Loading...
Note: File does not exist in v3.1.
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#ifndef KFD_PRIV_H_INCLUDED
24#define KFD_PRIV_H_INCLUDED
25
26#include <linux/hashtable.h>
27#include <linux/mmu_notifier.h>
28#include <linux/mutex.h>
29#include <linux/types.h>
30#include <linux/atomic.h>
31#include <linux/workqueue.h>
32#include <linux/spinlock.h>
33#include <linux/kfd_ioctl.h>
34#include <kgd_kfd_interface.h>
35
36#define KFD_SYSFS_FILE_MODE 0444
37
38#define KFD_MMAP_DOORBELL_MASK 0x8000000000000
39#define KFD_MMAP_EVENTS_MASK 0x4000000000000
40
41/*
42 * When working with cp scheduler we should assign the HIQ manually or via
43 * the radeon driver to a fixed hqd slot, here are the fixed HIQ hqd slot
44 * definitions for Kaveri. In Kaveri only the first ME queues participates
45 * in the cp scheduling taking that in mind we set the HIQ slot in the
46 * second ME.
47 */
48#define KFD_CIK_HIQ_PIPE 4
49#define KFD_CIK_HIQ_QUEUE 0
50
51/* GPU ID hash width in bits */
52#define KFD_GPU_ID_HASH_WIDTH 16
53
54/* Macro for allocating structures */
55#define kfd_alloc_struct(ptr_to_struct) \
56 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
57
58#define KFD_MAX_NUM_OF_PROCESSES 512
59#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
60
61/*
62 * Kernel module parameter to specify maximum number of supported queues per
63 * device
64 */
65extern int max_num_of_queues_per_device;
66
67#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096
68#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \
69 (KFD_MAX_NUM_OF_PROCESSES * \
70 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
71
72#define KFD_KERNEL_QUEUE_SIZE 2048
73
74/* Kernel module parameter to specify the scheduling policy */
75extern int sched_policy;
76
77/*
78 * Kernel module parameter to specify whether to send sigterm to HSA process on
79 * unhandled exception
80 */
81extern int send_sigterm;
82
83/**
84 * enum kfd_sched_policy
85 *
86 * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
87 * scheduling. In this scheduling mode we're using the firmware code to
88 * schedule the user mode queues and kernel queues such as HIQ and DIQ.
89 * the HIQ queue is used as a special queue that dispatches the configuration
90 * to the cp and the user mode queues list that are currently running.
91 * the DIQ queue is a debugging queue that dispatches debugging commands to the
92 * firmware.
93 * in this scheduling mode user mode queues over subscription feature is
94 * enabled.
95 *
96 * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
97 * subscription feature disabled.
98 *
99 * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
100 * set the command processor registers and sets the queues "manually". This
101 * mode is used *ONLY* for debugging proposes.
102 *
103 */
104enum kfd_sched_policy {
105 KFD_SCHED_POLICY_HWS = 0,
106 KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
107 KFD_SCHED_POLICY_NO_HWS
108};
109
110enum cache_policy {
111 cache_policy_coherent,
112 cache_policy_noncoherent
113};
114
115enum asic_family_type {
116 CHIP_KAVERI = 0,
117 CHIP_CARRIZO
118};
119
120struct kfd_event_interrupt_class {
121 bool (*interrupt_isr)(struct kfd_dev *dev,
122 const uint32_t *ih_ring_entry);
123 void (*interrupt_wq)(struct kfd_dev *dev,
124 const uint32_t *ih_ring_entry);
125};
126
127struct kfd_device_info {
128 unsigned int asic_family;
129 const struct kfd_event_interrupt_class *event_interrupt_class;
130 unsigned int max_pasid_bits;
131 unsigned int max_no_of_hqd;
132 size_t ih_ring_entry_size;
133 uint8_t num_of_watch_points;
134 uint16_t mqd_size_aligned;
135};
136
137struct kfd_mem_obj {
138 uint32_t range_start;
139 uint32_t range_end;
140 uint64_t gpu_addr;
141 uint32_t *cpu_ptr;
142};
143
144struct kfd_dev {
145 struct kgd_dev *kgd;
146
147 const struct kfd_device_info *device_info;
148 struct pci_dev *pdev;
149
150 unsigned int id; /* topology stub index */
151
152 phys_addr_t doorbell_base; /* Start of actual doorbells used by
153 * KFD. It is aligned for mapping
154 * into user mode
155 */
156 size_t doorbell_id_offset; /* Doorbell offset (from KFD doorbell
157 * to HW doorbell, GFX reserved some
158 * at the start)
159 */
160 size_t doorbell_process_limit; /* Number of processes we have doorbell
161 * space for.
