Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Intel & MS High Precision Event Timer Implementation.
   3 *
   4 * Copyright (C) 2003 Intel Corporation
   5 *	Venki Pallipadi
   6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
   7 *	Bob Picco <robert.picco@hp.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13
  14#include <linux/interrupt.h>
  15#include <linux/module.h>
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18#include <linux/miscdevice.h>
  19#include <linux/major.h>
  20#include <linux/ioport.h>
  21#include <linux/fcntl.h>
  22#include <linux/init.h>
 
  23#include <linux/poll.h>
  24#include <linux/mm.h>
  25#include <linux/proc_fs.h>
  26#include <linux/spinlock.h>
  27#include <linux/sysctl.h>
  28#include <linux/wait.h>
 
  29#include <linux/bcd.h>
  30#include <linux/seq_file.h>
  31#include <linux/bitops.h>
  32#include <linux/compat.h>
  33#include <linux/clocksource.h>
  34#include <linux/uaccess.h>
  35#include <linux/slab.h>
  36#include <linux/io.h>
  37
 
  38#include <asm/current.h>
  39#include <asm/system.h>
  40#include <asm/irq.h>
  41#include <asm/div64.h>
  42
  43#include <linux/acpi.h>
  44#include <acpi/acpi_bus.h>
  45#include <linux/hpet.h>
  46
  47/*
  48 * The High Precision Event Timer driver.
  49 * This driver is closely modelled after the rtc.c driver.
  50 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
  51 */
  52#define	HPET_USER_FREQ	(64)
  53#define	HPET_DRIFT	(500)
  54
  55#define HPET_RANGE_SIZE		1024	/* from HPET spec */
  56
  57
  58/* WARNING -- don't get confused.  These macros are never used
  59 * to write the (single) counter, and rarely to read it.
  60 * They're badly named; to fix, someday.
  61 */
  62#if BITS_PER_LONG == 64
  63#define	write_counter(V, MC)	writeq(V, MC)
  64#define	read_counter(MC)	readq(MC)
  65#else
  66#define	write_counter(V, MC)	writel(V, MC)
  67#define	read_counter(MC)	readl(MC)
  68#endif
  69
  70static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
  71static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
  72
  73/* This clocksource driver currently only works on ia64 */
  74#ifdef CONFIG_IA64
  75static void __iomem *hpet_mctr;
  76
  77static cycle_t read_hpet(struct clocksource *cs)
  78{
  79	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
  80}
  81
  82static struct clocksource clocksource_hpet = {
  83	.name		= "hpet",
  84	.rating		= 250,
  85	.read		= read_hpet,
  86	.mask		= CLOCKSOURCE_MASK(64),
  87	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
  88};
  89static struct clocksource *hpet_clocksource;
  90#endif
  91
  92/* A lock for concurrent access by app and isr hpet activity. */
  93static DEFINE_SPINLOCK(hpet_lock);
  94
  95#define	HPET_DEV_NAME	(7)
  96
  97struct hpet_dev {
  98	struct hpets *hd_hpets;
  99	struct hpet __iomem *hd_hpet;
 100	struct hpet_timer __iomem *hd_timer;
 101	unsigned long hd_ireqfreq;
 102	unsigned long hd_irqdata;
 103	wait_queue_head_t hd_waitqueue;
 104	struct fasync_struct *hd_async_queue;
 105	unsigned int hd_flags;
 106	unsigned int hd_irq;
 107	unsigned int hd_hdwirq;
 108	char hd_name[HPET_DEV_NAME];
 109};
 110
 111struct hpets {
 112	struct hpets *hp_next;
 113	struct hpet __iomem *hp_hpet;
 114	unsigned long hp_hpet_phys;
 115	struct clocksource *hp_clocksource;
 116	unsigned long long hp_tick_freq;
 117	unsigned long hp_delta;
 118	unsigned int hp_ntimer;
 119	unsigned int hp_which;
 120	struct hpet_dev hp_dev[1];
 121};
 122
 123static struct hpets *hpets;
 124
 125#define	HPET_OPEN		0x0001
 126#define	HPET_IE			0x0002	/* interrupt enabled */
 127#define	HPET_PERIODIC		0x0004
 128#define	HPET_SHARED_IRQ		0x0008
 129
 130
 131#ifndef readq
 132static inline unsigned long long readq(void __iomem *addr)
 133{
 134	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
 135}
 136#endif
 137
 138#ifndef writeq
 139static inline void writeq(unsigned long long v, void __iomem *addr)
 140{
 141	writel(v & 0xffffffff, addr);
 142	writel(v >> 32, addr + 4);
 143}
 144#endif
 145
 146static irqreturn_t hpet_interrupt(int irq, void *data)
 147{
 148	struct hpet_dev *devp;
 149	unsigned long isr;
 150
 151	devp = data;
 152	isr = 1 << (devp - devp->hd_hpets->hp_dev);
 153
 154	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
 155	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
 156		return IRQ_NONE;
 157
 158	spin_lock(&hpet_lock);
 159	devp->hd_irqdata++;
 160
 161	/*
 162	 * For non-periodic timers, increment the accumulator.
 163	 * This has the effect of treating non-periodic like periodic.
 164	 */
 165	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
 166		unsigned long m, t, mc, base, k;
 167		struct hpet __iomem *hpet = devp->hd_hpet;
 168		struct hpets *hpetp = devp->hd_hpets;
 169
 170		t = devp->hd_ireqfreq;
 171		m = read_counter(&devp->hd_timer->hpet_compare);
 172		mc = read_counter(&hpet->hpet_mc);
 173		/* The time for the next interrupt would logically be t + m,
 174		 * however, if we are very unlucky and the interrupt is delayed
 175		 * for longer than t then we will completely miss the next
 176		 * interrupt if we set t + m and an application will hang.
 177		 * Therefore we need to make a more complex computation assuming
 178		 * that there exists a k for which the following is true:
 179		 * k * t + base < mc + delta
 180		 * (k + 1) * t + base > mc + delta
 181		 * where t is the interval in hpet ticks for the given freq,
 182		 * base is the theoretical start value 0 < base < t,
 183		 * mc is the main counter value at the time of the interrupt,
 184		 * delta is the time it takes to write the a value to the
 185		 * comparator.
 186		 * k may then be computed as (mc - base + delta) / t .
 187		 */
 188		base = mc % t;
 189		k = (mc - base + hpetp->hp_delta) / t;
 190		write_counter(t * (k + 1) + base,
 191			      &devp->hd_timer->hpet_compare);
 192	}
 193
 194	if (devp->hd_flags & HPET_SHARED_IRQ)
 195		writel(isr, &devp->hd_hpet->hpet_isr);
 196	spin_unlock(&hpet_lock);
 197
 198	wake_up_interruptible(&devp->hd_waitqueue);
 199
 200	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
 201
 202	return IRQ_HANDLED;
 203}
 204
 205static void hpet_timer_set_irq(struct hpet_dev *devp)
 206{
 207	unsigned long v;
 208	int irq, gsi;
 209	struct hpet_timer __iomem *timer;
 210
 211	spin_lock_irq(&hpet_lock);
 212	if (devp->hd_hdwirq) {
 213		spin_unlock_irq(&hpet_lock);
 214		return;
 215	}
 216
 217	timer = devp->hd_timer;
 218
 219	/* we prefer level triggered mode */
 220	v = readl(&timer->hpet_config);
 221	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
 222		v |= Tn_INT_TYPE_CNF_MASK;
 223		writel(v, &timer->hpet_config);
 224	}
 225	spin_unlock_irq(&hpet_lock);
 226
 227	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
 228				 Tn_INT_ROUTE_CAP_SHIFT;
 229
 230	/*
 231	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
 232	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
 233	 */
 234	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
 235		v &= ~0xf3df;
 236	else
 237		v &= ~0xffff;
 238
 239	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
 240		if (irq >= nr_irqs) {
 241			irq = HPET_MAX_IRQ;
 242			break;
 243		}
 244
 245		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
 246					ACPI_ACTIVE_LOW);
 247		if (gsi > 0)
 248			break;
 249
 250		/* FIXME: Setup interrupt source table */
 251	}
 252
 253	if (irq < HPET_MAX_IRQ) {
 254		spin_lock_irq(&hpet_lock);
 255		v = readl(&timer->hpet_config);
 256		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
 257		writel(v, &timer->hpet_config);
 258		devp->hd_hdwirq = gsi;
 259		spin_unlock_irq(&hpet_lock);
 260	}
 261	return;
 262}
 263
 264static int hpet_open(struct inode *inode, struct file *file)
 265{
 266	struct hpet_dev *devp;
 267	struct hpets *hpetp;
 268	int i;
 269
 270	if (file->f_mode & FMODE_WRITE)
 271		return -EINVAL;
 272
 273	mutex_lock(&hpet_mutex);
 274	spin_lock_irq(&hpet_lock);
 275
 276	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
 277		for (i = 0; i < hpetp->hp_ntimer; i++)
 278			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
 279				continue;
 280			else {
 281				devp = &hpetp->hp_dev[i];
 282				break;
 283			}
 284
 285	if (!devp) {
 286		spin_unlock_irq(&hpet_lock);
 287		mutex_unlock(&hpet_mutex);
 288		return -EBUSY;
 289	}
 290
 291	file->private_data = devp;
 292	devp->hd_irqdata = 0;
 293	devp->hd_flags |= HPET_OPEN;
 294	spin_unlock_irq(&hpet_lock);
 295	mutex_unlock(&hpet_mutex);
 296
 297	hpet_timer_set_irq(devp);
 298
 299	return 0;
 300}
 301
 302static ssize_t
 303hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
 304{
 305	DECLARE_WAITQUEUE(wait, current);
 306	unsigned long data;
 307	ssize_t retval;
 308	struct hpet_dev *devp;
 309
 310	devp = file->private_data;
 311	if (!devp->hd_ireqfreq)
 312		return -EIO;
 313
 314	if (count < sizeof(unsigned long))
 315		return -EINVAL;
 316
 317	add_wait_queue(&devp->hd_waitqueue, &wait);
 318
 319	for ( ; ; ) {
 320		set_current_state(TASK_INTERRUPTIBLE);
 321
 322		spin_lock_irq(&hpet_lock);
 323		data = devp->hd_irqdata;
 324		devp->hd_irqdata = 0;
 325		spin_unlock_irq(&hpet_lock);
 326
 327		if (data)
 328			break;
 329		else if (file->f_flags & O_NONBLOCK) {
 330			retval = -EAGAIN;
 331			goto out;
 332		} else if (signal_pending(current)) {
 333			retval = -ERESTARTSYS;
 334			goto out;
 335		}
 336		schedule();
 337	}
 338
 339	retval = put_user(data, (unsigned long __user *)buf);
 340	if (!retval)
 341		retval = sizeof(unsigned long);
 342out:
 343	__set_current_state(TASK_RUNNING);
 344	remove_wait_queue(&devp->hd_waitqueue, &wait);
 345
 346	return retval;
 347}
 348
 349static unsigned int hpet_poll(struct file *file, poll_table * wait)
 350{
 351	unsigned long v;
 352	struct hpet_dev *devp;
 353
 354	devp = file->private_data;
 355
 356	if (!devp->hd_ireqfreq)
 357		return 0;
 358
 359	poll_wait(file, &devp->hd_waitqueue, wait);
 360
 361	spin_lock_irq(&hpet_lock);
 362	v = devp->hd_irqdata;
 363	spin_unlock_irq(&hpet_lock);
 364
 365	if (v != 0)
 366		return POLLIN | POLLRDNORM;
 367
 368	return 0;
 369}
 370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 372{
 373#ifdef	CONFIG_HPET_MMAP
 374	struct hpet_dev *devp;
 375	unsigned long addr;
 376
 377	if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
 378		return -EINVAL;
 379
 380	devp = file->private_data;
 381	addr = devp->hd_hpets->hp_hpet_phys;
 382
 383	if (addr & (PAGE_SIZE - 1))
 384		return -ENOSYS;
 385
 386	vma->vm_flags |= VM_IO;
 387	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 388
 389	if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
 390					PAGE_SIZE, vma->vm_page_prot)) {
 391		printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
 392			__func__);
 393		return -EAGAIN;
 394	}
 395
 396	return 0;
 397#else
 
