMAIN_TRANSCODER_A:
88 return "TRANSCODER_A";
89 case POWER_DOMAIN_TRANSCODER_B:
90 return "TRANSCODER_B";
91 case POWER_DOMAIN_TRANSCODER_C:
92 return "TRANSCODER_C";
93 case POWER_DOMAIN_TRANSCODER_EDP:
94 return "TRANSCODER_EDP";
95 case POWER_DOMAIN_TRANSCODER_DSI_A:
96 return "TRANSCODER_DSI_A";
97 case POWER_DOMAIN_TRANSCODER_DSI_C:
98 return "TRANSCODER_DSI_C";
99 case POWER_DOMAIN_PORT_DDI_A_LANES:
100 return "PORT_DDI_A_LANES";
101 case POWER_DOMAIN_PORT_DDI_B_LANES:
102 return "PORT_DDI_B_LANES";
103 case POWER_DOMAIN_PORT_DDI_C_LANES:
104 return "PORT_DDI_C_LANES";
105 case POWER_DOMAIN_PORT_DDI_D_LANES:
106 return "PORT_DDI_D_LANES";
107 case POWER_DOMAIN_PORT_DDI_E_LANES:
108 return "PORT_DDI_E_LANES";
109 case POWER_DOMAIN_PORT_DSI:
110 return "PORT_DSI";
111 case POWER_DOMAIN_PORT_CRT:
112 return "PORT_CRT";
113 case POWER_DOMAIN_PORT_OTHER:
114 return "PORT_OTHER";
115 case POWER_DOMAIN_VGA:
116 return "VGA";
117 case POWER_DOMAIN_AUDIO:
118 return "AUDIO";
119 case POWER_DOMAIN_PLLS:
120 return "PLLS";
121 case POWER_DOMAIN_AUX_A:
122 return "AUX_A";
123 case POWER_DOMAIN_AUX_B:
124 return "AUX_B";
125 case POWER_DOMAIN_AUX_C:
126 return "AUX_C";
127 case POWER_DOMAIN_AUX_D:
128 return "AUX_D";
129 case POWER_DOMAIN_GMBUS:
130 return "GMBUS";
131 case POWER_DOMAIN_INIT:
132 return "INIT";
133 case POWER_DOMAIN_MODESET:
134 return "MODESET";
135 default:
136 MISSING_CASE(domain);
137 return "?";
138 }
139}
140
141static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 struct i915_power_well *power_well)
143{
144 DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 power_well->ops->enable(dev_priv, power_well);
146 power_well->hw_enabled = true;
147}
148
149static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 struct i915_power_well *power_well)
151{
152 DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 power_well->hw_enabled = false;
154 power_well->ops->disable(dev_priv, power_well);
155}
156
157static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 struct i915_power_well *power_well)
159{
160 if (!power_well->count++)
161 intel_power_well_enable(dev_priv, power_well);
162}
163
164static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 struct i915_power_well *power_well)
166{
167 WARN(!power_well->count, "Use count on power well %s is already zero",
168 power_well->name);
169
170 if (!--power_well->count)
171 intel_power_well_disable(dev_priv, power_well);
172}
173
174/*
175 * We should only use the power well if we explicitly asked the hardware to
176 * enable it, so check if it's enabled and also check if we've requested it to
177 * be enabled.
178 */
179static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 struct i915_power_well *power_well)
181{
182 return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184}
185
186/**
187 * __intel_display_power_is_enabled - unlocked check for a power domain
188 * @dev_priv: i915 device instance
189 * @domain: power domain to check
190 *
191 * This is the unlocked version of intel_display_power_is_enabled() and should
192 * only be used from error capture and recovery code where deadlocks are
193 * possible.
194 *
195 * Returns:
196 * True when the power domain is enabled, false otherwise.
197 */
198bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 enum intel_display_power_domain domain)
200{
201 struct i915_power_domains *power_domains;
202 struct i915_power_well *power_well;
203 bool is_enabled;
204 int i;
205
206 if (dev_priv->pm.suspended)
207 return false;
208
209 power_domains = &dev_priv->power_domains;
210
211 is_enabled = true;
212
213 for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 if (power_well->always_on)
215 continue;
216
217 if (!power_well->hw_enabled) {
218 is_enabled = false;
219 break;
220 }
221 }
222
223 return is_enabled;
224}
225
226/**
227 * intel_display_power_is_enabled - check for a power domain
228 * @dev_priv: i915 device instance
229 * @domain: power domain to check
230 *
231 * This function can be used to check the hw power domain state. It is mostly
232 * used in hardware state readout functions. Everywhere else code should rely
233 * upon explicit power domain reference counting to ensure that the hardware
234 * block is powered up before accessing it.
235 *
236 * Callers must hold the relevant modesetting locks to ensure that concurrent
237 * threads can't disable the power well while the caller tries to read a few
238 * registers.
239 *
240 * Returns:
241 * True when the power domain is enabled, false otherwise.
242 */
243bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 enum intel_display_power_domain domain)
245{
246 struct i915_power_domains *power_domains;
247 bool ret;
248
249 power_domains = &dev_priv->power_domains;
250
251 mutex_lock(&power_domains->lock);
252 ret = __intel_display_power_is_enabled(dev_priv, domain);
253 mutex_unlock(&power_domains->lock);
254
255 return ret;
256}
257
258/**
259 * intel_display_set_init_power - set the initial power domain state
260 * @dev_priv: i915 device instance
261 * @enable: whether to enable or disable the initial power domain state
262 *
263 * For simplicity our driver load/unload and system suspend/resume code assumes
264 * that all power domains are always enabled. This functions controls the state
265 * of this little hack. While the initial power domain state is enabled runtime
266 * pm is effectively disabled.
267 */
268void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 bool enable)
270{
271 if (dev_priv->power_domains.init_power_on == enable)
272 return;
273
274 if (enable)
275 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 else
277 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278
279 dev_priv->power_domains.init_power_on = enable;
280}
281
282/*
283 * Starting with Haswell, we have a "Power Down Well" that can be turned off
284 * when not needed anymore. We have 4 registers that can request the power well
285 * to be enabled, and it will only be disabled if none of the registers is
286 * requesting it to be enabled.
287 */
288static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289{
290 struct pci_dev *pdev = dev_priv->drm.pdev;
291
292 /*
293 * After we re-enable the power well, if we touch VGA register 0x3d5
294 * we'll get unclaimed register interrupts. This stops after we write
295 * anything to the VGA MSR register. The vgacon module uses this
296 * register all the time, so if we unbind our driver and, as a
297 * consequence, bind vgacon, we'll get stuck in an infinite loop at
298 * console_unlock(). So make here we touch the VGA MSR register, making
299 * sure vgacon can keep working normally without triggering interrupts
300 * and error messages.
301 */
302 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
303 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
304 vga_put(pdev, VGA_RSRC_LEGACY_IO);
305
306 if (IS_BROADWELL(dev_priv))
307 gen8_irq_power_well_post_enable(dev_priv,
308 1 << PIPE_C | 1 << PIPE_B);
309}
310
311static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
312{
313 if (IS_BROADWELL(dev_priv))
314 gen8_irq_power_well_pre_disable(dev_priv,
315 1 << PIPE_C | 1 << PIPE_B);
316}
317
318static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
319 struct i915_power_well *power_well)
320{
321 struct pci_dev *pdev = dev_priv->drm.pdev;
322
323 /*
324 * After we re-enable the power well, if we touch VGA register 0x3d5
325 * we'll get unclaimed register interrupts. This stops after we write
326 * anything to the VGA MSR register. The vgacon module uses this
327 * register all the time, so if we unbind our driver and, as a
328 * consequence, bind vgacon, we'll get stuck in an infinite loop at
329 * console_unlock(). So make here we touch the VGA MSR register, making
330 * sure vgacon can keep working normally without triggering interrupts
331 * and error messages.
