Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2015-2017 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/acpi.h>
  25#include "kfd_crat.h"
  26#include "kfd_priv.h"
  27#include "kfd_topology.h"
  28#include "kfd_iommu.h"
  29#include "amdgpu_amdkfd.h"
  30
  31/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
  32 * GPU processor ID are expressed with Bit[31]=1.
  33 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
  34 * used in the CRAT.
  35 */
  36static uint32_t gpu_processor_id_low = 0x80001000;
  37
  38/* Return the next available gpu_processor_id and increment it for next GPU
  39 *	@total_cu_count - Total CUs present in the GPU including ones
  40 *			  masked off
  41 */
  42static inline unsigned int get_and_inc_gpu_processor_id(
  43				unsigned int total_cu_count)
  44{
  45	int current_id = gpu_processor_id_low;
  46
  47	gpu_processor_id_low += total_cu_count;
  48	return current_id;
  49}
  50
  51/* Static table to describe GPU Cache information */
  52struct kfd_gpu_cache_info {
  53	uint32_t	cache_size;
  54	uint32_t	cache_level;
  55	uint32_t	flags;
  56	/* Indicates how many Compute Units share this cache
  57	 * Value = 1 indicates the cache is not shared
  58	 */
  59	uint32_t	num_cu_shared;
  60};
  61
  62static struct kfd_gpu_cache_info kaveri_cache_info[] = {
  63	{
  64		/* TCP L1 Cache per CU */
  65		.cache_size = 16,
  66		.cache_level = 1,
  67		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  68				CRAT_CACHE_FLAGS_DATA_CACHE |
  69				CRAT_CACHE_FLAGS_SIMD_CACHE),
  70		.num_cu_shared = 1,
  71
  72	},
  73	{
  74		/* Scalar L1 Instruction Cache (in SQC module) per bank */
  75		.cache_size = 16,
  76		.cache_level = 1,
  77		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  78				CRAT_CACHE_FLAGS_INST_CACHE |
  79				CRAT_CACHE_FLAGS_SIMD_CACHE),
  80		.num_cu_shared = 2,
  81	},
  82	{
  83		/* Scalar L1 Data Cache (in SQC module) per bank */
  84		.cache_size = 8,
  85		.cache_level = 1,
  86		.flags = (CRAT_CACHE_FLAGS_ENABLED |
  87				CRAT_CACHE_FLAGS_DATA_CACHE |
  88				CRAT_CACHE_FLAGS_SIMD_CACHE),
  89		.num_cu_shared = 2,
  90	},
  91
  92	/* TODO: Add L2 Cache information */
  93};
  94
  95
  96static struct kfd_gpu_cache_info carrizo_cache_info[] = {
  97	{
  98		/* TCP L1 Cache per CU */
  99		.cache_size = 16,
 100		.cache_level = 1,
 101		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 102				CRAT_CACHE_FLAGS_DATA_CACHE |
 103				CRAT_CACHE_FLAGS_SIMD_CACHE),
 104		.num_cu_shared = 1,
 105	},
 106	{
 107		/* Scalar L1 Instruction Cache (in SQC module) per bank */
 108		.cache_size = 8,
 109		.cache_level = 1,
 110		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 111				CRAT_CACHE_FLAGS_INST_CACHE |
 112				CRAT_CACHE_FLAGS_SIMD_CACHE),
 113		.num_cu_shared = 4,
 114	},
 115	{
 116		/* Scalar L1 Data Cache (in SQC module) per bank. */
 117		.cache_size = 4,
 118		.cache_level = 1,
 119		.flags = (CRAT_CACHE_FLAGS_ENABLED |
 120				CRAT_CACHE_FLAGS_DATA_CACHE |
 121				CRAT_CACHE_FLAGS_SIMD_CACHE),
 122		.num_cu_shared = 4,
 123	},
 124
 125	/* TODO: Add L2 Cache information */
 126};
 127
 128/* NOTE: In future if more information is added to struct kfd_gpu_cache_info
 129 * the following ASICs may need a separate table.