 
 398	return -ENOSYS;
 399#endif
 400}
 
 401
 402static int hpet_fasync(int fd, struct file *file, int on)
 403{
 404	struct hpet_dev *devp;
 405
 406	devp = file->private_data;
 407
 408	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
 409		return 0;
 410	else
 411		return -EIO;
 412}
 413
 414static int hpet_release(struct inode *inode, struct file *file)
 415{
 416	struct hpet_dev *devp;
 417	struct hpet_timer __iomem *timer;
 418	int irq = 0;
 419
 420	devp = file->private_data;
 421	timer = devp->hd_timer;
 422
 423	spin_lock_irq(&hpet_lock);
 424
 425	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
 426	       &timer->hpet_config);
 427
 428	irq = devp->hd_irq;
 429	devp->hd_irq = 0;
 430
 431	devp->hd_ireqfreq = 0;
 432
 433	if (devp->hd_flags & HPET_PERIODIC
 434	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 435		unsigned long v;
 436
 437		v = readq(&timer->hpet_config);
 438		v ^= Tn_TYPE_CNF_MASK;
 439		writeq(v, &timer->hpet_config);
 440	}
 441
 442	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
 443	spin_unlock_irq(&hpet_lock);
 444
 445	if (irq)
 446		free_irq(irq, devp);
 447
 448	file->private_data = NULL;
 449	return 0;
 450}
 451
 452static int hpet_ioctl_ieon(struct hpet_dev *devp)
 453{
 454	struct hpet_timer __iomem *timer;
 455	struct hpet __iomem *hpet;
 456	struct hpets *hpetp;
 457	int irq;
 458	unsigned long g, v, t, m;
 459	unsigned long flags, isr;
 460
 461	timer = devp->hd_timer;
 462	hpet = devp->hd_hpet;
 463	hpetp = devp->hd_hpets;
 464
 465	if (!devp->hd_ireqfreq)
 466		return -EIO;
 467
 468	spin_lock_irq(&hpet_lock);
 469
 470	if (devp->hd_flags & HPET_IE) {
 471		spin_unlock_irq(&hpet_lock);
 472		return -EBUSY;
 473	}
 474
 475	devp->hd_flags |= HPET_IE;
 476
 477	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
 478		devp->hd_flags |= HPET_SHARED_IRQ;
 479	spin_unlock_irq(&hpet_lock);
 480
 481	irq = devp->hd_hdwirq;
 482
 483	if (irq) {
 484		unsigned long irq_flags;
 485
 486		if (devp->hd_flags & HPET_SHARED_IRQ) {
 487			/*
 488			 * To prevent the interrupt handler from seeing an
 489			 * unwanted interrupt status bit, program the timer
 490			 * so that it will not fire in the near future ...
 491			 */
 492			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
 493			       &timer->hpet_config);
 494			write_counter(read_counter(&hpet->hpet_mc),
 495				      &timer->hpet_compare);
 496			/* ... and clear any left-over status. */
 497			isr = 1 << (devp - devp->hd_hpets->hp_dev);
 498			writel(isr, &hpet->hpet_isr);
 499		}
 500
 501		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
 502		irq_flags = devp->hd_flags & HPET_SHARED_IRQ
 503						? IRQF_SHARED : IRQF_DISABLED;
 504		if (request_irq(irq, hpet_interrupt, irq_flags,
 505				devp->hd_name, (void *)devp)) {
 506			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
 507			irq = 0;
 508		}
 509	}
 510
 511	if (irq == 0) {
 512		spin_lock_irq(&hpet_lock);
 513		devp->hd_flags ^= HPET_IE;
 514		spin_unlock_irq(&hpet_lock);
 515		return -EIO;
 516	}
 517
 518	devp->hd_irq = irq;
 519	t = devp->hd_ireqfreq;
 520	v = readq(&timer->hpet_config);
 521
 522	/* 64-bit comparators are not yet supported through the ioctls,
 523	 * so force this into 32-bit mode if it supports both modes
 524	 */
 525	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
 526
 527	if (devp->hd_flags & HPET_PERIODIC) {
 528		g |= Tn_TYPE_CNF_MASK;
 529		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
 530		writeq(v, &timer->hpet_config);
 531		local_irq_save(flags);
 532
 533		/*
 534		 * NOTE: First we modify the hidden accumulator
 535		 * register supported by periodic-capable comparators.
 536		 * We never want to modify the (single) counter; that
 537		 * would affect all the comparators. The value written
 538		 * is the counter value when the first interrupt is due.
 539		 */
 540		m = read_counter(&hpet->hpet_mc);
 541		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 542		/*
 543		 * Then we modify the comparator, indicating the period
 544		 * for subsequent interrupt.
 545		 */
 546		write_counter(t, &timer->hpet_compare);
 547	} else {
 548		local_irq_save(flags);
 549		m = read_counter(&hpet->hpet_mc);
 550		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 551	}
 552
 553	if (devp->hd_flags & HPET_SHARED_IRQ) {
 554		isr = 1 << (devp - devp->hd_hpets->hp_dev);
 555		writel(isr, &hpet->hpet_isr);
 556	}
 557	writeq(g, &timer->hpet_config);
 558	local_irq_restore(flags);
 559
 560	return 0;
 561}
 562
 563/* converts Hz to number of timer ticks */
 564static inline unsigned long hpet_time_div(struct hpets *hpets,
 565					  unsigned long dis)
 566{
 567	unsigned long long m;
 568
 569	m = hpets->hp_tick_freq + (dis >> 1);
 570	do_div(m, dis);
 571	return (unsigned long)m;
 572}
 573
 574static int
 575hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
 576		  struct hpet_info *info)
 577{
 578	struct hpet_timer __iomem *timer;
 579	struct hpet __iomem *hpet;
 580	struct hpets *hpetp;
 581	int err;
 582	unsigned long v;
 583
 584	switch (cmd) {
 585	case HPET_IE_OFF:
 586	case HPET_INFO:
 587	case HPET_EPI:
 588	case HPET_DPI:
 589	case HPET_IRQFREQ:
 590		timer = devp->hd_timer;
 591		hpet = devp->hd_hpet;
 592		hpetp = devp->hd_hpets;
 593		break;
 594	case HPET_IE_ON:
 595		return hpet_ioctl_ieon(devp);
 596	default:
 597		return -EINVAL;
 598	}
 599
 600	err = 0;
 601
 602	switch (cmd) {
 603	case HPET_IE_OFF:
 604		if ((devp->hd_flags & HPET_IE) == 0)
 605			break;
 606		v = readq(&timer->hpet_config);
 607		v &= ~Tn_INT_ENB_CNF_MASK;
 608		writeq(v, &timer->hpet_config);
 609		if (devp->hd_irq) {
 610			free_irq(devp->hd_irq, devp);
 611			devp->hd_irq = 0;
 612		}
 613		devp->hd_flags ^= HPET_IE;
 614		break;
 615	case HPET_INFO:
 616		{
 617			memset(info, 0, sizeof(*info));
 618			if (devp->hd_ireqfreq)
 619				info->hi_ireqfreq =
 620					hpet_time_div(hpetp, devp->hd_ireqfreq);
 621			info->hi_flags =
 622			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
 623			info->hi_hpet = hpetp->hp_which;
 624			info->hi_timer = devp - hpetp->hp_dev;
 625			break;
 626		}
 627	case HPET_EPI:
 628		v = readq(&timer->hpet_config);
 629		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 630			err = -ENXIO;
 631			break;
 632		}
 633		devp->hd_flags |= HPET_PERIODIC;
 634		break;
 635	case HPET_DPI:
 636		v = readq(&timer->hpet_config);
 637		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 638			err = -ENXIO;
 639			break;
 640		}
 641		if (devp->hd_flags & HPET_PERIODIC &&
 642		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 643			v = readq(&timer->hpet_config);
 644			v ^= Tn_TYPE_CNF_MASK;
 645			writeq(v, &timer->hpet_config);
 646		}
 647		devp->hd_flags &= ~HPET_PERIODIC;
 648		break;
 649	case HPET_IRQFREQ:
 650		if ((arg > hpet_max_freq) &&
 651		    !capable(CAP_SYS_RESOURCE)) {
 652			err = -EACCES;
 653			break;
 654		}
 655
 656		if (!arg) {
 657			err = -EINVAL;
 658			break;
 659		}
 660
 661		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
 662	}
 663
 664	return err;
 665}
 666
 667static long
 668hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 669{
 670	struct hpet_info info;
 671	int err;
 672
 673	mutex_lock(&hpet_mutex);
 674	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 675	mutex_unlock(&hpet_mutex);
 676
 677	if ((cmd == HPET_INFO) && !err &&
 678	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
 679		err = -EFAULT;
 680
 681	return err;
 682}
 683
 684#ifdef CONFIG_COMPAT
 685struct compat_hpet_info {
 686	compat_ulong_t hi_ireqfreq;	/* Hz */
 687	compat_ulong_t hi_flags;	/* information */
