Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#ifndef KFD_PRIV_H_INCLUDED
  24#define KFD_PRIV_H_INCLUDED
  25
  26#include <linux/hashtable.h>
  27#include <linux/mmu_notifier.h>
  28#include <linux/mutex.h>
  29#include <linux/types.h>
  30#include <linux/atomic.h>
  31#include <linux/workqueue.h>
  32#include <linux/spinlock.h>
  33#include <linux/kfd_ioctl.h>
  34#include <linux/idr.h>
  35#include <linux/kfifo.h>
  36#include <linux/seq_file.h>
  37#include <linux/kref.h>
  38#include <linux/sysfs.h>
  39#include <kgd_kfd_interface.h>
  40
  41#include "amd_shared.h"
  42
  43#define KFD_MAX_RING_ENTRY_SIZE	8
  44
  45#define KFD_SYSFS_FILE_MODE 0444
  46
  47/* GPU ID hash width in bits */
  48#define KFD_GPU_ID_HASH_WIDTH 16
  49
  50/* Use upper bits of mmap offset to store KFD driver specific information.
  51 * BITS[63:62] - Encode MMAP type
  52 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
  53 * BITS[45:0]  - MMAP offset value
  54 *
  55 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  56 *  defines are w.r.t to PAGE_SIZE
  57 */
  58#define KFD_MMAP_TYPE_SHIFT	(62 - PAGE_SHIFT)
  59#define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  60#define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
  61#define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
  62#define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
  63#define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
  64
  65#define KFD_MMAP_GPU_ID_SHIFT (46 - PAGE_SHIFT)
  66#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
  67				<< KFD_MMAP_GPU_ID_SHIFT)
  68#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
  69				& KFD_MMAP_GPU_ID_MASK)
  70#define KFD_MMAP_GPU_ID_GET(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
  71				>> KFD_MMAP_GPU_ID_SHIFT)
  72
  73#define KFD_MMAP_OFFSET_VALUE_MASK	(0x3FFFFFFFFFFFULL >> PAGE_SHIFT)
  74#define KFD_MMAP_OFFSET_VALUE_GET(offset) (offset & KFD_MMAP_OFFSET_VALUE_MASK)
  75
  76/*
  77 * When working with cp scheduler we should assign the HIQ manually or via
  78 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
  79 * definitions for Kaveri. In Kaveri only the first ME queues participates
  80 * in the cp scheduling taking that in mind we set the HIQ slot in the
  81 * second ME.
  82 */
  83#define KFD_CIK_HIQ_PIPE 4
  84#define KFD_CIK_HIQ_QUEUE 0
  85
  86/* Macro for allocating structures */
  87#define kfd_alloc_struct(ptr_to_struct)	\
  88	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
  89
  90#define KFD_MAX_NUM_OF_PROCESSES 512
  91#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
  92
  93/*
  94 * Size of the per-process TBA+TMA buffer: 2 pages
  95 *
  96 * The first page is the TBA used for the CWSR ISA code. The second
  97 * page is used as TMA for daisy changing a user-mode trap handler.
  98 */
  99#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
 100#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
 101
 102#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
 103	(KFD_MAX_NUM_OF_PROCESSES *			\
 104			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 105
 106#define KFD_KERNEL_QUEUE_SIZE 2048
 107
 108#define KFD_UNMAP_LATENCY_MS	(4000)
 109
 110/*
 111 * 512 = 0x200
 112 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
 113 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
 114 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
 115 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
 116 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
 117 */
 118#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
 119
 120
 121/*
 122 * Kernel module parameter to specify maximum number of supported queues per
 123 * device
 124 */
 125extern int max_num_of_queues_per_device;
 126
 127
 128/* Kernel module parameter to specify the scheduling policy */
 129extern int sched_policy;
 130
 131/*
 132 * Kernel module parameter to specify the maximum process
 133 * number per HW scheduler
 134 */
 135extern int hws_max_conc_proc;
 136
 137extern int cwsr_enable;
 138
 139/*
 140 * Kernel module parameter to specify whether to send sigterm to HSA process on
 141 * unhandled exception
 142 */
 143extern int send_sigterm;
 144
 145/*
 146 * This kernel module is used to simulate large bar machine on non-large bar
 147 * enabled machines.