 130 */
 131#define hawaii_cache_info kaveri_cache_info
 132#define tonga_cache_info carrizo_cache_info
 133#define fiji_cache_info  carrizo_cache_info
 134#define polaris10_cache_info carrizo_cache_info
 135#define polaris11_cache_info carrizo_cache_info
 136#define polaris12_cache_info carrizo_cache_info
 137#define vegam_cache_info carrizo_cache_info
 138/* TODO - check & update Vega10 cache details */
 139#define vega10_cache_info carrizo_cache_info
 140#define raven_cache_info carrizo_cache_info
 141/* TODO - check & update Navi10 cache details */
 142#define navi10_cache_info carrizo_cache_info
 143
 144static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
 145		struct crat_subtype_computeunit *cu)
 146{
 147	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
 148	dev->node_props.cpu_core_id_base = cu->processor_id_low;
 149	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
 150		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
 151
 152	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
 153			cu->processor_id_low);
 154}
 155
 156static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
 157		struct crat_subtype_computeunit *cu)
 158{
 159	dev->node_props.simd_id_base = cu->processor_id_low;
 160	dev->node_props.simd_count = cu->num_simd_cores;
 161	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
 162	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
 163	dev->node_props.wave_front_size = cu->wave_front_size;
 164	dev->node_props.array_count = cu->array_count;
 165	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
 166	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
 167	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
 168	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
 169		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
 170	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
 171}
 172
 173/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
 174 * topology device present in the device_list
 175 */
 176static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
 177				struct list_head *device_list)
 178{
 179	struct kfd_topology_device *dev;
 180
 181	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
 182			cu->proximity_domain, cu->hsa_capability);
 183	list_for_each_entry(dev, device_list, list) {
 184		if (cu->proximity_domain == dev->proximity_domain) {
 185			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
 186				kfd_populated_cu_info_cpu(dev, cu);
 187
 188			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
 189				kfd_populated_cu_info_gpu(dev, cu);
 190			break;
 191		}
 192	}
 193
 194	return 0;
 195}
 196
 197static struct kfd_mem_properties *
 198find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
 199		struct kfd_topology_device *dev)
 200{
 201	struct kfd_mem_properties *props;
 202
 203	list_for_each_entry(props, &dev->mem_props, list) {
 204		if (props->heap_type == heap_type
 205				&& props->flags == flags
 206				&& props->width == width)
 207			return props;
 208	}
 209
 210	return NULL;
 211}
 212/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
 213 * topology device present in the device_list
 214 */
 215static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
 216				struct list_head *device_list)
 217{
 218	struct kfd_mem_properties *props;
 219	struct kfd_topology_device *dev;
 220	uint32_t heap_type;
 221	uint64_t size_in_bytes;
 222	uint32_t flags = 0;
 223	uint32_t width;
 224
 225	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
 226			mem->proximity_domain);
 227	list_for_each_entry(dev, device_list, list) {
 228		if (mem->proximity_domain == dev->proximity_domain) {
 229			/* We're on GPU node */
 230			if (dev->node_props.cpu_cores_count == 0) {
 231				/* APU */
 232				if (mem->visibility_type == 0)
 233					heap_type =
 234						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
 235				/* dGPU */
 236				else
 237					heap_type = mem->visibility_type;
 238			} else
 239				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
 240
 241			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
 242				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
 243			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
 244				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
 245
 246			size_in_bytes =
 247				((uint64_t)mem->length_high << 32) +
 248							mem->length_low;
 249			width = mem->width;
 250
 251			/* Multiple banks of the same type are aggregated into
 252			 * one. User mode doesn't care about multiple physical
 253			 * memory segments. It's managed as a single virtual
 254			 * heap for user mode.
 255			 */
 256			props = find_subtype_mem(heap_type, flags, width, dev);
 257			if (props) {
 258				props->size_in_bytes += size_in_bytes;
 259				break;
 260			}
 261
 262			props = kfd_alloc_struct(props);
 263			if (!props)
 264				return -ENOMEM;
 265
 266			props->heap_type = heap_type;
 267			props->flags = flags;
 268			props->size_in_bytes = size_in_bytes;
 269			props->width = width;
 270
 271			dev->node_props.mem_banks_count++;
 272			list_add_tail(&props->list, &dev->mem_props);
 273
 274			break;
 275		}
 276	}
 277
 278	return 0;
 279}
 280
 281/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
 282 * topology device present in the device_list
 283 */
 284static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
 285			struct list_head *device_list)
 286{
 287	struct kfd_cache_properties *props;
 288	struct kfd_topology_device *dev;
 289	uint32_t id;
 290	uint32_t total_num_of_cu;
 291
 292	id = cache->processor_id_low;
 293
 294	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
 295	list_for_each_entry(dev, device_list, list) {
 296		total_num_of_cu = (dev->node_props.array_count *
 297					dev->node_props.cu_per_simd_array);
 298
 299		/* Cache infomration in CRAT doesn't have proximity_domain
 300		 * information as it is associated with a CPU core or GPU
 301		 * Compute Unit. So map the cache using CPU core Id or SIMD
 302		 * (GPU) ID.
 303		 * TODO: This works because currently we can safely assume that
 304		 *  Compute Units are parsed before caches are parsed. In
 305		 *  future, remove this dependency
 306		 */
 307		if ((id >= dev->node_props.cpu_core_id_base &&
 308			id <= dev->node_props.cpu_core_id_base +
 309				dev->node_props.cpu_cores_count) ||
 310			(id >= dev->node_props.simd_id_base &&
 311			id < dev->node_props.simd_id_base +
 312				total_num_of_cu)) {
 313			props = kfd_alloc_struct(props);
 314			if (!props)
 315				return -ENOMEM;
 316
 317			props->processor_id_low = id;
 318			props->cache_level = cache->cache_level;
 319			props->cache_size = cache->cache_size;
 320			props->cacheline_size = cache->cache_line_size;
 321			props->cachelines_per_tag = cache->lines_per_tag;
 322			props->cache_assoc = cache->associativity;
 323			props->cache_latency = cache->cache_latency;
 324			memcpy(props->sibling_map, cache->sibling_map,
 325					sizeof(props->sibling_map));
 326
 327			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
 328				props->cache_type |= HSA_CACHE_TYPE_DATA;
 329			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
 330				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
 331			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
 332				props->cache_type |= HSA_CACHE_TYPE_CPU;
 333			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
 334				props->cache_type |= HSA_CACHE_TYPE_HSACU;
 335
 336			dev->cache_count++;
 337			dev->node_props.caches_count++;
 338			list_add_tail(&props->list, &dev->cache_props);
 339
 340			break;
 341		}
 342	}
 343
 344	return 0;
 345}
 346
 347/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
 348 * topology device present in the device_list
 349 */
 350static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
 351					struct list_head *device_list)
 352{
 353	struct kfd_iolink_properties *props = NULL, *props2;
 354	struct kfd_topology_device *dev, *to_dev;
 355	uint32_t id_from;
 356	uint32_t id_to;
 357
 358	id_from = iolink->proximity_domain_from;
 359	id_to = iolink->proximity_domain_to;
 360
 361	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
 362			id_from, id_to);
 363	list_for_each_entry(dev, device_list, list) {
 364		if (id_from == dev->proximity_domain) {
 365			props = kfd_alloc_struct(props);
 366			if (!props)
 367				return -ENOMEM;
 368
 369			props->node_from = id_from;
 370			props->node_to = id_to;
 371			props->ver_maj = iolink->version_major;
 372			props->ver_min = iolink->version_minor;
 373			props->iolink_type = iolink->io_interface_type;
 374
 375			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
 376				props->weight = 20;
 377			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
 378				props->weight = 15 * iolink->num_hops_xgmi;
 379			else
 380				props->weight = node_distance(id_from, id_to);
 381
 382			props->min_latency = iolink->minimum_latency;
 383			props->max_latency = iolink->maximum_latency;
 384			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
 385			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
 386			props->rec_transfer_size =
 387					iolink->recommended_transfer_size;
 388
 389			dev->io_link_count++;
 390			dev->node_props.io_links_count++;
 391			list_add_tail(&props->list, &dev->io_link_props);
 392			break;
 393		}
 394	}
 395
 396	/* CPU topology is created before GPUs are detected, so CPU->GPU
 397	 * links are not built at that time. If a PCIe type is discovered, it
 398	 * means a GPU is detected and we are adding GPU->CPU to the topology.
