Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * srmmu.c:  SRMMU specific routines for memory management.
   3 *
   4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/mm.h>
  13#include <linux/vmalloc.h>
  14#include <linux/pagemap.h>
  15#include <linux/init.h>
  16#include <linux/spinlock.h>
  17#include <linux/bootmem.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
 
 
 
 
  20#include <linux/kdebug.h>
 
 
 
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
 
 
  23
  24#include <asm/bitext.h>
  25#include <asm/page.h>
 
 
  26#include <asm/pgalloc.h>
  27#include <asm/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/vaddrs.h>
  30#include <asm/traps.h>
  31#include <asm/smp.h>
  32#include <asm/mbus.h>
  33#include <asm/cache.h>
 
  34#include <asm/oplib.h>
 
 
  35#include <asm/asi.h>
  36#include <asm/msi.h>
  37#include <asm/mmu_context.h>
  38#include <asm/io-unit.h>
  39#include <asm/cacheflush.h>
  40#include <asm/tlbflush.h>
  41
  42/* Now the cpu specific definitions. */
  43#include <asm/viking.h>
  44#include <asm/mxcc.h>
  45#include <asm/ross.h>
  46#include <asm/tsunami.h>
 
  47#include <asm/swift.h>
  48#include <asm/turbosparc.h>
  49#include <asm/leon.h>
 
 
  50
  51#include <asm/btfixup.h>
  52
  53enum mbus_module srmmu_modtype;
  54static unsigned int hwbug_bitmask;
  55int vac_cache_size;
 
  56int vac_line_size;
  57
  58extern struct resource sparc_iomap;
  59
  60extern unsigned long last_valid_pfn;
  61
  62extern unsigned long page_kernel;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
 
 
 