332 */
333 if (power_well->id == SKL_DISP_PW_2) {
334 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
335 outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
336 vga_put(pdev, VGA_RSRC_LEGACY_IO);
337
338 gen8_irq_power_well_post_enable(dev_priv,
339 1 << PIPE_C | 1 << PIPE_B);
340 }
341}
342
343static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
344 struct i915_power_well *power_well)
345{
346 if (power_well->id == SKL_DISP_PW_2)
347 gen8_irq_power_well_pre_disable(dev_priv,
348 1 << PIPE_C | 1 << PIPE_B);
349}
350
351static void hsw_set_power_well(struct drm_i915_private *dev_priv,
352 struct i915_power_well *power_well, bool enable)
353{
354 bool is_enabled, enable_requested;
355 uint32_t tmp;
356
357 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
358 is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
359 enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
360
361 if (enable) {
362 if (!enable_requested)
363 I915_WRITE(HSW_PWR_WELL_DRIVER,
364 HSW_PWR_WELL_ENABLE_REQUEST);
365
366 if (!is_enabled) {
367 DRM_DEBUG_KMS("Enabling power well\n");
368 if (intel_wait_for_register(dev_priv,
369 HSW_PWR_WELL_DRIVER,
370 HSW_PWR_WELL_STATE_ENABLED,
371 HSW_PWR_WELL_STATE_ENABLED,
372 20))
373 DRM_ERROR("Timeout enabling power well\n");
374 hsw_power_well_post_enable(dev_priv);
375 }
376
377 } else {
378 if (enable_requested) {
379 hsw_power_well_pre_disable(dev_priv);
380 I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
381 POSTING_READ(HSW_PWR_WELL_DRIVER);
382 DRM_DEBUG_KMS("Requesting to disable the power well\n");
383 }
384 }
385}
386
387#define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
388 BIT(POWER_DOMAIN_TRANSCODER_A) | \
389 BIT(POWER_DOMAIN_PIPE_B) | \
390 BIT(POWER_DOMAIN_TRANSCODER_B) | \
391 BIT(POWER_DOMAIN_PIPE_C) | \
392 BIT(POWER_DOMAIN_TRANSCODER_C) | \
393 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
394 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
395 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
396 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
397 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
398 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
399 BIT(POWER_DOMAIN_AUX_B) | \
400 BIT(POWER_DOMAIN_AUX_C) | \
401 BIT(POWER_DOMAIN_AUX_D) | \
402 BIT(POWER_DOMAIN_AUDIO) | \
403 BIT(POWER_DOMAIN_VGA) | \
404 BIT(POWER_DOMAIN_INIT))
405#define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS ( \
406 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
407 BIT(POWER_DOMAIN_PORT_DDI_E_LANES) | \
408 BIT(POWER_DOMAIN_INIT))
409#define SKL_DISPLAY_DDI_B_POWER_DOMAINS ( \
410 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
411 BIT(POWER_DOMAIN_INIT))
412#define SKL_DISPLAY_DDI_C_POWER_DOMAINS ( \
413 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
414 BIT(POWER_DOMAIN_INIT))
415#define SKL_DISPLAY_DDI_D_POWER_DOMAINS ( \
416 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
417 BIT(POWER_DOMAIN_INIT))
418#define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
419 SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
420 BIT(POWER_DOMAIN_MODESET) | \
421 BIT(POWER_DOMAIN_AUX_A) | \
422 BIT(POWER_DOMAIN_INIT))
423
424#define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
425 BIT(POWER_DOMAIN_TRANSCODER_A) | \
426 BIT(POWER_DOMAIN_PIPE_B) | \
427 BIT(POWER_DOMAIN_TRANSCODER_B) | \
428 BIT(POWER_DOMAIN_PIPE_C) | \
429 BIT(POWER_DOMAIN_TRANSCODER_C) | \
430 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
431 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
432 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
433 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
434 BIT(POWER_DOMAIN_AUX_B) | \
435 BIT(POWER_DOMAIN_AUX_C) | \
436 BIT(POWER_DOMAIN_AUDIO) | \
437 BIT(POWER_DOMAIN_VGA) | \
438 BIT(POWER_DOMAIN_GMBUS) | \
439 BIT(POWER_DOMAIN_INIT))
440#define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
441 BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
442 BIT(POWER_DOMAIN_MODESET) | \
443 BIT(POWER_DOMAIN_AUX_A) | \
444 BIT(POWER_DOMAIN_INIT))
445#define BXT_DPIO_CMN_A_POWER_DOMAINS ( \
446 BIT(POWER_DOMAIN_PORT_DDI_A_LANES) | \
447 BIT(POWER_DOMAIN_AUX_A) | \
448 BIT(POWER_DOMAIN_INIT))
449#define BXT_DPIO_CMN_BC_POWER_DOMAINS ( \
450 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
451 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
452 BIT(POWER_DOMAIN_AUX_B) | \
453 BIT(POWER_DOMAIN_AUX_C) | \
454 BIT(POWER_DOMAIN_INIT))
455
456static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
457{
458 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
459 "DC9 already programmed to be enabled.\n");
460 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
461 "DC5 still not disabled to enable DC9.\n");
462 WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
463 WARN_ONCE(intel_irqs_enabled(dev_priv),
464 "Interrupts not disabled yet.\n");
465
466 /*
467 * TODO: check for the following to verify the conditions to enter DC9
468 * state are satisfied:
469 * 1] Check relevant display engine registers to verify if mode set
470 * disable sequence was followed.
471 * 2] Check if display uninitialize sequence is initialized.
472 */
473}
474
475static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
476{
477 WARN_ONCE(intel_irqs_enabled(dev_priv),
478 "Interrupts not disabled yet.\n");
479 WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
480 "DC5 still not disabled.\n");
481
482 /*
483 * TODO: check for the following to verify DC9 state was indeed
484 * entered before programming to disable it:
485 * 1] Check relevant display engine registers to verify if mode
486 * set disable sequence was followed.
487 * 2] Check if display uninitialize sequence is initialized.
488 */
489}
490
491static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
492 u32 state)
493{
494 int rewrites = 0;
495 int rereads = 0;
496 u32 v;
497
498 I915_WRITE(DC_STATE_EN, state);
499
500 /* It has been observed that disabling the dc6 state sometimes
501 * doesn't stick and dmc keeps returning old value. Make sure
502 * the write really sticks enough times and also force rewrite until
503 * we are confident that state is exactly what we want.
504 */
505 do {
506 v = I915_READ(DC_STATE_EN);
507
508 if (v != state) {
509 I915_WRITE(DC_STATE_EN, state);
510 rewrites++;
511 rereads = 0;
512 } else if (rereads++ > 5) {
513 break;
514 }
515
516 } while (rewrites < 100);
517
518 if (v != state)
519 DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
520 state, v);
521
522 /* Most of the times we need one retry, avoid spam */
523 if (rewrites > 1)
524 DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
525 state, rewrites);
526}
527
528static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
529{
530 u32 mask;
531
532 mask = DC_STATE_EN_UPTO_DC5;
533 if (IS_BROXTON(dev_priv))
534 mask |= DC_STATE_EN_DC9;
535 else
536 mask |= DC_STATE_EN_UPTO_DC6;
537
538 return mask;
539}
540
541void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
542{
543 u32 val;
544
545 val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
546
547 DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
548 dev_priv->csr.dc_state, val);
549 dev_priv->csr.dc_state = val;
550}
551
552static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
553{
554 uint32_t val;
555 uint32_t mask;
556
557 if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
558 state &= dev_priv->csr.allowed_dc_mask;
559
560 val = I915_READ(DC_STATE_EN);
561 mask = gen9_dc_mask(dev_priv);
562 DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
563 val & mask, state);
564
565 /* Check if DMC is ignoring our DC state requests */
566 if ((val & mask) != dev_priv->csr.dc_state)
567 DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
568 dev_priv->csr.dc_state, val & mask);
569
570 val &= ~mask;
571 val |= state;
572
573 gen9_write_dc_state(dev_priv, val);
574
575 dev_priv->csr.dc_state = val & mask;
576}
577
578void bxt_enable_dc9(struct drm_i915_private *dev_priv)
579{
580 assert_can_enable_dc9(dev_priv);
581
582 DRM_DEBUG_KMS("Enabling DC9\n");
583
584 intel_power_sequencer_reset(dev_priv);
585 gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
586}
587
588void bxt_disable_dc9(struct drm_i915_private *dev_priv)
589{
590 assert_can_disable_dc9(dev_priv);
591
592 DRM_DEBUG_KMS("Disabling DC9\n");
593
594 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
595
596 intel_pps_unlock_regs_wa(dev_priv);
597}
598
599static void assert_csr_loaded(struct drm_i915_private *dev_priv)
600{
601 WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
602 "CSR program storage start is NULL\n");
603 WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
604 WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
605}
606
607static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
608{
609 bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
610 SKL_DISP_PW_2);
611
612 WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
613
614 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
615 "DC5 already programmed to be enabled.\n");
616 assert_rpm_wakelock_held(dev_priv);
617
618 assert_csr_loaded(dev_priv);
619}
620
621void gen9_enable_dc5(struct drm_i915_private *dev_priv)
622{
623 assert_can_enable_dc5(dev_priv);
624
625 DRM_DEBUG_KMS("Enabling DC5\n");
626
627 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
628}
629
630static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
631{
632 WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
633 "Backlight is not disabled.\n");
634 WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
635 "DC6 already programmed to be enabled.\n");
636
637 assert_csr_loaded(dev_priv);
638}
639
640void skl_enable_dc6(struct drm_i915_private *dev_priv)
641{
642 assert_can_enable_dc6(dev_priv);
643
644 DRM_DEBUG_KMS("Enabling DC6\n");
645
646 gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
647
648}
649
650void skl_disable_dc6(struct drm_i915_private *dev_priv)
651{
652 DRM_DEBUG_KMS("Disabling DC6\n");
653
654 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
655}
656
657static void
658gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
659 struct i915_power_well *power_well)
660{
661 enum skl_disp_power_wells power_well_id = power_well->id;
662 u32 val;
663 u32 mask;
664
665 mask = SKL_POWER_WELL_REQ(power_well_id);
666
667 val = I915_READ(HSW_PWR_WELL_KVMR);
668 if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
669 power_well->name))
670 I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
671
672 val = I915_READ(HSW_PWR_WELL_BIOS);
673 val |= I915_READ(HSW_PWR_WELL_DEBUG);
674
675 if (!(val & mask))
676 return;
677
678 /*
679 * DMC is known to force on the request bits for power well 1 on SKL
680 * and BXT and the misc IO power well on SKL but we don't expect any
681 * other request bits to be set, so WARN for those.
