Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Intel & MS High Precision Event Timer Implementation.
   3 *
   4 * Copyright (C) 2003 Intel Corporation
   5 *	Venki Pallipadi
   6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
   7 *	Bob Picco <robert.picco@hp.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13
  14#include <linux/interrupt.h>
  15#include <linux/module.h>
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/miscdevice.h>
  19#include <linux/major.h>
  20#include <linux/ioport.h>
  21#include <linux/fcntl.h>
  22#include <linux/init.h>
  23#include <linux/poll.h>
  24#include <linux/mm.h>
  25#include <linux/proc_fs.h>
  26#include <linux/spinlock.h>
  27#include <linux/sysctl.h>
  28#include <linux/wait.h>
 
  29#include <linux/bcd.h>
  30#include <linux/seq_file.h>
  31#include <linux/bitops.h>
  32#include <linux/compat.h>
  33#include <linux/clocksource.h>
  34#include <linux/uaccess.h>
  35#include <linux/slab.h>
  36#include <linux/io.h>
  37
 
  38#include <asm/current.h>
  39#include <asm/system.h>
  40#include <asm/irq.h>
  41#include <asm/div64.h>
  42
  43#include <linux/acpi.h>
  44#include <acpi/acpi_bus.h>
  45#include <linux/hpet.h>
  46
  47/*
  48 * The High Precision Event Timer driver.
  49 * This driver is closely modelled after the rtc.c driver.
  50 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
  51 */
  52#define	HPET_USER_FREQ	(64)
  53#define	HPET_DRIFT	(500)
  54
  55#define HPET_RANGE_SIZE		1024	/* from HPET spec */
  56
  57
  58/* WARNING -- don't get confused.  These macros are never used
  59 * to write the (single) counter, and rarely to read it.
  60 * They're badly named; to fix, someday.
  61 */
  62#if BITS_PER_LONG == 64
  63#define	write_counter(V, MC)	writeq(V, MC)
  64#define	read_counter(MC)	readq(MC)
  65#else
  66#define	write_counter(V, MC)	writel(V, MC)
  67#define	read_counter(MC)	readl(MC)
  68#endif
  69
  70static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
  71static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
  72
  73/* This clocksource driver currently only works on ia64 */
  74#ifdef CONFIG_IA64
  75static void __iomem *hpet_mctr;
  76
  77static cycle_t read_hpet(struct clocksource *cs)
  78{
  79	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
  80}
  81
  82static struct clocksource clocksource_hpet = {
  83	.name		= "hpet",
  84	.rating		= 250,
  85	.read		= read_hpet,
  86	.mask		= CLOCKSOURCE_MASK(64),
  87	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
  88};
  89static struct clocksource *hpet_clocksource;
  90#endif
  91
  92/* A lock for concurrent access by app and isr hpet activity. */
  93static DEFINE_SPINLOCK(hpet_lock);
  94
  95#define	HPET_DEV_NAME	(7)
  96
  97struct hpet_dev {
  98	struct hpets *hd_hpets;
  99	struct hpet __iomem *hd_hpet;
 100	struct hpet_timer __iomem *hd_timer;
 101	unsigned long hd_ireqfreq;
 102	unsigned long hd_irqdata;
 103	wait_queue_head_t hd_waitqueue;
 104	struct fasync_struct *hd_async_queue;
 105	unsigned int hd_flags;
 106	unsigned int hd_irq;
 107	unsigned int hd_hdwirq;
 108	char hd_name[HPET_DEV_NAME];
 109};
 110
 111struct hpets {
 112	struct hpets *hp_next;
 113	struct hpet __iomem *hp_hpet;
 114	unsigned long hp_hpet_phys;
 115	struct clocksource *hp_clocksource;
 116	unsigned long long hp_tick_freq;
 117	unsigned long hp_delta;
 118	unsigned int hp_ntimer;
 119	unsigned int hp_which;
 120	struct hpet_dev hp_dev[1];
 121};
 122
 123static struct hpets *hpets;
 124
 125#define	HPET_OPEN		0x0001
 126#define	HPET_IE			0x0002	/* interrupt enabled */
 127#define	HPET_PERIODIC		0x0004
 128#define	HPET_SHARED_IRQ		0x0008
 129
 130
 131#ifndef readq
 132static inline unsigned long long readq(void __iomem *addr)
 133{
 134	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
 135}
 136#endif
 137
 138#ifndef writeq
 139static inline void writeq(unsigned long long v, void __iomem *addr)
 140{
 141	writel(v & 0xffffffff, addr);
 142	writel(v >> 32, addr + 4);
 143}
 144#endif
 145
 146static irqreturn_t hpet_interrupt(int irq, void *data)
 147{
 148	struct hpet_dev *devp;
 149	unsigned long isr;
 150
 151	devp = data;
 152	isr = 1 << (devp - devp->hd_hpets->hp_dev);
 153
 154	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
 155	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
 156		return IRQ_NONE;
 157
 158	spin_lock(&hpet_lock);
 159	devp->hd_irqdata++;
 160
 161	/*
 162	 * For non-periodic timers, increment the accumulator.
 163	 * This has the effect of treating non-periodic like periodic.
 164	 */
 165	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
 166		unsigned long m, t, mc, base, k;
 167		struct hpet __iomem *hpet = devp->hd_hpet;
 168		struct hpets *hpetp = devp->hd_hpets;
 169
 170		t = devp->hd_ireqfreq;
 171		m = read_counter(&devp->hd_timer->hpet_compare);
 172		mc = read_counter(&hpet->hpet_mc);
 173		/* The time for the next interrupt would logically be t + m,
 174		 * however, if we are very unlucky and the interrupt is delayed
 175		 * for longer than t then we will completely miss the next
 176		 * interrupt if we set t + m and an application will hang.
 177		 * Therefore we need to make a more complex computation assuming
 178		 * that there exists a k for which the following is true:
 179		 * k * t + base < mc + delta
 180		 * (k + 1) * t + base > mc + delta
 181		 * where t is the interval in hpet ticks for the given freq,
 182		 * base is the theoretical start value 0 < base < t,
 183		 * mc is the main counter value at the time of the interrupt,
 184		 * delta is the time it takes to write the a value to the
 185		 * comparator.
 186		 * k may then be computed as (mc - base + delta) / t .
 187		 */
 188		base = mc % t;
 189		k = (mc - base + hpetp->hp_delta) / t;
 190		write_counter(t * (k + 1) + base,
 191			      &devp->hd_timer->hpet_compare);
 192	}
 193
 194	if (devp->hd_flags & HPET_SHARED_IRQ)
 195		writel(isr, &devp->hd_hpet->hpet_isr);
 196	spin_unlock(&hpet_lock);
 197
 198	wake_up_interruptible(&devp->hd_waitqueue);
 199
 200	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
 201
 202	return IRQ_HANDLED;
 203}
 204
 205static void hpet_timer_set_irq(struct hpet_dev *devp)
 206{
 207	unsigned long v;
 208	int irq, gsi;
 209	struct hpet_timer __iomem *timer;
 210
 211	spin_lock_irq(&hpet_lock);
 212	if (devp->hd_hdwirq) {
 213		spin_unlock_irq(&hpet_lock);
 214		return;
 215	}
 216
 217	timer = devp->hd_timer;
 218
 219	/* we prefer level triggered mode */
 220	v = readl(&timer->hpet_config);
 221	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
 222		v |= Tn_INT_TYPE_CNF_MASK;
 223		writel(v, &timer->hpet_config);
 224	}
 225	spin_unlock_irq(&hpet_lock);
 226
 227	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
 228				 Tn_INT_ROUTE_CAP_SHIFT;
 229
 230	/*
 231	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
 232	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
 233	 */
 234	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
 235		v &= ~0xf3df;
 236	else
 237		v &= ~0xffff;
 238
 239	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
 240		if (irq >= nr_irqs) {
 241			irq = HPET_MAX_IRQ;
 242			break;
 243		}
 244
 245		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
 246					ACPI_ACTIVE_LOW);
 247		if (gsi > 0)
 248			break;
 249
 250		/* FIXME: Setup interrupt source table */
 251	}
 252
 253	if (irq < HPET_MAX_IRQ) {
 254		spin_lock_irq(&hpet_lock);
 255		v = readl(&timer->hpet_config);
 256		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
 257		writel(v, &timer->hpet_config);
 258		devp->hd_hdwirq = gsi;
 259		spin_unlock_irq(&hpet_lock);
 260	}
 261	return;
 262}
 263
 264static int hpet_open(struct inode *inode, struct file *file)
 265{
 266	struct hpet_dev *devp;
 267	struct hpets *hpetp;
 268	int i;
 269
 270	if (file->f_mode & FMODE_WRITE)
 271		return -EINVAL;
 272
 273	mutex_lock(&hpet_mutex);
 274	spin_lock_irq(&hpet_lock);
 275
 276	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
 277		for (i = 0; i < hpetp->hp_ntimer; i++)
 278			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
 279				continue;
 280			else {
 281				devp = &hpetp->hp_dev[i];
 282				break;
 283			}
 284
 285	if (!devp) {
 286		spin_unlock_irq(&hpet_lock);
 287		mutex_unlock(&hpet_mutex);
 288		return -EBUSY;
 289	}
 290
 291	file->private_data = devp;
 292	devp->hd_irqdata = 0;
 293	devp->hd_flags |= HPET_OPEN;
 294	spin_unlock_irq(&hpet_lock);
 295	mutex_unlock(&hpet_mutex);
 296
 297	hpet_timer_set_irq(devp);
 298
 299	return 0;
 300}
 301
 302static ssize_t
 303hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
 304{
 305	DECLARE_WAITQUEUE(wait, current);
 306	unsigned long data;
 307	ssize_t retval;
 308	struct hpet_dev *devp;
 309
 310	devp = file->private_data;
 311	if (!devp->hd_ireqfreq)
 312		return -EIO;
 313
 314	if (count < sizeof(unsigned long))
 315		return -EINVAL;
 316
 317	add_wait_queue(&devp->hd_waitqueue, &wait);
 318
 319	for ( ; ; ) {
 320		set_current_state(TASK_INTERRUPTIBLE);
 321
 322		spin_lock_irq(&hpet_lock);
 323		data = devp->hd_irqdata;
 324		devp->hd_irqdata = 0;
 325		spin_unlock_irq(&hpet_lock);
 326
 327		if (data)
 328			break;
 329		else if (file->f_flags & O_NONBLOCK) {
 330			retval = -EAGAIN;
 331			goto out;
 332		} else if (signal_pending(current)) {
 333			retval = -ERESTARTSYS;
 334			goto out;
 335		}
 336		schedule();
 337	}
 338
 339	retval = put_user(data, (unsigned long __user *)buf);
 340	if (!retval)
 341		retval = sizeof(unsigned long);
 342out:
 343	__set_current_state(TASK_RUNNING);
 344	remove_wait_queue(&devp->hd_waitqueue, &wait);
 345
 346	return retval;
 347}
 348
 349static unsigned int hpet_poll(struct file *file, poll_table * wait)
 350{
 351	unsigned long v;
 352	struct hpet_dev *devp;
 353
 354	devp = file->private_data;
 355
 356	if (!devp->hd_ireqfreq)
 357		return 0;
 358
 359	poll_wait(file, &devp->hd_waitqueue, wait);
 360
 361	spin_lock_irq(&hpet_lock);
 362	v = devp->hd_irqdata;
 363	spin_unlock_irq(&hpet_lock);
 364
 365	if (v != 0)
 366		return POLLIN | POLLRDNORM;
 367
 368	return 0;
 369}
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 372{
 373#ifdef	CONFIG_HPET_MMAP
 374	struct hpet_dev *devp;
 375	unsigned long addr;
 376
 377	if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
 378		return -EINVAL;
 379
 380	devp = file->private_data;
 381	addr = devp->hd_hpets->hp_hpet_phys;
 382
 383	if (addr & (PAGE_SIZE - 1))
 384		return -ENOSYS;
 385
 386	vma->vm_flags |= VM_IO;
 387	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 388
 389	if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
 390					PAGE_SIZE, vma->vm_page_prot)) {
 391		printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
 392			__func__);
 393		return -EAGAIN;
 394	}
 395
 396	return 0;
 397#else
 