 688	unsigned short hi_hpet;
 689	unsigned short hi_timer;
 690};
 691
 692static long
 693hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 694{
 695	struct hpet_info info;
 696	int err;
 697
 698	mutex_lock(&hpet_mutex);
 699	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 700	mutex_unlock(&hpet_mutex);
 701
 702	if ((cmd == HPET_INFO) && !err) {
 703		struct compat_hpet_info __user *u = compat_ptr(arg);
 704		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
 705		    put_user(info.hi_flags, &u->hi_flags) ||
 706		    put_user(info.hi_hpet, &u->hi_hpet) ||
 707		    put_user(info.hi_timer, &u->hi_timer))
 708			err = -EFAULT;
 709	}
 710
 711	return err;
 712}
 713#endif
 714
 715static const struct file_operations hpet_fops = {
 716	.owner = THIS_MODULE,
 717	.llseek = no_llseek,
 718	.read = hpet_read,
 719	.poll = hpet_poll,
 720	.unlocked_ioctl = hpet_ioctl,
 721#ifdef CONFIG_COMPAT
 722	.compat_ioctl = hpet_compat_ioctl,
 723#endif
 724	.open = hpet_open,
 725	.release = hpet_release,
 726	.fasync = hpet_fasync,
 727	.mmap = hpet_mmap,
 728};
 729
 730static int hpet_is_known(struct hpet_data *hdp)
 731{
 732	struct hpets *hpetp;
 733
 734	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
 735		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
 736			return 1;
 737
 738	return 0;
 739}
 740
 741static ctl_table hpet_table[] = {
 742	{
 743	 .procname = "max-user-freq",
 744	 .data = &hpet_max_freq,
 745	 .maxlen = sizeof(int),
 746	 .mode = 0644,
 747	 .proc_handler = proc_dointvec,
 748	 },
 749	{}
 750};
 751
 752static ctl_table hpet_root[] = {
 753	{
 754	 .procname = "hpet",
 755	 .maxlen = 0,
 756	 .mode = 0555,
 757	 .child = hpet_table,
 758	 },
 759	{}
 760};
 761
 762static ctl_table dev_root[] = {
 763	{
 764	 .procname = "dev",
 765	 .maxlen = 0,
 766	 .mode = 0555,
 767	 .child = hpet_root,
 768	 },
 769	{}
 770};
 771
 772static struct ctl_table_header *sysctl_header;
 773
 774/*
 775 * Adjustment for when arming the timer with
 776 * initial conditions.  That is, main counter
 777 * ticks expired before interrupts are enabled.
 778 */
 779#define	TICK_CALIBRATE	(1000UL)
 780
 781static unsigned long __hpet_calibrate(struct hpets *hpetp)
 782{
 783	struct hpet_timer __iomem *timer = NULL;
 784	unsigned long t, m, count, i, flags, start;
 785	struct hpet_dev *devp;
 786	int j;
 787	struct hpet __iomem *hpet;
 788
 789	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
 790		if ((devp->hd_flags & HPET_OPEN) == 0) {
 791			timer = devp->hd_timer;
 792			break;
 793		}
 794
 795	if (!timer)
 796		return 0;
 797
 798	hpet = hpetp->hp_hpet;
 799	t = read_counter(&timer->hpet_compare);
 800
 801	i = 0;
 802	count = hpet_time_div(hpetp, TICK_CALIBRATE);
 803
 804	local_irq_save(flags);
 805
 806	start = read_counter(&hpet->hpet_mc);
 807
 808	do {
 809		m = read_counter(&hpet->hpet_mc);
 810		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 811	} while (i++, (m - start) < count);
 812
 813	local_irq_restore(flags);
 814
 815	return (m - start) / i;
 816}
 817
 818static unsigned long hpet_calibrate(struct hpets *hpetp)
 819{
 820	unsigned long ret = -1;
 821	unsigned long tmp;
 822
 823	/*
 824	 * Try to calibrate until return value becomes stable small value.
 825	 * If SMI interruption occurs in calibration loop, the return value
 826	 * will be big. This avoids its impact.
 827	 */
 828	for ( ; ; ) {
 829		tmp = __hpet_calibrate(hpetp);
 830		if (ret <= tmp)
 831			break;
 832		ret = tmp;
 833	}
 834
 835	return ret;
 836}
 837
 838int hpet_alloc(struct hpet_data *hdp)
 839{
 840	u64 cap, mcfg;
 841	struct hpet_dev *devp;
 842	u32 i, ntimer;
 843	struct hpets *hpetp;
 844	size_t siz;
 845	struct hpet __iomem *hpet;
 846	static struct hpets *last;
 847	unsigned long period;
 848	unsigned long long temp;
 849	u32 remainder;
 850
 851	/*
 852	 * hpet_alloc can be called by platform dependent code.
 853	 * If platform dependent code has allocated the hpet that
 854	 * ACPI has also reported, then we catch it here.
 855	 */
 856	if (hpet_is_known(hdp)) {
 857		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
 858			__func__);
 859		return 0;
 860	}
 861
 862	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
 863				      sizeof(struct hpet_dev));
 864
 865	hpetp = kzalloc(siz, GFP_KERNEL);
 866
 867	if (!hpetp)
 868		return -ENOMEM;
 869
 870	hpetp->hp_which = hpet_nhpet++;
 871	hpetp->hp_hpet = hdp->hd_address;
 872	hpetp->hp_hpet_phys = hdp->hd_phys_address;
 873
 874	hpetp->hp_ntimer = hdp->hd_nirqs;
 875
 876	for (i = 0; i < hdp->hd_nirqs; i++)
 877		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
 878
 879	hpet = hpetp->hp_hpet;
 880
 881	cap = readq(&hpet->hpet_cap);
 882
 883	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
 884
 885	if (hpetp->hp_ntimer != ntimer) {
 886		printk(KERN_WARNING "hpet: number irqs doesn't agree"
 887		       " with number of timers\n");
 888		kfree(hpetp);
 889		return -ENODEV;
 890	}
 891
 892	if (last)
 893		last->hp_next = hpetp;
 894	else
 895		hpets = hpetp;
 896
 897	last = hpetp;
 898
 899	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
 900		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
 901	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
 902	temp += period >> 1; /* round */
 903	do_div(temp, period);
 904	hpetp->hp_tick_freq = temp; /* ticks per second */
 905
 906	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
 907		hpetp->hp_which, hdp->hd_phys_address,
 908		hpetp->hp_ntimer > 1 ? "s" : "");
 909	for (i = 0; i < hpetp->hp_ntimer; i++)
 910		printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
 911	printk("\n");
 912
 913	temp = hpetp->hp_tick_freq;
 914	remainder = do_div(temp, 1000000);
 915	printk(KERN_INFO
 916		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
 917		hpetp->hp_which, hpetp->hp_ntimer,
 918		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
 919		(unsigned) temp, remainder);
 920
 921	mcfg = readq(&hpet->hpet_config);
 922	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
 923		write_counter(0L, &hpet->hpet_mc);
 924		mcfg |= HPET_ENABLE_CNF_MASK;
 925		writeq(mcfg, &hpet->hpet_config);
 926	}
 927
 928	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
 929		struct hpet_timer __iomem *timer;
 930
 931		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
 932
 933		devp->hd_hpets = hpetp;
 934		devp->hd_hpet = hpet;
 935		devp->hd_timer = timer;
 936
 937		/*
 938		 * If the timer was reserved by platform code,
 939		 * then make timer unavailable for opens.
 940		 */
 941		if (hdp->hd_state & (1 << i)) {
 942			devp->hd_flags = HPET_OPEN;
 943			continue;
 944		}
 945
 946		init_waitqueue_head(&devp->hd_waitqueue);
 947	}
 948
 949	hpetp->hp_delta = hpet_calibrate(hpetp);
 950
 951/* This clocksource driver currently only works on ia64 */
 952#ifdef CONFIG_IA64
 953	if (!hpet_clocksource) {
 954		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
 955		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
 956		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
 957		hpetp->hp_clocksource = &clocksource_hpet;
 958		hpet_clocksource = &clocksource_hpet;
 959	}
 960#endif
 961
 962	return 0;
 963}
 964
 965static acpi_status hpet_resources(struct acpi_resource *res, void *data)
 966{
 967	struct hpet_data *hdp;
 968	acpi_status status;
 969	struct acpi_resource_address64 addr;
 970
 971	hdp = data;
 972
 973	status = acpi_resource_to_address64(res, &addr);
 974
 975	if (ACPI_SUCCESS(status)) {
 976		hdp->hd_phys_address = addr.minimum;
 977		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
 