682 */
683 if (power_well_id == SKL_DISP_PW_1 ||
684 ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
685 power_well_id == SKL_DISP_PW_MISC_IO))
686 DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
687 "by DMC\n", power_well->name);
688 else
689 WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
690 power_well->name);
691
692 I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
693 I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
694}
695
696static void skl_set_power_well(struct drm_i915_private *dev_priv,
697 struct i915_power_well *power_well, bool enable)
698{
699 uint32_t tmp, fuse_status;
700 uint32_t req_mask, state_mask;
701 bool is_enabled, enable_requested, check_fuse_status = false;
702
703 tmp = I915_READ(HSW_PWR_WELL_DRIVER);
704 fuse_status = I915_READ(SKL_FUSE_STATUS);
705
706 switch (power_well->id) {
707 case SKL_DISP_PW_1:
708 if (intel_wait_for_register(dev_priv,
709 SKL_FUSE_STATUS,
710 SKL_FUSE_PG0_DIST_STATUS,
711 SKL_FUSE_PG0_DIST_STATUS,
712 1)) {
713 DRM_ERROR("PG0 not enabled\n");
714 return;
715 }
716 break;
717 case SKL_DISP_PW_2:
718 if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
719 DRM_ERROR("PG1 in disabled state\n");
720 return;
721 }
722 break;
723 case SKL_DISP_PW_DDI_A_E:
724 case SKL_DISP_PW_DDI_B:
725 case SKL_DISP_PW_DDI_C:
726 case SKL_DISP_PW_DDI_D:
727 case SKL_DISP_PW_MISC_IO:
728 break;
729 default:
730 WARN(1, "Unknown power well %lu\n", power_well->id);
731 return;
732 }
733
734 req_mask = SKL_POWER_WELL_REQ(power_well->id);
735 enable_requested = tmp & req_mask;
736 state_mask = SKL_POWER_WELL_STATE(power_well->id);
737 is_enabled = tmp & state_mask;
738
739 if (!enable && enable_requested)
740 skl_power_well_pre_disable(dev_priv, power_well);
741
742 if (enable) {
743 if (!enable_requested) {
744 WARN((tmp & state_mask) &&
745 !I915_READ(HSW_PWR_WELL_BIOS),
746 "Invalid for power well status to be enabled, unless done by the BIOS, \
747 when request is to disable!\n");
748 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
749 }
750
751 if (!is_enabled) {
752 DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
753 check_fuse_status = true;
754 }
755 } else {
756 if (enable_requested) {
757 I915_WRITE(HSW_PWR_WELL_DRIVER, tmp & ~req_mask);
758 POSTING_READ(HSW_PWR_WELL_DRIVER);
759 DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
760 }
761
762 if (IS_GEN9(dev_priv))
763 gen9_sanitize_power_well_requests(dev_priv, power_well);
764 }
765
766 if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
767 1))
768 DRM_ERROR("%s %s timeout\n",
769 power_well->name, enable ? "enable" : "disable");
770
771 if (check_fuse_status) {
772 if (power_well->id == SKL_DISP_PW_1) {
773 if (intel_wait_for_register(dev_priv,
774 SKL_FUSE_STATUS,
775 SKL_FUSE_PG1_DIST_STATUS,
776 SKL_FUSE_PG1_DIST_STATUS,
777 1))
778 DRM_ERROR("PG1 distributing status timeout\n");
779 } else if (power_well->id == SKL_DISP_PW_2) {
780 if (intel_wait_for_register(dev_priv,
781 SKL_FUSE_STATUS,
782 SKL_FUSE_PG2_DIST_STATUS,
783 SKL_FUSE_PG2_DIST_STATUS,
784 1))
785 DRM_ERROR("PG2 distributing status timeout\n");
786 }
787 }
788
789 if (enable && !is_enabled)
790 skl_power_well_post_enable(dev_priv, power_well);
791}
792
793static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
794 struct i915_power_well *power_well)
795{
796 hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
797
798 /*
799 * We're taking over the BIOS, so clear any requests made by it since
800 * the driver is in charge now.
801 */
802 if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
803 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
804}
805
806static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
807 struct i915_power_well *power_well)
808{
809 hsw_set_power_well(dev_priv, power_well, true);
810}
811
812static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
813 struct i915_power_well *power_well)
814{
815 hsw_set_power_well(dev_priv, power_well, false);
816}
817
818static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
819 struct i915_power_well *power_well)
820{
821 uint32_t mask = SKL_POWER_WELL_REQ(power_well->id) |
822 SKL_POWER_WELL_STATE(power_well->id);
823
824 return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
825}
826
827static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
828 struct i915_power_well *power_well)
829{
830 skl_set_power_well(dev_priv, power_well, power_well->count > 0);
831
832 /* Clear any request made by BIOS as driver is taking over */
833 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
834}
835
836static void skl_power_well_enable(struct drm_i915_private *dev_priv,
837 struct i915_power_well *power_well)
838{
839 skl_set_power_well(dev_priv, power_well, true);
840}
841
842static void skl_power_well_disable(struct drm_i915_private *dev_priv,
843 struct i915_power_well *power_well)
844{
845 skl_set_power_well(dev_priv, power_well, false);
846}
847
848static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
849 struct i915_power_well *power_well)
850{
851 bxt_ddi_phy_init(dev_priv, power_well->data);
852}
853
854static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
855 struct i915_power_well *power_well)
856{
857 bxt_ddi_phy_uninit(dev_priv, power_well->data);
858}
859
860static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
861 struct i915_power_well *power_well)
862{
863 return bxt_ddi_phy_is_enabled(dev_priv, power_well->data);
864}
865
866static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
867 struct i915_power_well *power_well)
868{
869 if (power_well->count > 0)
870 bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
871 else
872 bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
873}
874
875
876static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
877{
878 struct i915_power_well *power_well;
879
880 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
881 if (power_well->count > 0)
882 bxt_ddi_phy_verify_state(dev_priv, power_well->data);
883
884 power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
885 if (power_well->count > 0)
886 bxt_ddi_phy_verify_state(dev_priv, power_well->data);
887}
888
889static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
890 struct i915_power_well *power_well)
891{
892 return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
893}
894
895static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
896{
897 u32 tmp = I915_READ(DBUF_CTL);
898
899 WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
900 (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
901 "Unexpected DBuf power power state (0x%08x)\n", tmp);
902}
903
904static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
905 struct i915_power_well *power_well)
906{
907 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
908
909 WARN_ON(dev_priv->cdclk_freq !=
910 dev_priv->display.get_display_clock_speed(dev_priv));
911
912 gen9_assert_dbuf_enabled(dev_priv);
913
914 if (IS_BROXTON(dev_priv))
915 bxt_verify_ddi_phy_power_wells(dev_priv);
916}
917
918static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
919 struct i915_power_well *power_well)
920{
921 if (!dev_priv->csr.dmc_payload)
922 return;
923
924 if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
925 skl_enable_dc6(dev_priv);
926 else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
927 gen9_enable_dc5(dev_priv);
928}
929
930static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
931 struct i915_power_well *power_well)
932{
933 if (power_well->count > 0)
934 gen9_dc_off_power_well_enable(dev_priv, power_well);
935 else
936 gen9_dc_off_power_well_disable(dev_priv, power_well);
937}
938
939static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
940 struct i915_power_well *power_well)
941{
942}
943
944static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
945 struct i915_power_well *power_well)
946{
947 return true;
948}
949
950static void vlv_set_power_well(struct drm_i915_private *dev_priv,
951 struct i915_power_well *power_well, bool enable)
952{
953 enum punit_power_well power_well_id = power_well->id;
954 u32 mask;
955 u32 state;
956 u32 ctrl;
957
958 mask = PUNIT_PWRGT_MASK(power_well_id);
959 state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
960 PUNIT_PWRGT_PWR_GATE(power_well_id);
961
962 mutex_lock(&dev_priv->rps.hw_lock);
963
964#define COND \
965 ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
966
967 if (COND)
968 goto out;
969
970 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
971 ctrl &= ~mask;
972 ctrl |= state;
973 vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
974
975 if (wait_for(COND, 100))
976 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
977 state,
978 vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
979
980#undef COND
981
982out:
983 mutex_unlock(&dev_priv->rps.hw_lock);
984}
985
986static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
987 struct i915_power_well *power_well)
988{
989 vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
990}
991
992static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
993 struct i915_power_well *power_well)
994{
995 vlv_set_power_well(dev_priv, power_well, true);
996}
997
998static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
999 struct i915_power_well *power_well)
1000{
1001 vlv_set_power_well(dev_priv, power_well, false);
1002}
1003
1004static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1005 struct i915_power_well *power_well)
1006{
1007 int power_well_id = power_well->id;
1008 bool enabled = false;
1009 u32 mask;
1010 u32 state;
1011 u32 ctrl;
1012
1013 mask = PUNIT_PWRGT_MASK(power_well_id);
1014 ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1015
1016 mutex_lock(&dev_priv->rps.hw_lock);
1017
1018 state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1019 /*
1020 * We only ever set the power-on and power-gate states, anything
1021 * else is unexpected.
1022 */
1023 WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1024 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1025 if (state == ctrl)
1026 enabled = true;
1027
1028 /*
1029 * A transient state at this point would mean some unexpected party
1030 * is poking at the power controls too.
1031 */
1032 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1033 WARN_ON(ctrl != state);
1034
1035 mutex_unlock(&dev_priv->rps.hw_lock);
1036
1037 return enabled;
1038}
1039
1040static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1041{
1042 u32 val;
1043
1044 /*
1045 * On driver load, a pipe may be active and driving a DSI display.
1046 * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
1047 * (and never recovering) in this case. intel_dsi_post_disable() will
1048 * clear it when we turn off the display.
1049 */
1050 val = I915_READ(DSPCLK_GATE_D);
1051 val &= DPOUNIT_CLOCK_GATE_DISABLE;
1052 val |= VRHUNIT_CLOCK_GATE_DISABLE;
1053 I915_WRITE(DSPCLK_GATE_D, val);
1054
1055 /*
1056 * Disable trickle feed and enable pnd deadline calculation
1057 */
1058 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1059 I915_WRITE(CBR1_VLV, 0);
1060
1061 WARN_ON(dev_priv->rawclk_freq == 0);
1062
1063 I915_WRITE(RAWCLK_FREQ_VLV,
1064 DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1065}
1066
1067static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1068{
1069 struct intel_encoder *encoder;
1070 enum pipe pipe;
1071
1072 /*
1073 * Enable the CRI clock source so we can get at the
1074 * display and the reference clock for VGA
1075 * hotplug / manual detection. Supposedly DSI also
1076 * needs the ref clock up and running.
1077 *
1078 * CHV DPLL B/C have some issues if VGA mode is enabled.
1079 */
1080 for_each_pipe(dev_priv, pipe) {
1081 u32 val = I915_READ(DPLL(pipe));
1082
1083 val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1084 if (pipe != PIPE_A)
1085 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1086
1087 I915_WRITE(DPLL(pipe), val);
1088 }
1089
1090 vlv_init_display_clock_gating(dev_priv);
1091
1092 spin_lock_irq(&dev_priv->irq_lock);
1093 valleyview_enable_display_irqs(dev_priv);
1094 spin_unlock_irq(&dev_priv->irq_lock);
1095
1096 /*
1097 * During driver initialization/resume we can avoid restoring the
1098 * part of the HW/SW state that will be inited anyway explicitly.