 399	 * At this time, also add the corresponded CPU->GPU link if GPU
 400	 * is large bar.
 401	 * For xGMI, we only added the link with one direction in the crat
 402	 * table, add corresponded reversed direction link now.
 403	 */
 404	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
 405		to_dev = kfd_topology_device_by_proximity_domain(id_to);
 406		if (!to_dev)
 407			return -ENODEV;
 408		/* same everything but the other direction */
 409		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
 410		props2->node_from = id_to;
 411		props2->node_to = id_from;
 412		props2->kobj = NULL;
 413		to_dev->io_link_count++;
 414		to_dev->node_props.io_links_count++;
 415		list_add_tail(&props2->list, &to_dev->io_link_props);
 416	}
 417
 418	return 0;
 419}
 420
 421/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
 422 * present in the device_list
 423 *	@sub_type_hdr - subtype section of crat_image
 424 *	@device_list - list of topology devices present in this crat_image
 425 */
 426static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
 427				struct list_head *device_list)
 428{
 429	struct crat_subtype_computeunit *cu;
 430	struct crat_subtype_memory *mem;
 431	struct crat_subtype_cache *cache;
 432	struct crat_subtype_iolink *iolink;
 433	int ret = 0;
 434
 435	switch (sub_type_hdr->type) {
 436	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
 437		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
 438		ret = kfd_parse_subtype_cu(cu, device_list);
 439		break;
 440	case CRAT_SUBTYPE_MEMORY_AFFINITY:
 441		mem = (struct crat_subtype_memory *)sub_type_hdr;
 442		ret = kfd_parse_subtype_mem(mem, device_list);
 443		break;
 444	case CRAT_SUBTYPE_CACHE_AFFINITY:
 445		cache = (struct crat_subtype_cache *)sub_type_hdr;
 446		ret = kfd_parse_subtype_cache(cache, device_list);
 447		break;
 448	case CRAT_SUBTYPE_TLB_AFFINITY:
 449		/*
 450		 * For now, nothing to do here
 451		 */
 452		pr_debug("Found TLB entry in CRAT table (not processing)\n");
 453		break;
 454	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
 455		/*
 456		 * For now, nothing to do here
 457		 */
 458		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
 459		break;
 460	case CRAT_SUBTYPE_IOLINK_AFFINITY:
 461		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
 462		ret = kfd_parse_subtype_iolink(iolink, device_list);
 463		break;
 464	default:
 465		pr_warn("Unknown subtype %d in CRAT\n",
 466				sub_type_hdr->type);
 467	}
 468
 469	return ret;
 470}
 471
 472/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
 473 * create a kfd_topology_device and add in to device_list. Also parse
 474 * CRAT subtypes and attach it to appropriate kfd_topology_device
 475 *	@crat_image - input image containing CRAT
 476 *	@device_list - [OUT] list of kfd_topology_device generated after
 477 *		       parsing crat_image
 478 *	@proximity_domain - Proximity domain of the first device in the table
 479 *
 480 *	Return - 0 if successful else -ve value
 481 */
 482int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
 483			 uint32_t proximity_domain)
 484{
 485	struct kfd_topology_device *top_dev = NULL;
 486	struct crat_subtype_generic *sub_type_hdr;
 487	uint16_t node_id;
 488	int ret = 0;
 489	struct crat_header *crat_table = (struct crat_header *)crat_image;
 490	uint16_t num_nodes;
 491	uint32_t image_len;
 492
 493	if (!crat_image)
 494		return -EINVAL;
 495
 496	if (!list_empty(device_list)) {
 497		pr_warn("Error device list should be empty\n");
 498		return -EINVAL;
 499	}
 500
 501	num_nodes = crat_table->num_domains;
 502	image_len = crat_table->length;
 503
 504	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
 505
 506	for (node_id = 0; node_id < num_nodes; node_id++) {
 507		top_dev = kfd_create_topology_device(device_list);
 508		if (!top_dev)
 509			break;
 510		top_dev->proximity_domain = proximity_domain++;
 511	}
 512
 513	if (!top_dev) {
 514		ret = -ENOMEM;
 515		goto err;
 516	}
 517
 518	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
 519	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
 520			CRAT_OEMTABLEID_LENGTH);
 521	top_dev->oem_revision = crat_table->oem_revision;
 522
 523	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
 524	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
 525			((char *)crat_image) + image_len) {
 526		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
 527			ret = kfd_parse_subtype(sub_type_hdr, device_list);
 528			if (ret)
 529				break;
 530		}
 531
 532		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
 533				sub_type_hdr->length);
 534	}
 535
 536err:
 537	if (ret)
 538		kfd_release_topology_device_list(device_list);
 539
 540	return ret;
 541}
 542
 543/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
 544static int fill_in_pcache(struct crat_subtype_cache *pcache,