  66#ifdef CONFIG_SMP
 
 
  67#define FLUSH_BEGIN(mm)
  68#define FLUSH_END
  69#else
  70#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
  71#define FLUSH_END	}
  72#endif
  73
  74BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
  75#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
  76
  77int flush_page_for_dma_global = 1;
  78
  79#ifdef CONFIG_SMP
  80BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
  81#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
  82#endif
  83
  84char *srmmu_name;
  85
  86ctxd_t *srmmu_ctx_table_phys;
  87static ctxd_t *srmmu_context_table;
  88
  89int viking_mxcc_present;
  90static DEFINE_SPINLOCK(srmmu_context_spinlock);
  91
  92static int is_hypersparc;
  93
  94/*
  95 * In general all page table modifications should use the V8 atomic
  96 * swap instruction.  This insures the mmu and the cpu are in sync
  97 * with respect to ref/mod bits in the page tables.
  98 */
  99static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
 100{
 101	__asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
 102	return value;
 103}
 104
 105static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
 106{
 107	srmmu_swap((unsigned long *)ptep, pte_val(pteval));
 108}
 109
 110/* The very generic SRMMU page table operations. */
 111static inline int srmmu_device_memory(unsigned long x)
 112{
 113	return ((x & 0xF0000000) != 0);
 114}
 115
 116static int srmmu_cache_pagetables;
 117
 118/* these will be initialized in srmmu_nocache_calcsize() */
 119static unsigned long srmmu_nocache_size;
 120static unsigned long srmmu_nocache_end;
 121
 122/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
 123#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
 124
 125/* The context table is a nocache user with the biggest alignment needs. */
 126#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 127
 128void *srmmu_nocache_pool;
 129void *srmmu_nocache_bitmap;
 130static struct bit_map srmmu_nocache_map;
 131
 132static unsigned long srmmu_pte_pfn(pte_t pte)
 133{
 134	if (srmmu_device_memory(pte_val(pte))) {
 135		/* Just return something that will cause
 136		 * pfn_valid() to return false.  This makes
 137		 * copy_one_pte() to just directly copy to
 138		 * PTE over.
 139		 */
 140		return ~0UL;
 141	}
 142	return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
 143}
 144
 145static struct page *srmmu_pmd_page(pmd_t pmd)
 146{
 147
 148	if (srmmu_device_memory(pmd_val(pmd)))
 149		BUG();
 150	return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
 151}
 152
 153static inline unsigned long srmmu_pgd_page(pgd_t pgd)
 154{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
 155
 156
 157static inline int srmmu_pte_none(pte_t pte)
 158{ return !(pte_val(pte) & 0xFFFFFFF); }
 159
 160static inline int srmmu_pte_present(pte_t pte)
 161{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
 162
 163static inline void srmmu_pte_clear(pte_t *ptep)
 164{ srmmu_set_pte(ptep, __pte(0)); }
 165
 166static inline int srmmu_pmd_none(pmd_t pmd)
 167{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 168
 169static inline int srmmu_pmd_bad(pmd_t pmd)
 170{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
 171
 172static inline int srmmu_pmd_present(pmd_t pmd)
 173{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
 174
 175static inline void srmmu_pmd_clear(pmd_t *pmdp) {
 176	int i;
 177	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
 178		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
 179}
 180
 181static inline int srmmu_pgd_none(pgd_t pgd)          
 182{ return !(pgd_val(pgd) & 0xFFFFFFF); }
 183
 184static inline int srmmu_pgd_bad(pgd_t pgd)
 185{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
 186
 187static inline int srmmu_pgd_present(pgd_t pgd)
 188{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
 189
 190static inline void srmmu_pgd_clear(pgd_t * pgdp)
 191{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
 192
 193static inline pte_t srmmu_pte_wrprotect(pte_t pte)
 194{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
 195
 196static inline pte_t srmmu_pte_mkclean(pte_t pte)
 197{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
 198
 199static inline pte_t srmmu_pte_mkold(pte_t pte)
 200{ return __pte(pte_val(pte) & ~SRMMU_REF);}
 201
 202static inline pte_t srmmu_pte_mkwrite(pte_t pte)
 203{ return __pte(pte_val(pte) | SRMMU_WRITE);}
 204
 205static inline pte_t srmmu_pte_mkdirty(pte_t pte)
 206{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
 207
 208static inline pte_t srmmu_pte_mkyoung(pte_t pte)
 209{ return __pte(pte_val(pte) | SRMMU_REF);}
 210
 211/*
 212 * Conversion functions: convert a page and protection to a page entry,
 213 * and a page entry and page directory to the page they refer to.
 214 */
 215static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
 216{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
 217
 218static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
 219{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
 220
 221static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
 222{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
 223
 224/* XXX should we hyper_flush_whole_icache here - Anton */
 225static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 226{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
 
 227
 228static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
 229{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
 
 
 
 
 
 
 230
 231static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
 232{
 233	unsigned long ptp;	/* Physical address, shifted right by 4 */
 234	int i;
 235
 236	ptp = __nocache_pa((unsigned long) ptep) >> 4;
 237	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 238		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 239		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 240	}
 241}
 242
 243static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
 244{
 245	unsigned long ptp;	/* Physical address, shifted right by 4 */
 246	int i;
 247
 248	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 249	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 250		srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 251		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 252	}
 253}
 254
 255static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
 256{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
 257
 258/* to find an entry in a top-level page table... */
 259static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
 260{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
 261
 262/* Find an entry in the second-level page table.. */
 263static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
 264{
 265	return (pmd_t *) srmmu_pgd_page(*dir) +
 266	    ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 267}
 268
 269/* Find an entry in the third-level page table.. */ 
 270static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
 271{
 272	void *pte;
 273
 274	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 275	return (pte_t *) pte +
 276	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 277}
 278
 279static unsigned long srmmu_swp_type(swp_entry_t entry)
 280{
 281	return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
 282}
 283
 284static unsigned long srmmu_swp_offset(swp_entry_t entry)
 285{
 286	return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
 287}
 288
 289static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
 290{
 291	return (swp_entry_t) {
 292		  (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
 293		| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
 294}
 295
 296/*
 297 * size: bytes to allocate in the nocache area.
 298 * align: bytes, number to align at.
 299 * Returns the virtual address of the allocated area.
 300 */
 301static unsigned long __srmmu_get_nocache(int size, int align)
 302{
 303	int offset;
 
 304
 305	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 306		printk("Size 0x%x too small for nocache request\n", size);
 