1099 */
1100 if (dev_priv->power_domains.initializing)
1101 return;
1102
1103 intel_hpd_init(dev_priv);
1104
1105 /* Re-enable the ADPA, if we have one */
1106 for_each_intel_encoder(&dev_priv->drm, encoder) {
1107 if (encoder->type == INTEL_OUTPUT_ANALOG)
1108 intel_crt_reset(&encoder->base);
1109 }
1110
1111 i915_redisable_vga_power_on(dev_priv);
1112
1113 intel_pps_unlock_regs_wa(dev_priv);
1114}
1115
1116static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1117{
1118 spin_lock_irq(&dev_priv->irq_lock);
1119 valleyview_disable_display_irqs(dev_priv);
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* make sure we're done processing display irqs */
1123 synchronize_irq(dev_priv->drm.irq);
1124
1125 intel_power_sequencer_reset(dev_priv);
1126
1127 /* Prevent us from re-enabling polling on accident in late suspend */
1128 if (!dev_priv->drm.dev->power.is_suspended)
1129 intel_hpd_poll_init(dev_priv);
1130}
1131
1132static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1133 struct i915_power_well *power_well)
1134{
1135 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DISP2D);
1136
1137 vlv_set_power_well(dev_priv, power_well, true);
1138
1139 vlv_display_power_well_init(dev_priv);
1140}
1141
1142static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1143 struct i915_power_well *power_well)
1144{
1145 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DISP2D);
1146
1147 vlv_display_power_well_deinit(dev_priv);
1148
1149 vlv_set_power_well(dev_priv, power_well, false);
1150}
1151
1152static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1153 struct i915_power_well *power_well)
1154{
1155 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC);
1156
1157 /* since ref/cri clock was enabled */
1158 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1159
1160 vlv_set_power_well(dev_priv, power_well, true);
1161
1162 /*
1163 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1164 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1165 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1166 * b. The other bits such as sfr settings / modesel may all
1167 * be set to 0.
1168 *
1169 * This should only be done on init and resume from S3 with
1170 * both PLLs disabled, or we risk losing DPIO and PLL
1171 * synchronization.
1172 */
1173 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1174}
1175
1176static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1177 struct i915_power_well *power_well)
1178{
1179 enum pipe pipe;
1180
1181 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC);
1182
1183 for_each_pipe(dev_priv, pipe)
1184 assert_pll_disabled(dev_priv, pipe);
1185
1186 /* Assert common reset */
1187 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1188
1189 vlv_set_power_well(dev_priv, power_well, false);
1190}
1191
1192#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1193
1194static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1195 int power_well_id)
1196{
1197 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1198 int i;
1199
1200 for (i = 0; i < power_domains->power_well_count; i++) {
1201 struct i915_power_well *power_well;
1202
1203 power_well = &power_domains->power_wells[i];
1204 if (power_well->id == power_well_id)
1205 return power_well;
1206 }
1207
1208 return NULL;
1209}
1210
1211#define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1212
1213static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1214{
1215 struct i915_power_well *cmn_bc =
1216 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1217 struct i915_power_well *cmn_d =
1218 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1219 u32 phy_control = dev_priv->chv_phy_control;
1220 u32 phy_status = 0;
1221 u32 phy_status_mask = 0xffffffff;
1222
1223 /*
1224 * The BIOS can leave the PHY is some weird state
1225 * where it doesn't fully power down some parts.
1226 * Disable the asserts until the PHY has been fully
1227 * reset (ie. the power well has been disabled at
1228 * least once).
1229 */
1230 if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1231 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1232 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1233 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1234 PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1235 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1236 PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1237
1238 if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1239 phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1240 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1241 PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1242
1243 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1244 phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1245
1246 /* this assumes override is only used to enable lanes */
1247 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1248 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1249
1250 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1251 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1252
1253 /* CL1 is on whenever anything is on in either channel */
1254 if (BITS_SET(phy_control,
1255 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1256 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1257 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1258
1259 /*
1260 * The DPLLB check accounts for the pipe B + port A usage
1261 * with CL2 powered up but all the lanes in the second channel
1262 * powered down.
1263 */
1264 if (BITS_SET(phy_control,
1265 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1266 (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1267 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1268
1269 if (BITS_SET(phy_control,
1270 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1271 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1272 if (BITS_SET(phy_control,
1273 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1274 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1275
1276 if (BITS_SET(phy_control,
1277 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1278 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1279 if (BITS_SET(phy_control,
1280 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1281 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1282 }
1283
1284 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1285 phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1286
1287 /* this assumes override is only used to enable lanes */
1288 if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1289 phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1290
1291 if (BITS_SET(phy_control,
1292 PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1293 phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1294
1295 if (BITS_SET(phy_control,
1296 PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1297 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1298 if (BITS_SET(phy_control,
1299 PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1300 phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1301 }
1302
1303 phy_status &= phy_status_mask;
1304
1305 /*
1306 * The PHY may be busy with some initial calibration and whatnot,
1307 * so the power state can take a while to actually change.
1308 */
1309 if (intel_wait_for_register(dev_priv,
1310 DISPLAY_PHY_STATUS,
1311 phy_status_mask,
1312 phy_status,
1313 10))
1314 DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1315 I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1316 phy_status, dev_priv->chv_phy_control);
1317}
1318
1319#undef BITS_SET
1320
1321static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1322 struct i915_power_well *power_well)
1323{
1324 enum dpio_phy phy;
1325 enum pipe pipe;
1326 uint32_t tmp;
1327
1328 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1329 power_well->id != PUNIT_POWER_WELL_DPIO_CMN_D);
1330
1331 if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1332 pipe = PIPE_A;
1333 phy = DPIO_PHY0;
1334 } else {
1335 pipe = PIPE_C;
1336 phy = DPIO_PHY1;
1337 }
1338
1339 /* since ref/cri clock was enabled */
1340 udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1341 vlv_set_power_well(dev_priv, power_well, true);
1342
1343 /* Poll for phypwrgood signal */
1344 if (intel_wait_for_register(dev_priv,
1345 DISPLAY_PHY_STATUS,
1346 PHY_POWERGOOD(phy),
1347 PHY_POWERGOOD(phy),
1348 1))
1349 DRM_ERROR("Display PHY %d is not power up\n", phy);
1350
1351 mutex_lock(&dev_priv->sb_lock);
1352
1353 /* Enable dynamic power down */
1354 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1355 tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1356 DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1357 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1358
1359 if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1360 tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1361 tmp |= DPIO_DYNPWRDOWNEN_CH1;
1362 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1363 } else {
1364 /*
1365 * Force the non-existing CL2 off. BXT does this
1366 * too, so maybe it saves some power even though
1367 * CL2 doesn't exist?
1368 */
1369 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1370 tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1371 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1372 }
1373
1374 mutex_unlock(&dev_priv->sb_lock);
1375
1376 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1377 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1378
1379 DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1380 phy, dev_priv->chv_phy_control);
1381
1382 assert_chv_phy_status(dev_priv);
1383}
1384
1385static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1386 struct i915_power_well *power_well)
1387{
1388 enum dpio_phy phy;
1389
1390 WARN_ON_ONCE(power_well->id != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1391 power_well->id != PUNIT_POWER_WELL_DPIO_CMN_D);
1392
1393 if (power_well->id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1394 phy = DPIO_PHY0;
1395 assert_pll_disabled(dev_priv, PIPE_A);
1396 assert_pll_disabled(dev_priv, PIPE_B);
1397 } else {
1398 phy = DPIO_PHY1;
1399 assert_pll_disabled(dev_priv, PIPE_C);
1400 }
1401
1402 dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1403 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1404
1405 vlv_set_power_well(dev_priv, power_well, false);
1406
1407 DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1408 phy, dev_priv->chv_phy_control);
1409
1410 /* PHY is fully reset now, so we can enable the PHY state asserts */
1411 dev_priv->chv_phy_assert[phy] = true;
1412
1413 assert_chv_phy_status(dev_priv);
1414}
1415
1416static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1417 enum dpio_channel ch, bool override, unsigned int mask)
1418{
1419 enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1420 u32 reg, val, expected, actual;
1421
1422 /*
1423 * The BIOS can leave the PHY is some weird state
1424 * where it doesn't fully power down some parts.
1425 * Disable the asserts until the PHY has been fully
1426 * reset (ie. the power well has been disabled at
1427 * least once).
1428 */
1429 if (!dev_priv->chv_phy_assert[phy])
1430 return;
1431
1432 if (ch == DPIO_CH0)
1433 reg = _CHV_CMN_DW0_CH0;
1434 else
1435 reg = _CHV_CMN_DW6_CH1;
1436
1437 mutex_lock(&dev_priv->sb_lock);
1438 val = vlv_dpio_read(dev_priv, pipe, reg);
1439 mutex_unlock(&dev_priv->sb_lock);
1440
1441 /*
1442 * This assumes !override is only used when the port is disabled.
1443 * All lanes should power down even without the override when
1444 * the port is disabled.
1445 */
1446 if (!override || mask == 0xf) {
1447 expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1448 /*
1449 * If CH1 common lane is not active anymore
1450 * (eg. for pipe B DPLL) the entire channel will
1451 * shut down, which causes the common lane registers
1452 * to read as 0. That means we can't actually check
1453 * the lane power down status bits, but as the entire
1454 * register reads as 0 it's a good indication that the
1455 * channel is indeed entirely powered down.