 
 398	return -ENOSYS;
 399#endif
 400}
 
 401
 402static int hpet_fasync(int fd, struct file *file, int on)
 403{
 404	struct hpet_dev *devp;
 405
 406	devp = file->private_data;
 407
 408	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
 409		return 0;
 410	else
 411		return -EIO;
 412}
 413
 414static int hpet_release(struct inode *inode, struct file *file)
 415{
 416	struct hpet_dev *devp;
 417	struct hpet_timer __iomem *timer;
 418	int irq = 0;
 419
 420	devp = file->private_data;
 421	timer = devp->hd_timer;
 422
 423	spin_lock_irq(&hpet_lock);
 424
 425	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
 426	       &timer->hpet_config);
 427
 428	irq = devp->hd_irq;
 429	devp->hd_irq = 0;
 430
 431	devp->hd_ireqfreq = 0;
 432
 433	if (devp->hd_flags & HPET_PERIODIC
 434	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 435		unsigned long v;
 436
 437		v = readq(&timer->hpet_config);
 438		v ^= Tn_TYPE_CNF_MASK;
 439		writeq(v, &timer->hpet_config);
 440	}
 441
 442	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
 443	spin_unlock_irq(&hpet_lock);
 444
 445	if (irq)
 446		free_irq(irq, devp);
 447
 448	file->private_data = NULL;
 449	return 0;
 450}
 451
 452static int hpet_ioctl_ieon(struct hpet_dev *devp)
 453{
 454	struct hpet_timer __iomem *timer;
 455	struct hpet __iomem *hpet;
 456	struct hpets *hpetp;
 457	int irq;
 458	unsigned long g, v, t, m;
 459	unsigned long flags, isr;
 460
 461	timer = devp->hd_timer;
 462	hpet = devp->hd_hpet;
 463	hpetp = devp->hd_hpets;
 464
 465	if (!devp->hd_ireqfreq)
 466		return -EIO;
 467
 468	spin_lock_irq(&hpet_lock);
 469
 470	if (devp->hd_flags & HPET_IE) {
 471		spin_unlock_irq(&hpet_lock);
 472		return -EBUSY;
 473	}
 474
 475	devp->hd_flags |= HPET_IE;
 476
 477	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
 478		devp->hd_flags |= HPET_SHARED_IRQ;
 479	spin_unlock_irq(&hpet_lock);
 480
 481	irq = devp->hd_hdwirq;
 482
 483	if (irq) {
 484		unsigned long irq_flags;
 485
 486		if (devp->hd_flags & HPET_SHARED_IRQ) {
 487			/*
 488			 * To prevent the interrupt handler from seeing an
 489			 * unwanted interrupt status bit, program the timer
 490			 * so that it will not fire in the near future ...
 491			 */
 492			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
 493			       &timer->hpet_config);
 494			write_counter(read_counter(&hpet->hpet_mc),
 495				      &timer->hpet_compare);
 496			/* ... and clear any left-over status. */
 497			isr = 1 << (devp - devp->hd_hpets->hp_dev);
 498			writel(isr, &hpet->hpet_isr);
 499		}
 500
 501		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
 502		irq_flags = devp->hd_flags & HPET_SHARED_IRQ
 503						? IRQF_SHARED : IRQF_DISABLED;
 504		if (request_irq(irq, hpet_interrupt, irq_flags,
 505				devp->hd_name, (void *)devp)) {
 506			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
 507			irq = 0;
 508		}
 509	}
 510
 511	if (irq == 0) {
 512		spin_lock_irq(&hpet_lock);
 513		devp->hd_flags ^= HPET_IE;
 514		spin_unlock_irq(&hpet_lock);
 515		return -EIO;
 516	}
 517
 518	devp->hd_irq = irq;
 519	t = devp->hd_ireqfreq;
 520	v = readq(&timer->hpet_config);
 521
 522	/* 64-bit comparators are not yet supported through the ioctls,
 523	 * so force this into 32-bit mode if it supports both modes
 524	 */
 525	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
 526
 527	if (devp->hd_flags & HPET_PERIODIC) {
 528		g |= Tn_TYPE_CNF_MASK;
 529		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
 530		writeq(v, &timer->hpet_config);
 531		local_irq_save(flags);
 532
 533		/*
 534		 * NOTE: First we modify the hidden accumulator
 535		 * register supported by periodic-capable comparators.
 536		 * We never want to modify the (single) counter; that
 537		 * would affect all the comparators. The value written
 538		 * is the counter value when the first interrupt is due.
 539		 */
 540		m = read_counter(&hpet->hpet_mc);
 541		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 542		/*
 543		 * Then we modify the comparator, indicating the period
 544		 * for subsequent interrupt.
 545		 */
 546		write_counter(t, &timer->hpet_compare);
 547	} else {
 548		local_irq_save(flags);
 549		m = read_counter(&hpet->hpet_mc);
 550		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 551	}
 552
 553	if (devp->hd_flags & HPET_SHARED_IRQ) {
 554		isr = 1 << (devp - devp->hd_hpets->hp_dev);
 555		writel(isr, &hpet->hpet_isr);
 556	}
 557	writeq(g, &timer->hpet_config);
 558	local_irq_restore(flags);
 559
 560	return 0;
 561}
 562
 563/* converts Hz to number of timer ticks */
 564static inline unsigned long hpet_time_div(struct hpets *hpets,
 565					  unsigned long dis)
 566{
 567	unsigned long long m;
 568
 569	m = hpets->hp_tick_freq + (dis >> 1);
 570	do_div(m, dis);
 571	return (unsigned long)m;
 572}
 573
 574static int
 575hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
 576		  struct hpet_info *info)
 577{
 578	struct hpet_timer __iomem *timer;
 579	struct hpet __iomem *hpet;
 580	struct hpets *hpetp;
 581	int err;
 582	unsigned long v;
 583
 584	switch (cmd) {
 585	case HPET_IE_OFF:
 586	case HPET_INFO:
 587	case HPET_EPI:
 588	case HPET_DPI:
 589	case HPET_IRQFREQ:
 590		timer = devp->hd_timer;
 591		hpet = devp->hd_hpet;
 592		hpetp = devp->hd_hpets;
 593		break;
 594	case HPET_IE_ON:
 595		return hpet_ioctl_ieon(devp);
 596	default:
 597		return -EINVAL;
 598	}
 599
 600	err = 0;
 601
 602	switch (cmd) {
 603	case HPET_IE_OFF:
 604		if ((devp->hd_flags & HPET_IE) == 0)
 605			break;
 606		v = readq(&timer->hpet_config);
 607		v &= ~Tn_INT_ENB_CNF_MASK;
 608		writeq(v, &timer->hpet_config);
 609		if (devp->hd_irq) {
 610			free_irq(devp->hd_irq, devp);
 611			devp->hd_irq = 0;
 612		}
 613		devp->hd_flags ^= HPET_IE;
 614		break;
 615	case HPET_INFO:
 616		{
 617			memset(info, 0, sizeof(*info));
 618			if (devp->hd_ireqfreq)
 619				info->hi_ireqfreq =
 620					hpet_time_div(hpetp, devp->hd_ireqfreq);
 621			info->hi_flags =
 622			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
 623			info->hi_hpet = hpetp->hp_which;
 624			info->hi_timer = devp - hpetp->hp_dev;
 625			break;
 626		}
 627	case HPET_EPI:
 628		v = readq(&timer->hpet_config);
 629		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 630			err = -ENXIO;
 631			break;
 632		}
 633		devp->hd_flags |= HPET_PERIODIC;
 634		break;
 635	case HPET_DPI:
 636		v = readq(&timer->hpet_config);
 637		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 638			err = -ENXIO;
 639			break;
 640		}
 641		if (devp->hd_flags & HPET_PERIODIC &&
 642		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 643			v = readq(&timer->hpet_config);
 644			v ^= Tn_TYPE_CNF_MASK;
 645			writeq(v, &timer->hpet_config);
 646		}
 647		devp->hd_flags &= ~HPET_PERIODIC;
 648		break;
 649	case HPET_IRQFREQ:
 650		if ((arg > hpet_max_freq) &&
 651		    !capable(CAP_SYS_RESOURCE)) {
 652			err = -EACCES;
 653			break;
 654		}
 655
 656		if (!arg) {
 657			err = -EINVAL;
 658			break;
 659		}
 660
 661		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
 662	}
 663
 664	return err;
 665}
 666
 667static long
 668hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 669{
 670	struct hpet_info info;
 671	int err;
 672
 673	mutex_lock(&hpet_mutex);
 674	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 675	mutex_unlock(&hpet_mutex);
 676
 677	if ((cmd == HPET_INFO) && !err &&
 678	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
 679		err = -EFAULT;
 680
 681	return err;
 682}
 683
 684#ifdef CONFIG_COMPAT
 685struct compat_hpet_info {
 686	compat_ulong_t hi_ireqfreq;	/* Hz */
 687	compat_ulong_t hi_flags;	/* information */