 307		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 308	}
 309	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
 310		printk("Size 0x%x unaligned int nocache request\n", size);
 311		size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
 
 312	}
 313	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 314
 315	offset = bit_map_string_get(&srmmu_nocache_map,
 316		       			size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 317					align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 318	if (offset == -1) {
 319		printk("srmmu: out of nocache %d: %d/%d\n",
 320		    size, (int) srmmu_nocache_size,
 321		    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 322		return 0;
 323	}
 324
 325	return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
 
 326}
 327
 328static unsigned long srmmu_get_nocache(int size, int align)
 329{
 330	unsigned long tmp;
 331
 332	tmp = __srmmu_get_nocache(size, align);
 333
 334	if (tmp)
 335		memset((void *)tmp, 0, size);
 336
 337	return tmp;
 338}
 339
 340static void srmmu_free_nocache(unsigned long vaddr, int size)
 341{
 
 342	int offset;
 343
 
 344	if (vaddr < SRMMU_NOCACHE_VADDR) {
 345		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 346		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 347		BUG();
 348	}
 349	if (vaddr+size > srmmu_nocache_end) {
 350		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 351		    vaddr, srmmu_nocache_end);
 352		BUG();
 353	}
 354	if (!is_power_of_2(size)) {
 355		printk("Size 0x%x is not a power of 2\n", size);
 356		BUG();
 357	}
 358	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 359		printk("Size 0x%x is too small\n", size);
 360		BUG();
 361	}
 362	if (vaddr & (size-1)) {
 363		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 364		BUG();
 365	}
 366
 367	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 368	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 369
 370	bit_map_clear(&srmmu_nocache_map, offset, size);
 371}
 372
 373static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 374						 unsigned long end);
 375
 376extern unsigned long probe_memory(void);	/* in fault.c */
 
 
 
 
 
 
 
 
 
 
 377
 378/*
 379 * Reserve nocache dynamically proportionally to the amount of
 380 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 381 */
 382static void srmmu_nocache_calcsize(void)
 383{
 384	unsigned long sysmemavail = probe_memory() / 1024;
 385	int srmmu_nocache_npages;
 386
 387	srmmu_nocache_npages =
 388		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 389
 390 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 391	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 392	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 393		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 394
 395	/* anything above 1280 blows up */
 396	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 397		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 398
 399	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 400	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 401}
 402
 403static void __init srmmu_nocache_init(void)
 404{
 
 405	unsigned int bitmap_bits;
 406	pgd_t *pgd;
 407	pmd_t *pmd;
 408	pte_t *pte;
 409	unsigned long paddr, vaddr;
 410	unsigned long pteval;
 411
 412	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 413
 414	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 415		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 
 
 
 416	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 417
 418	srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
 
 
 
 
 
 419	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 420
 421	srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 422	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 423	init_mm.pgd = srmmu_swapper_pg_dir;
 424
 425	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 426
 427	paddr = __pa((unsigned long)srmmu_nocache_pool);
 428	vaddr = SRMMU_NOCACHE_VADDR;
 429
 430	while (vaddr < srmmu_nocache_end) {
 431		pgd = pgd_offset_k(vaddr);
 432		pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
 433		pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
 434
 435		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 436
 437		if (srmmu_cache_pagetables)
 438			pteval |= SRMMU_CACHE;
 439
 440		srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
 441
 442		vaddr += PAGE_SIZE;
 443		paddr += PAGE_SIZE;
 444	}
 445
 446	flush_cache_all();
 447	flush_tlb_all();
 448}
 449
 450static inline pgd_t *srmmu_get_pgd_fast(void)
 451{
 452	pgd_t *pgd = NULL;
 453
 454	pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 455	if (pgd) {
 456		pgd_t *init = pgd_offset_k(0);
 457		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 458		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 459						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 460	}
 461
 462	return pgd;
 463}
 464
 465static void srmmu_free_pgd_fast(pgd_t *pgd)
 466{
 467	srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
 468}
 469
 470static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
 471{
 472	return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 473}
 474
 475static void srmmu_pmd_free(pmd_t * pmd)
 476{
 477	srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
 478}
 479
 480/*
 481 * Hardware needs alignment to 256 only, but we align to whole page size
 482 * to reduce fragmentation problems due to the buddy principle.
 483 * XXX Provide actual fragmentation statistics in /proc.
 484 *
 485 * Alignments up to the page size are the same for physical and virtual
 486 * addresses of the nocache area.
 487 */
 488static pte_t *
 489srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
 490{
 491	return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 492}
 493
 494static pgtable_t
 495srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
 496{
 497	unsigned long pte;
 498	struct page *page;
 499
 500	if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
 501		return NULL;
 502	page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
 503	pgtable_page_ctor(page);
 