1456 */
1457 if (ch == DPIO_CH1 && val == 0)
1458 expected = 0;
1459 } else if (mask != 0x0) {
1460 expected = DPIO_ANYDL_POWERDOWN;
1461 } else {
1462 expected = 0;
1463 }
1464
1465 if (ch == DPIO_CH0)
1466 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1467 else
1468 actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1469 actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1470
1471 WARN(actual != expected,
1472 "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1473 !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1474 !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1475 reg, val);
1476}
1477
1478bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1479 enum dpio_channel ch, bool override)
1480{
1481 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1482 bool was_override;
1483
1484 mutex_lock(&power_domains->lock);
1485
1486 was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1487
1488 if (override == was_override)
1489 goto out;
1490
1491 if (override)
1492 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1493 else
1494 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1495
1496 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1497
1498 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1499 phy, ch, dev_priv->chv_phy_control);
1500
1501 assert_chv_phy_status(dev_priv);
1502
1503out:
1504 mutex_unlock(&power_domains->lock);
1505
1506 return was_override;
1507}
1508
1509void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1510 bool override, unsigned int mask)
1511{
1512 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1513 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1514 enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1515 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1516
1517 mutex_lock(&power_domains->lock);
1518
1519 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1520 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1521
1522 if (override)
1523 dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1524 else
1525 dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1526
1527 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1528
1529 DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1530 phy, ch, mask, dev_priv->chv_phy_control);
1531
1532 assert_chv_phy_status(dev_priv);
1533
1534 assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1535
1536 mutex_unlock(&power_domains->lock);
1537}
1538
1539static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1540 struct i915_power_well *power_well)
1541{
1542 enum pipe pipe = power_well->id;
1543 bool enabled;
1544 u32 state, ctrl;
1545
1546 mutex_lock(&dev_priv->rps.hw_lock);
1547
1548 state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1549 /*
1550 * We only ever set the power-on and power-gate states, anything
1551 * else is unexpected.
1552 */
1553 WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1554 enabled = state == DP_SSS_PWR_ON(pipe);
1555
1556 /*
1557 * A transient state at this point would mean some unexpected party
1558 * is poking at the power controls too.
1559 */
1560 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1561 WARN_ON(ctrl << 16 != state);
1562
1563 mutex_unlock(&dev_priv->rps.hw_lock);
1564
1565 return enabled;
1566}
1567
1568static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1569 struct i915_power_well *power_well,
1570 bool enable)
1571{
1572 enum pipe pipe = power_well->id;
1573 u32 state;
1574 u32 ctrl;
1575
1576 state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1577
1578 mutex_lock(&dev_priv->rps.hw_lock);
1579
1580#define COND \
1581 ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1582
1583 if (COND)
1584 goto out;
1585
1586 ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1587 ctrl &= ~DP_SSC_MASK(pipe);
1588 ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1589 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1590
1591 if (wait_for(COND, 100))
1592 DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1593 state,
1594 vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1595
1596#undef COND
1597
1598out:
1599 mutex_unlock(&dev_priv->rps.hw_lock);
1600}
1601
1602static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1603 struct i915_power_well *power_well)
1604{
1605 WARN_ON_ONCE(power_well->id != PIPE_A);
1606
1607 chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1608}
1609
1610static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1611 struct i915_power_well *power_well)
1612{
1613 WARN_ON_ONCE(power_well->id != PIPE_A);
1614
1615 chv_set_pipe_power_well(dev_priv, power_well, true);
1616
1617 vlv_display_power_well_init(dev_priv);
1618}
1619
1620static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1621 struct i915_power_well *power_well)
1622{
1623 WARN_ON_ONCE(power_well->id != PIPE_A);
1624
1625 vlv_display_power_well_deinit(dev_priv);
1626
1627 chv_set_pipe_power_well(dev_priv, power_well, false);
1628}
1629
1630static void
1631__intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1632 enum intel_display_power_domain domain)
1633{
1634 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1635 struct i915_power_well *power_well;
1636 int i;
1637
1638 for_each_power_well(i, power_well, BIT(domain), power_domains)
1639 intel_power_well_get(dev_priv, power_well);
1640
1641 power_domains->domain_use_count[domain]++;
1642}
1643
1644/**
1645 * intel_display_power_get - grab a power domain reference
1646 * @dev_priv: i915 device instance
1647 * @domain: power domain to reference
1648 *
1649 * This function grabs a power domain reference for @domain and ensures that the
1650 * power domain and all its parents are powered up. Therefore users should only
1651 * grab a reference to the innermost power domain they need.
1652 *
1653 * Any power domain reference obtained by this function must have a symmetric
1654 * call to intel_display_power_put() to release the reference again.
1655 */
1656void intel_display_power_get(struct drm_i915_private *dev_priv,
1657 enum intel_display_power_domain domain)
1658{
1659 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1660
1661 intel_runtime_pm_get(dev_priv);
1662
1663 mutex_lock(&power_domains->lock);
1664
1665 __intel_display_power_get_domain(dev_priv, domain);
1666
1667 mutex_unlock(&power_domains->lock);
1668}
1669
1670/**
1671 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1672 * @dev_priv: i915 device instance
1673 * @domain: power domain to reference
1674 *
1675 * This function grabs a power domain reference for @domain and ensures that the
1676 * power domain and all its parents are powered up. Therefore users should only
1677 * grab a reference to the innermost power domain they need.
1678 *
1679 * Any power domain reference obtained by this function must have a symmetric
1680 * call to intel_display_power_put() to release the reference again.
1681 */
1682bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1683 enum intel_display_power_domain domain)
1684{
1685 struct i915_power_domains *power_domains = &dev_priv->power_domains;
1686 bool is_enabled;
1687
1688 if (!intel_runtime_pm_get_if_in_use(dev_priv))
1689 return false;
1690
1691 mutex_lock(&power_domains->lock);
1692
1693 if (__intel_display_power_is_enabled(dev_priv, domain)) {
1694 __intel_display_power_get_domain(dev_priv, domain);
1695 is_enabled = true;
1696 } else {
1697 is_enabled = false;
1698 }
1699
1700 mutex_unlock(&power_domains->lock);
1701
1702 if (!is_enabled)
1703 intel_runtime_pm_put(dev_priv);
1704
1705 return is_enabled;
1706}
1707
1708/**
1709 * intel_display_power_put - release a power domain reference
1710 * @dev_priv: i915 device instance
1711 * @domain: power domain to reference
1712 *
1713 * This function drops the power domain reference obtained by
1714 * intel_display_power_get() and might power down the corresponding hardware
1715 * block right away if this is the last reference.
1716 */
1717void intel_display_power_put(struct drm_i915_private *dev_priv,
1718 enum intel_display_power_domain domain)
1719{
1720 struct i915_power_domains *power_domains;
1721 struct i915_power_well *power_well;
1722 int i;
1723
1724 power_domains = &dev_priv->power_domains;
1725
1726 mutex_lock(&power_domains->lock);
1727
1728 WARN(!power_domains->domain_use_count[domain],
1729 "Use count on domain %s is already zero\n",
1730 intel_display_power_domain_str(domain));
1731 power_domains->domain_use_count[domain]--;
1732
1733 for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1734 intel_power_well_put(dev_priv, power_well);
1735
1736 mutex_unlock(&power_domains->lock);
1737
1738 intel_runtime_pm_put(dev_priv);
1739}
1740
1741#define HSW_DISPLAY_POWER_DOMAINS ( \
1742 BIT(POWER_DOMAIN_PIPE_B) | \
1743 BIT(POWER_DOMAIN_PIPE_C) | \
1744 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1745 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1746 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1747 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1748 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1749 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1750 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1751 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1752 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1753 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1754 BIT(POWER_DOMAIN_VGA) | \
1755 BIT(POWER_DOMAIN_AUDIO) | \
1756 BIT(POWER_DOMAIN_INIT))
1757
1758#define BDW_DISPLAY_POWER_DOMAINS ( \
1759 BIT(POWER_DOMAIN_PIPE_B) | \
1760 BIT(POWER_DOMAIN_PIPE_C) | \
1761 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1762 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1763 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1764 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1765 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1766 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1767 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1768 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1769 BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
1770 BIT(POWER_DOMAIN_VGA) | \
1771 BIT(POWER_DOMAIN_AUDIO) | \
1772 BIT(POWER_DOMAIN_INIT))
1773
1774#define VLV_DISPLAY_POWER_DOMAINS ( \
1775 BIT(POWER_DOMAIN_PIPE_A) | \
1776 BIT(POWER_DOMAIN_PIPE_B) | \
1777 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1778 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1779 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1780 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1781 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1782 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1783 BIT(POWER_DOMAIN_PORT_DSI) | \
1784 BIT(POWER_DOMAIN_PORT_CRT) | \
1785 BIT(POWER_DOMAIN_VGA) | \
1786 BIT(POWER_DOMAIN_AUDIO) | \
1787 BIT(POWER_DOMAIN_AUX_B) | \
1788 BIT(POWER_DOMAIN_AUX_C) | \
1789 BIT(POWER_DOMAIN_GMBUS) | \
1790 BIT(POWER_DOMAIN_INIT))
1791
1792#define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
1793 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1794 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1795 BIT(POWER_DOMAIN_PORT_CRT) | \
1796 BIT(POWER_DOMAIN_AUX_B) | \
1797 BIT(POWER_DOMAIN_AUX_C) | \
1798 BIT(POWER_DOMAIN_INIT))
1799
1800#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
1801 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1802 BIT(POWER_DOMAIN_AUX_B) | \
1803 BIT(POWER_DOMAIN_INIT))
1804
1805#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
1806 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1807 BIT(POWER_DOMAIN_AUX_B) | \
1808 BIT(POWER_DOMAIN_INIT))
1809
1810#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
1811 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1812 BIT(POWER_DOMAIN_AUX_C) | \