 688	unsigned short hi_hpet;
 689	unsigned short hi_timer;
 690};
 691
 692static long
 693hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 694{
 695	struct hpet_info info;
 696	int err;
 697
 698	mutex_lock(&hpet_mutex);
 699	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 700	mutex_unlock(&hpet_mutex);
 701
 702	if ((cmd == HPET_INFO) && !err) {
 703		struct compat_hpet_info __user *u = compat_ptr(arg);
 704		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
 705		    put_user(info.hi_flags, &u->hi_flags) ||
 706		    put_user(info.hi_hpet, &u->hi_hpet) ||
 707		    put_user(info.hi_timer, &u->hi_timer))
 708			err = -EFAULT;
 709	}
 710
 711	return err;
 712}
 713#endif
 714
 715static const struct file_operations hpet_fops = {
 716	.owner = THIS_MODULE,
 717	.llseek = no_llseek,
 718	.read = hpet_read,
 719	.poll = hpet_poll,
 720	.unlocked_ioctl = hpet_ioctl,
 721#ifdef CONFIG_COMPAT
 722	.compat_ioctl = hpet_compat_ioctl,
 723#endif
 724	.open = hpet_open,
 725	.release = hpet_release,
 726	.fasync = hpet_fasync,
 727	.mmap = hpet_mmap,
 728};
 729
 730static int hpet_is_known(struct hpet_data *hdp)
 731{
 732	struct hpets *hpetp;
 733
 734	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
 735		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
 736			return 1;
 737
 738	return 0;
 739}
 740
 741static ctl_table hpet_table[] = {
 742	{
 743	 .procname = "max-user-freq",
 744	 .data = &hpet_max_freq,
 745	 .maxlen = sizeof(int),
 746	 .mode = 0644,
 747	 .proc_handler = proc_dointvec,
 748	 },
 749	{}
 750};
 751
 752static ctl_table hpet_root[] = {
 753	{
 754	 .procname = "hpet",
 755	 .maxlen = 0,
 756	 .mode = 0555,
 757	 .child = hpet_table,
 758	 },
 759	{}
 760};
 761
 762static ctl_table dev_root[] = {
 763	{
 764	 .procname = "dev",
 765	 .maxlen = 0,
 766	 .mode = 0555,
 767	 .child = hpet_root,
 768	 },
 769	{}
 770};
 771
 772static struct ctl_table_header *sysctl_header;
 773
 774/*
 775 * Adjustment for when arming the timer with
 776 * initial conditions.  That is, main counter
 777 * ticks expired before interrupts are enabled.
 778 */
 779#define	TICK_CALIBRATE	(1000UL)
 780
 781static unsigned long __hpet_calibrate(struct hpets *hpetp)
 782{
 783	struct hpet_timer __iomem *timer = NULL;
 784	unsigned long t, m, count, i, flags, start;
 785	struct hpet_dev *devp;
 786	int j;
 787	struct hpet __iomem *hpet;
 788
 789	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
 790		if ((devp->hd_flags & HPET_OPEN) == 0) {
 791			timer = devp->hd_timer;
 792			break;
 793		}
 794
 795	if (!timer)
 796		return 0;
 797
 798	hpet = hpetp->hp_hpet;
 799	t = read_counter(&timer->hpet_compare);
 800
 801	i = 0;
 802	count = hpet_time_div(hpetp, TICK_CALIBRATE);
 803
 804	local_irq_save(flags);
 805
 806	start = read_counter(&hpet->hpet_mc);
 807
 808	do {
 809		m = read_counter(&hpet->hpet_mc);
 810		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 811	} while (i++, (m - start) < count);
 812
 813	local_irq_restore(flags);
 814
 815	return (m - start) / i;
 816}
 817
 818static unsigned long hpet_calibrate(struct hpets *hpetp)
 819{
 820	unsigned long ret = -1;
 821	unsigned long tmp;
 822
 823	/*
 824	 * Try to calibrate until return value becomes stable small value.
 825	 * If SMI interruption occurs in calibration loop, the return value
 826	 * will be big. This avoids its impact.
 827	 */
 828	for ( ; ; ) {
 829		tmp = __hpet_calibrate(hpetp);
 830		if (ret <= tmp)
 831			break;
 832		ret = tmp;
 833	}
 834
 835	return ret;
 836}
 837
 838int hpet_alloc(struct hpet_data *hdp)
 839{
 840	u64 cap, mcfg;
 841	struct hpet_dev *devp;
 842	u32 i, ntimer;
 843	struct hpets *hpetp;
 844	size_t siz;
 845	struct hpet __iomem *hpet;
 846	static struct hpets *last;
 847	unsigned long period;
 848	unsigned long long temp;
 849	u32 remainder;
 850
 851	/*
 852	 * hpet_alloc can be called by platform dependent code.
 853	 * If platform dependent code has allocated the hpet that
 854	 * ACPI has also reported, then we catch it here.
 855	 */
 856	if (hpet_is_known(hdp)) {
 857		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
 858			__func__);
 859		return 0;
 860	}
 861
 862	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
 863				      sizeof(struct hpet_dev));
 864
 865	hpetp = kzalloc(siz, GFP_KERNEL);
 866
 867	if (!hpetp)
 868		return -ENOMEM;
 869
 870	hpetp->hp_which = hpet_nhpet++;
 871	hpetp->hp_hpet = hdp->hd_address;
 872	hpetp->hp_hpet_phys = hdp->hd_phys_address;
 873
 874	hpetp->hp_ntimer = hdp->hd_nirqs;
 875
 876	for (i = 0; i < hdp->hd_nirqs; i++)
 877		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
 878
 879	hpet = hpetp->hp_hpet;
 880
 881	cap = readq(&hpet->hpet_cap);
 882
 883	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
 884
 885	if (hpetp->hp_ntimer != ntimer) {
 886		printk(KERN_WARNING "hpet: number irqs doesn't agree"
 887		       " with number of timers\n");
 888		kfree(hpetp);
 889		return -ENODEV;
 890	}
 891
 892	if (last)
 893		last->hp_next = hpetp;
 894	else
 895		hpets = hpetp;
 896
 897	last = hpetp;
 898
 899	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
 900		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
 901	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
 902	temp += period >> 1; /* round */
 903	do_div(temp, period);
 904	hpetp->hp_tick_freq = temp; /* ticks per second */
 905
 906	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
 907		hpetp->hp_which, hdp->hd_phys_address,
 908		hpetp->hp_ntimer > 1 ? "s" : "");
 909	for (i = 0; i < hpetp->hp_ntimer; i++)
 910		printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
 911	printk("\n");
 912
 913	temp = hpetp->hp_tick_freq;
 914	remainder = do_div(temp, 1000000);
 915	printk(KERN_INFO
 916		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
 917		hpetp->hp_which, hpetp->hp_ntimer,
 918		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
 919		(unsigned) temp, remainder);
 920
 921	mcfg = readq(&hpet->hpet_config);
 922	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
 923		write_counter(0L, &hpet->hpet_mc);
 924		mcfg |= HPET_ENABLE_CNF_MASK;
 925		writeq(mcfg, &hpet->hpet_config);
 926	}
 927
 928	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
 929		struct hpet_timer __iomem *timer;
 930
 931		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
 932
 933		devp->hd_hpets = hpetp;
 934		devp->hd_hpet = hpet;
 935		devp->hd_timer = timer;
 936
 937		/*
 938		 * If the timer was reserved by platform code,
 939		 * then make timer unavailable for opens.
 940		 */
 941		if (hdp->hd_state & (1 << i)) {
 942			devp->hd_flags = HPET_OPEN;
 943			continue;
 944		}
 945
 946		init_waitqueue_head(&devp->hd_waitqueue);
 947	}
 948
 949	hpetp->hp_delta = hpet_calibrate(hpetp);
 950
 951/* This clocksource driver currently only works on ia64 */
 952#ifdef CONFIG_IA64
 953	if (!hpet_clocksource) {
 954		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
 955		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
 956		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
 957		hpetp->hp_clocksource = &clocksource_hpet;
 958		hpet_clocksource = &clocksource_hpet;
 959	}
 960#endif
 961
 962	return 0;
 963}
 964
 965static acpi_status hpet_resources(struct acpi_resource *res, void *data)
 966{
 967	struct hpet_data *hdp;
 968	acpi_status status;
 969	struct acpi_resource_address64 addr;
 970
 971	hdp = data;
 972
 973	status = acpi_resource_to_address64(res, &addr);
 974
 975	if (ACPI_SUCCESS(status)) {
 976		hdp->hd_phys_address = addr.minimum;
 977		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
 