 148 */
 149extern int debug_largebar;
 150
 151/*
 152 * Ignore CRAT table during KFD initialization, can be used to work around
 153 * broken CRAT tables on some AMD systems
 154 */
 155extern int ignore_crat;
 156
 157/*
 158 * Set sh_mem_config.retry_disable on Vega10
 159 */
 160extern int amdgpu_noretry;
 161
 162/*
 163 * Halt if HWS hang is detected
 164 */
 165extern int halt_if_hws_hang;
 166
 167/*
 168 * Whether MEC FW support GWS barriers
 169 */
 170extern bool hws_gws_support;
 171
 172/*
 173 * Queue preemption timeout in ms
 174 */
 175extern int queue_preemption_timeout_ms;
 176
 177enum cache_policy {
 178	cache_policy_coherent,
 179	cache_policy_noncoherent
 180};
 181
 182#define KFD_IS_VI(chip) ((chip) >= CHIP_CARRIZO && (chip) <= CHIP_POLARIS11)
 183#define KFD_IS_DGPU(chip) (((chip) >= CHIP_TONGA && \
 184			   (chip) <= CHIP_NAVI10) || \
 185			   (chip) == CHIP_HAWAII)
 186#define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
 187
 188struct kfd_event_interrupt_class {
 189	bool (*interrupt_isr)(struct kfd_dev *dev,
 190			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
 191			bool *patched_flag);
 192	void (*interrupt_wq)(struct kfd_dev *dev,
 193			const uint32_t *ih_ring_entry);
 194};
 195
 196struct kfd_device_info {
 197	enum amd_asic_type asic_family;
 198	const char *asic_name;
 199	const struct kfd_event_interrupt_class *event_interrupt_class;
 200	unsigned int max_pasid_bits;
 201	unsigned int max_no_of_hqd;
 202	unsigned int doorbell_size;
 203	size_t ih_ring_entry_size;
 204	uint8_t num_of_watch_points;
 205	uint16_t mqd_size_aligned;
 206	bool supports_cwsr;
 207	bool needs_iommu_device;
 208	bool needs_pci_atomics;
 209	unsigned int num_sdma_engines;
 210	unsigned int num_xgmi_sdma_engines;
 211	unsigned int num_sdma_queues_per_engine;
 212};
 213
 214struct kfd_mem_obj {
 215	uint32_t range_start;
 216	uint32_t range_end;
 217	uint64_t gpu_addr;
 218	uint32_t *cpu_ptr;
 219	void *gtt_mem;
 220};
 221
 222struct kfd_vmid_info {
 223	uint32_t first_vmid_kfd;
 224	uint32_t last_vmid_kfd;
 225	uint32_t vmid_num_kfd;
 226};
 227
 228struct kfd_dev {
 229	struct kgd_dev *kgd;
 230
 231	const struct kfd_device_info *device_info;
 232	struct pci_dev *pdev;
 233
 234	unsigned int id;		/* topology stub index */
 235
 236	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
 237					 * KFD. It is aligned for mapping
 238					 * into user mode
 239					 */
 240	size_t doorbell_id_offset;	/* Doorbell offset (from KFD doorbell
 241					 * to HW doorbell, GFX reserved some
 242					 * at the start)
 243					 */
 244	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
 245					   * page used by kernel queue
 246					   */
 247
 248	struct kgd2kfd_shared_resources shared_resources;
 249	struct kfd_vmid_info vm_info;
 250
 251	const struct kfd2kgd_calls *kfd2kgd;
 252	struct mutex doorbell_mutex;
 253	DECLARE_BITMAP(doorbell_available_index,
 254			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
 255
 256	void *gtt_mem;
 257	uint64_t gtt_start_gpu_addr;
 258	void *gtt_start_cpu_ptr;
 259	void *gtt_sa_bitmap;
 260	struct mutex gtt_sa_lock;
 261	unsigned int gtt_sa_chunk_size;
 262	unsigned int gtt_sa_num_of_chunks;
 263
 264	/* Interrupts */
 265	struct kfifo ih_fifo;
 266	struct workqueue_struct *ih_wq;
 267	struct work_struct interrupt_work;
 268	spinlock_t interrupt_lock;
 269
 270	/* QCM Device instance */
 271	struct device_queue_manager *dqm;
 272
 273	bool init_complete;
 274	/*
 275	 * Interrupts of interest to KFD are copied
 276	 * from the HW ring into a SW ring.