 
 
 504	return page;
 505}
 506
 507static void srmmu_free_pte_fast(pte_t *pte)
 508{
 509	srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
 510}
 511
 512static void srmmu_pte_free(pgtable_t pte)
 513{
 514	unsigned long p;
 515
 516	pgtable_page_dtor(pte);
 517	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 518	if (p == 0)
 519		BUG();
 520	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 521	p = (unsigned long) __nocache_va(p);	/* Nocached virtual */
 522	srmmu_free_nocache(p, PTE_SIZE);
 
 523}
 524
 525/*
 526 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 528{
 529	struct ctx_list *ctxp;
 530
 531	ctxp = ctx_free.next;
 532	if(ctxp != &ctx_free) {
 533		remove_from_ctx_list(ctxp);
 534		add_to_used_ctxlist(ctxp);
 535		mm->context = ctxp->ctx_number;
 536		ctxp->ctx_mm = mm;
 537		return;
 538	}
 539	ctxp = ctx_used.next;
 540	if(ctxp->ctx_mm == old_mm)
 541		ctxp = ctxp->next;
 542	if(ctxp == &ctx_used)
 543		panic("out of mmu contexts");
 544	flush_cache_mm(ctxp->ctx_mm);
 545	flush_tlb_mm(ctxp->ctx_mm);
 546	remove_from_ctx_list(ctxp);
 547	add_to_used_ctxlist(ctxp);
 548	ctxp->ctx_mm->context = NO_CONTEXT;
 549	ctxp->ctx_mm = mm;
 550	mm->context = ctxp->ctx_number;
 551}
 552
 553static inline void free_context(int context)
 554{
 555	struct ctx_list *ctx_old;
 556
 557	ctx_old = ctx_list_pool + context;
 558	remove_from_ctx_list(ctx_old);
 559	add_to_free_ctxlist(ctx_old);
 560}
 561
 
 
 
 
 562
 563static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 564    struct task_struct *tsk, int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565{
 566	if(mm->context == NO_CONTEXT) {
 567		spin_lock(&srmmu_context_spinlock);
 