 
 978
 979		if (hpet_is_known(hdp)) {
 980			iounmap(hdp->hd_address);
 981			return AE_ALREADY_EXISTS;
 982		}
 983	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
 984		struct acpi_resource_fixed_memory32 *fixmem32;
 985
 986		fixmem32 = &res->data.fixed_memory32;
 987		if (!fixmem32)
 988			return AE_NO_MEMORY;
 989
 990		hdp->hd_phys_address = fixmem32->address;
 991		hdp->hd_address = ioremap(fixmem32->address,
 992						HPET_RANGE_SIZE);
 993
 994		if (hpet_is_known(hdp)) {
 995			iounmap(hdp->hd_address);
 996			return AE_ALREADY_EXISTS;
 997		}
 998	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
 999		struct acpi_resource_extended_irq *irqp;
1000		int i, irq;
1001
1002		irqp = &res->data.extended_irq;
1003
1004		for (i = 0; i < irqp->interrupt_count; i++) {
 
 
 
1005			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1006				      irqp->triggering, irqp->polarity);
1007			if (irq < 0)
1008				return AE_ERROR;
1009
1010			hdp->hd_irq[hdp->hd_nirqs] = irq;
1011			hdp->hd_nirqs++;
1012		}
1013	}
1014
1015	return AE_OK;
1016}
1017
1018static int hpet_acpi_add(struct acpi_device *device)
1019{
1020	acpi_status result;
1021	struct hpet_data data;
1022
1023	memset(&data, 0, sizeof(data));
1024
1025	result =
1026	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1027				hpet_resources, &data);
1028
1029	if (ACPI_FAILURE(result))
1030		return -ENODEV;
1031
1032	if (!data.hd_address || !data.hd_nirqs) {
1033		if (data.hd_address)
1034			iounmap(data.hd_address);
1035		printk("%s: no address or irqs in _CRS\n", __func__);
1036		return -ENODEV;
1037	}
1038
1039	return hpet_alloc(&data);
1040}
1041
1042static int hpet_acpi_remove(struct acpi_device *device, int type)
1043{
1044	/* XXX need to unregister clocksource, dealloc mem, etc */
1045	return -EINVAL;
1046}
1047
1048static const struct acpi_device_id hpet_device_ids[] = {
1049	{"PNP0103", 0},
1050	{"", 0},
1051};
1052MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1053
1054static struct acpi_driver hpet_acpi_driver = {
1055	.name = "hpet",
1056	.ids = hpet_device_ids,
1057	.ops = {
1058		.add = hpet_acpi_add,
1059		.remove = hpet_acpi_remove,
1060		},
1061};
1062
1063static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1064
1065static int __init hpet_init(void)
1066{
1067	int result;
1068
1069	result = misc_register(&hpet_misc);
1070	if (result < 0)
1071		return -ENODEV;
1072
1073	sysctl_header = register_sysctl_table(dev_root);
1074
1075	result = acpi_bus_register_driver(&hpet_acpi_driver);
1076	if (result < 0) {
1077		if (sysctl_header)
1078			unregister_sysctl_table(sysctl_header);
1079		misc_deregister(&hpet_misc);
1080		return result;
1081	}
1082
1083	return 0;
1084}
 
1085
1086static void __exit hpet_exit(void)
1087{
1088	acpi_bus_unregister_driver(&hpet_acpi_driver);
1089
1090	if (sysctl_header)
1091		unregister_sysctl_table(sysctl_header);
1092	misc_deregister(&hpet_misc);
1093
1094	return;
1095}
1096
1097module_init(hpet_init);
1098module_exit(hpet_exit);
1099MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1100MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel & MS High Precision Event Timer Implementation.
   4 *
   5 * Copyright (C) 2003 Intel Corporation
   6 *	Venki Pallipadi
   7 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
   8 *	Bob Picco <robert.picco@hp.com>
 