162 */
163 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
164 * page used by kernel queue
165 */
166
167 struct kgd2kfd_shared_resources shared_resources;
168
169 const struct kfd2kgd_calls *kfd2kgd;
170 struct mutex doorbell_mutex;
171 DECLARE_BITMAP(doorbell_available_index,
172 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
173
174 void *gtt_mem;
175 uint64_t gtt_start_gpu_addr;
176 void *gtt_start_cpu_ptr;
177 void *gtt_sa_bitmap;
178 struct mutex gtt_sa_lock;
179 unsigned int gtt_sa_chunk_size;
180 unsigned int gtt_sa_num_of_chunks;
181
182 /* Interrupts */
183 void *interrupt_ring;
184 size_t interrupt_ring_size;
185 atomic_t interrupt_ring_rptr;
186 atomic_t interrupt_ring_wptr;
187 struct work_struct interrupt_work;
188 spinlock_t interrupt_lock;
189
190 /* QCM Device instance */
191 struct device_queue_manager *dqm;
192
193 bool init_complete;
194 /*
195 * Interrupts of interest to KFD are copied
196 * from the HW ring into a SW ring.
197 */
198 bool interrupts_active;
199
200 /* Debug manager */
201 struct kfd_dbgmgr *dbgmgr;
202};
203
204/* KGD2KFD callbacks */
205void kgd2kfd_exit(void);
206struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
207 struct pci_dev *pdev, const struct kfd2kgd_calls *f2g);
208bool kgd2kfd_device_init(struct kfd_dev *kfd,
209 const struct kgd2kfd_shared_resources *gpu_resources);
210void kgd2kfd_device_exit(struct kfd_dev *kfd);
211
212enum kfd_mempool {
213 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
214 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
215 KFD_MEMPOOL_FRAMEBUFFER = 3,
216};
217
218/* Character device interface */
219int kfd_chardev_init(void);
220void kfd_chardev_exit(void);
221struct device *kfd_chardev(void);
222
223/**
224 * enum kfd_preempt_type_filter
225 *
226 * @KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE: Preempts single queue.
227 *
228 * @KFD_PRERMPT_TYPE_FILTER_ALL_QUEUES: Preempts all queues in the
229 * running queues list.
230 *
231 * @KFD_PRERMPT_TYPE_FILTER_BY_PASID: Preempts queues that belongs to
232 * specific process.
233 *
234 */
235enum kfd_preempt_type_filter {
236 KFD_PREEMPT_TYPE_FILTER_SINGLE_QUEUE,
237 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES,
238 KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES,
239 KFD_PREEMPT_TYPE_FILTER_BY_PASID
240};
241
242enum kfd_preempt_type {
243 KFD_PREEMPT_TYPE_WAVEFRONT,
244 KFD_PREEMPT_TYPE_WAVEFRONT_RESET
245};
246
247/**
248 * enum kfd_queue_type
249 *
250 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
251 *
252 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
253 *
254 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
255 *
256 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
257 */
258enum kfd_queue_type {
259 KFD_QUEUE_TYPE_COMPUTE,
260 KFD_QUEUE_TYPE_SDMA,
261 KFD_QUEUE_TYPE_HIQ,
262 KFD_QUEUE_TYPE_DIQ
263};
264
265enum kfd_queue_format {
266 KFD_QUEUE_FORMAT_PM4,
267 KFD_QUEUE_FORMAT_AQL
268};
269
270/**
271 * struct queue_properties
272 *
273 * @type: The queue type.
274 *
275 * @queue_id: Queue identifier.
276 *
277 * @queue_address: Queue ring buffer address.
278 *
279 * @queue_size: Queue ring buffer size.
280 *
281 * @priority: Defines the queue priority relative to other queues in the
282 * process.
283 * This is just an indication and HW scheduling may override the priority as
284 * necessary while keeping the relative prioritization.
285 * the priority granularity is from 0 to f which f is the highest priority.
286 * currently all queues are initialized with the highest priority.
287 *
288 * @queue_percent: This field is partially implemented and currently a zero in
289 * this field defines that the queue is non active.
290 *
291 * @read_ptr: User space address which points to the number of dwords the
292 * cp read from the ring buffer. This field updates automatically by the H/W.
293 *
294 * @write_ptr: Defines the number of dwords written to the ring buffer.