 
 568		alloc_context(old_mm, mm);
 569		spin_unlock(&srmmu_context_spinlock);
 570		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 571	}
 572
 573	if (sparc_cpu_model == sparc_leon)
 574		leon_switch_mm();
 575
 576	if (is_hypersparc)
 577		hyper_flush_whole_icache();
 578
 579	srmmu_set_context(mm->context);
 580}
 581
 582/* Low level IO area allocation on the SRMMU. */
 583static inline void srmmu_mapioaddr(unsigned long physaddr,
 584    unsigned long virt_addr, int bus_type)
 585{
 586	pgd_t *pgdp;
 587	pmd_t *pmdp;
 588	pte_t *ptep;
 589	unsigned long tmp;
 590
 591	physaddr &= PAGE_MASK;
 592	pgdp = pgd_offset_k(virt_addr);
 593	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
 594	ptep = srmmu_pte_offset(pmdp, virt_addr);
 595	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 596
 597	/*
 598	 * I need to test whether this is consistent over all
 599	 * sun4m's.  The bus_type represents the upper 4 bits of
 600	 * 36-bit physical address on the I/O space lines...
 601	 */
 602	tmp |= (bus_type << 28);
 603	tmp |= SRMMU_PRIV;
 604	__flush_page_to_ram(virt_addr);
 605	srmmu_set_pte(ptep, __pte(tmp));
 606}
 607
 608static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 609    unsigned long xva, unsigned int len)
 610{
 611	while (len != 0) {
 612		len -= PAGE_SIZE;
 613		srmmu_mapioaddr(xpa, xva, bus);
 614		xva += PAGE_SIZE;
 615		xpa += PAGE_SIZE;
 616	}
 617	flush_tlb_all();
 618}
 619
 620static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 621{
 622	pgd_t *pgdp;
 623	pmd_t *pmdp;
 624	pte_t *ptep;
 625
 626	pgdp = pgd_offset_k(virt_addr);
 627	pmdp = srmmu_pmd_offset(pgdp, virt_addr);
 628	ptep = srmmu_pte_offset(pmdp, virt_addr);
 629
 630	/* No need to flush uncacheable page. */
 631	srmmu_pte_clear(ptep);
 632}
 633
 634static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 635{
 636	while (len != 0) {
 637		len -= PAGE_SIZE;
 638		srmmu_unmapioaddr(virt_addr);
 639		virt_addr += PAGE_SIZE;
 640	}
 641	flush_tlb_all();
 642}
 643
 644/*
 645 * On the SRMMU we do not have the problems with limited tlb entries
 646 * for mapping kernel pages, so we just take things from the free page
 647 * pool.  As a side effect we are putting a little too much pressure
 648 * on the gfp() subsystem.  This setup also makes the logic of the
 649 * iommu mapping code a lot easier as we can transparently handle
 650 * mappings on the kernel stack without any special code as we did
 651 * need on the sun4c.
 652 */
 653static struct thread_info *srmmu_alloc_thread_info_node(int node)
 654{
 655	struct thread_info *ret;
 656
 657	ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
 658						     THREAD_INFO_ORDER);
 659#ifdef CONFIG_DEBUG_STACK_USAGE
 660	if (ret)
 661		memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
 662#endif /* DEBUG_STACK_USAGE */
 663
 664	return ret;
 665}
 666
 667static void srmmu_free_thread_info(struct thread_info *ti)
 668{
 669	free_pages((unsigned long)ti, THREAD_INFO_ORDER);
 670}
 671
 672/* tsunami.S */
 673extern void tsunami_flush_cache_all(void);
 674extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 675extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 676extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 677extern void tsunami_flush_page_to_ram(unsigned long page);
 678extern void tsunami_flush_page_for_dma(unsigned long page);
 679extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 680extern void tsunami_flush_tlb_all(void);
 681extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 682extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 683extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 684extern void tsunami_setup_blockops(void);
 685
 686/*
 687 * Workaround, until we find what's going on with Swift. When low on memory,
 688 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
 689 * out it is already in page tables/ fault again on the same instruction.
 690 * I really don't understand it, have checked it and contexts
 691 * are right, flush_tlb_all is done as well, and it faults again...
 692 * Strange. -jj
 693 *
 694 * The following code is a deadwood that may be necessary when
 695 * we start to make precise page flushes again. --zaitcev
 696 */