 
 
 
   9 */
  10
  11#include <linux/interrupt.h>
 
  12#include <linux/kernel.h>
  13#include <linux/types.h>
  14#include <linux/miscdevice.h>
  15#include <linux/major.h>
  16#include <linux/ioport.h>
  17#include <linux/fcntl.h>
  18#include <linux/init.h>
  19#include <linux/poll.h>
  20#include <linux/mm.h>
  21#include <linux/proc_fs.h>
  22#include <linux/spinlock.h>
  23#include <linux/sysctl.h>
  24#include <linux/wait.h>
  25#include <linux/sched/signal.h>
  26#include <linux/bcd.h>
  27#include <linux/seq_file.h>
  28#include <linux/bitops.h>
  29#include <linux/compat.h>
  30#include <linux/clocksource.h>
  31#include <linux/uaccess.h>
  32#include <linux/slab.h>
  33#include <linux/io.h>
  34#include <linux/acpi.h>
  35#include <linux/hpet.h>
  36#include <asm/current.h>
 
  37#include <asm/irq.h>
  38#include <asm/div64.h>
  39
 
 
 
 
  40/*
  41 * The High Precision Event Timer driver.
  42 * This driver is closely modelled after the rtc.c driver.
  43 * See HPET spec revision 1.
  44 */
  45#define	HPET_USER_FREQ	(64)
  46#define	HPET_DRIFT	(500)
  47
  48#define HPET_RANGE_SIZE		1024	/* from HPET spec */
  49
  50
  51/* WARNING -- don't get confused.  These macros are never used
  52 * to write the (single) counter, and rarely to read it.
  53 * They're badly named; to fix, someday.
  54 */
  55#if BITS_PER_LONG == 64
  56#define	write_counter(V, MC)	writeq(V, MC)
  57#define	read_counter(MC)	readq(MC)
  58#else
  59#define	write_counter(V, MC)	writel(V, MC)
  60#define	read_counter(MC)	readl(MC)
  61#endif
  62
  63static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
  64static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
  65
  66/* This clocksource driver currently only works on ia64 */
  67#ifdef CONFIG_IA64
  68static void __iomem *hpet_mctr;
  69
  70static u64 read_hpet(struct clocksource *cs)
  71{
  72	return (u64)read_counter((void __iomem *)hpet_mctr);
  73}
  74
  75static struct clocksource clocksource_hpet = {
  76	.name		= "hpet",
  77	.rating		= 250,
  78	.read		= read_hpet,
  79	.mask		= CLOCKSOURCE_MASK(64),
  80	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
  81};
  82static struct clocksource *hpet_clocksource;
  83#endif
  84
  85/* A lock for concurrent access by app and isr hpet activity. */
  86static DEFINE_SPINLOCK(hpet_lock);
  87
  88#define	HPET_DEV_NAME	(7)
  89
  90struct hpet_dev {
  91	struct hpets *hd_hpets;
  92	struct hpet __iomem *hd_hpet;
  93	struct hpet_timer __iomem *hd_timer;
  94	unsigned long hd_ireqfreq;
  95	unsigned long hd_irqdata;
  96	wait_queue_head_t hd_waitqueue;
  97	struct fasync_struct *hd_async_queue;
  98	unsigned int hd_flags;
  99	unsigned int hd_irq;
 100	unsigned int hd_hdwirq;
 101	char hd_name[HPET_DEV_NAME];
 102};
 103
 104struct hpets {
 105	struct hpets *hp_next;
 106	struct hpet __iomem *hp_hpet;
 107	unsigned long hp_hpet_phys;
 108	struct clocksource *hp_clocksource;
 109	unsigned long long hp_tick_freq;
 110	unsigned long hp_delta;
 111	unsigned int hp_ntimer;
 112	unsigned int hp_which;
 113	struct hpet_dev hp_dev[1];
 114};
 115
 116static struct hpets *hpets;
 117
 118#define	HPET_OPEN		0x0001
 119#define	HPET_IE			0x0002	/* interrupt enabled */
 120#define	HPET_PERIODIC		0x0004
 121#define	HPET_SHARED_IRQ		0x0008
 122
 123
 124#ifndef readq
 125static inline unsigned long long readq(void __iomem *addr)
 126{
 127	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
 128}
 129#endif
 130
 131#ifndef writeq
 132static inline void writeq(unsigned long long v, void __iomem *addr)
 133{
 134	writel(v & 0xffffffff, addr);
 135	writel(v >> 32, addr + 4);
 136}
 137#endif
 138
 139static irqreturn_t hpet_interrupt(int irq, void *data)
 140{
 141	struct hpet_dev *devp;
 142	unsigned long isr;
 143
 144	devp = data;
 145	isr = 1 << (devp - devp->hd_hpets->hp_dev);
 146
 147	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
 148	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
 149		return IRQ_NONE;
 150
 151	spin_lock(&hpet_lock);
 152	devp->hd_irqdata++;
 153
 154	/*
 155	 * For non-periodic timers, increment the accumulator.
 156	 * This has the effect of treating non-periodic like periodic.
 157	 */
 158	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
 159		unsigned long m, t, mc, base, k;
 160		struct hpet __iomem *hpet = devp->hd_hpet;
 161		struct hpets *hpetp = devp->hd_hpets;
 162
 163		t = devp->hd_ireqfreq;
 164		m = read_counter(&devp->hd_timer->hpet_compare);
 165		mc = read_counter(&hpet->hpet_mc);
 166		/* The time for the next interrupt would logically be t + m,
 167		 * however, if we are very unlucky and the interrupt is delayed
 168		 * for longer than t then we will completely miss the next
 169		 * interrupt if we set t + m and an application will hang.
 170		 * Therefore we need to make a more complex computation assuming
 171		 * that there exists a k for which the following is true:
 172		 * k * t + base < mc + delta
 173		 * (k + 1) * t + base > mc + delta
 174		 * where t is the interval in hpet ticks for the given freq,
 175		 * base is the theoretical start value 0 < base < t,
 176		 * mc is the main counter value at the time of the interrupt,
 177		 * delta is the time it takes to write the a value to the
 178		 * comparator.
 179		 * k may then be computed as (mc - base + delta) / t .
 180		 */
 181		base = mc % t;
 182		k = (mc - base + hpetp->hp_delta) / t;
 183		write_counter(t * (k + 1) + base,
 184			      &devp->hd_timer->hpet_compare);
 185	}
 186
 187	if (devp->hd_flags & HPET_SHARED_IRQ)
 188		writel(isr, &devp->hd_hpet->hpet_isr);
 189	spin_unlock(&hpet_lock);
 190
 191	wake_up_interruptible(&devp->hd_waitqueue);
 192
 193	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
 194
 195	return IRQ_HANDLED;
 196}
 197
 198static void hpet_timer_set_irq(struct hpet_dev *devp)
 199{
 200	unsigned long v;
 201	int irq, gsi;
 202	struct hpet_timer __iomem *timer;
 203
 204	spin_lock_irq(&hpet_lock);
 205	if (devp->hd_hdwirq) {
 206		spin_unlock_irq(&hpet_lock);
 207		return;
 208	}
 209
 210	timer = devp->hd_timer;
 211
 212	/* we prefer level triggered mode */
 213	v = readl(&timer->hpet_config);
 214	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
 215		v |= Tn_INT_TYPE_CNF_MASK;
 216		writel(v, &timer->hpet_config);
 217	}
 218	spin_unlock_irq(&hpet_lock);
 219
 220	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
 221				 Tn_INT_ROUTE_CAP_SHIFT;
 222
 223	/*
 224	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
 225	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
 226	 */
 227	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
 228		v &= ~0xf3df;
 229	else
 230		v &= ~0xffff;
 231
 232	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
 233		if (irq >= nr_irqs) {
 234			irq = HPET_MAX_IRQ;
 235			break;
 236		}
 237
 238		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
 239					ACPI_ACTIVE_LOW);
 240		if (gsi > 0)
 241			break;
 242
 243		/* FIXME: Setup interrupt source table */
 244	}
 245
 246	if (irq < HPET_MAX_IRQ) {
 247		spin_lock_irq(&hpet_lock);
 248		v = readl(&timer->hpet_config);
 249		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
 250		writel(v, &timer->hpet_config);
 251		devp->hd_hdwirq = gsi;
 252		spin_unlock_irq(&hpet_lock);
 253	}
 254	return;
 255}
 256
 257static int hpet_open(struct inode *inode, struct file *file)
 258{
 259	struct hpet_dev *devp;
 260	struct hpets *hpetp;
 261	int i;
 262
 263	if (file->f_mode & FMODE_WRITE)
 264		return -EINVAL;
 265
 266	mutex_lock(&hpet_mutex);
 267	spin_lock_irq(&hpet_lock);
 268
 269	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
 270		for (i = 0; i < hpetp->hp_ntimer; i++)
 271			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
 272				continue;
 273			else {
 274				devp = &hpetp->hp_dev[i];
 275				break;
 276			}
 277
 278	if (!devp) {
 279		spin_unlock_irq(&hpet_lock);
 280		mutex_unlock(&hpet_mutex);
 281		return -EBUSY;
 282	}
 283
 284	file->private_data = devp;
 285	devp->hd_irqdata = 0;
 286	devp->hd_flags |= HPET_OPEN;
 287	spin_unlock_irq(&hpet_lock);
 288	mutex_unlock(&hpet_mutex);
 289
 290	hpet_timer_set_irq(devp);
 291
 292	return 0;
 293}
 294
 295static ssize_t
 296hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
 297{
 298	DECLARE_WAITQUEUE(wait, current);
 299	unsigned long data;
 300	ssize_t retval;
 301	struct hpet_dev *devp;
 302
 303	devp = file->private_data;
 304	if (!devp->hd_ireqfreq)
 305		return -EIO;
 306
 307	if (count < sizeof(unsigned long))
 308		return -EINVAL;
 309
 310	add_wait_queue(&devp->hd_waitqueue, &wait);
 311
 312	for ( ; ; ) {
 313		set_current_state(TASK_INTERRUPTIBLE);
 314
 315		spin_lock_irq(&hpet_lock);
 316		data = devp->hd_irqdata;
 317		devp->hd_irqdata = 0;
 318		spin_unlock_irq(&hpet_lock);
 319
 320		if (data)
 321			break;
 322		else if (file->f_flags & O_NONBLOCK) {
 323			retval = -EAGAIN;
 324			goto out;
 325		} else if (signal_pending(current)) {
 326			retval = -ERESTARTSYS;
 327			goto out;
 328		}
 329		schedule();
 330	}
 331
 332	retval = put_user(data, (unsigned long __user *)buf);
 333	if (!retval)
 334		retval = sizeof(unsigned long);
 335out:
 336	__set_current_state(TASK_RUNNING);
 337	remove_wait_queue(&devp->hd_waitqueue, &wait);
 338
 339	return retval;
 340}
 341
 342static __poll_t hpet_poll(struct file *file, poll_table * wait)
 343{
 344	unsigned long v;
 345	struct hpet_dev *devp;
 346
 347	devp = file->private_data;
 348
 349	if (!devp->hd_ireqfreq)
 350		return 0;
 351
 352	poll_wait(file, &devp->hd_waitqueue, wait);
 353
 354	spin_lock_irq(&hpet_lock);
 355	v = devp->hd_irqdata;
 356	spin_unlock_irq(&hpet_lock);
 357
 358	if (v != 0)
 359		return EPOLLIN | EPOLLRDNORM;
 360
 361	return 0;
 362}
 363
 364#ifdef CONFIG_HPET_MMAP
 365#ifdef CONFIG_HPET_MMAP_DEFAULT
 366static int hpet_mmap_enabled = 1;
 367#else
 368static int hpet_mmap_enabled = 0;
 369#endif
 370
 371static __init int hpet_mmap_enable(char *str)
 372{
 373	get_option(&str, &hpet_mmap_enabled);
 374	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
 375	return 1;
 376}
 377__setup("hpet_mmap=", hpet_mmap_enable);
 378
 379static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 380{
 