 277	 */
 278	bool interrupts_active;
 279
 280	/* Debug manager */
 281	struct kfd_dbgmgr *dbgmgr;
 282
 283	/* Firmware versions */
 284	uint16_t mec_fw_version;
 285	uint16_t sdma_fw_version;
 286
 287	/* Maximum process number mapped to HW scheduler */
 288	unsigned int max_proc_per_quantum;
 289
 290	/* CWSR */
 291	bool cwsr_enabled;
 292	const void *cwsr_isa;
 293	unsigned int cwsr_isa_size;
 294
 295	/* xGMI */
 296	uint64_t hive_id;
 297
 298	bool pci_atomic_requested;
 299
 300	/* SRAM ECC flag */
 301	atomic_t sram_ecc_flag;
 302
 303	/* Compute Profile ref. count */
 304	atomic_t compute_profile;
 305
 306	/* Global GWS resource shared b/t processes*/
 307	void *gws;
 308};
 309
 310enum kfd_mempool {
 311	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
 312	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
 313	KFD_MEMPOOL_FRAMEBUFFER = 3,
 314};
 315
 316/* Character device interface */
 317int kfd_chardev_init(void);
 318void kfd_chardev_exit(void);
 319struct device *kfd_chardev(void);
 320
 321/**
 322 * enum kfd_unmap_queues_filter
 323 *
 324 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
 325 *
 326 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
 327 *						running queues list.
 328 *
 329 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
 330 *						specific process.
 331 *
 332 */
 333enum kfd_unmap_queues_filter {
 334	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
 335	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
 336	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
 337	KFD_UNMAP_QUEUES_FILTER_BY_PASID
 338};
 339
 340/**
 341 * enum kfd_queue_type
 342 *
 343 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
 344 *
 345 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
 346 *
 347 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
 348 *
 349 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 350 */
 351enum kfd_queue_type  {
 352	KFD_QUEUE_TYPE_COMPUTE,
 353	KFD_QUEUE_TYPE_SDMA,
 354	KFD_QUEUE_TYPE_HIQ,
 355	KFD_QUEUE_TYPE_DIQ,
 356	KFD_QUEUE_TYPE_SDMA_XGMI
 357};
 358
 359enum kfd_queue_format {
 360	KFD_QUEUE_FORMAT_PM4,
 361	KFD_QUEUE_FORMAT_AQL
 362};
 363
 364enum KFD_QUEUE_PRIORITY {
 365	KFD_QUEUE_PRIORITY_MINIMUM = 0,
 366	KFD_QUEUE_PRIORITY_MAXIMUM = 15
 367};
 368
 369/**
 370 * struct queue_properties
 371 *
 372 * @type: The queue type.
 373 *
 374 * @queue_id: Queue identifier.
 375 *
 376 * @queue_address: Queue ring buffer address.
 377 *
 378 * @queue_size: Queue ring buffer size.
 379 *
 380 * @priority: Defines the queue priority relative to other queues in the
 381 * process.
 382 * This is just an indication and HW scheduling may override the priority as
 383 * necessary while keeping the relative prioritization.
 384 * the priority granularity is from 0 to f which f is the highest priority.
 385 * currently all queues are initialized with the highest priority.
 386 *
 387 * @queue_percent: This field is partially implemented and currently a zero in
 388 * this field defines that the queue is non active.
 389 *
 390 * @read_ptr: User space address which points to the number of dwords the
 391 * cp read from the ring buffer. This field updates automatically by the H/W.
 392 *
 393 * @write_ptr: Defines the number of dwords written to the ring buffer.
 394 *
 395 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
 396 * the queue ring buffer. This field should be similar to write_ptr and the
 397 * user should update this field after he updated the write_ptr.
 398 *
 399 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
 400 *
 401 * @is_interop: Defines if this is a interop queue. Interop queue means that
 402 * the queue can access both graphics and compute resources.
 403 *
 404 * @is_evicted: Defines if the queue is evicted. Only active queues
 405 * are evicted, rendering them inactive.
 406 *
 407 * @is_active: Defines if the queue is active or not. @is_active and
 408 * @is_evicted are protected by the DQM lock.
 409 *
 410 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
 411 * of the queue.
 412 *
 413 * This structure represents the queue properties for each queue no matter if
 414 * it's user mode or kernel mode queue.