 697static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t *ptep)
 698{
 699#if 0
 700	static unsigned long last;
 701	unsigned int val;
 702	/* unsigned int n; */
 703
 704	if (address == last) {
 705		val = srmmu_hwprobe(address);
 706		if (val != 0 && pte_val(*ptep) != val) {
 707			printk("swift_update_mmu_cache: "
 708			    "addr %lx put %08x probed %08x from %p\n",
 709			    address, pte_val(*ptep), val,
 710			    __builtin_return_address(0));
 711			srmmu_flush_whole_tlb();
 712		}
 713	}
 714	last = address;
 715#endif
 716}
 717
 718/* swift.S */
 719extern void swift_flush_cache_all(void);
 720extern void swift_flush_cache_mm(struct mm_struct *mm);
 721extern void swift_flush_cache_range(struct vm_area_struct *vma,
 722				    unsigned long start, unsigned long end);
 723extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 724extern void swift_flush_page_to_ram(unsigned long page);
 725extern void swift_flush_page_for_dma(unsigned long page);
 726extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 727extern void swift_flush_tlb_all(void);
 728extern void swift_flush_tlb_mm(struct mm_struct *mm);
 729extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 730				  unsigned long start, unsigned long end);
 731extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 732
 733#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 734void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 735{
 736	int cctx, ctx1;
 737
 738	page &= PAGE_MASK;
 739	if ((ctx1 = vma->vm_mm->context) != -1) {
 740		cctx = srmmu_get_context();
 741/* Is context # ever different from current context? P3 */
 742		if (cctx != ctx1) {
 743			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 744			srmmu_set_context(ctx1);
 745			swift_flush_page(page);
 746			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 747					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 748			srmmu_set_context(cctx);
 749		} else {
 750			 /* Rm. prot. bits from virt. c. */
 751			/* swift_flush_cache_all(); */
 752			/* swift_flush_cache_page(vma, page); */
 753			swift_flush_page(page);
 754
 755			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 756				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 757			/* same as above: srmmu_flush_tlb_page() */
 758		}
 759	}
 760}
 761#endif
 762
 763/*
 764 * The following are all MBUS based SRMMU modules, and therefore could
 765 * be found in a multiprocessor configuration.  On the whole, these
 766 * chips seems to be much more touchy about DVMA and page tables
 767 * with respect to cache coherency.
 768 */
 769
 770/* Cypress flushes. */
 771static void cypress_flush_cache_all(void)
 772{
 773	volatile unsigned long cypress_sucks;
 774	unsigned long faddr, tagval;
 775
 776	flush_user_windows();
 777	for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
 778		__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
 779				     "=r" (tagval) :
 780				     "r" (faddr), "r" (0x40000),
 781				     "i" (ASI_M_DATAC_TAG));
 782
 783		/* If modified and valid, kick it. */
 784		if((tagval & 0x60) == 0x60)
 785			cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
 786	}
 787}
 788
 789static void cypress_flush_cache_mm(struct mm_struct *mm)
 790{
 791	register unsigned long a, b, c, d, e, f, g;
 792	unsigned long flags, faddr;
 793	int octx;
 794
 795	FLUSH_BEGIN(mm)
 796	flush_user_windows();
 797	local_irq_save(flags);
 798	octx = srmmu_get_context();
 799	srmmu_set_context(mm->context);
 800	a = 0x20; b = 0x40; c = 0x60;
 801	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 802
 803	faddr = (0x10000 - 0x100);
 804	goto inside;
 805	do {
 806		faddr -= 0x100;
 807	inside:
 808		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 809				     "sta %%g0, [%0 + %2] %1\n\t"
 810				     "sta %%g0, [%0 + %3] %1\n\t"
 811				     "sta %%g0, [%0 + %4] %1\n\t"
 812				     "sta %%g0, [%0 + %5] %1\n\t"
 813				     "sta %%g0, [%0 + %6] %1\n\t"
 814				     "sta %%g0, [%0 + %7] %1\n\t"
 815				     "sta %%g0, [%0 + %8] %1\n\t" : :
 816				     "r" (faddr), "i" (ASI_M_FLUSH_CTX),
 817				     "r" (a), "r" (b), "r" (c), "r" (d),
 818				     "r" (e), "r" (f), "r" (g));
 819	} while(faddr);
 820	srmmu_set_context(octx);
 821	local_irq_restore(flags);
 822	FLUSH_END