 545				struct kfd_gpu_cache_info *pcache_info,
 546				struct kfd_cu_info *cu_info,
 547				int mem_available,
 548				int cu_bitmask,
 549				int cache_type, unsigned int cu_processor_id,
 550				int cu_block)
 551{
 552	unsigned int cu_sibling_map_mask;
 553	int first_active_cu;
 554
 555	/* First check if enough memory is available */
 556	if (sizeof(struct crat_subtype_cache) > mem_available)
 557		return -ENOMEM;
 558
 559	cu_sibling_map_mask = cu_bitmask;
 560	cu_sibling_map_mask >>= cu_block;
 561	cu_sibling_map_mask &=
 562		((1 << pcache_info[cache_type].num_cu_shared) - 1);
 563	first_active_cu = ffs(cu_sibling_map_mask);
 564
 565	/* CU could be inactive. In case of shared cache find the first active
 566	 * CU. and incase of non-shared cache check if the CU is inactive. If
 567	 * inactive active skip it
 568	 */
 569	if (first_active_cu) {
 570		memset(pcache, 0, sizeof(struct crat_subtype_cache));
 571		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
 572		pcache->length = sizeof(struct crat_subtype_cache);
 573		pcache->flags = pcache_info[cache_type].flags;
 574		pcache->processor_id_low = cu_processor_id
 575					 + (first_active_cu - 1);
 576		pcache->cache_level = pcache_info[cache_type].cache_level;
 577		pcache->cache_size = pcache_info[cache_type].cache_size;
 578
 579		/* Sibling map is w.r.t processor_id_low, so shift out
 580		 * inactive CU
 581		 */
 582		cu_sibling_map_mask =
 583			cu_sibling_map_mask >> (first_active_cu - 1);
 584
 585		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
 586		pcache->sibling_map[1] =
 587				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
 588		pcache->sibling_map[2] =
 589				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
 590		pcache->sibling_map[3] =
 591				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
 592		return 0;
 593	}
 594	return 1;
 595}
 596
 597/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
 598 * tables
 599 *
 600 *	@kdev - [IN] GPU device
 601 *	@gpu_processor_id - [IN] GPU processor ID to which these caches
 602 *			    associate
 603 *	@available_size - [IN] Amount of memory available in pcache
 604 *	@cu_info - [IN] Compute Unit info obtained from KGD
 605 *	@pcache - [OUT] memory into which cache data is to be filled in.
 606 *	@size_filled - [OUT] amount of data used up in pcache.
 607 *	@num_of_entries - [OUT] number of caches added
 608 */
 609static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
 610			int gpu_processor_id,
 611			int available_size,
 612			struct kfd_cu_info *cu_info,
 613			struct crat_subtype_cache *pcache,
 614			int *size_filled,
 615			int *num_of_entries)
 616{
 617	struct kfd_gpu_cache_info *pcache_info;
 618	int num_of_cache_types = 0;
 619	int i, j, k;
 620	int ct = 0;
 621	int mem_available = available_size;
 622	unsigned int cu_processor_id;
 623	int ret;
 624
 625	switch (kdev->device_info->asic_family) {
 626	case CHIP_KAVERI:
 627		pcache_info = kaveri_cache_info;
 628		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
 629		break;
 630	case CHIP_HAWAII:
 631		pcache_info = hawaii_cache_info;
 632		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
 633		break;
 634	case CHIP_CARRIZO:
 635		pcache_info = carrizo_cache_info;
 636		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
 637		break;
 638	case CHIP_TONGA:
 639		pcache_info = tonga_cache_info;
 640		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
 641		break;
 642	case CHIP_FIJI:
 643		pcache_info = fiji_cache_info;
 644		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
 645		break;
 646	case CHIP_POLARIS10:
 647		pcache_info = polaris10_cache_info;
 648		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
 649		break;
 650	case CHIP_POLARIS11:
 651		pcache_info = polaris11_cache_info;
 652		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
 653		break;
 654	case CHIP_POLARIS12:
 655		pcache_info = polaris12_cache_info;
 656		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
 657		break;
 658	case CHIP_VEGAM:
 659		pcache_info = vegam_cache_info;
 660		num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
 661		break;
 662	case CHIP_VEGA10:
 663	case CHIP_VEGA12:
 664	case CHIP_VEGA20:
 665	case CHIP_ARCTURUS:
 666		pcache_info = vega10_cache_info;
 667		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
 668		break;
 669	case CHIP_RAVEN:
 670		pcache_info = raven_cache_info;
 671		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
 672		break;
 673	case CHIP_NAVI10:
 674		pcache_info = navi10_cache_info;
 675		num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
 676		break;
 677	default:
 678		return -EINVAL;
 679	}
 680
 681	*size_filled = 0;
 682	*num_of_entries = 0;
 683
 684	/* For each type of cache listed in the kfd_gpu_cache_info table,
 685	 * go through all available Compute Units.