295 *
296 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
297 * the queue ring buffer. This field should be similar to write_ptr and the user
298 * should update this field after he updated the write_ptr.
299 *
300 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
301 *
302 * @is_interop: Defines if this is a interop queue. Interop queue means that the
303 * queue can access both graphics and compute resources.
304 *
305 * @is_active: Defines if the queue is active or not.
306 *
307 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
308 * of the queue.
309 *
310 * This structure represents the queue properties for each queue no matter if
311 * it's user mode or kernel mode queue.
312 *
313 */
314struct queue_properties {
315 enum kfd_queue_type type;
316 enum kfd_queue_format format;
317 unsigned int queue_id;
318 uint64_t queue_address;
319 uint64_t queue_size;
320 uint32_t priority;
321 uint32_t queue_percent;
322 uint32_t *read_ptr;
323 uint32_t *write_ptr;
324 uint32_t __iomem *doorbell_ptr;
325 uint32_t doorbell_off;
326 bool is_interop;
327 bool is_active;
328 /* Not relevant for user mode queues in cp scheduling */
329 unsigned int vmid;
330 /* Relevant only for sdma queues*/
331 uint32_t sdma_engine_id;
332 uint32_t sdma_queue_id;
333 uint32_t sdma_vm_addr;
334 /* Relevant only for VI */
335 uint64_t eop_ring_buffer_address;
336 uint32_t eop_ring_buffer_size;
337 uint64_t ctx_save_restore_area_address;
338 uint32_t ctx_save_restore_area_size;
339};
340
341/**
342 * struct queue
343 *
344 * @list: Queue linked list.
345 *
346 * @mqd: The queue MQD.
347 *
348 * @mqd_mem_obj: The MQD local gpu memory object.
349 *
350 * @gart_mqd_addr: The MQD gart mc address.
351 *
352 * @properties: The queue properties.
353 *
354 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
355 * that the queue should be execute on.
356 *
357 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe id.
358 *
359 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
360 *
361 * @process: The kfd process that created this queue.
362 *
363 * @device: The kfd device that created this queue.
364 *
365 * This structure represents user mode compute queues.
366 * It contains all the necessary data to handle such queues.
367 *
368 */
369
370struct queue {
371 struct list_head list;
372 void *mqd;
373 struct kfd_mem_obj *mqd_mem_obj;
374 uint64_t gart_mqd_addr;
375 struct queue_properties properties;
376
377 uint32_t mec;
378 uint32_t pipe;
379 uint32_t queue;
380
381 unsigned int sdma_id;
382
383 struct kfd_process *process;
384 struct kfd_dev *device;
385};
386
387/*
388 * Please read the kfd_mqd_manager.h description.
389 */
390enum KFD_MQD_TYPE {
391 KFD_MQD_TYPE_COMPUTE = 0, /* for no cp scheduling */
392 KFD_MQD_TYPE_HIQ, /* for hiq */
393 KFD_MQD_TYPE_CP, /* for cp queues and diq */
394 KFD_MQD_TYPE_SDMA, /* for sdma queues */
395 KFD_MQD_TYPE_MAX
396};
397
398struct scheduling_resources {
399 unsigned int vmid_mask;
400 enum kfd_queue_type type;
401 uint64_t queue_mask;
402 uint64_t gws_mask;
403 uint32_t oac_mask;
404 uint32_t gds_heap_base;
405 uint32_t gds_heap_size;
406};
407
408struct process_queue_manager {
409 /* data */
410 struct kfd_process *process;
411 unsigned int num_concurrent_processes;
412 struct list_head queues;
413 unsigned long *queue_slot_bitmap;
414};
415
416struct qcm_process_device {
417 /* The Device Queue Manager that owns this data */
418 struct device_queue_manager *dqm;
419 struct process_queue_manager *pqm;
420 /* Queues list */
421 struct list_head queues_list;
422 struct list_head priv_queue_list;
423
424 unsigned int queue_count;
425 unsigned int vmid;
426 bool is_debug;
427 /*
428 * All the memory management data should be here too
429 */
430 uint64_t gds_context_area;
431 uint32_t sh_mem_config;
432 uint32_t sh_mem_bases;
433 uint32_t sh_mem_ape1_base;
434 uint32_t sh_mem_ape1_limit;
435 uint32_t page_table_base;
436 uint32_t gds_size;
437 uint32_t num_gws;
438 uint32_t num_oac;
439};
440
441/* Data that is per-process-per device. */
442struct kfd_process_device {
443 /*
444 * List of all per-device data for a process.