1813 BIT(POWER_DOMAIN_INIT))
1814
1815#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
1816 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1817 BIT(POWER_DOMAIN_AUX_C) | \
1818 BIT(POWER_DOMAIN_INIT))
1819
1820#define CHV_DISPLAY_POWER_DOMAINS ( \
1821 BIT(POWER_DOMAIN_PIPE_A) | \
1822 BIT(POWER_DOMAIN_PIPE_B) | \
1823 BIT(POWER_DOMAIN_PIPE_C) | \
1824 BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
1825 BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
1826 BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
1827 BIT(POWER_DOMAIN_TRANSCODER_A) | \
1828 BIT(POWER_DOMAIN_TRANSCODER_B) | \
1829 BIT(POWER_DOMAIN_TRANSCODER_C) | \
1830 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1831 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1832 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1833 BIT(POWER_DOMAIN_PORT_DSI) | \
1834 BIT(POWER_DOMAIN_VGA) | \
1835 BIT(POWER_DOMAIN_AUDIO) | \
1836 BIT(POWER_DOMAIN_AUX_B) | \
1837 BIT(POWER_DOMAIN_AUX_C) | \
1838 BIT(POWER_DOMAIN_AUX_D) | \
1839 BIT(POWER_DOMAIN_GMBUS) | \
1840 BIT(POWER_DOMAIN_INIT))
1841
1842#define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
1843 BIT(POWER_DOMAIN_PORT_DDI_B_LANES) | \
1844 BIT(POWER_DOMAIN_PORT_DDI_C_LANES) | \
1845 BIT(POWER_DOMAIN_AUX_B) | \
1846 BIT(POWER_DOMAIN_AUX_C) | \
1847 BIT(POWER_DOMAIN_INIT))
1848
1849#define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
1850 BIT(POWER_DOMAIN_PORT_DDI_D_LANES) | \
1851 BIT(POWER_DOMAIN_AUX_D) | \
1852 BIT(POWER_DOMAIN_INIT))
1853
1854static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1855 .sync_hw = i9xx_always_on_power_well_noop,
1856 .enable = i9xx_always_on_power_well_noop,
1857 .disable = i9xx_always_on_power_well_noop,
1858 .is_enabled = i9xx_always_on_power_well_enabled,
1859};
1860
1861static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1862 .sync_hw = chv_pipe_power_well_sync_hw,
1863 .enable = chv_pipe_power_well_enable,
1864 .disable = chv_pipe_power_well_disable,
1865 .is_enabled = chv_pipe_power_well_enabled,
1866};
1867
1868static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1869 .sync_hw = vlv_power_well_sync_hw,
1870 .enable = chv_dpio_cmn_power_well_enable,
1871 .disable = chv_dpio_cmn_power_well_disable,
1872 .is_enabled = vlv_power_well_enabled,
1873};
1874
1875static struct i915_power_well i9xx_always_on_power_well[] = {
1876 {
1877 .name = "always-on",
1878 .always_on = 1,
1879 .domains = POWER_DOMAIN_MASK,
1880 .ops = &i9xx_always_on_power_well_ops,
1881 },
1882};
1883
1884static const struct i915_power_well_ops hsw_power_well_ops = {
1885 .sync_hw = hsw_power_well_sync_hw,
1886 .enable = hsw_power_well_enable,
1887 .disable = hsw_power_well_disable,
1888 .is_enabled = hsw_power_well_enabled,
1889};
1890
1891static const struct i915_power_well_ops skl_power_well_ops = {
1892 .sync_hw = skl_power_well_sync_hw,
1893 .enable = skl_power_well_enable,
1894 .disable = skl_power_well_disable,
1895 .is_enabled = skl_power_well_enabled,
1896};
1897
1898static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1899 .sync_hw = gen9_dc_off_power_well_sync_hw,
1900 .enable = gen9_dc_off_power_well_enable,
1901 .disable = gen9_dc_off_power_well_disable,
1902 .is_enabled = gen9_dc_off_power_well_enabled,
1903};
1904
1905static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1906 .sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1907 .enable = bxt_dpio_cmn_power_well_enable,
1908 .disable = bxt_dpio_cmn_power_well_disable,
1909 .is_enabled = bxt_dpio_cmn_power_well_enabled,
1910};
1911
1912static struct i915_power_well hsw_power_wells[] = {
1913 {
1914 .name = "always-on",
1915 .always_on = 1,
1916 .domains = POWER_DOMAIN_MASK,
1917 .ops = &i9xx_always_on_power_well_ops,
1918 },
1919 {
1920 .name = "display",
1921 .domains = HSW_DISPLAY_POWER_DOMAINS,
1922 .ops = &hsw_power_well_ops,
1923 },
1924};
1925
1926static struct i915_power_well bdw_power_wells[] = {
1927 {
1928 .name = "always-on",
1929 .always_on = 1,
1930 .domains = POWER_DOMAIN_MASK,
1931 .ops = &i9xx_always_on_power_well_ops,
1932 },
1933 {
1934 .name = "display",
1935 .domains = BDW_DISPLAY_POWER_DOMAINS,
1936 .ops = &hsw_power_well_ops,
1937 },
1938};
1939
1940static const struct i915_power_well_ops vlv_display_power_well_ops = {
1941 .sync_hw = vlv_power_well_sync_hw,
1942 .enable = vlv_display_power_well_enable,
1943 .disable = vlv_display_power_well_disable,
1944 .is_enabled = vlv_power_well_enabled,
1945};
1946
1947static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1948 .sync_hw = vlv_power_well_sync_hw,
1949 .enable = vlv_dpio_cmn_power_well_enable,
1950 .disable = vlv_dpio_cmn_power_well_disable,
1951 .is_enabled = vlv_power_well_enabled,
1952};
1953
1954static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1955 .sync_hw = vlv_power_well_sync_hw,
1956 .enable = vlv_power_well_enable,
1957 .disable = vlv_power_well_disable,
1958 .is_enabled = vlv_power_well_enabled,
1959};
1960
1961static struct i915_power_well vlv_power_wells[] = {
1962 {
1963 .name = "always-on",
1964 .always_on = 1,
1965 .domains = POWER_DOMAIN_MASK,
1966 .ops = &i9xx_always_on_power_well_ops,
1967 .id = PUNIT_POWER_WELL_ALWAYS_ON,
1968 },
1969 {
1970 .name = "display",
1971 .domains = VLV_DISPLAY_POWER_DOMAINS,
1972 .id = PUNIT_POWER_WELL_DISP2D,
1973 .ops = &vlv_display_power_well_ops,
1974 },
1975 {
1976 .name = "dpio-tx-b-01",
1977 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1978 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1979 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1980 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1981 .ops = &vlv_dpio_power_well_ops,
1982 .id = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1983 },
1984 {
1985 .name = "dpio-tx-b-23",
1986 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1987 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1988 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1989 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1990 .ops = &vlv_dpio_power_well_ops,
1991 .id = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
1992 },
1993 {
1994 .name = "dpio-tx-c-01",
1995 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1996 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1997 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1998 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1999 .ops = &vlv_dpio_power_well_ops,
2000 .id = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2001 },
2002 {
2003 .name = "dpio-tx-c-23",
2004 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2005 VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2006 VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2007 VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2008 .ops = &vlv_dpio_power_well_ops,
2009 .id = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2010 },
2011 {
2012 .name = "dpio-common",
2013 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2014 .id = PUNIT_POWER_WELL_DPIO_CMN_BC,
2015 .ops = &vlv_dpio_cmn_power_well_ops,
2016 },
2017};
2018
2019static struct i915_power_well chv_power_wells[] = {
2020 {
2021 .name = "always-on",
2022 .always_on = 1,
2023 .domains = POWER_DOMAIN_MASK,
2024 .ops = &i9xx_always_on_power_well_ops,
2025 },
2026 {
2027 .name = "display",
2028 /*
2029 * Pipe A power well is the new disp2d well. Pipe B and C
2030 * power wells don't actually exist. Pipe A power well is
2031 * required for any pipe to work.
2032 */
2033 .domains = CHV_DISPLAY_POWER_DOMAINS,
2034 .id = PIPE_A,
2035 .ops = &chv_pipe_power_well_ops,
2036 },
2037 {
2038 .name = "dpio-common-bc",
2039 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2040 .id = PUNIT_POWER_WELL_DPIO_CMN_BC,
2041 .ops = &chv_dpio_cmn_power_well_ops,
2042 },
2043 {
2044 .name = "dpio-common-d",
2045 .domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2046 .id = PUNIT_POWER_WELL_DPIO_CMN_D,
2047 .ops = &chv_dpio_cmn_power_well_ops,
2048 },
2049};
2050
2051bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2052 int power_well_id)
2053{
2054 struct i915_power_well *power_well;
2055 bool ret;
2056
2057 power_well = lookup_power_well(dev_priv, power_well_id);
2058 ret = power_well->ops->is_enabled(dev_priv, power_well);
2059
2060 return ret;
2061}
2062
2063static struct i915_power_well skl_power_wells[] = {
2064 {
2065 .name = "always-on",
2066 .always_on = 1,
2067 .domains = POWER_DOMAIN_MASK,
2068 .ops = &i9xx_always_on_power_well_ops,
2069 .id = SKL_DISP_PW_ALWAYS_ON,
2070 },
2071 {
2072 .name = "power well 1",
2073 /* Handled by the DMC firmware */
2074 .domains = 0,
2075 .ops = &skl_power_well_ops,
2076 .id = SKL_DISP_PW_1,
2077 },
2078 {
2079 .name = "MISC IO power well",
2080 /* Handled by the DMC firmware */
2081 .domains = 0,
2082 .ops = &skl_power_well_ops,
2083 .id = SKL_DISP_PW_MISC_IO,
2084 },
2085 {
2086 .name = "DC off",
2087 .domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2088 .ops = &gen9_dc_off_power_well_ops,
2089 .id = SKL_DISP_PW_DC_OFF,
2090 },
2091 {
2092 .name = "power well 2",
2093 .domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2094 .ops = &skl_power_well_ops,
2095 .id = SKL_DISP_PW_2,
2096 },
2097 {
2098 .name = "DDI A/E power well",
2099 .domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2100 .ops = &skl_power_well_ops,
2101 .id = SKL_DISP_PW_DDI_A_E,
2102 },
2103 {
2104 .name = "DDI B power well",
2105 .domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2106 .ops = &skl_power_well_ops,
2107 .id = SKL_DISP_PW_DDI_B,
2108 },
2109 {
2110 .name = "DDI C power well",
2111 .domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2112 .ops = &skl_power_well_ops,
2113 .id = SKL_DISP_PW_DDI_C,
2114 },
2115 {
2116 .name = "DDI D power well",
2117 .domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2118 .ops = &skl_power_well_ops,
2119 .id = SKL_DISP_PW_DDI_D,
2120 },
2121};
2122
2123static struct i915_power_well bxt_power_wells[] = {
2124 {
2125 .name = "always-on",
2126 .always_on = 1,
2127 .domains = POWER_DOMAIN_MASK,
2128 .ops = &i9xx_always_on_power_well_ops,
2129 },
2130 {
2131 .name = "power well 1",
2132 .domains = 0,
2133 .ops = &skl_power_well_ops,
2134 .id = SKL_DISP_PW_1,
2135 },
2136 {
2137 .name = "DC off",
2138 .domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2139 .ops = &gen9_dc_off_power_well_ops,
2140 .id = SKL_DISP_PW_DC_OFF,
2141 },
2142 {
2143 .name = "power well 2",
2144 .domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2145 .ops = &skl_power_well_ops,
2146 .id = SKL_DISP_PW_2,
2147 },
2148 {
2149 .name = "dpio-common-a",
2150 .domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2151 .ops = &bxt_dpio_cmn_power_well_ops,
2152 .id = BXT_DPIO_CMN_A,
2153 .data = DPIO_PHY1,
2154 },
2155 {
2156 .name = "dpio-common-bc",
2157 .domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2158 .ops = &bxt_dpio_cmn_power_well_ops,
2159 .id = BXT_DPIO_CMN_BC,
2160 .data = DPIO_PHY0,
2161 },
2162};
2163
2164static int
2165sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2166 int disable_power_well)
2167{
2168 if (disable_power_well >= 0)
2169 return !!disable_power_well;
2170
2171 return 1;
2172}
2173
2174static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2175 int enable_dc)
2176{
2177 uint32_t mask;
2178 int requested_dc;
2179 int max_dc;
2180
2181 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2182 max_dc = 2;
2183 mask = 0;
2184 } else if (IS_BROXTON(dev_priv)) {
2185 max_dc = 1;
2186 /*
2187 * DC9 has a separate HW flow from the rest of the DC states,
2188 * not depending on the DMC firmware. It's needed by system
2189 * suspend/resume, so allow it unconditionally.