 686	 * The [i,j,k] loop will
 687	 *		if kfd_gpu_cache_info.num_cu_shared = 1
 688	 *			will parse through all available CU
 689	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
 690	 *			then it will consider only one CU from
 691	 *			the shared unit
 692	 */
 693
 694	for (ct = 0; ct < num_of_cache_types; ct++) {
 695		cu_processor_id = gpu_processor_id;
 696		for (i = 0; i < cu_info->num_shader_engines; i++) {
 697			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
 698				j++) {
 699				for (k = 0; k < cu_info->num_cu_per_sh;
 700					k += pcache_info[ct].num_cu_shared) {
 701
 702					ret = fill_in_pcache(pcache,
 703						pcache_info,
 704						cu_info,
 705						mem_available,
 706						cu_info->cu_bitmap[i][j],
 707						ct,
 708						cu_processor_id,
 709						k);
 710
 711					if (ret < 0)
 712						break;
 713
 714					if (!ret) {
 715						pcache++;
 716						(*num_of_entries)++;
 717						mem_available -=
 718							sizeof(*pcache);
 719						(*size_filled) +=
 720							sizeof(*pcache);
 721					}
 722
 723					/* Move to next CU block */
 724					cu_processor_id +=
 725						pcache_info[ct].num_cu_shared;
 726				}
 727			}
 728		}
 729	}
 730
 731	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
 732
 733	return 0;
 734}
 735
 736/*
 737 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
 738 * copies CRAT from ACPI (if available).
 739 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
 740 *
 741 *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
 742 *		     crat_image will be NULL
 743 *	@size: [OUT] size of crat_image
 744 *
 745 *	Return 0 if successful else return error code
 746 */
 747int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
 748{
 749	struct acpi_table_header *crat_table;
 750	acpi_status status;
 751	void *pcrat_image;
 752
 753	if (!crat_image)
 754		return -EINVAL;
 755
 756	*crat_image = NULL;
 757
 758	/* Fetch the CRAT table from ACPI */
 759	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
 760	if (status == AE_NOT_FOUND) {
 761		pr_warn("CRAT table not found\n");
 762		return -ENODATA;
 763	} else if (ACPI_FAILURE(status)) {
 764		const char *err = acpi_format_exception(status);
 765
 766		pr_err("CRAT table error: %s\n", err);
 767		return -EINVAL;
 768	}
 769
 770	if (ignore_crat) {
 771		pr_info("CRAT table disabled by module option\n");
 772		return -ENODATA;
 773	}
 774
 775	pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL);
 776	if (!pcrat_image)
 777		return -ENOMEM;
 778
 779	*crat_image = pcrat_image;
 780	*size = crat_table->length;
 781
 782	return 0;
 783}
 784
 785/* Memory required to create Virtual CRAT.
 786 * Since there is no easy way to predict the amount of memory required, the
 787 * following amount are allocated for CPU and GPU Virtual CRAT. This is
 788 * expected to cover all known conditions. But to be safe additional check
 789 * is put in the code to ensure we don't overwrite.
 790 */
 791#define VCRAT_SIZE_FOR_CPU	(2 * PAGE_SIZE)
 792#define VCRAT_SIZE_FOR_GPU	(4 * PAGE_SIZE)
 793
 794/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
 795 *
 796 *	@numa_node_id: CPU NUMA node id
 797 *	@avail_size: Available size in the memory
 798 *	@sub_type_hdr: Memory into which compute info will be filled in
 799 *
 800 *	Return 0 if successful else return -ve value
 801 */
 802static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
 803				int proximity_domain,
 804				struct crat_subtype_computeunit *sub_type_hdr)
 805{
 806	const struct cpumask *cpumask;
 807
 808	*avail_size -= sizeof(struct crat_subtype_computeunit);
 809	if (*avail_size < 0)
 810		return -ENOMEM;
 811
 812	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
 813
 814	/* Fill in subtype header data */
 815	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
 816	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
 817	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
 818
 819	cpumask = cpumask_of_node(numa_node_id);
 820
 821	/* Fill in CU data */
 822	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
 823	sub_type_hdr->proximity_domain = proximity_domain;
 824	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
 825	if (sub_type_hdr->processor_id_low == -1)
 826		return -EINVAL;
 827
 828	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
 829
 830	return 0;
 831}
 832
 833/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
 834 *
 835 *	@numa_node_id: CPU NUMA node id
 836 *	@avail_size: Available size in the memory
 837 *	@sub_type_hdr: Memory into which compute info will be filled in
 838 *
 839 *	Return 0 if successful else return -ve value
 840 */
 841static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
 842			int proximity_domain,
 843			struct crat_subtype_memory *sub_type_hdr)
 844{
 845	uint64_t mem_in_bytes = 0;
 846	pg_data_t *pgdat;
 847	int zone_type;
 848
 849	*avail_size -= sizeof(struct crat_subtype_memory);
 850	if (*avail_size < 0)
 851		return -ENOMEM;
 852
 853	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
 854
 855	/* Fill in subtype header data */
 856	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
 857	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
 858	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
 859
 860	/* Fill in Memory Subunit data */
 861