 
 978
 979		if (hpet_is_known(hdp)) {
 980			iounmap(hdp->hd_address);
 981			return AE_ALREADY_EXISTS;
 982		}
 983	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
 984		struct acpi_resource_fixed_memory32 *fixmem32;
 985
 986		fixmem32 = &res->data.fixed_memory32;
 987		if (!fixmem32)
 988			return AE_NO_MEMORY;
 989
 990		hdp->hd_phys_address = fixmem32->address;
 991		hdp->hd_address = ioremap(fixmem32->address,
 992						HPET_RANGE_SIZE);
 
 
 993
 994		if (hpet_is_known(hdp)) {
 995			iounmap(hdp->hd_address);
 996			return AE_ALREADY_EXISTS;
 997		}
 998	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
 999		struct acpi_resource_extended_irq *irqp;
1000		int i, irq;
1001
1002		irqp = &res->data.extended_irq;
1003
1004		for (i = 0; i < irqp->interrupt_count; i++) {
 
 
 
1005			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1006				      irqp->triggering, irqp->polarity);
 
1007			if (irq < 0)
1008				return AE_ERROR;
1009
1010			hdp->hd_irq[hdp->hd_nirqs] = irq;
1011			hdp->hd_nirqs++;
1012		}
1013	}
1014
1015	return AE_OK;
1016}
1017
1018static int hpet_acpi_add(struct acpi_device *device)
1019{
1020	acpi_status result;
1021	struct hpet_data data;
1022
1023	memset(&data, 0, sizeof(data));
1024
1025	result =
1026	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1027				hpet_resources, &data);
1028
1029	if (ACPI_FAILURE(result))
1030		return -ENODEV;
1031
1032	if (!data.hd_address || !data.hd_nirqs) {
1033		if (data.hd_address)
1034			iounmap(data.hd_address);
1035		printk("%s: no address or irqs in _CRS\n", __func__);
1036		return -ENODEV;
1037	}
1038
1039	return hpet_alloc(&data);
1040}
1041
1042static int hpet_acpi_remove(struct acpi_device *device, int type)
1043{
1044	/* XXX need to unregister clocksource, dealloc mem, etc */
1045	return -EINVAL;
1046}
1047
1048static const struct acpi_device_id hpet_device_ids[] = {
1049	{"PNP0103", 0},
1050	{"", 0},
1051};
1052MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1053
1054static struct acpi_driver hpet_acpi_driver = {
1055	.name = "hpet",
1056	.ids = hpet_device_ids,
1057	.ops = {
1058		.add = hpet_acpi_add,
1059		.remove = hpet_acpi_remove,
1060		},
1061};
1062
1063static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1064
1065static int __init hpet_init(void)
1066{
1067	int result;
1068
1069	result = misc_register(&hpet_misc);
1070	if (result < 0)
1071		return -ENODEV;
1072
1073	sysctl_header = register_sysctl_table(dev_root);
1074
1075	result = acpi_bus_register_driver(&hpet_acpi_driver);
1076	if (result < 0) {
1077		if (sysctl_header)
1078			unregister_sysctl_table(sysctl_header);
1079		misc_deregister(&hpet_misc);
1080		return result;
1081	}
1082
1083	return 0;
1084}
 