 823}
 824
 825static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 826{
 827	struct mm_struct *mm = vma->vm_mm;
 828	register unsigned long a, b, c, d, e, f, g;
 829	unsigned long flags, faddr;
 830	int octx;
 831
 832	FLUSH_BEGIN(mm)
 833	flush_user_windows();
 834	local_irq_save(flags);
 835	octx = srmmu_get_context();
 836	srmmu_set_context(mm->context);
 837	a = 0x20; b = 0x40; c = 0x60;
 838	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 839
 840	start &= SRMMU_REAL_PMD_MASK;
 841	while(start < end) {
 842		faddr = (start + (0x10000 - 0x100));
 843		goto inside;
 844		do {
 845			faddr -= 0x100;
 846		inside:
 847			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 848					     "sta %%g0, [%0 + %2] %1\n\t"
 849					     "sta %%g0, [%0 + %3] %1\n\t"
 850					     "sta %%g0, [%0 + %4] %1\n\t"
 851					     "sta %%g0, [%0 + %5] %1\n\t"
 852					     "sta %%g0, [%0 + %6] %1\n\t"
 853					     "sta %%g0, [%0 + %7] %1\n\t"
 854					     "sta %%g0, [%0 + %8] %1\n\t" : :
 855					     "r" (faddr),
 856					     "i" (ASI_M_FLUSH_SEG),
 857					     "r" (a), "r" (b), "r" (c), "r" (d),
 858					     "r" (e), "r" (f), "r" (g));
 859		} while (faddr != start);
 860		start += SRMMU_REAL_PMD_SIZE;
 861	}
 862	srmmu_set_context(octx);
 863	local_irq_restore(flags);
 864	FLUSH_END
 865}
 866
 867static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
 868{
 869	register unsigned long a, b, c, d, e, f, g;
 870	struct mm_struct *mm = vma->vm_mm;
 871	unsigned long flags, line;
 872	int octx;
 873
 874	FLUSH_BEGIN(mm)
 875	flush_user_windows();
 876	local_irq_save(flags);
 877	octx = srmmu_get_context();
 878	srmmu_set_context(mm->context);
 879	a = 0x20; b = 0x40; c = 0x60;
 880	d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 881
 882	page &= PAGE_MASK;
 883	line = (page + PAGE_SIZE) - 0x100;
 884	goto inside;
 885	do {
 886		line -= 0x100;
 887	inside:
 888			__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 889					     "sta %%g0, [%0 + %2] %1\n\t"
 890					     "sta %%g0, [%0 + %3] %1\n\t"
 891					     "sta %%g0, [%0 + %4] %1\n\t"
 892					     "sta %%g0, [%0 + %5] %1\n\t"
 893					     "sta %%g0, [%0 + %6] %1\n\t"
 894					     "sta %%g0, [%0 + %7] %1\n\t"
 895					     "sta %%g0, [%0 + %8] %1\n\t" : :
 896					     "r" (line),
 897					     "i" (ASI_M_FLUSH_PAGE),
 898					     "r" (a), "r" (b), "r" (c), "r" (d),
 899					     "r" (e), "r" (f), "r" (g));
 900	} while(line != page);
 901	srmmu_set_context(octx);
 902	local_irq_restore(flags);
 903	FLUSH_END
 904}
 905
 906/* Cypress is copy-back, at least that is how we configure it. */
 907static void cypress_flush_page_to_ram(unsigned long page)
 908{
 909	register unsigned long a, b, c, d, e, f, g;
 910	unsigned long line;
 911
 912	a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
 913	page &= PAGE_MASK;
 914	line = (page + PAGE_SIZE) - 0x100;
 915	goto inside;
 916	do {
 917		line -= 0x100;
 918	inside:
 919		__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
 920				     "sta %%g0, [%0 + %2] %1\n\t"
 921				     "sta %%g0, [%0 + %3] %1\n\t"
 922				     "sta %%g0, [%0 + %4] %1\n\t"
 923				     "sta %%g0, [%0 + %5] %1\n\t"
 924				     "sta %%g0, [%0 + %6] %1\n\t"
 925				     "sta %%g0, [%0 + %7] %1\n\t"
 926				     "sta %%g0, [%0 + %8] %1\n\t" : :
 927				     "r" (line),
 928				     "i" (ASI_M_FLUSH_PAGE),
 929				     "r" (a), "r" (b), "r" (c), "r" (d),
 930				     "r" (e), "r" (f), "r" (g));
 931	} while(line != page);
 932}
 933
 934/* Cypress is also IO cache coherent. */
 935static void cypress_flush_page_for_dma(unsigned long page)
 936{
 937}
 938
 939/* Cypress has unified L2 VIPT, from which both instructions and data
 940 * are stored.  It does not have an onboard icache of any sort, therefore
 941 * no flush is necessary.
 942 */
 943static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
 944{
 945}
 946
 947static void cypress_flush_tlb_all(void)
 948{
 949	srmmu_flush_whole_tlb();
 950}
 951
 952static void cypress_flush_tlb_mm(struct mm_struct *mm)
 953{
 954	FLUSH_BEGIN(mm)
 955	__asm__ __volatile__(
 956	"lda	[%0] %3, %%g5\n\t"
 957	"sta	%2, [%0] %3\n\t"
 958	"sta	%%g0, [%1] %4\n\t"
 959	"sta	%%g5, [%0] %3\n"
 960	: /* no outputs */