 415 *
 416 */
 417struct queue_properties {
 418	enum kfd_queue_type type;
 419	enum kfd_queue_format format;
 420	unsigned int queue_id;
 421	uint64_t queue_address;
 422	uint64_t  queue_size;
 423	uint32_t priority;
 424	uint32_t queue_percent;
 425	uint32_t *read_ptr;
 426	uint32_t *write_ptr;
 427	void __iomem *doorbell_ptr;
 428	uint32_t doorbell_off;
 429	bool is_interop;
 430	bool is_evicted;
 431	bool is_active;
 432	/* Not relevant for user mode queues in cp scheduling */
 433	unsigned int vmid;
 434	/* Relevant only for sdma queues*/
 435	uint32_t sdma_engine_id;
 436	uint32_t sdma_queue_id;
 437	uint32_t sdma_vm_addr;
 438	/* Relevant only for VI */
 439	uint64_t eop_ring_buffer_address;
 440	uint32_t eop_ring_buffer_size;
 441	uint64_t ctx_save_restore_area_address;
 442	uint32_t ctx_save_restore_area_size;
 443	uint32_t ctl_stack_size;
 444	uint64_t tba_addr;
 445	uint64_t tma_addr;
 446	/* Relevant for CU */
 447	uint32_t cu_mask_count; /* Must be a multiple of 32 */
 448	uint32_t *cu_mask;
 449};
 450
 451#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
 452			    (q).queue_address != 0 &&	\
 453			    (q).queue_percent > 0 &&	\
 454			    !(q).is_evicted)
 455
 456/**
 457 * struct queue
 458 *
 459 * @list: Queue linked list.
 460 *
 461 * @mqd: The queue MQD.
 462 *
 463 * @mqd_mem_obj: The MQD local gpu memory object.
 464 *
 465 * @gart_mqd_addr: The MQD gart mc address.
 466 *
 467 * @properties: The queue properties.
 468 *
 469 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
 470 *	 that the queue should be execute on.
 471 *
 472 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
 473 *	  id.
 474 *
 475 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
 476 *
 477 * @process: The kfd process that created this queue.
 478 *
 479 * @device: The kfd device that created this queue.
 480 *
 481 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
 482 * otherwise.
 483 *
 484 * This structure represents user mode compute queues.
 485 * It contains all the necessary data to handle such queues.
 486 *
 487 */
 488
 489struct queue {
 490	struct list_head list;
 491	void *mqd;
 492	struct kfd_mem_obj *mqd_mem_obj;
 493	uint64_t gart_mqd_addr;
 494	struct queue_properties properties;
 495
 496	uint32_t mec;
 497	uint32_t pipe;
 498	uint32_t queue;
 499
 500	unsigned int sdma_id;
 501	unsigned int doorbell_id;
 502
 503	struct kfd_process	*process;
 504	struct kfd_dev		*device;
 505	void *gws;
 506};
 507
 508/*
 509 * Please read the kfd_mqd_manager.h description.
 510 */
 511enum KFD_MQD_TYPE {
 512	KFD_MQD_TYPE_COMPUTE = 0,	/* for no cp scheduling */
 513	KFD_MQD_TYPE_HIQ,		/* for hiq */
 514	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
 515	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
 516	KFD_MQD_TYPE_DIQ,		/* for diq */
 517	KFD_MQD_TYPE_MAX
 518};
 519
 520enum KFD_PIPE_PRIORITY {
 521	KFD_PIPE_PRIORITY_CS_LOW = 0,
 522	KFD_PIPE_PRIORITY_CS_MEDIUM,
 523	KFD_PIPE_PRIORITY_CS_HIGH
 524};
 525
 526struct scheduling_resources {
 527	unsigned int vmid_mask;
 528	enum kfd_queue_type type;
 529	uint64_t queue_mask;
 530	uint64_t gws_mask;
 531	uint32_t oac_mask;
 532	uint32_t gds_heap_base;
 533	uint32_t gds_heap_size;
 534};
 535
 536struct process_queue_manager {
 537	/* data */
 538	struct kfd_process	*process;
 539	struct list_head	queues;
 540	unsigned long		*queue_slot_bitmap;
 541};
 542
 543struct qcm_process_device {
 544	/* The Device Queue Manager that owns this data */
 545	struct device_queue_manager *dqm;
 546	struct process_queue_manager *pqm;
 547	/* Queues list */
 548	struct list_head queues_list;
 549	struct list_head priv_queue_list;
 550
 551	unsigned int queue_count;