 381	struct hpet_dev *devp;
 382	unsigned long addr;
 383
 384	if (!hpet_mmap_enabled)
 385		return -EACCES;
 386
 387	devp = file->private_data;
 388	addr = devp->hd_hpets->hp_hpet_phys;
 389
 390	if (addr & (PAGE_SIZE - 1))
 391		return -ENOSYS;
 392
 
 393	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 394	return vm_iomap_memory(vma, addr, PAGE_SIZE);
 395}
 
 
 
 
 
 
 
 396#else
 397static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 398{
 399	return -ENOSYS;
 
 400}
 401#endif
 402
 403static int hpet_fasync(int fd, struct file *file, int on)
 404{
 405	struct hpet_dev *devp;
 406
 407	devp = file->private_data;
 408
 409	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
 410		return 0;
 411	else
 412		return -EIO;
 413}
 414
 415static int hpet_release(struct inode *inode, struct file *file)
 416{
 417	struct hpet_dev *devp;
 418	struct hpet_timer __iomem *timer;
 419	int irq = 0;
 420
 421	devp = file->private_data;
 422	timer = devp->hd_timer;
 423
 424	spin_lock_irq(&hpet_lock);
 425
 426	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
 427	       &timer->hpet_config);
 428
 429	irq = devp->hd_irq;
 430	devp->hd_irq = 0;
 431
 432	devp->hd_ireqfreq = 0;
 433
 434	if (devp->hd_flags & HPET_PERIODIC
 435	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 436		unsigned long v;
 437
 438		v = readq(&timer->hpet_config);
 439		v ^= Tn_TYPE_CNF_MASK;
 440		writeq(v, &timer->hpet_config);
 441	}
 442
 443	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
 444	spin_unlock_irq(&hpet_lock);
 445
 446	if (irq)
 447		free_irq(irq, devp);
 448
 449	file->private_data = NULL;
 450	return 0;
 451}
 452
 453static int hpet_ioctl_ieon(struct hpet_dev *devp)
 454{
 455	struct hpet_timer __iomem *timer;
 456	struct hpet __iomem *hpet;
 457	struct hpets *hpetp;
 458	int irq;
 459	unsigned long g, v, t, m;
 460	unsigned long flags, isr;
 461
 462	timer = devp->hd_timer;
 463	hpet = devp->hd_hpet;
 464	hpetp = devp->hd_hpets;
 465
 466	if (!devp->hd_ireqfreq)
 467		return -EIO;
 468
 469	spin_lock_irq(&hpet_lock);
 470
 471	if (devp->hd_flags & HPET_IE) {
 472		spin_unlock_irq(&hpet_lock);
 473		return -EBUSY;
 474	}
 475
 476	devp->hd_flags |= HPET_IE;
 477
 478	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
 479		devp->hd_flags |= HPET_SHARED_IRQ;
 480	spin_unlock_irq(&hpet_lock);
 481
 482	irq = devp->hd_hdwirq;
 483
 484	if (irq) {
 485		unsigned long irq_flags;
 486
 487		if (devp->hd_flags & HPET_SHARED_IRQ) {
 488			/*
 489			 * To prevent the interrupt handler from seeing an
 490			 * unwanted interrupt status bit, program the timer
 491			 * so that it will not fire in the near future ...
 492			 */
 493			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
 494			       &timer->hpet_config);
 495			write_counter(read_counter(&hpet->hpet_mc),
 496				      &timer->hpet_compare);
 497			/* ... and clear any left-over status. */
 498			isr = 1 << (devp - devp->hd_hpets->hp_dev);
 499			writel(isr, &hpet->hpet_isr);
 500		}
 501
 502		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
 503		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
 