1085
1086static void __exit hpet_exit(void)
1087{
1088	acpi_bus_unregister_driver(&hpet_acpi_driver);
1089
1090	if (sysctl_header)
1091		unregister_sysctl_table(sysctl_header);
1092	misc_deregister(&hpet_misc);
1093
1094	return;
1095}
1096
1097module_init(hpet_init);
1098module_exit(hpet_exit);
1099MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1100MODULE_LICENSE("GPL");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel & MS High Precision Event Timer Implementation.
   4 *
   5 * Copyright (C) 2003 Intel Corporation
   6 *	Venki Pallipadi
   7 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
   8 *	Bob Picco <robert.picco@hp.com>
 
 
 
 
   9 */
  10
  11#include <linux/interrupt.h>
 
  12#include <linux/kernel.h>
  13#include <linux/types.h>
  14#include <linux/miscdevice.h>
  15#include <linux/major.h>
  16#include <linux/ioport.h>
  17#include <linux/fcntl.h>
  18#include <linux/init.h>
  19#include <linux/io-64-nonatomic-lo-hi.h>
  20#include <linux/poll.h>
  21#include <linux/mm.h>
  22#include <linux/proc_fs.h>
  23#include <linux/spinlock.h>
  24#include <linux/sysctl.h>
  25#include <linux/wait.h>
  26#include <linux/sched/signal.h>
  27#include <linux/bcd.h>
  28#include <linux/seq_file.h>
  29#include <linux/bitops.h>
  30#include <linux/compat.h>
  31#include <linux/clocksource.h>
  32#include <linux/uaccess.h>
  33#include <linux/slab.h>
  34#include <linux/io.h>
  35#include <linux/acpi.h>
  36#include <linux/hpet.h>
  37#include <asm/current.h>
 
  38#include <asm/irq.h>
  39#include <asm/div64.h>
  40
 
 
 
 
  41/*
  42 * The High Precision Event Timer driver.
  43 * This driver is closely modelled after the rtc.c driver.
  44 * See HPET spec revision 1.
  45 */
  46#define	HPET_USER_FREQ	(64)
  47#define	HPET_DRIFT	(500)
  48
  49#define HPET_RANGE_SIZE		1024	/* from HPET spec */
  50
  51
  52/* WARNING -- don't get confused.  These macros are never used
  53 * to write the (single) counter, and rarely to read it.
  54 * They're badly named; to fix, someday.
  55 */
  56#if BITS_PER_LONG == 64
  57#define	write_counter(V, MC)	writeq(V, MC)
  58#define	read_counter(MC)	readq(MC)
  59#else
  60#define	write_counter(V, MC)	writel(V, MC)
  61#define	read_counter(MC)	readl(MC)
  62#endif
  63
  64static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
  65static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67/* A lock for concurrent access by app and isr hpet activity. */
  68static DEFINE_SPINLOCK(hpet_lock);
  69
  70#define	HPET_DEV_NAME	(7)
  71
  72struct hpet_dev {
  73	struct hpets *hd_hpets;
  74	struct hpet __iomem *hd_hpet;
  75	struct hpet_timer __iomem *hd_timer;
  76	unsigned long hd_ireqfreq;
  77	unsigned long hd_irqdata;
  78	wait_queue_head_t hd_waitqueue;
  79	struct fasync_struct *hd_async_queue;
  80	unsigned int hd_flags;
  81	unsigned int hd_irq;
  82	unsigned int hd_hdwirq;
  83	char hd_name[HPET_DEV_NAME];
  84};
  85
  86struct hpets {
  87	struct hpets *hp_next;
  88	struct hpet __iomem *hp_hpet;
  89	unsigned long hp_hpet_phys;
 