445 * Starts from kfd_process.per_device_data.
446 */
447 struct list_head per_device_list;
448
449 /* The device that owns this data. */
450 struct kfd_dev *dev;
451
452
453 /* per-process-per device QCM data structure */
454 struct qcm_process_device qpd;
455
456 /*Apertures*/
457 uint64_t lds_base;
458 uint64_t lds_limit;
459 uint64_t gpuvm_base;
460 uint64_t gpuvm_limit;
461 uint64_t scratch_base;
462 uint64_t scratch_limit;
463
464 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
465 bool bound;
466
467 /* This flag tells if we should reset all
468 * wavefronts on process termination
469 */
470 bool reset_wavefronts;
471};
472
473#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
474
475/* Process data */
476struct kfd_process {
477 /*
478 * kfd_process are stored in an mm_struct*->kfd_process*
479 * hash table (kfd_processes in kfd_process.c)
480 */
481 struct hlist_node kfd_processes;
482
483 struct mm_struct *mm;
484
485 struct mutex mutex;
486
487 /*
488 * In any process, the thread that started main() is the lead
489 * thread and outlives the rest.
490 * It is here because amd_iommu_bind_pasid wants a task_struct.
491 */
492 struct task_struct *lead_thread;
493
494 /* We want to receive a notification when the mm_struct is destroyed */
495 struct mmu_notifier mmu_notifier;
496
497 /* Use for delayed freeing of kfd_process structure */
498 struct rcu_head rcu;
499
500 unsigned int pasid;
501
502 /*
503 * List of kfd_process_device structures,
504 * one for each device the process is using.
505 */
506 struct list_head per_device_data;
507
508 struct process_queue_manager pqm;
509
510 /* The process's queues. */
511 size_t queue_array_size;
512
513 /* Size is queue_array_size, up to MAX_PROCESS_QUEUES. */
514 struct kfd_queue **queues;
515
516 /*Is the user space process 32 bit?*/
517 bool is_32bit_user_mode;
518
519 /* Event-related data */
520 struct mutex event_mutex;
521 /* All events in process hashed by ID, linked on kfd_event.events. */
522 DECLARE_HASHTABLE(events, 4);
523 struct list_head signal_event_pages; /* struct slot_page_header.
524 event_pages */
525 u32 next_nonsignal_event_id;
526 size_t signal_event_count;
527};
528
529/**
530 * Ioctl function type.
531 *
532 * \param filep pointer to file structure.
533 * \param p amdkfd process pointer.
534 * \param data pointer to arg that was copied from user.
535 */
536typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
537 void *data);
538
539struct amdkfd_ioctl_desc {
540 unsigned int cmd;
541 int flags;
542 amdkfd_ioctl_t *func;
543 unsigned int cmd_drv;
544 const char *name;
545};
546
547void kfd_process_create_wq(void);
548void kfd_process_destroy_wq(void);
549struct kfd_process *kfd_create_process(const struct task_struct *);
550struct kfd_process *kfd_get_process(const struct task_struct *);
551struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
552
553struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
554 struct kfd_process *p);
555void kfd_unbind_process_from_device(struct kfd_dev *dev, unsigned int pasid);
556struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
557 struct kfd_process *p);
558struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
559 struct kfd_process *p);
560
561/* Process device data iterator */
562struct kfd_process_device *kfd_get_first_process_device_data(struct kfd_process *p);
563struct kfd_process_device *kfd_get_next_process_device_data(struct kfd_process *p,
564 struct kfd_process_device *pdd);
565bool kfd_has_process_device_data(struct kfd_process *p);
566
567/* PASIDs */
568int kfd_pasid_init(void);
569void kfd_pasid_exit(void);
570bool kfd_set_pasid_limit(unsigned int new_limit);
571unsigned int kfd_get_pasid_limit(void);
572unsigned int kfd_pasid_alloc(void);
573void kfd_pasid_free(unsigned int pasid);
574
575/* Doorbells */
576void kfd_doorbell_init(struct kfd_dev *kfd);
577int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma);
578u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
579 unsigned int *doorbell_off);
580void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
581u32 read_kernel_doorbell(u32 __iomem *db);
582void write_kernel_doorbell(u32 __iomem *db, u32 value);
583unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
584 struct kfd_process *process,
585 unsigned int queue_id);
586
587/* GTT Sub-Allocator */
588
589int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
590 struct kfd_mem_obj **mem_obj);
591
592int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
593
594extern struct device *kfd_device;
595
596/* Topology */
597int kfd_topology_init(void);
598void kfd_topology_shutdown(void);
599int kfd_topology_add_device(struct kfd_dev *gpu);
600int kfd_topology_remove_device(struct kfd_dev *gpu);
601struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
602struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
603struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx);
604
605/* Interrupts */
606int kfd_interrupt_init(struct kfd_dev *dev);
607void kfd_interrupt_exit(struct kfd_dev *dev);
608void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
609bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
610bool interrupt_is_wanted(struct kfd_dev *dev, const uint32_t *ih_ring_entry);
611
612/* Power Management */
613void kgd2kfd_suspend(struct kfd_dev *kfd);
614int kgd2kfd_resume(struct kfd_dev *kfd);
615
616/* amdkfd Apertures */
617int kfd_init_apertures(struct kfd_process *process);
618
619/* Queue Context Management */
620struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd);
621
622int init_queue(struct queue **q, const struct queue_properties *properties);
623void uninit_queue(struct queue *q);
624void print_queue_properties(struct queue_properties *q);
625void print_queue(struct queue *q);
626
627struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
628 struct kfd_dev *dev);
629struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
630 struct kfd_dev *dev);
631struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
632 struct kfd_dev *dev);
633struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
634void device_queue_manager_uninit(struct device_queue_manager *dqm);
635struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
636 enum kfd_queue_type type);
637void kernel_queue_uninit(struct kernel_queue *kq);
638
639/* Process Queue Manager */
640struct process_queue_node {
641 struct queue *q;
642 struct kernel_queue *kq;
643 struct list_head process_queue_list;
644};
645
646int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
647void pqm_uninit(struct process_queue_manager *pqm);
648int pqm_create_queue(struct process_queue_manager *pqm,
649 struct kfd_dev *dev,
650 struct file *f,
651 struct queue_properties *properties,
652 unsigned int flags,
653 enum kfd_queue_type type,
654 unsigned int *qid);
655int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
656int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
657 struct queue_properties *p);
658struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
659 unsigned int qid);
660
661int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
662 unsigned int fence_value,
663 unsigned long timeout);
664
665/* Packet Manager */
666
667#define KFD_HIQ_TIMEOUT (500)
668
669#define KFD_FENCE_COMPLETED (100)
670#define KFD_FENCE_INIT (10)
671#define KFD_UNMAP_LATENCY (150)
672
673struct packet_manager {
674 struct device_queue_manager *dqm;
675 struct kernel_queue *priv_queue;
676 struct mutex lock;
677 bool allocated;
678 struct kfd_mem_obj *ib_buffer_obj;
679};
680
681int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
682void pm_uninit(struct packet_manager *pm);
683int pm_send_set_resources(struct packet_manager *pm,
684 struct scheduling_resources *res);
685int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
686int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
687 uint32_t fence_value);
688
689int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
690 enum kfd_preempt_type_filter mode,
691 uint32_t filter_param, bool reset,
692 unsigned int sdma_engine);
693
694void pm_release_ib(struct packet_manager *pm);
695
696uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
697phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
698 struct kfd_process *process);
699
700/* Events */
701extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
702extern const struct kfd_device_global_init_class device_global_init_class_cik;
703
704enum kfd_event_wait_result {
705 KFD_WAIT_COMPLETE,
706 KFD_WAIT_TIMEOUT,
707 KFD_WAIT_ERROR
708};
709
710void kfd_event_init_process(struct kfd_process *p);
711void kfd_event_free_process(struct kfd_process *p);
712int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
713int kfd_wait_on_events(struct kfd_process *p,
714 uint32_t num_events, void __user *data,
715 bool all, uint32_t user_timeout_ms,
716 enum kfd_event_wait_result *wait_result);
717void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
718 uint32_t valid_id_bits);
719void kfd_signal_iommu_event(struct kfd_dev *dev,
720 unsigned int pasid, unsigned long address,
721 bool is_write_requested, bool is_execute_requested);
722void kfd_signal_hw_exception_event(unsigned int pasid);
723int kfd_set_event(struct kfd_process *p, uint32_t event_id);
724int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
725int kfd_event_create(struct file *devkfd, struct kfd_process *p,
726 uint32_t event_type, bool auto_reset, uint32_t node_id,
727 uint32_t *event_id, uint32_t *event_trigger_data,
728 uint64_t *event_page_offset, uint32_t *event_slot_index);
729int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
730
731int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
732
733#endif