 862	/* Unlike si_meminfo, si_meminfo_node is not exported. So
 863	 * the following lines are duplicated from si_meminfo_node
 864	 * function
 865	 */
 866	pgdat = NODE_DATA(numa_node_id);
 867	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
 868		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
 869	mem_in_bytes <<= PAGE_SHIFT;
 870
 871	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
 872	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
 873	sub_type_hdr->proximity_domain = proximity_domain;
 874
 875	return 0;
 876}
 877
 878#ifdef CONFIG_X86_64
 879static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
 880				uint32_t *num_entries,
 881				struct crat_subtype_iolink *sub_type_hdr)
 882{
 883	int nid;
 884	struct cpuinfo_x86 *c = &cpu_data(0);
 885	uint8_t link_type;
 886
 887	if (c->x86_vendor == X86_VENDOR_AMD)
 888		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
 889	else
 890		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
 891
 892	*num_entries = 0;
 893
 894	/* Create IO links from this node to other CPU nodes */
 895	for_each_online_node(nid) {
 896		if (nid == numa_node_id) /* node itself */
 897			continue;
 898
 899		*avail_size -= sizeof(struct crat_subtype_iolink);
 900		if (*avail_size < 0)
 901			return -ENOMEM;
 902
 903		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
 904
 905		/* Fill in subtype header data */
 906		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
 907		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
 908		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
 909
 910		/* Fill in IO link data */
 911		sub_type_hdr->proximity_domain_from = numa_node_id;
 912		sub_type_hdr->proximity_domain_to = nid;
 913		sub_type_hdr->io_interface_type = link_type;
 914
 915		(*num_entries)++;
 916		sub_type_hdr++;
 917	}
 918
 919	return 0;
 920}
 921#endif
 922
 923/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
 924 *
 925 *	@pcrat_image: Fill in VCRAT for CPU
 926 *	@size:	[IN] allocated size of crat_image.
 927 *		[OUT] actual size of data filled in crat_image
 928 */
 929static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
 930{
 931	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
 932	struct acpi_table_header *acpi_table;
 933	acpi_status status;
 934	struct crat_subtype_generic *sub_type_hdr;
 935	int avail_size = *size;
 936	int numa_node_id;
 937#ifdef CONFIG_X86_64
 938	uint32_t entries = 0;
 939#endif
 940	int ret = 0;
 941
 942	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
 943		return -EINVAL;
 944
 945	/* Fill in CRAT Header.
 946	 * Modify length and total_entries as subunits are added.
 947	 */
 948	avail_size -= sizeof(struct crat_header);
 949	if (avail_size < 0)
 950		return -ENOMEM;
 951
 952	memset(crat_table, 0, sizeof(struct crat_header));
 953	memcpy(&crat_table->signature, CRAT_SIGNATURE,
 954			sizeof(crat_table->signature));
 955	crat_table->length = sizeof(struct crat_header);
 956
 957	status = acpi_get_table("DSDT", 0, &acpi_table);
 958	if (status != AE_OK)
 959		pr_warn("DSDT table not found for OEM information\n");
 960	else {
 961		crat_table->oem_revision = acpi_table->revision;
 962		memcpy(crat_table->oem_id, acpi_table->oem_id,
 963				CRAT_OEMID_LENGTH);
 964		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
 965				CRAT_OEMTABLEID_LENGTH);
 966	}
 967	crat_table->total_entries = 0;
 968	crat_table->num_domains = 0;
 969
 970	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
 971
 972	for_each_online_node(numa_node_id) {
 973		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
 974			continue;
 975
 976		/* Fill in Subtype: Compute Unit */
 977		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
 978			crat_table->num_domains,
 979			(struct crat_subtype_computeunit *)sub_type_hdr);
 980		if (ret < 0)
 981			return ret;
 982		crat_table->length += sub_type_hdr->length;
 983		crat_table->total_entries++;
 984
 985		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
 986			sub_type_hdr->length);
 987
 988		/* Fill in Subtype: Memory */
 989		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
 990			crat_table->num_domains,
 991			(struct crat_subtype_memory *)sub_type_hdr);
 992		if (ret < 0)
 993			return ret;
 994		crat_table->length += sub_type_hdr->length;
 995		crat_table->total_entries++;
 996
 997		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
 998			sub_type_hdr->length);
 999
1000		/* Fill in Subtype: IO Link */
1001#ifdef CONFIG_X86_64
1002		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
1003				&entries,
1004				(struct crat_subtype_iolink *)sub_type_hdr);
1005		if (ret < 0)
1006			return ret;
1007		crat_table->length += (sub_type_hdr->length * entries);
1008		crat_table->total_entries += entries;
1009
1010		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1011				sub_type_hdr->length * entries);
1012#else
1013		pr_info("IO link not available for non x86 platforms\n");
1014#endif
1015
1016		crat_table->num_domains++;
1017	}
1018
1019	/* TODO: Add cache Subtype for CPU.
1020	 * Currently, CPU cache information is available in function
1021	 * detect_cache_attributes(cpu) defined in the file
1022	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1023	 * exported and to get the same information the code needs to be
1024	 * duplicated.