 552	unsigned int vmid;
 553	bool is_debug;
 554	unsigned int evicted; /* eviction counter, 0=active */
 555
 556	/* This flag tells if we should reset all wavefronts on
 557	 * process termination
 558	 */
 559	bool reset_wavefronts;
 560
 561	/*
 562	 * All the memory management data should be here too
 563	 */
 564	uint64_t gds_context_area;
 565	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
 566	uint64_t page_table_base;
 567	uint32_t sh_mem_config;
 568	uint32_t sh_mem_bases;
 569	uint32_t sh_mem_ape1_base;
 570	uint32_t sh_mem_ape1_limit;
 571	uint32_t gds_size;
 572	uint32_t num_gws;
 573	uint32_t num_oac;
 574	uint32_t sh_hidden_private_base;
 575
 576	/* CWSR memory */
 577	void *cwsr_kaddr;
 578	uint64_t cwsr_base;
 579	uint64_t tba_addr;
 580	uint64_t tma_addr;
 581
 582	/* IB memory */
 583	uint64_t ib_base;
 584	void *ib_kaddr;
 585
 586	/* doorbell resources per process per device */
 587	unsigned long *doorbell_bitmap;
 588};
 589
 590/* KFD Memory Eviction */
 591
 592/* Approx. wait time before attempting to restore evicted BOs */
 593#define PROCESS_RESTORE_TIME_MS 100
 594/* Approx. back off time if restore fails due to lack of memory */
 595#define PROCESS_BACK_OFF_TIME_MS 100
 596/* Approx. time before evicting the process again */
 597#define PROCESS_ACTIVE_TIME_MS 10
 598
 599/* 8 byte handle containing GPU ID in the most significant 4 bytes and
 600 * idr_handle in the least significant 4 bytes
 601 */
 602#define MAKE_HANDLE(gpu_id, idr_handle) \
 603	(((uint64_t)(gpu_id) << 32) + idr_handle)
 604#define GET_GPU_ID(handle) (handle >> 32)
 605#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
 606
 607enum kfd_pdd_bound {
 608	PDD_UNBOUND = 0,
 609	PDD_BOUND,
 610	PDD_BOUND_SUSPENDED,
 611};
 612
 613/* Data that is per-process-per device. */
 614struct kfd_process_device {
 615	/*
 616	 * List of all per-device data for a process.
 617	 * Starts from kfd_process.per_device_data.
 618	 */
 619	struct list_head per_device_list;
 620
 621	/* The device that owns this data. */
 622	struct kfd_dev *dev;
 623
 624	/* The process that owns this kfd_process_device. */
 625	struct kfd_process *process;
 626
 627	/* per-process-per device QCM data structure */
 628	struct qcm_process_device qpd;
 629
 630	/*Apertures*/
 631	uint64_t lds_base;
 632	uint64_t lds_limit;
 633	uint64_t gpuvm_base;
 634	uint64_t gpuvm_limit;
 635	uint64_t scratch_base;
 636	uint64_t scratch_limit;
 637
 638	/* VM context for GPUVM allocations */
 639	struct file *drm_file;
 640	void *vm;
 641
 642	/* GPUVM allocations storage */
 643	struct idr alloc_idr;
 644
 645	/* Flag used to tell the pdd has dequeued from the dqm.
 646	 * This is used to prevent dev->dqm->ops.process_termination() from
 647	 * being called twice when it is already called in IOMMU callback
 648	 * function.
 649	 */
 650	bool already_dequeued;
 651
 652	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
 653	enum kfd_pdd_bound bound;
 654};
 655
 656#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
 657
 658/* Process data */
 659struct kfd_process {
 660	/*
 661	 * kfd_process are stored in an mm_struct*->kfd_process*
 662	 * hash table (kfd_processes in kfd_process.c)
 663	 */
 664	struct hlist_node kfd_processes;
 665
 666	/*
 667	 * Opaque pointer to mm_struct. We don't hold a reference to
 668	 * it so it should never be dereferenced from here. This is
 669	 * only used for looking up processes by their mm.
 670	 */
 671	void *mm;
 672
 673	struct kref ref;
 674	struct work_struct release_work;
 675
 676	struct mutex mutex;
 677
 678	/*
 679	 * In any process, the thread that started main() is the lead
 680	 * thread and outlives the rest.