2190 */
2191 mask = DC_STATE_EN_DC9;
2192 } else {
2193 max_dc = 0;
2194 mask = 0;
2195 }
2196
2197 if (!i915.disable_power_well)
2198 max_dc = 0;
2199
2200 if (enable_dc >= 0 && enable_dc <= max_dc) {
2201 requested_dc = enable_dc;
2202 } else if (enable_dc == -1) {
2203 requested_dc = max_dc;
2204 } else if (enable_dc > max_dc && enable_dc <= 2) {
2205 DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2206 enable_dc, max_dc);
2207 requested_dc = max_dc;
2208 } else {
2209 DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2210 requested_dc = max_dc;
2211 }
2212
2213 if (requested_dc > 1)
2214 mask |= DC_STATE_EN_UPTO_DC6;
2215 if (requested_dc > 0)
2216 mask |= DC_STATE_EN_UPTO_DC5;
2217
2218 DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2219
2220 return mask;
2221}
2222
2223#define set_power_wells(power_domains, __power_wells) ({ \
2224 (power_domains)->power_wells = (__power_wells); \
2225 (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
2226})
2227
2228/**
2229 * intel_power_domains_init - initializes the power domain structures
2230 * @dev_priv: i915 device instance
2231 *
2232 * Initializes the power domain structures for @dev_priv depending upon the
2233 * supported platform.
2234 */
2235int intel_power_domains_init(struct drm_i915_private *dev_priv)
2236{
2237 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2238
2239 i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2240 i915.disable_power_well);
2241 dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2242 i915.enable_dc);
2243
2244 BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2245
2246 mutex_init(&power_domains->lock);
2247
2248 /*
2249 * The enabling order will be from lower to higher indexed wells,
2250 * the disabling order is reversed.
2251 */
2252 if (IS_HASWELL(dev_priv)) {
2253 set_power_wells(power_domains, hsw_power_wells);
2254 } else if (IS_BROADWELL(dev_priv)) {
2255 set_power_wells(power_domains, bdw_power_wells);
2256 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2257 set_power_wells(power_domains, skl_power_wells);
2258 } else if (IS_BROXTON(dev_priv)) {
2259 set_power_wells(power_domains, bxt_power_wells);
2260 } else if (IS_CHERRYVIEW(dev_priv)) {
2261 set_power_wells(power_domains, chv_power_wells);
2262 } else if (IS_VALLEYVIEW(dev_priv)) {
2263 set_power_wells(power_domains, vlv_power_wells);
2264 } else {
2265 set_power_wells(power_domains, i9xx_always_on_power_well);
2266 }
2267
2268 return 0;
2269}
2270
2271/**
2272 * intel_power_domains_fini - finalizes the power domain structures
2273 * @dev_priv: i915 device instance
2274 *
2275 * Finalizes the power domain structures for @dev_priv depending upon the
2276 * supported platform. This function also disables runtime pm and ensures that
2277 * the device stays powered up so that the driver can be reloaded.
2278 */
2279void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2280{
2281 struct device *kdev = &dev_priv->drm.pdev->dev;
2282
2283 /*
2284 * The i915.ko module is still not prepared to be loaded when
2285 * the power well is not enabled, so just enable it in case
2286 * we're going to unload/reload.
2287 * The following also reacquires the RPM reference the core passed
2288 * to the driver during loading, which is dropped in
2289 * intel_runtime_pm_enable(). We have to hand back the control of the
2290 * device to the core with this reference held.
2291 */
2292 intel_display_set_init_power(dev_priv, true);
2293
2294 /* Remove the refcount we took to keep power well support disabled. */
2295 if (!i915.disable_power_well)
2296 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2297
2298 /*
2299 * Remove the refcount we took in intel_runtime_pm_enable() in case
2300 * the platform doesn't support runtime PM.
2301 */
2302 if (!HAS_RUNTIME_PM(dev_priv))
2303 pm_runtime_put(kdev);
2304}
2305
2306static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2307{
2308 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2309 struct i915_power_well *power_well;
2310 int i;
2311
2312 mutex_lock(&power_domains->lock);
2313 for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2314 power_well->ops->sync_hw(dev_priv, power_well);
2315 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2316 power_well);
2317 }
2318 mutex_unlock(&power_domains->lock);
2319}
2320
2321static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2322{
2323 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2324 POSTING_READ(DBUF_CTL);
2325
2326 udelay(10);
2327
2328 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2329 DRM_ERROR("DBuf power enable timeout\n");
2330}
2331
2332static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2333{
2334 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2335 POSTING_READ(DBUF_CTL);
2336
2337 udelay(10);
2338
2339 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2340 DRM_ERROR("DBuf power disable timeout!\n");
2341}
2342
2343static void skl_display_core_init(struct drm_i915_private *dev_priv,
2344 bool resume)
2345{
2346 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2347 struct i915_power_well *well;
2348 uint32_t val;
2349
2350 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2351
2352 /* enable PCH reset handshake */
2353 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2354 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2355
2356 /* enable PG1 and Misc I/O */
2357 mutex_lock(&power_domains->lock);
2358
2359 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2360 intel_power_well_enable(dev_priv, well);
2361
2362 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2363 intel_power_well_enable(dev_priv, well);
2364
2365 mutex_unlock(&power_domains->lock);
2366
2367 skl_init_cdclk(dev_priv);
2368
2369 gen9_dbuf_enable(dev_priv);
2370
2371 if (resume && dev_priv->csr.dmc_payload)
2372 intel_csr_load_program(dev_priv);
2373}
2374
2375static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2376{
2377 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2378 struct i915_power_well *well;
2379
2380 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2381
2382 gen9_dbuf_disable(dev_priv);
2383
2384 skl_uninit_cdclk(dev_priv);
2385
2386 /* The spec doesn't call for removing the reset handshake flag */
2387 /* disable PG1 and Misc I/O */
2388
2389 mutex_lock(&power_domains->lock);
2390
2391 well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2392 intel_power_well_disable(dev_priv, well);
2393
2394 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2395 intel_power_well_disable(dev_priv, well);
2396
2397 mutex_unlock(&power_domains->lock);
2398}
2399
2400void bxt_display_core_init(struct drm_i915_private *dev_priv,
2401 bool resume)
2402{
2403 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2404 struct i915_power_well *well;
2405 uint32_t val;
2406
2407 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2408
2409 /*
2410 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2411 * or else the reset will hang because there is no PCH to respond.
2412 * Move the handshake programming to initialization sequence.
2413 * Previously was left up to BIOS.
2414 */
2415 val = I915_READ(HSW_NDE_RSTWRN_OPT);
2416 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2417 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2418
2419 /* Enable PG1 */
2420 mutex_lock(&power_domains->lock);
2421
2422 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2423 intel_power_well_enable(dev_priv, well);
2424
2425 mutex_unlock(&power_domains->lock);
2426
2427 bxt_init_cdclk(dev_priv);
2428
2429 gen9_dbuf_enable(dev_priv);
2430
2431 if (resume && dev_priv->csr.dmc_payload)
2432 intel_csr_load_program(dev_priv);
2433}
2434
2435void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2436{
2437 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2438 struct i915_power_well *well;
2439
2440 gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2441
2442 gen9_dbuf_disable(dev_priv);
2443
2444 bxt_uninit_cdclk(dev_priv);
2445
2446 /* The spec doesn't call for removing the reset handshake flag */
2447
2448 /* Disable PG1 */
2449 mutex_lock(&power_domains->lock);
2450
2451 well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2452 intel_power_well_disable(dev_priv, well);
2453
2454 mutex_unlock(&power_domains->lock);
2455}
2456
2457static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2458{
2459 struct i915_power_well *cmn_bc =
2460 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2461 struct i915_power_well *cmn_d =
2462 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2463
2464 /*
2465 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2466 * workaround never ever read DISPLAY_PHY_CONTROL, and
2467 * instead maintain a shadow copy ourselves. Use the actual
2468 * power well state and lane status to reconstruct the
2469 * expected initial value.