1025	 */
1026
1027	*size = crat_table->length;
1028	pr_info("Virtual CRAT table created for CPU\n");
1029
1030	return 0;
1031}
1032
1033static int kfd_fill_gpu_memory_affinity(int *avail_size,
1034		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1035		struct crat_subtype_memory *sub_type_hdr,
1036		uint32_t proximity_domain,
1037		const struct kfd_local_mem_info *local_mem_info)
1038{
1039	*avail_size -= sizeof(struct crat_subtype_memory);
1040	if (*avail_size < 0)
1041		return -ENOMEM;
1042
1043	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1044	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1045	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1046	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1047
1048	sub_type_hdr->proximity_domain = proximity_domain;
1049
1050	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1051			type, size);
1052
1053	sub_type_hdr->length_low = lower_32_bits(size);
1054	sub_type_hdr->length_high = upper_32_bits(size);
1055
1056	sub_type_hdr->width = local_mem_info->vram_width;
1057	sub_type_hdr->visibility_type = type;
1058
1059	return 0;
1060}
1061
1062/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1063 * to its NUMA node
1064 *	@avail_size: Available size in the memory
1065 *	@kdev - [IN] GPU device
1066 *	@sub_type_hdr: Memory into which io link info will be filled in
1067 *	@proximity_domain - proximity domain of the GPU node
1068 *
1069 *	Return 0 if successful else return -ve value
1070 */
1071static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1072			struct kfd_dev *kdev,
1073			struct crat_subtype_iolink *sub_type_hdr,
1074			uint32_t proximity_domain)
1075{
1076	*avail_size -= sizeof(struct crat_subtype_iolink);
1077	if (*avail_size < 0)
1078		return -ENOMEM;
1079
1080	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1081
1082	/* Fill in subtype header data */
1083	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1084	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1085	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1086	if (kfd_dev_is_large_bar(kdev))
1087		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1088
1089	/* Fill in IOLINK subtype.
1090	 * TODO: Fill-in other fields of iolink subtype
1091	 */
1092	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1093	sub_type_hdr->proximity_domain_from = proximity_domain;
1094#ifdef CONFIG_NUMA
1095	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1096		sub_type_hdr->proximity_domain_to = 0;
1097	else
1098		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1099#else
1100	sub_type_hdr->proximity_domain_to = 0;
1101#endif
1102	return 0;
1103}
1104
1105static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
1106			struct kfd_dev *kdev,
1107			struct kfd_dev *peer_kdev,
1108			struct crat_subtype_iolink *sub_type_hdr,
1109			uint32_t proximity_domain_from,
1110			uint32_t proximity_domain_to)
1111{
1112	*avail_size -= sizeof(struct crat_subtype_iolink);
1113	if (*avail_size < 0)
1114		return -ENOMEM;
1115
1116	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1117
1118	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1119	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1120	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
1121			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1122
1123	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1124	sub_type_hdr->proximity_domain_from = proximity_domain_from;
1125	sub_type_hdr->proximity_domain_to = proximity_domain_to;
1126	sub_type_hdr->num_hops_xgmi =
1127		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
1128	return 0;
1129}
1130
1131/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1132 *
1133 *	@pcrat_image: Fill in VCRAT for GPU
1134 *	@size:	[IN] allocated size of crat_image.
1135 *		[OUT] actual size of data filled in crat_image
1136 */
1137static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1138				      size_t *size, struct kfd_dev *kdev,
1139				      uint32_t proximity_domain)
1140{
1141	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1142	struct crat_subtype_generic *sub_type_hdr;
1143	struct kfd_local_mem_info local_mem_info;
1144	struct kfd_topology_device *peer_dev;
1145	struct crat_subtype_computeunit *cu;
1146	struct kfd_cu_info cu_info;
1147	int avail_size = *size;
1148	uint32_t total_num_of_cu;
1149	int num_of_cache_entries = 0;
1150	int cache_mem_filled = 0;
1151	uint32_t nid = 0;
1152	int ret = 0;
1153
1154	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1155		return -EINVAL;
1156
1157	/* Fill the CRAT Header.
1158	 * Modify length and total_entries as subunits are added.
1159	 */
1160	avail_size -= sizeof(struct crat_header);
1161	if (avail_size < 0)
1162		return -ENOMEM;
1163
1164	memset(crat_table, 0, sizeof(struct crat_header));
1165
1166	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1167			sizeof(crat_table->signature));
1168	/* Change length as we add more subtypes*/
1169	crat_table->length = sizeof(struct crat_header);
1170	crat_table->num_domains = 1;
1171	crat_table->total_entries = 0;
1172
1173	/* Fill in Subtype: Compute Unit
1174	 * First fill in the sub type header and then sub type data
1175	 */
1176	avail_size -= sizeof(struct crat_subtype_computeunit);
1177	if (avail_size < 0)
1178		return -ENOMEM;
1179
1180	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1181	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1182
1183	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1184	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1185	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1186
1187	/* Fill CU subtype data */
1188	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1189	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1190	cu->proximity_domain = proximity_domain;
1191
1192	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
1193	cu->num_simd_per_cu = cu_info.simd_per_cu;
1194	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1195	cu->max_waves_simd = cu_info.max_waves_per_simd;
1196
1197	cu->wave_front_size = cu_info.wave_front_size;
1198	cu->array_count = cu_info.num_shader_arrays_per_engine *
1199		cu_info.num_shader_engines;
1200	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1201	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1202	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1203	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1204	cu->num_banks = cu_info.num_shader_engines;
1205	cu->lds_size_in_kb = cu_info.lds_size;
1206
1207	cu->hsa_capability = 0;
1208
1209	/* Check if this node supports IOMMU. During parsing this flag will
1210	 * translate to HSA_CAP_ATS_PRESENT
1211	 */
1212	if (!kfd_iommu_check_device(kdev))
1213		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1214
1215	crat_table->length += sub_type_hdr->length;
1216	crat_table->total_entries++;
1217
1218	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1219	 * private FB), report memory as public. On other systems
1220	 * report the total FB size (public+private) as a single
1221	 * private heap.