 681	 * It is here because amd_iommu_bind_pasid wants a task_struct.
 682	 * It can also be used for safely getting a reference to the
 683	 * mm_struct of the process.
 684	 */
 685	struct task_struct *lead_thread;
 686
 687	/* We want to receive a notification when the mm_struct is destroyed */
 688	struct mmu_notifier mmu_notifier;
 689
 690	unsigned int pasid;
 691	unsigned int doorbell_index;
 692
 693	/*
 694	 * List of kfd_process_device structures,
 695	 * one for each device the process is using.
 696	 */
 697	struct list_head per_device_data;
 698
 699	struct process_queue_manager pqm;
 700
 701	/*Is the user space process 32 bit?*/
 702	bool is_32bit_user_mode;
 703
 704	/* Event-related data */
 705	struct mutex event_mutex;
 706	/* Event ID allocator and lookup */
 707	struct idr event_idr;
 708	/* Event page */
 709	struct kfd_signal_page *signal_page;
 710	size_t signal_mapped_size;
 711	size_t signal_event_count;
 712	bool signal_event_limit_reached;
 713
 714	/* Information used for memory eviction */
 715	void *kgd_process_info;
 716	/* Eviction fence that is attached to all the BOs of this process. The
 717	 * fence will be triggered during eviction and new one will be created
 718	 * during restore
 719	 */
 720	struct dma_fence *ef;
 721
 722	/* Work items for evicting and restoring BOs */
 723	struct delayed_work eviction_work;
 724	struct delayed_work restore_work;
 725	/* seqno of the last scheduled eviction */
 726	unsigned int last_eviction_seqno;
 727	/* Approx. the last timestamp (in jiffies) when the process was
 728	 * restored after an eviction
 729	 */
 730	unsigned long last_restore_timestamp;
 731
 732	/* Kobj for our procfs */
 733	struct kobject *kobj;
 734	struct attribute attr_pasid;
 735};
 736
 737#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
 738extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
 739extern struct srcu_struct kfd_processes_srcu;
 740
 741/**
 742 * Ioctl function type.
 743 *
 744 * \param filep pointer to file structure.
 745 * \param p amdkfd process pointer.
 746 * \param data pointer to arg that was copied from user.
 747 */
 748typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
 749				void *data);
 750
 751struct amdkfd_ioctl_desc {
 752	unsigned int cmd;
 753	int flags;
 754	amdkfd_ioctl_t *func;
 755	unsigned int cmd_drv;
 756	const char *name;
 757};
 758bool kfd_dev_is_large_bar(struct kfd_dev *dev);
 759
 760int kfd_process_create_wq(void);
 761void kfd_process_destroy_wq(void);
 762struct kfd_process *kfd_create_process(struct file *filep);
 763struct kfd_process *kfd_get_process(const struct task_struct *);
 764struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
 765struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
 766void kfd_unref_process(struct kfd_process *p);
 767int kfd_process_evict_queues(struct kfd_process *p);
 768int kfd_process_restore_queues(struct kfd_process *p);
 769void kfd_suspend_all_processes(void);
 770int kfd_resume_all_processes(void);
 771
 772int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 773			       struct file *drm_file);
 774struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 775						struct kfd_process *p);
 776struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 777							struct kfd_process *p);
 778struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 779							struct kfd_process *p);
 780
 781int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
 782			  struct vm_area_struct *vma);
 783
 784/* KFD process API for creating and translating handles */
 785int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 786					void *mem);
 787void *kfd_process_device_translate_handle(struct kfd_process_device *p,
 788					int handle);
 789void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 790					int handle);
 791
 792/* Process device data iterator */
 793struct kfd_process_device *kfd_get_first_process_device_data(
 794							struct kfd_process *p);
 795struct kfd_process_device *kfd_get_next_process_device_data(
 796						struct kfd_process *p,
 797						struct kfd_process_device *pdd);
 798bool kfd_has_process_device_data(struct kfd_process *p);
 799
 800/* PASIDs */
 801int kfd_pasid_init(void);
 802void kfd_pasid_exit(void);
 803bool kfd_set_pasid_limit(unsigned int new_limit);
 804unsigned int kfd_get_pasid_limit(void);
 805unsigned int kfd_pasid_alloc(void);
 806void kfd_pasid_free(unsigned int pasid);
 807
 808/* Doorbells */
 809size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
 810int kfd_doorbell_init(struct kfd_dev *kfd);
 811void kfd_doorbell_fini(struct kfd_dev *kfd);
 812int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
 813		      struct vm_area_struct *vma);
 814void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
 815					unsigned int *doorbell_off);
 816void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