2470 */
2471 dev_priv->chv_phy_control =
2472 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2473 PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2474 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2475 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2476 PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2477
2478 /*
2479 * If all lanes are disabled we leave the override disabled
2480 * with all power down bits cleared to match the state we
2481 * would use after disabling the port. Otherwise enable the
2482 * override and set the lane powerdown bits accding to the
2483 * current lane status.
2484 */
2485 if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2486 uint32_t status = I915_READ(DPLL(PIPE_A));
2487 unsigned int mask;
2488
2489 mask = status & DPLL_PORTB_READY_MASK;
2490 if (mask == 0xf)
2491 mask = 0x0;
2492 else
2493 dev_priv->chv_phy_control |=
2494 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2495
2496 dev_priv->chv_phy_control |=
2497 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2498
2499 mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2500 if (mask == 0xf)
2501 mask = 0x0;
2502 else
2503 dev_priv->chv_phy_control |=
2504 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2505
2506 dev_priv->chv_phy_control |=
2507 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2508
2509 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2510
2511 dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2512 } else {
2513 dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2514 }
2515
2516 if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2517 uint32_t status = I915_READ(DPIO_PHY_STATUS);
2518 unsigned int mask;
2519
2520 mask = status & DPLL_PORTD_READY_MASK;
2521
2522 if (mask == 0xf)
2523 mask = 0x0;
2524 else
2525 dev_priv->chv_phy_control |=
2526 PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2527
2528 dev_priv->chv_phy_control |=
2529 PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2530
2531 dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2532
2533 dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2534 } else {
2535 dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2536 }
2537
2538 I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2539
2540 DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2541 dev_priv->chv_phy_control);
2542}
2543
2544static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2545{
2546 struct i915_power_well *cmn =
2547 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2548 struct i915_power_well *disp2d =
2549 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2550
2551 /* If the display might be already active skip this */
2552 if (cmn->ops->is_enabled(dev_priv, cmn) &&
2553 disp2d->ops->is_enabled(dev_priv, disp2d) &&
2554 I915_READ(DPIO_CTL) & DPIO_CMNRST)
2555 return;
2556
2557 DRM_DEBUG_KMS("toggling display PHY side reset\n");
2558
2559 /* cmnlane needs DPLL registers */
2560 disp2d->ops->enable(dev_priv, disp2d);
2561
2562 /*
2563 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2564 * Need to assert and de-assert PHY SB reset by gating the
2565 * common lane power, then un-gating it.
2566 * Simply ungating isn't enough to reset the PHY enough to get
2567 * ports and lanes running.
2568 */
2569 cmn->ops->disable(dev_priv, cmn);
2570}
2571
2572/**
2573 * intel_power_domains_init_hw - initialize hardware power domain state
2574 * @dev_priv: i915 device instance
2575 * @resume: Called from resume code paths or not
2576 *
2577 * This function initializes the hardware power domain state and enables all
2578 * power domains using intel_display_set_init_power().
2579 */
2580void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2581{
2582 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2583
2584 power_domains->initializing = true;
2585
2586 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2587 skl_display_core_init(dev_priv, resume);
2588 } else if (IS_BROXTON(dev_priv)) {
2589 bxt_display_core_init(dev_priv, resume);
2590 } else if (IS_CHERRYVIEW(dev_priv)) {
2591 mutex_lock(&power_domains->lock);
2592 chv_phy_control_init(dev_priv);
2593 mutex_unlock(&power_domains->lock);
2594 } else if (IS_VALLEYVIEW(dev_priv)) {
2595 mutex_lock(&power_domains->lock);
2596 vlv_cmnlane_wa(dev_priv);
2597 mutex_unlock(&power_domains->lock);
2598 }
2599
2600 /* For now, we need the power well to be always enabled. */
2601 intel_display_set_init_power(dev_priv, true);
2602 /* Disable power support if the user asked so. */
2603 if (!i915.disable_power_well)
2604 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2605 intel_power_domains_sync_hw(dev_priv);
2606 power_domains->initializing = false;
2607}
2608
2609/**
2610 * intel_power_domains_suspend - suspend power domain state
2611 * @dev_priv: i915 device instance
2612 *
2613 * This function prepares the hardware power domain state before entering
2614 * system suspend. It must be paired with intel_power_domains_init_hw().
2615 */
2616void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2617{
2618 /*
2619 * Even if power well support was disabled we still want to disable
2620 * power wells while we are system suspended.
2621 */
2622 if (!i915.disable_power_well)
2623 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2624
2625 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2626 skl_display_core_uninit(dev_priv);
2627 else if (IS_BROXTON(dev_priv))
2628 bxt_display_core_uninit(dev_priv);
2629}
2630
2631/**
2632 * intel_runtime_pm_get - grab a runtime pm reference
2633 * @dev_priv: i915 device instance
2634 *
2635 * This function grabs a device-level runtime pm reference (mostly used for GEM
2636 * code to ensure the GTT or GT is on) and ensures that it is powered up.
2637 *
2638 * Any runtime pm reference obtained by this function must have a symmetric
2639 * call to intel_runtime_pm_put() to release the reference again.
2640 */
2641void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2642{
2643 struct pci_dev *pdev = dev_priv->drm.pdev;
2644 struct device *kdev = &pdev->dev;
2645
2646 pm_runtime_get_sync(kdev);
2647
2648 atomic_inc(&dev_priv->pm.wakeref_count);
2649 assert_rpm_wakelock_held(dev_priv);
2650}
2651
2652/**
2653 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2654 * @dev_priv: i915 device instance
2655 *
2656 * This function grabs a device-level runtime pm reference if the device is
2657 * already in use and ensures that it is powered up.
2658 *
2659 * Any runtime pm reference obtained by this function must have a symmetric
2660 * call to intel_runtime_pm_put() to release the reference again.
2661 */
2662bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2663{
2664 struct pci_dev *pdev = dev_priv->drm.pdev;
2665 struct device *kdev = &pdev->dev;
2666
2667 if (IS_ENABLED(CONFIG_PM)) {
2668 int ret = pm_runtime_get_if_in_use(kdev);
2669
2670 /*
2671 * In cases runtime PM is disabled by the RPM core and we get
2672 * an -EINVAL return value we are not supposed to call this
2673 * function, since the power state is undefined. This applies
2674 * atm to the late/early system suspend/resume handlers.
2675 */
2676 WARN_ON_ONCE(ret < 0);
2677 if (ret <= 0)
2678 return false;
2679 }
2680
2681 atomic_inc(&dev_priv->pm.wakeref_count);
2682 assert_rpm_wakelock_held(dev_priv);
2683
2684 return true;
2685}
2686
2687/**
2688 * intel_runtime_pm_get_noresume - grab a runtime pm reference
2689 * @dev_priv: i915 device instance
2690 *
2691 * This function grabs a device-level runtime pm reference (mostly used for GEM
2692 * code to ensure the GTT or GT is on).
2693 *
2694 * It will _not_ power up the device but instead only check that it's powered
2695 * on. Therefore it is only valid to call this functions from contexts where
2696 * the device is known to be powered up and where trying to power it up would
2697 * result in hilarity and deadlocks. That pretty much means only the system
2698 * suspend/resume code where this is used to grab runtime pm references for
2699 * delayed setup down in work items.
2700 *
2701 * Any runtime pm reference obtained by this function must have a symmetric
2702 * call to intel_runtime_pm_put() to release the reference again.
2703 */
2704void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2705{
2706 struct pci_dev *pdev = dev_priv->drm.pdev;
2707 struct device *kdev = &pdev->dev;
2708
2709 assert_rpm_wakelock_held(dev_priv);
2710 pm_runtime_get_noresume(kdev);
2711
2712 atomic_inc(&dev_priv->pm.wakeref_count);
2713}
2714
2715/**
2716 * intel_runtime_pm_put - release a runtime pm reference
2717 * @dev_priv: i915 device instance
2718 *
2719 * This function drops the device-level runtime pm reference obtained by
2720 * intel_runtime_pm_get() and might power down the corresponding
2721 * hardware block right away if this is the last reference.
2722 */
2723void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2724{
2725 struct pci_dev *pdev = dev_priv->drm.pdev;
2726 struct device *kdev = &pdev->dev;
2727
2728 assert_rpm_wakelock_held(dev_priv);
2729 atomic_dec(&dev_priv->pm.wakeref_count);
2730
2731 pm_runtime_mark_last_busy(kdev);
2732 pm_runtime_put_autosuspend(kdev);
2733}
2734
2735/**
2736 * intel_runtime_pm_enable - enable runtime pm
2737 * @dev_priv: i915 device instance
2738 *
2739 * This function enables runtime pm at the end of the driver load sequence.
2740 *
2741 * Note that this function does currently not enable runtime pm for the
2742 * subordinate display power domains. That is only done on the first modeset
2743 * using intel_display_set_init_power().
2744 */
2745void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2746{
2747 struct pci_dev *pdev = dev_priv->drm.pdev;
2748 struct device *kdev = &pdev->dev;
2749
2750 pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
2751 pm_runtime_mark_last_busy(kdev);
2752
2753 /*
2754 * Take a permanent reference to disable the RPM functionality and drop
2755 * it only when unloading the driver. Use the low level get/put helpers,
2756 * so the driver's own RPM reference tracking asserts also work on
2757 * platforms without RPM support.
2758 */
2759 if (!HAS_RUNTIME_PM(dev_priv)) {
2760 pm_runtime_dont_use_autosuspend(kdev);
2761 pm_runtime_get_sync(kdev);
2762 } else {
2763 pm_runtime_use_autosuspend(kdev);
2764 }
2765
2766 /*
2767 * The core calls the driver load handler with an RPM reference held.
2768 * We drop that here and will reacquire it during unloading in
2769 * intel_power_domains_fini().
2770 */
2771 pm_runtime_put_autosuspend(kdev);
2772}