  90	unsigned long long hp_tick_freq;
  91	unsigned long hp_delta;
  92	unsigned int hp_ntimer;
  93	unsigned int hp_which;
  94	struct hpet_dev hp_dev[] __counted_by(hp_ntimer);
  95};
  96
  97static struct hpets *hpets;
  98
  99#define	HPET_OPEN		0x0001
 100#define	HPET_IE			0x0002	/* interrupt enabled */
 101#define	HPET_PERIODIC		0x0004
 102#define	HPET_SHARED_IRQ		0x0008
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104static irqreturn_t hpet_interrupt(int irq, void *data)
 105{
 106	struct hpet_dev *devp;
 107	unsigned long isr;
 108
 109	devp = data;
 110	isr = 1 << (devp - devp->hd_hpets->hp_dev);
 111
 112	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
 113	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
 114		return IRQ_NONE;
 115
 116	spin_lock(&hpet_lock);
 117	devp->hd_irqdata++;
 118
 119	/*
 120	 * For non-periodic timers, increment the accumulator.
 121	 * This has the effect of treating non-periodic like periodic.
 122	 */
 123	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
 124		unsigned long t, mc, base, k;
 125		struct hpet __iomem *hpet = devp->hd_hpet;
 126		struct hpets *hpetp = devp->hd_hpets;
 127
 128		t = devp->hd_ireqfreq;
 129		read_counter(&devp->hd_timer->hpet_compare);
 130		mc = read_counter(&hpet->hpet_mc);
 131		/* The time for the next interrupt would logically be t + m,
 132		 * however, if we are very unlucky and the interrupt is delayed
 133		 * for longer than t then we will completely miss the next
 134		 * interrupt if we set t + m and an application will hang.
 135		 * Therefore we need to make a more complex computation assuming
 136		 * that there exists a k for which the following is true:
 137		 * k * t + base < mc + delta
 138		 * (k + 1) * t + base > mc + delta
 139		 * where t is the interval in hpet ticks for the given freq,
 140		 * base is the theoretical start value 0 < base < t,
 141		 * mc is the main counter value at the time of the interrupt,
 142		 * delta is the time it takes to write the a value to the
 143		 * comparator.
 144		 * k may then be computed as (mc - base + delta) / t .
 145		 */
 146		base = mc % t;
 147		k = (mc - base + hpetp->hp_delta) / t;
 148		write_counter(t * (k + 1) + base,
 149			      &devp->hd_timer->hpet_compare);
 150	}
 151
 152	if (devp->hd_flags & HPET_SHARED_IRQ)
 153		writel(isr, &devp->hd_hpet->hpet_isr);
 154	spin_unlock(&hpet_lock);
 155
 156	wake_up_interruptible(&devp->hd_waitqueue);
 157
 158	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
 159
 160	return IRQ_HANDLED;
 161}
 162
 163static void hpet_timer_set_irq(struct hpet_dev *devp)
 164{
 165	unsigned long v;
 166	int irq, gsi;
 167	struct hpet_timer __iomem *timer;
 168
 169	spin_lock_irq(&hpet_lock);
 170	if (devp->hd_hdwirq) {
 171		spin_unlock_irq(&hpet_lock);
 172		return;
 173	}
 174
 175	timer = devp->hd_timer;
 176
 177	/* we prefer level triggered mode */
 178	v = readl(&timer->hpet_config);
 179	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
 180		v |= Tn_INT_TYPE_CNF_MASK;
 181		writel(v, &timer->hpet_config);
 182	}
 183	spin_unlock_irq(&hpet_lock);
 184
 185	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
 186				 Tn_INT_ROUTE_CAP_SHIFT;
 187
 188	/*
 189	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
 190	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
 191	 */
 192	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
 193		v &= ~0xf3df;
 194	else
 195		v &= ~0xffff;
 196
 197	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
 198		if (irq >= nr_irqs) {
 199			irq = HPET_MAX_IRQ;
 200			break;
 201		}
 202
 203		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
 204					ACPI_ACTIVE_LOW);
 205		if (gsi > 0)
 206			break;
 207
 208		/* FIXME: Setup interrupt source table */
 209	}
 210
 211	if (irq < HPET_MAX_IRQ) {
 212		spin_lock_irq(&hpet_lock);
 213		v = readl(&timer->hpet_config);
 214		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
 215		writel(v, &timer->hpet_config);
 216		devp->hd_hdwirq = gsi;
 217		spin_unlock_irq(&hpet_lock);
 218	}
 219	return;
 220}
 221
 222static int hpet_open(struct inode *inode, struct file *file)
 223{
 224	struct hpet_dev *devp;
 225	struct hpets *hpetp;
 226	int i;
 227
 228	if (file->f_mode & FMODE_WRITE)
 229		return -EINVAL;
 230
 231	mutex_lock(&hpet_mutex);
 232	spin_lock_irq(&hpet_lock);
 233
 234	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
 235		for (i = 0; i < hpetp->hp_ntimer; i++)
 236			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN) {
 237				continue;
 238			} else {
 239				devp = &hpetp->hp_dev[i];
 240				break;
 241			}
 242
 243	if (!devp) {
 244		spin_unlock_irq(&hpet_lock);
 245		mutex_unlock(&hpet_mutex);
 246		return -EBUSY;
 247	}
 248
 249	file->private_data = devp;
 250	devp->hd_irqdata = 0;
 251	devp->hd_flags |= HPET_OPEN;
 252	spin_unlock_irq(&hpet_lock);
 253	mutex_unlock(&hpet_mutex);
 254
 255	hpet_timer_set_irq(devp);
 256
 257	return 0;
 258}
 259
 260static ssize_t
 261hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
 262{
 263	DECLARE_WAITQUEUE(wait, current);
 264	unsigned long data;
 265	ssize_t retval;
 266	struct hpet_dev *devp;
 267
 268	devp = file->private_data;
 269	if (!devp->hd_ireqfreq)
 270		return -EIO;
 271
 272	if (count < sizeof(unsigned long))
 273		return -EINVAL;
 274
 275	add_wait_queue(&devp->hd_waitqueue, &wait);
 276
 277	for ( ; ; ) {
 278		set_current_state(TASK_INTERRUPTIBLE);
 279
 280		spin_lock_irq(&hpet_lock);
 281		data = devp->hd_irqdata;
 282		devp->hd_irqdata = 0;
 283		spin_unlock_irq(&hpet_lock);
 284
 285		if (data) {
 286			break;
 287		} else if (file->f_flags & O_NONBLOCK) {
 288			retval = -EAGAIN;
 289			goto out;
 290		} else if (signal_pending(current)) {
 291			retval = -ERESTARTSYS;
 292			goto out;
 293		}
 294		schedule();
 295	}
 296
 297	retval = put_user(data, (unsigned long __user *)buf);
 298	if (!retval)
 299		retval = sizeof(unsigned long);
 300out:
 301	__set_current_state(TASK_RUNNING);
 302	remove_wait_queue(&devp->hd_waitqueue, &wait);
 303
 304	return retval;
 305}
 306
 307static __poll_t hpet_poll(struct file *file, poll_table * wait)
 308{
 309	unsigned long v;
 310	struct hpet_dev *devp;
 311
 312	devp = file->private_data;
 313
 314	if (!devp->hd_ireqfreq)
 315		return 0;
 316
 317	poll_wait(file, &devp->hd_waitqueue, wait);
 318
 319	spin_lock_irq(&hpet_lock);
 320	v = devp->hd_irqdata;
 321	spin_unlock_irq(&hpet_lock);
 322
 323	if (v != 0)
 324		return EPOLLIN | EPOLLRDNORM;
 325
 326	return 0;
 327}
 328
 329#ifdef CONFIG_HPET_MMAP
 330#ifdef CONFIG_HPET_MMAP_DEFAULT
 331static int hpet_mmap_enabled = 1;
 332#else
 333static int hpet_mmap_enabled = 0;
 334#endif
 335
 336static __init int hpet_mmap_enable(char *str)
 337{
 338	get_option(&str, &hpet_mmap_enabled);
 339	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
 340	return 1;
 341}
 342__setup("hpet_mmap=", hpet_mmap_enable);
 343
 344static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 345{
 
 346	struct hpet_dev *devp;
 347	unsigned long addr;
 348
 349	if (!hpet_mmap_enabled)
 350		return -EACCES;
 351
 352	devp = file->private_data;
 353	addr = devp->hd_hpets->hp_hpet_phys;
 354
 355	if (addr & (PAGE_SIZE - 1))
 356		return -ENOSYS;
 357
 
 358	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 359	return vm_iomap_memory(vma, addr, PAGE_SIZE);
 360}
 
 
 
 
 
 
 
 361#else
 362static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
 363{
 364	return -ENOSYS;
 
 365}
 366#endif
 367
 368static int hpet_fasync(int fd, struct file *file, int on)
 369{
 370	struct hpet_dev *devp;
 371
 372	devp = file->private_data;
 373
 374	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
 375		return 0;
 376	else
 377		return -EIO;
 378}
 379
 380static int hpet_release(struct inode *inode, struct file *file)
 381{
 382	struct hpet_dev *devp;
 383	struct hpet_timer __iomem *timer;
 384	int irq = 0;
 385
 386	devp = file->private_data;
 387	timer = devp->hd_timer;
 388
 389	spin_lock_irq(&hpet_lock);
 390
 391	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
 392	       &timer->hpet_config);
 393
 394	irq = devp->hd_irq;
 395	devp->hd_irq = 0;
 396
 397	devp->hd_ireqfreq = 0;
 398
 399	if (devp->hd_flags & HPET_PERIODIC
 400	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 401		unsigned long v;
 402
 403		v = readq(&timer->hpet_config);
 404		v ^= Tn_TYPE_CNF_MASK;
 405		writeq(v, &timer->hpet_config);
 406	}
 407
 408	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
 409	spin_unlock_irq(&hpet_lock);
 410
 411	if (irq)
 412		free_irq(irq, devp);
 413
 414	file->private_data = NULL;
 415	return 0;
 416}
 417
 418static int hpet_ioctl_ieon(struct hpet_dev *devp)
 419{
 420	struct hpet_timer __iomem *timer;
 421	struct hpet __iomem *hpet;
 422	struct hpets *hpetp;
 423	int irq;
 424	unsigned long g, v, t, m;
 425	unsigned long flags, isr;
 426
 427	timer = devp->hd_timer;
 428	hpet = devp->hd_hpet;
 429	hpetp = devp->hd_hpets;
 430
 431	if (!devp->hd_ireqfreq)
 432		return -EIO;
 433
 434	spin_lock_irq(&hpet_lock);
 435
 436	if (devp->hd_flags & HPET_IE) {
 437		spin_unlock_irq(&hpet_lock);
 438		return -EBUSY;
 439	}
 440
 441	devp->hd_flags |= HPET_IE;
 442
 443	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
 444		devp->hd_flags |= HPET_SHARED_IRQ;
 445	spin_unlock_irq(&hpet_lock);
 446
 447	irq = devp->hd_hdwirq;
 448
 449	if (irq) {
 450		unsigned long irq_flags;
 451
 452		if (devp->hd_flags & HPET_SHARED_IRQ) {
 453			/*
 454			 * To prevent the interrupt handler from seeing an
 455			 * unwanted interrupt status bit, program the timer
 456			 * so that it will not fire in the near future ...
 457			 */
 458			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
 459			       &timer->hpet_config);
 460			write_counter(read_counter(&hpet->hpet_mc),
 461				      &timer->hpet_compare);
 462			/* ... and clear any left-over status. */
 463			isr = 1 << (devp - devp->hd_hpets->hp_dev);
 464			writel(isr, &hpet->hpet_isr);
 465		}
 466
 467		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
 468		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
 