 817u32 read_kernel_doorbell(u32 __iomem *db);
 818void write_kernel_doorbell(void __iomem *db, u32 value);
 819void write_kernel_doorbell64(void __iomem *db, u64 value);
 820unsigned int kfd_doorbell_id_to_offset(struct kfd_dev *kfd,
 821					struct kfd_process *process,
 822					unsigned int doorbell_id);
 823phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
 824					struct kfd_process *process);
 825int kfd_alloc_process_doorbells(struct kfd_process *process);
 826void kfd_free_process_doorbells(struct kfd_process *process);
 827
 828/* GTT Sub-Allocator */
 829
 830int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
 831			struct kfd_mem_obj **mem_obj);
 832
 833int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
 834
 835extern struct device *kfd_device;
 836
 837/* KFD's procfs */
 838void kfd_procfs_init(void);
 839void kfd_procfs_shutdown(void);
 840
 841/* Topology */
 842int kfd_topology_init(void);
 843void kfd_topology_shutdown(void);
 844int kfd_topology_add_device(struct kfd_dev *gpu);
 845int kfd_topology_remove_device(struct kfd_dev *gpu);
 846struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
 847						uint32_t proximity_domain);
 848struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
 849struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
 850struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
 851struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
 852int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
 853int kfd_numa_node_to_apic_id(int numa_node_id);
 854
 855/* Interrupts */
 856int kfd_interrupt_init(struct kfd_dev *dev);
 857void kfd_interrupt_exit(struct kfd_dev *dev);
 858bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
 859bool interrupt_is_wanted(struct kfd_dev *dev,
 860				const uint32_t *ih_ring_entry,
 861				uint32_t *patched_ihre, bool *flag);
 862
 863/* amdkfd Apertures */
 864int kfd_init_apertures(struct kfd_process *process);
 865
 866/* Queue Context Management */
 867int init_queue(struct queue **q, const struct queue_properties *properties);
 868void uninit_queue(struct queue *q);
 869void print_queue_properties(struct queue_properties *q);
 870void print_queue(struct queue *q);
 871
 872struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
 873		struct kfd_dev *dev);
 874struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
 875		struct kfd_dev *dev);
 876struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
 877		struct kfd_dev *dev);
 878struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
 879		struct kfd_dev *dev);
 880struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
 881		struct kfd_dev *dev);
 882struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
 883		struct kfd_dev *dev);
 884struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
 885void device_queue_manager_uninit(struct device_queue_manager *dqm);
 886struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
 887					enum kfd_queue_type type);
 888void kernel_queue_uninit(struct kernel_queue *kq);
 889int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
 890
 891/* Process Queue Manager */
 892struct process_queue_node {
 893	struct queue *q;
 894	struct kernel_queue *kq;
 895	struct list_head process_queue_list;
 896};
 897
 898void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
 899void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
 900int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
 901void pqm_uninit(struct process_queue_manager *pqm);
 902int pqm_create_queue(struct process_queue_manager *pqm,
 903			    struct kfd_dev *dev,
 904			    struct file *f,
 905			    struct queue_properties *properties,
 906			    unsigned int *qid);
 907int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
 908int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
 909			struct queue_properties *p);
 910int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
 911			struct queue_properties *p);
 912int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
 913			void *gws);
 914struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
 915						unsigned int qid);
 916int pqm_get_wave_state(struct process_queue_manager *pqm,
 917		       unsigned int qid,
 918		       void __user *ctl_stack,
 919		       u32 *ctl_stack_used_size,
 920		       u32 *save_area_used_size);
 921
 922int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
 923			      unsigned int fence_value,
 924			      unsigned int timeout_ms);
 925
 926/* Packet Manager */
 927
 928#define KFD_FENCE_COMPLETED (100)
 929#define KFD_FENCE_INIT   (10)
 930
 931struct packet_manager {
 932	struct device_queue_manager *dqm;
 933	struct kernel_queue *priv_queue;
 934	struct mutex lock;
 935	bool allocated;
 936	struct kfd_mem_obj *ib_buffer_obj;
 937	unsigned int ib_size_bytes;
 938	bool is_over_subscription;
 939
 940	const struct packet_manager_funcs *pmf;
 941};
 942