1222	 */
1223	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
1224	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1225			sub_type_hdr->length);
1226
1227	if (debug_largebar)
1228		local_mem_info.local_mem_size_private = 0;
1229
1230	if (local_mem_info.local_mem_size_private == 0)
1231		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1232				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1233				local_mem_info.local_mem_size_public,
1234				(struct crat_subtype_memory *)sub_type_hdr,
1235				proximity_domain,
1236				&local_mem_info);
1237	else
1238		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1239				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1240				local_mem_info.local_mem_size_public +
1241				local_mem_info.local_mem_size_private,
1242				(struct crat_subtype_memory *)sub_type_hdr,
1243				proximity_domain,
1244				&local_mem_info);
1245	if (ret < 0)
1246		return ret;
1247
1248	crat_table->length += sizeof(struct crat_subtype_memory);
1249	crat_table->total_entries++;
1250
1251	/* TODO: Fill in cache information. This information is NOT readily
1252	 * available in KGD
1253	 */
1254	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1255		sub_type_hdr->length);
1256	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1257				avail_size,
1258				&cu_info,
1259				(struct crat_subtype_cache *)sub_type_hdr,
1260				&cache_mem_filled,
1261				&num_of_cache_entries);
1262
1263	if (ret < 0)
1264		return ret;
1265
1266	crat_table->length += cache_mem_filled;
1267	crat_table->total_entries += num_of_cache_entries;
1268	avail_size -= cache_mem_filled;
1269
1270	/* Fill in Subtype: IO_LINKS
1271	 *  Only direct links are added here which is Link from GPU to
1272	 *  to its NUMA node. Indirect links are added by userspace.
1273	 */
1274	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1275		cache_mem_filled);
1276	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1277		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1278
1279	if (ret < 0)
1280		return ret;
1281
1282	crat_table->length += sub_type_hdr->length;
1283	crat_table->total_entries++;
1284
1285
1286	/* Fill in Subtype: IO_LINKS
1287	 * Direct links from GPU to other GPUs through xGMI.
1288	 * We will loop GPUs that already be processed (with lower value
1289	 * of proximity_domain), add the link for the GPUs with same
1290	 * hive id (from this GPU to other GPU) . The reversed iolink
1291	 * (from other GPU to this GPU) will be added
1292	 * in kfd_parse_subtype_iolink.
1293	 */
1294	if (kdev->hive_id) {
1295		for (nid = 0; nid < proximity_domain; ++nid) {
1296			peer_dev = kfd_topology_device_by_proximity_domain(nid);
1297			if (!peer_dev->gpu)
1298				continue;
1299			if (peer_dev->gpu->hive_id != kdev->hive_id)
1300				continue;
1301			sub_type_hdr = (typeof(sub_type_hdr))(
1302				(char *)sub_type_hdr +
1303				sizeof(struct crat_subtype_iolink));
1304			ret = kfd_fill_gpu_xgmi_link_to_gpu(
1305				&avail_size, kdev, peer_dev->gpu,
1306				(struct crat_subtype_iolink *)sub_type_hdr,
1307				proximity_domain, nid);
1308			if (ret < 0)
1309				return ret;
1310			crat_table->length += sub_type_hdr->length;
1311			crat_table->total_entries++;
1312		}
1313	}
1314	*size = crat_table->length;
1315	pr_info("Virtual CRAT table created for GPU\n");
1316
1317	return ret;
1318}
1319
1320/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1321 *		creates a Virtual CRAT (VCRAT) image
1322 *
1323 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1324 *
1325 *	@crat_image: VCRAT image created because ACPI does not have a
1326 *		     CRAT for this device
1327 *	@size: [OUT] size of virtual crat_image
1328 *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1329 *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1330 *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1331 *			-- this option is not currently implemented.
1332 *			The assumption is that all AMD APUs will have CRAT
1333 *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1334 *
1335 *	Return 0 if successful else return -ve value
1336 */
1337int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1338				  int flags, struct kfd_dev *kdev,
1339				  uint32_t proximity_domain)
1340{
1341	void *pcrat_image = NULL;
1342	int ret = 0;
1343
1344	if (!crat_image)
1345		return -EINVAL;
1346
1347	*crat_image = NULL;
1348
1349	/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1350	 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1351	 * all the current conditions. A check is put not to overwrite beyond
1352	 * allocated size
1353	 */
1354	switch (flags) {
1355	case COMPUTE_UNIT_CPU:
1356		pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1357		if (!pcrat_image)
1358			return -ENOMEM;
1359		*size = VCRAT_SIZE_FOR_CPU;
1360		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1361		break;
1362	case COMPUTE_UNIT_GPU:
1363		if (!kdev)
1364			return -EINVAL;
1365		pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1366		if (!pcrat_image)
1367			return -ENOMEM;
1368		*size = VCRAT_SIZE_FOR_GPU;
1369		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1370						 proximity_domain);
1371		break;
1372	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1373		/* TODO: */
1374		ret = -EINVAL;
1375		pr_err("VCRAT not implemented for APU\n");
1376		break;
1377	default:
1378		ret = -EINVAL;
1379	}
1380
1381	if (!ret)
1382		*crat_image = pcrat_image;
1383	else
1384		kfree(pcrat_image);
1385
1386	return ret;
1387}
1388
1389
1390/* kfd_destroy_crat_image
1391 *
1392 *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1393 *
1394 */
1395void kfd_destroy_crat_image(void *crat_image)
1396{
1397	kfree(crat_image);
1398}