 469		if (request_irq(irq, hpet_interrupt, irq_flags,
 470				devp->hd_name, (void *)devp)) {
 471			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
 472			irq = 0;
 473		}
 474	}
 475
 476	if (irq == 0) {
 477		spin_lock_irq(&hpet_lock);
 478		devp->hd_flags ^= HPET_IE;
 479		spin_unlock_irq(&hpet_lock);
 480		return -EIO;
 481	}
 482
 483	devp->hd_irq = irq;
 484	t = devp->hd_ireqfreq;
 485	v = readq(&timer->hpet_config);
 486
 487	/* 64-bit comparators are not yet supported through the ioctls,
 488	 * so force this into 32-bit mode if it supports both modes
 489	 */
 490	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
 491
 492	if (devp->hd_flags & HPET_PERIODIC) {
 493		g |= Tn_TYPE_CNF_MASK;
 494		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
 495		writeq(v, &timer->hpet_config);
 496		local_irq_save(flags);
 497
 498		/*
 499		 * NOTE: First we modify the hidden accumulator
 500		 * register supported by periodic-capable comparators.
 501		 * We never want to modify the (single) counter; that
 502		 * would affect all the comparators. The value written
 503		 * is the counter value when the first interrupt is due.
 504		 */
 505		m = read_counter(&hpet->hpet_mc);
 506		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 507		/*
 508		 * Then we modify the comparator, indicating the period
 509		 * for subsequent interrupt.
 510		 */
 511		write_counter(t, &timer->hpet_compare);
 512	} else {
 513		local_irq_save(flags);
 514		m = read_counter(&hpet->hpet_mc);
 515		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 516	}
 517
 518	if (devp->hd_flags & HPET_SHARED_IRQ) {
 519		isr = 1 << (devp - devp->hd_hpets->hp_dev);
 520		writel(isr, &hpet->hpet_isr);
 521	}
 522	writeq(g, &timer->hpet_config);
 523	local_irq_restore(flags);
 524
 525	return 0;
 526}
 527
 528/* converts Hz to number of timer ticks */
 529static inline unsigned long hpet_time_div(struct hpets *hpets,
 530					  unsigned long dis)
 531{
 532	unsigned long long m;
 533
 534	m = hpets->hp_tick_freq + (dis >> 1);
 535	return div64_ul(m, dis);
 
 536}
 537
 538static int
 539hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
 540		  struct hpet_info *info)
 541{
 542	struct hpet_timer __iomem *timer;
 
 543	struct hpets *hpetp;
 544	int err;
 545	unsigned long v;
 546
 547	switch (cmd) {
 548	case HPET_IE_OFF:
 549	case HPET_INFO:
 550	case HPET_EPI:
 551	case HPET_DPI:
 552	case HPET_IRQFREQ:
 553		timer = devp->hd_timer;
 
 554		hpetp = devp->hd_hpets;
 555		break;
 556	case HPET_IE_ON:
 557		return hpet_ioctl_ieon(devp);
 558	default:
 559		return -EINVAL;
 560	}
 561
 562	err = 0;
 563
 564	switch (cmd) {
 565	case HPET_IE_OFF:
 566		if ((devp->hd_flags & HPET_IE) == 0)
 567			break;
 568		v = readq(&timer->hpet_config);
 569		v &= ~Tn_INT_ENB_CNF_MASK;
 570		writeq(v, &timer->hpet_config);
 571		if (devp->hd_irq) {
 572			free_irq(devp->hd_irq, devp);
 573			devp->hd_irq = 0;
 574		}
 575		devp->hd_flags ^= HPET_IE;
 576		break;
 577	case HPET_INFO:
 578		{
 579			memset(info, 0, sizeof(*info));
 580			if (devp->hd_ireqfreq)
 581				info->hi_ireqfreq =
 582					hpet_time_div(hpetp, devp->hd_ireqfreq);
 583			info->hi_flags =
 584			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
 585			info->hi_hpet = hpetp->hp_which;
 586			info->hi_timer = devp - hpetp->hp_dev;
 587			break;
 588		}
 589	case HPET_EPI:
 590		v = readq(&timer->hpet_config);
 591		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 592			err = -ENXIO;
 593			break;
 594		}
 595		devp->hd_flags |= HPET_PERIODIC;
 596		break;
 597	case HPET_DPI:
 598		v = readq(&timer->hpet_config);
 599		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
 600			err = -ENXIO;
 601			break;
 602		}
 603		if (devp->hd_flags & HPET_PERIODIC &&
 604		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
 605			v = readq(&timer->hpet_config);
 606			v ^= Tn_TYPE_CNF_MASK;
 607			writeq(v, &timer->hpet_config);
 608		}
 609		devp->hd_flags &= ~HPET_PERIODIC;
 610		break;
 611	case HPET_IRQFREQ:
 612		if ((arg > hpet_max_freq) &&
 613		    !capable(CAP_SYS_RESOURCE)) {
 614			err = -EACCES;
 615			break;
 616		}
 617
 618		if (!arg) {
 619			err = -EINVAL;
 620			break;
 621		}
 622
 623		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
 624	}
 625
 626	return err;
 627}
 628
 629static long
 630hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 631{
 632	struct hpet_info info;
 633	int err;
 634
 635	mutex_lock(&hpet_mutex);
 636	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 637	mutex_unlock(&hpet_mutex);
 638
 639	if ((cmd == HPET_INFO) && !err &&
 640	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
 641		err = -EFAULT;
 642
 643	return err;
 644}
 645
 646#ifdef CONFIG_COMPAT
 647struct compat_hpet_info {
 648	compat_ulong_t hi_ireqfreq;	/* Hz */
 649	compat_ulong_t hi_flags;	/* information */
 650	unsigned short hi_hpet;
 651	unsigned short hi_timer;
 652};
 653
 654static long
 655hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 656{
 657	struct hpet_info info;
 658	int err;
 659
 660	mutex_lock(&hpet_mutex);
 661	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
 662	mutex_unlock(&hpet_mutex);
 663
 664	if ((cmd == HPET_INFO) && !err) {
 665		struct compat_hpet_info __user *u = compat_ptr(arg);
 666		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
 667		    put_user(info.hi_flags, &u->hi_flags) ||
 668		    put_user(info.hi_hpet, &u->hi_hpet) ||
 669		    put_user(info.hi_timer, &u->hi_timer))
 670			err = -EFAULT;
 671	}
 672
 673	return err;
 674}
 675#endif
 676
 677static const struct file_operations hpet_fops = {
 678	.owner = THIS_MODULE,
 679	.llseek = no_llseek,
 680	.read = hpet_read,
 681	.poll = hpet_poll,
 682	.unlocked_ioctl = hpet_ioctl,
 683#ifdef CONFIG_COMPAT
 684	.compat_ioctl = hpet_compat_ioctl,
 685#endif
 686	.open = hpet_open,
 687	.release = hpet_release,
 688	.fasync = hpet_fasync,
 689	.mmap = hpet_mmap,
 690};
 691
 692static int hpet_is_known(struct hpet_data *hdp)
 693{
 694	struct hpets *hpetp;
 695
 696	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
 697		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
 698			return 1;
 699
 700	return 0;
 701}
 702
 703static struct ctl_table hpet_table[] = {
 704	{
 705	 .procname = "max-user-freq",
 706	 .data = &hpet_max_freq,
 707	 .maxlen = sizeof(int),
 708	 .mode = 0644,
 709	 .proc_handler = proc_dointvec,
 710	 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711};
 712
 713static struct ctl_table_header *sysctl_header;
 714
 715/*
 716 * Adjustment for when arming the timer with
 717 * initial conditions.  That is, main counter
 718 * ticks expired before interrupts are enabled.
 719 */
 720#define	TICK_CALIBRATE	(1000UL)
 721
 722static unsigned long __hpet_calibrate(struct hpets *hpetp)
 723{
 724	struct hpet_timer __iomem *timer = NULL;
 725	unsigned long t, m, count, i, flags, start;
 726	struct hpet_dev *devp;
 727	int j;
 728	struct hpet __iomem *hpet;
 729
 730	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
 731		if ((devp->hd_flags & HPET_OPEN) == 0) {
 732			timer = devp->hd_timer;
 733			break;
 734		}
 735
 736	if (!timer)
 737		return 0;
 738
 739	hpet = hpetp->hp_hpet;
 740	t = read_counter(&timer->hpet_compare);
 741
 742	i = 0;
 743	count = hpet_time_div(hpetp, TICK_CALIBRATE);
 744
 745	local_irq_save(flags);
 746
 747	start = read_counter(&hpet->hpet_mc);
 748
 749	do {
 750		m = read_counter(&hpet->hpet_mc);
 751		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
 752	} while (i++, (m - start) < count);
 753
 754	local_irq_restore(flags);
 755
 756	return (m - start) / i;
 757}
 758
 759static unsigned long hpet_calibrate(struct hpets *hpetp)
 760{
 761	unsigned long ret = ~0UL;
 762	unsigned long tmp;
 763
 764	/*
 765	 * Try to calibrate until return value becomes stable small value.
 766	 * If SMI interruption occurs in calibration loop, the return value
 767	 * will be big. This avoids its impact.
 768	 */
 769	for ( ; ; ) {
 770		tmp = __hpet_calibrate(hpetp);
 771		if (ret <= tmp)
 772			break;
 773		ret = tmp;
 774	}
 775
 776	return ret;
 777}
 778
 779int hpet_alloc(struct hpet_data *hdp)
 780{
 781	u64 cap, mcfg;
 782	struct hpet_dev *devp;
 783	u32 i, ntimer;
 784	struct hpets *hpetp;
 