 504		if (request_irq(irq, hpet_interrupt, irq_flags,
 505				devp->hd_name, (void *)devp)) {
 506			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
 507			irq = 0;
 508		}
 509	}
 510
 511	if (irq == 0) {
 512		spin_lock_irq(&hpet_lock);
 513		devp->hd_flags ^= HPET_IE;
 514		spin_unlock_irq(&hpet_lock);
 515		return -EIO;
 516	}
 517
 518	devp->hd_irq = irq;
 519	t = devp->hd_ireqfreq;
 520	v = readq(&timer->hpet_config);
 521
 522	/* 64-bit comparators are not yet supported through the ioctls,
 523	 * so force this into 32-bit mode if it supports both modes
 524	 */
 525	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
 526
 527	if (devp->hd_flags & HPET_PERIODIC) {
 528		g |= Tn_TYPE_CNF_MASK;
 529		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
 530		writeq(v, &timer->hpet_config);
 531		local_irq_save(flags);
 532
 533		/*
 534		 * NOTE: First we modify the hidden accumulator
 535		 * register supported by periodic-capable comparators.
 536		 * We never want to modify the (single) counter; that
 537		 * would affect all the comparators. The value written
 538		 * is the counter value when the first interrupt is due.
 539		 */
 540		m = read_counter(&hpet->hpet_mc);
 541		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 542		/*
 543		 * Then we modify the comparator, indicating the period
 544		 * for subsequent interrupt.
 545		 */
 546		write_counter(t, &timer->hpet_compare);
 547	} else {
 548		local_irq_save(flags);
 549		m = read_counter(&hpet->hpet_mc);
 550		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 551	}
 552
 553	if (devp->hd_flags & HPET_SHARED_IRQ) {
 554		isr = 1 << (devp - devp->hd_hpets->hp_dev);
 555		writel(isr, &hpet->hpet_isr);
 556	}
 557	writeq(g, &timer->hpet_config);
 558	local_irq_restore(flags);
 559
 560	return 0;
 561}
 562
 563/* converts Hz to number of timer ticks */
 564static inline unsigned long hpet_time_div(struct hpets *hpets,
 565					  unsigned long dis)
 566{
 567	unsigned long long m;
 568
 569	m = hpets->hp_tick_freq + (dis >> 1);
 570	return div64_ul(m, dis);
 
 571}
 572
 573static int
 574hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
 575		  struct hpet_info *info)
 576{
 577	struct hpet_timer __iomem *timer;
 
 578	struct hpets *hpetp;
 579	int err;
 580	unsigned long v;
 581
 582	switch (cmd) {
 583	case HPET_IE_OFF:
 584	case HPET_INFO:
 585	case HPET_EPI:
 586	case HPET_DPI:
 587	case HPET_IRQFREQ:
 588		timer = devp->hd_timer;
 
 589		hpetp = devp->hd_hpets;
 590		break;
 591	case HPET_IE_ON:
 592		return hpet_ioctl_ieon(devp);
 593	default:
 594		return -EINVAL;
 595	}
 596
 597	err = 0;
 598
 599	switch (cmd) {
 600	case HPET_IE_OFF:
 601		if ((devp->hd_flags & HPET_IE) == 0)
 602			break;
 603		v = readq(&timer->hpet_config);
 604		v &= ~Tn_INT_ENB_CNF_MASK;
 605		writeq(v, &timer->hpet_config);
 606		if (devp->hd_irq) {
 607			free_irq(devp->hd_irq, devp);
 608			devp->hd_irq = 0;
 609		}
 610		devp->hd_flags ^= HPET_IE;
 611		break;
 612	case HPET_INFO:
 613		{
 614			memset(info, 0, sizeof(*info));
 615			if (devp->hd_ireqfreq)
 616				info->hi_ireqfreq =
 617					hpet_time_div(hpetp, devp->hd_ireqfreq);
 618			info->hi_flags =
 619			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
 620			info->hi_hpet = hpetp->hp_which;
 621			info->hi_timer = devp - hpetp->hp_dev;
 622			break;
 623		}
 624	case HPET_EPI:
 625		v = readq(&timer->hpet_config);
 626		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 627			err = -ENXIO;
 628			break;
 629		}
 630		devp->hd_flags |= HPET_PERIODIC;
 631		break;
 632	case HPET_DPI:
 633		v = readq(&timer->hpet_config);
 634		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 635			err = -ENXIO;
 636			break;
 637		}
 638		if (devp->hd_flags & HPET_PERIODIC &&
 639		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 640			v = readq(&timer->hpet_config);
 641			v ^= Tn_TYPE_CNF_MASK;
 642			writeq(v, &timer->hpet_config);
 643		}
 644		devp->hd_flags &= ~HPET_PERIODIC;
 645		break;
 646	case HPET_IRQFREQ:
 647		if ((arg > hpet_max_freq) &&
 648		    !capable(CAP_SYS_RESOURCE)) {
 649			err = -EACCES;
 650			break;
 651		}
 652
 653		if (!arg) {
 654			err = -EINVAL;
 655			break;
 656		}
 657
 658		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
 659	}
 660
 661	return err;
 662}
 663
 664static long
 665hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 666{
 667	struct hpet_info info;
 668	int err;
 669
 670	mutex_lock(&hpet_mutex);
 671	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 672	mutex_unlock(&hpet_mutex);
 673
 674	if ((cmd == HPET_INFO) && !err &&
 675	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
 676		err = -EFAULT;
 677
 678	return err;
 679}
 680
 681#ifdef CONFIG_COMPAT
 682struct compat_hpet_info {
 683	compat_ulong_t hi_ireqfreq;	/* Hz */
 684	compat_ulong_t hi_flags;	/* information */
 685	unsigned short hi_hpet;
 686	unsigned short hi_timer;
 687};
 688
 689static long
 690hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 691{
 692	struct hpet_info info;
 693	int err;
 694
 695	mutex_lock(&hpet_mutex);
 696	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 697	mutex_unlock(&hpet_mutex);
 698
 699	if ((cmd == HPET_INFO) && !err) {
 700		struct compat_hpet_info __user *u = compat_ptr(arg);
 701		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
 702		    put_user(info.hi_flags, &u->hi_flags) ||
 703		    put_user(info.hi_hpet, &u->hi_hpet) ||
 704		    put_user(info.hi_timer, &u->hi_timer))
 705			err = -EFAULT;
 706	}
 707
 708	return err;
 709}
 710#endif
 711
 712static const struct file_operations hpet_fops = {
 713	.owner = THIS_MODULE,
 714	.llseek = no_llseek,
 715	.read = hpet_read,
 716	.poll = hpet_poll,
 717	.unlocked_ioctl = hpet_ioctl,
 718#ifdef CONFIG_COMPAT
 719	.compat_ioctl = hpet_compat_ioctl,
 720#endif
 721	.open = hpet_open,
 722	.release = hpet_release,
 723	.fasync = hpet_fasync,
 724	.mmap = hpet_mmap,
 725};
 726
 727static int hpet_is_known(struct hpet_data *hdp)
 728{
 729	struct hpets *hpetp;
 730
 731	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
 732		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
 733			return 1;
 734
 735	return 0;
 736}
 737
 738static struct ctl_table hpet_table[] = {
 739	{
 740	 .procname = "max-user-freq",
 741	 .data = &hpet_max_freq,
 742	 .maxlen = sizeof(int),
 743	 .mode = 0644,
 744	 .proc_handler = proc_dointvec,
 745	 },
 746	{}
 747};
 748
 749static struct ctl_table hpet_root[] = {
 750	{
 751	 .procname = "hpet",
 752	 .maxlen = 0,
 753	 .mode = 0555,
 754	 .child = hpet_table,
 755	 },
 756	{}
 757};
 758
 759static struct ctl_table dev_root[] = {
 760	{
 761	 .procname = "dev",
 762	 .maxlen = 0,
 763	 .mode = 0555,
 764	 .child = hpet_root,
 765	 },
 766	{}
 767};
 768
 769static struct ctl_table_header *sysctl_header;
 770
 771/*
 772 * Adjustment for when arming the timer with
 773 * initial conditions.  That is, main counter
 774 * ticks expired before interrupts are enabled.
 775 */
 776#define	TICK_CALIBRATE	(1000UL)
 777
 778static unsigned long __hpet_calibrate(struct hpets *hpetp)
 779{
 780	struct hpet_timer __iomem *timer = NULL;
 781	unsigned long t, m, count, i, flags, start;
 782	struct hpet_dev *devp;
 783	int j;
 784	struct hpet __iomem *hpet;
 785
 786	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
 787		if ((devp->hd_flags & HPET_OPEN) == 0) {
 788			timer = devp->hd_timer;
 789			break;
 790		}
 791
 792	if (!timer)
 793		return 0;
 794
 795	hpet = hpetp->hp_hpet;
 796	t = read_counter(&timer->hpet_compare);
 797
 798	i = 0;
 799	count = hpet_time_div(hpetp, TICK_CALIBRATE);
 800
 801	local_irq_save(flags);
 802
 803	start = read_counter(&hpet->hpet_mc);
 804
 805	do {
 806		m = read_counter(&hpet->hpet_mc);
 807		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 808	} while (i++, (m - start) < count);
 809
 810	local_irq_restore(flags);
 811
 812	return (m - start) / i;
 813}
 814
 815static unsigned long hpet_calibrate(struct hpets *hpetp)
 816{
 817	unsigned long ret = ~0UL;
 818	unsigned long tmp;
 819
 820	/*
 821	 * Try to calibrate until return value becomes stable small value.
 822	 * If SMI interruption occurs in calibration loop, the return value
 823	 * will be big. This avoids its impact.
 824	 */
 825	for ( ; ; ) {
 826		tmp = __hpet_calibrate(hpetp);
 827		if (ret <= tmp)
 828			break;
 829		ret = tmp;
 830	}
 831
 832	return ret;
 833}
 834
 835int hpet_alloc(struct hpet_data *hdp)
 836{
 837	u64 cap, mcfg;
 838	struct hpet_dev *devp;
 839	u32 i, ntimer;
 840	struct hpets *hpetp;
 