 943struct packet_manager_funcs {
 944	/* Support ASIC-specific packet formats for PM4 packets */
 945	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
 946			struct qcm_process_device *qpd);
 947	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
 948			uint64_t ib, size_t ib_size_in_dwords, bool chain);
 949	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
 950			struct scheduling_resources *res);
 951	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
 952			struct queue *q, bool is_static);
 953	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
 954			enum kfd_queue_type type,
 955			enum kfd_unmap_queues_filter mode,
 956			uint32_t filter_param, bool reset,
 957			unsigned int sdma_engine);
 958	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
 959			uint64_t fence_address,	uint32_t fence_value);
 960	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
 961
 962	/* Packet sizes */
 963	int map_process_size;
 964	int runlist_size;
 965	int set_resources_size;
 966	int map_queues_size;
 967	int unmap_queues_size;
 968	int query_status_size;
 969	int release_mem_size;
 970};
 971
 972extern const struct packet_manager_funcs kfd_vi_pm_funcs;
 973extern const struct packet_manager_funcs kfd_v9_pm_funcs;
 974extern const struct packet_manager_funcs kfd_v10_pm_funcs;
 975
 976int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
 977void pm_uninit(struct packet_manager *pm);
 978int pm_send_set_resources(struct packet_manager *pm,
 979				struct scheduling_resources *res);
 980int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
 981int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
 982				uint32_t fence_value);
 983
 984int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
 985			enum kfd_unmap_queues_filter mode,
 986			uint32_t filter_param, bool reset,
 987			unsigned int sdma_engine);
 988
 989void pm_release_ib(struct packet_manager *pm);
 990
 991/* Following PM funcs can be shared among VI and AI */
 992unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
 993int pm_set_resources_vi(struct packet_manager *pm, uint32_t *buffer,
 994			struct scheduling_resources *res);
 995
 996
 997uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
 998
 999/* Events */
1000extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1001extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1002
1003extern const struct kfd_device_global_init_class device_global_init_class_cik;
1004
1005void kfd_event_init_process(struct kfd_process *p);
1006void kfd_event_free_process(struct kfd_process *p);
1007int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1008int kfd_wait_on_events(struct kfd_process *p,
1009		       uint32_t num_events, void __user *data,
1010		       bool all, uint32_t user_timeout_ms,
1011		       uint32_t *wait_result);
1012void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1013				uint32_t valid_id_bits);
1014void kfd_signal_iommu_event(struct kfd_dev *dev,
1015		unsigned int pasid, unsigned long address,
1016		bool is_write_requested, bool is_execute_requested);
1017void kfd_signal_hw_exception_event(unsigned int pasid);
1018int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1019int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1020int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1021		       uint64_t size);
1022int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1023		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1024		     uint32_t *event_id, uint32_t *event_trigger_data,
1025		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1026int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1027
1028void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1029				struct kfd_vm_fault_info *info);
1030
1031void kfd_signal_reset_event(struct kfd_dev *dev);
1032
1033void kfd_flush_tlb(struct kfd_process_device *pdd);
1034
1035int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1036
1037bool kfd_is_locked(void);
1038
1039/* Compute profile */
1040void kfd_inc_compute_active(struct kfd_dev *dev);
1041void kfd_dec_compute_active(struct kfd_dev *dev);
1042
1043/* Debugfs */
1044#if defined(CONFIG_DEBUG_FS)
1045
1046void kfd_debugfs_init(void);
1047void kfd_debugfs_fini(void);
1048int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1049int pqm_debugfs_mqds(struct seq_file *m, void *data);
1050int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1051int dqm_debugfs_hqds(struct seq_file *m, void *data);
1052int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1053int pm_debugfs_runlist(struct seq_file *m, void *data);
1054
1055int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1056int pm_debugfs_hang_hws(struct packet_manager *pm);
1057int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1058
1059#else
1060
1061static inline void kfd_debugfs_init(void) {}
1062static inline void kfd_debugfs_fini(void) {}
1063
1064#endif
1065
1066#endif