 785	struct hpet __iomem *hpet;
 786	static struct hpets *last;
 787	unsigned long period;
 788	unsigned long long temp;
 789	u32 remainder;
 790
 791	/*
 792	 * hpet_alloc can be called by platform dependent code.
 793	 * If platform dependent code has allocated the hpet that
 794	 * ACPI has also reported, then we catch it here.
 795	 */
 796	if (hpet_is_known(hdp)) {
 797		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
 798			__func__);
 799		return 0;
 800	}
 801
 802	hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
 803			GFP_KERNEL);
 
 
 804
 805	if (!hpetp)
 806		return -ENOMEM;
 807
 808	hpetp->hp_which = hpet_nhpet++;
 809	hpetp->hp_hpet = hdp->hd_address;
 810	hpetp->hp_hpet_phys = hdp->hd_phys_address;
 811
 812	hpetp->hp_ntimer = hdp->hd_nirqs;
 813
 814	for (i = 0; i < hdp->hd_nirqs; i++)
 815		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
 816
 817	hpet = hpetp->hp_hpet;
 818
 819	cap = readq(&hpet->hpet_cap);
 820
 821	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
 822
 823	if (hpetp->hp_ntimer != ntimer) {
 824		printk(KERN_WARNING "hpet: number irqs doesn't agree"
 825		       " with number of timers\n");
 826		kfree(hpetp);
 827		return -ENODEV;
 828	}
 829
 830	if (last)
 831		last->hp_next = hpetp;
 832	else
 833		hpets = hpetp;
 834
 835	last = hpetp;
 836
 837	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
 838		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
 839	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
 840	temp += period >> 1; /* round */
 841	do_div(temp, period);
 842	hpetp->hp_tick_freq = temp; /* ticks per second */
 843
 844	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
 845		hpetp->hp_which, hdp->hd_phys_address,
 846		hpetp->hp_ntimer > 1 ? "s" : "");
 847	for (i = 0; i < hpetp->hp_ntimer; i++)
 848		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
 849	printk(KERN_CONT "\n");
 850
 851	temp = hpetp->hp_tick_freq;
 852	remainder = do_div(temp, 1000000);
 853	printk(KERN_INFO
 854		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
 855		hpetp->hp_which, hpetp->hp_ntimer,
 856		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
 857		(unsigned) temp, remainder);
 858
 859	mcfg = readq(&hpet->hpet_config);
 860	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
 861		write_counter(0L, &hpet->hpet_mc);
 862		mcfg |= HPET_ENABLE_CNF_MASK;
 863		writeq(mcfg, &hpet->hpet_config);
 864	}
 865
 866	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
 867		struct hpet_timer __iomem *timer;
 868
 869		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
 870
 871		devp->hd_hpets = hpetp;
 872		devp->hd_hpet = hpet;
 873		devp->hd_timer = timer;
 874
 875		/*
 876		 * If the timer was reserved by platform code,
 877		 * then make timer unavailable for opens.
 878		 */
 879		if (hdp->hd_state & (1 << i)) {
 880			devp->hd_flags = HPET_OPEN;
 881			continue;
 882		}
 883
 884		init_waitqueue_head(&devp->hd_waitqueue);
 885	}
 886
 887	hpetp->hp_delta = hpet_calibrate(hpetp);
 888
 
 
 
 
 
 
 
 
 
 
 
 889	return 0;
 890}
 891
 892static acpi_status hpet_resources(struct acpi_resource *res, void *data)
 893{
 894	struct hpet_data *hdp;
 895	acpi_status status;
 896	struct acpi_resource_address64 addr;
 897
 898	hdp = data;
 899
 900	status = acpi_resource_to_address64(res, &addr);
 901
 902	if (ACPI_SUCCESS(status)) {
 903		hdp->hd_phys_address = addr.address.minimum;
 904		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
 905		if (!hdp->hd_address)
 906			return AE_ERROR;
 907
 908		if (hpet_is_known(hdp)) {
 909			iounmap(hdp->hd_address);
 910			return AE_ALREADY_EXISTS;
 911		}
 912	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
 913		struct acpi_resource_fixed_memory32 *fixmem32;
 914
 915		fixmem32 = &res->data.fixed_memory32;
 
 
 916
 917		hdp->hd_phys_address = fixmem32->address;
 918		hdp->hd_address = ioremap(fixmem32->address,
 919						HPET_RANGE_SIZE);
 920		if (!hdp->hd_address)
 921			return AE_ERROR;
 922
 923		if (hpet_is_known(hdp)) {
 924			iounmap(hdp->hd_address);
 925			return AE_ALREADY_EXISTS;
 926		}
 927	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
 928		struct acpi_resource_extended_irq *irqp;
 929		int i, irq;
 930
 931		irqp = &res->data.extended_irq;
 932
 933		for (i = 0; i < irqp->interrupt_count; i++) {
 934			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
 935				break;
 936
 937			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
 938						irqp->triggering,
 939						irqp->polarity);
 940			if (irq < 0)
 941				return AE_ERROR;
 942
 943			hdp->hd_irq[hdp->hd_nirqs] = irq;
 944			hdp->hd_nirqs++;
 945		}
 946	}
 947
 948	return AE_OK;
 949}
 950
 951static int hpet_acpi_add(struct acpi_device *device)
 952{
 953	acpi_status result;
 954	struct hpet_data data;
 955
 956	memset(&data, 0, sizeof(data));
 957
 958	result =
 959	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
 960				hpet_resources, &data);
 961
 962	if (ACPI_FAILURE(result))
 963		return -ENODEV;
 964
 965	if (!data.hd_address || !data.hd_nirqs) {
 966		if (data.hd_address)
 967			iounmap(data.hd_address);
 968		printk("%s: no address or irqs in _CRS\n", __func__);
 969		return -ENODEV;
 970	}
 971
 972	return hpet_alloc(&data);
 973}
 974
 
 
 
 
 
 
 975static const struct acpi_device_id hpet_device_ids[] = {
 976	{"PNP0103", 0},
 977	{"", 0},
 978};
 
 979
 980static struct acpi_driver hpet_acpi_driver = {
 981	.name = "hpet",
 982	.ids = hpet_device_ids,
 983	.ops = {
 984		.add = hpet_acpi_add,
 
 985		},
 986};
 987
 988static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
 989
 990static int __init hpet_init(void)
 991{
 992	int result;
 993
 994	result = misc_register(&hpet_misc);
 995	if (result < 0)
 996		return -ENODEV;
 997
 998	sysctl_header = register_sysctl("dev/hpet", hpet_table);
 999
1000	result = acpi_bus_register_driver(&hpet_acpi_driver);
1001	if (result < 0) {
1002		if (sysctl_header)
1003			unregister_sysctl_table(sysctl_header);
1004		misc_deregister(&hpet_misc);
1005		return result;
1006	}
1007
1008	return 0;
1009}
1010device_initcall(hpet_init);
1011
1012/*
 
 
 
 
 
 
 
 
 
 
 
 
1013MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1014MODULE_LICENSE("GPL");
1015*/