 841	struct hpet __iomem *hpet;
 842	static struct hpets *last;
 843	unsigned long period;
 844	unsigned long long temp;
 845	u32 remainder;
 846
 847	/*
 848	 * hpet_alloc can be called by platform dependent code.
 849	 * If platform dependent code has allocated the hpet that
 850	 * ACPI has also reported, then we catch it here.
 851	 */
 852	if (hpet_is_known(hdp)) {
 853		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
 854			__func__);
 855		return 0;
 856	}
 857
 858	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs - 1),
 859			GFP_KERNEL);
 
 
 860
 861	if (!hpetp)
 862		return -ENOMEM;
 863
 864	hpetp->hp_which = hpet_nhpet++;
 865	hpetp->hp_hpet = hdp->hd_address;
 866	hpetp->hp_hpet_phys = hdp->hd_phys_address;
 867
 868	hpetp->hp_ntimer = hdp->hd_nirqs;
 869
 870	for (i = 0; i < hdp->hd_nirqs; i++)
 871		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
 872
 873	hpet = hpetp->hp_hpet;
 874
 875	cap = readq(&hpet->hpet_cap);
 876
 877	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
 878
 879	if (hpetp->hp_ntimer != ntimer) {
 880		printk(KERN_WARNING "hpet: number irqs doesn't agree"
 881		       " with number of timers\n");
 882		kfree(hpetp);
 883		return -ENODEV;
 884	}
 885
 886	if (last)
 887		last->hp_next = hpetp;
 888	else
 889		hpets = hpetp;
 890
 891	last = hpetp;
 892
 893	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
 894		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
 895	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
 896	temp += period >> 1; /* round */
 897	do_div(temp, period);
 898	hpetp->hp_tick_freq = temp; /* ticks per second */
 899
 900	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
 901		hpetp->hp_which, hdp->hd_phys_address,
 902		hpetp->hp_ntimer > 1 ? "s" : "");
 903	for (i = 0; i < hpetp->hp_ntimer; i++)
 904		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
 905	printk(KERN_CONT "\n");
 906
 907	temp = hpetp->hp_tick_freq;
 908	remainder = do_div(temp, 1000000);
 909	printk(KERN_INFO
 910		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
 911		hpetp->hp_which, hpetp->hp_ntimer,
 912		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
 913		(unsigned) temp, remainder);
 914
 915	mcfg = readq(&hpet->hpet_config);
 916	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
 917		write_counter(0L, &hpet->hpet_mc);
 918		mcfg |= HPET_ENABLE_CNF_MASK;
 919		writeq(mcfg, &hpet->hpet_config);
 920	}
 921
 922	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
 923		struct hpet_timer __iomem *timer;
 924
 925		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
 926
 927		devp->hd_hpets = hpetp;
 928		devp->hd_hpet = hpet;
 929		devp->hd_timer = timer;
 930
 931		/*
 932		 * If the timer was reserved by platform code,
 933		 * then make timer unavailable for opens.
 934		 */
 935		if (hdp->hd_state & (1 << i)) {
 936			devp->hd_flags = HPET_OPEN;
 937			continue;
 938		}
 939
 940		init_waitqueue_head(&devp->hd_waitqueue);
 941	}
 942
 943	hpetp->hp_delta = hpet_calibrate(hpetp);
 944
 945/* This clocksource driver currently only works on ia64 */
 946#ifdef CONFIG_IA64
 947	if (!hpet_clocksource) {
 948		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
 949		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
 950		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
 951		hpetp->hp_clocksource = &clocksource_hpet;
 952		hpet_clocksource = &clocksource_hpet;
 953	}
 954#endif
 955
 956	return 0;
 957}
 958
 959static acpi_status hpet_resources(struct acpi_resource *res, void *data)
 960{
 961	struct hpet_data *hdp;
 962	acpi_status status;
 963	struct acpi_resource_address64 addr;
 964
 965	hdp = data;
 966
 967	status = acpi_resource_to_address64(res, &addr);
 968
 969	if (ACPI_SUCCESS(status)) {
 970		hdp->hd_phys_address = addr.address.minimum;
 971		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
 972		if (!hdp->hd_address)
 973			return AE_ERROR;
 974
 975		if (hpet_is_known(hdp)) {
 976			iounmap(hdp->hd_address);
 977			return AE_ALREADY_EXISTS;
 978		}
 979	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
 980		struct acpi_resource_fixed_memory32 *fixmem32;
 981
 982		fixmem32 = &res->data.fixed_memory32;
 
 
 983
 984		hdp->hd_phys_address = fixmem32->address;
 985		hdp->hd_address = ioremap(fixmem32->address,
 986						HPET_RANGE_SIZE);
 987
 988		if (hpet_is_known(hdp)) {
 989			iounmap(hdp->hd_address);
 990			return AE_ALREADY_EXISTS;
 991		}
 992	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
 993		struct acpi_resource_extended_irq *irqp;
 994		int i, irq;
 995
 996		irqp = &res->data.extended_irq;
 997
 998		for (i = 0; i < irqp->interrupt_count; i++) {
 999			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1000				break;
1001
1002			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1003				      irqp->triggering, irqp->polarity);
1004			if (irq < 0)
1005				return AE_ERROR;
1006
1007			hdp->hd_irq[hdp->hd_nirqs] = irq;
1008			hdp->hd_nirqs++;
1009		}
1010	}
1011
1012	return AE_OK;
1013}
1014
1015static int hpet_acpi_add(struct acpi_device *device)
1016{
1017	acpi_status result;
1018	struct hpet_data data;
1019
1020	memset(&data, 0, sizeof(data));
1021
1022	result =
1023	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1024				hpet_resources, &data);
1025
1026	if (ACPI_FAILURE(result))
1027		return -ENODEV;
1028
1029	if (!data.hd_address || !data.hd_nirqs) {
1030		if (data.hd_address)
1031			iounmap(data.hd_address);
1032		printk("%s: no address or irqs in _CRS\n", __func__);
1033		return -ENODEV;
1034	}
1035
1036	return hpet_alloc(&data);
1037}
1038
 
 
 
 
 
 
1039static const struct acpi_device_id hpet_device_ids[] = {
1040	{"PNP0103", 0},
1041	{"", 0},
1042};
 
1043
1044static struct acpi_driver hpet_acpi_driver = {
1045	.name = "hpet",
1046	.ids = hpet_device_ids,
1047	.ops = {
1048		.add = hpet_acpi_add,
 
1049		},
1050};
1051
1052static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1053
1054static int __init hpet_init(void)
1055{
1056	int result;
1057
1058	result = misc_register(&hpet_misc);
1059	if (result < 0)
1060		return -ENODEV;
1061
1062	sysctl_header = register_sysctl_table(dev_root);
1063
1064	result = acpi_bus_register_driver(&hpet_acpi_driver);
1065	if (result < 0) {
1066		if (sysctl_header)
1067			unregister_sysctl_table(sysctl_header);
1068		misc_deregister(&hpet_misc);
1069		return result;
1070	}
1071
1072	return 0;
1073}
1074device_initcall(hpet_init);
1075
1076/*
 
 
 
 
 
 
 
 
 
 
 
 
1077MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1078MODULE_LICENSE("GPL");
1079*/