 961	: "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
 962	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
 963	: "g5");
 964	FLUSH_END
 965}
 966
 967static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 968{
 969	struct mm_struct *mm = vma->vm_mm;
 970	unsigned long size;
 971
 972	FLUSH_BEGIN(mm)
 973	start &= SRMMU_PGDIR_MASK;
 974	size = SRMMU_PGDIR_ALIGN(end) - start;
 975	__asm__ __volatile__(
 976		"lda	[%0] %5, %%g5\n\t"
 977		"sta	%1, [%0] %5\n"
 978		"1:\n\t"
 979		"subcc	%3, %4, %3\n\t"
 980		"bne	1b\n\t"
 981		" sta	%%g0, [%2 + %3] %6\n\t"
 982		"sta	%%g5, [%0] %5\n"
 983	: /* no outputs */
 984	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
 985	  "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
 986	  "i" (ASI_M_FLUSH_PROBE)
 987	: "g5", "cc");
 988	FLUSH_END
 989}
 990
 991static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 992{
 993	struct mm_struct *mm = vma->vm_mm;
 994
 995	FLUSH_BEGIN(mm)
 996	__asm__ __volatile__(
 997	"lda	[%0] %3, %%g5\n\t"
 998	"sta	%1, [%0] %3\n\t"
 999	"sta	%%g0, [%2] %4\n\t"
1000	"sta	%%g5, [%0] %3\n"
1001	: /* no outputs */
1002	: "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
1003	  "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1004	: "g5");
1005	FLUSH_END
1006}
1007
1008/* viking.S */
1009extern void viking_flush_cache_all(void);
1010extern void viking_flush_cache_mm(struct mm_struct *mm);
1011extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1012				     unsigned long end);
1013extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1014extern void viking_flush_page_to_ram(unsigned long page);
1015extern void viking_flush_page_for_dma(unsigned long page);
1016extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1017extern void viking_flush_page(unsigned long page);
1018extern void viking_mxcc_flush_page(unsigned long page);
1019extern void viking_flush_tlb_all(void);
1020extern void viking_flush_tlb_mm(struct mm_struct *mm);
1021extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1022				   unsigned long end);
1023extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1024				  unsigned long page);
1025extern void sun4dsmp_flush_tlb_all(void);
1026extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1027extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1028				   unsigned long end);
1029extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1030				  unsigned long page);
1031
1032/* hypersparc.S */
1033extern void hypersparc_flush_cache_all(void);
1034extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1035extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1036extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1037extern void hypersparc_flush_page_to_ram(unsigned long page);
1038extern void hypersparc_flush_page_for_dma(unsigned long page);
1039extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1040extern void hypersparc_flush_tlb_all(void);
1041extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1042extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1043extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1044extern void hypersparc_setup_blockops(void);
1045
1046/*
1047 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1048 *       kernel mappings are done with one single contiguous chunk of
1049 *       ram.  On small ram machines (classics mainly) we only get
1050 *       around 8mb mapped for us.
1051 */
1052
1053static void __init early_pgtable_allocfail(char *type)
1054{
1055	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1056	prom_halt();
1057}
1058
1059static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1060							unsigned long end)
1061{
1062	pgd_t *pgdp;
1063	pmd_t *pmdp;
1064	pte_t *ptep;
1065
1066	while(start < end) {
1067		pgdp = pgd_offset_k(start);
1068		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1069			pmdp = (pmd_t *) __srmmu_get_nocache(
1070			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1071			if (pmdp == NULL)
1072				early_pgtable_allocfail("pmd");
1073			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1074			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1075		}
1076		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1077		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1078			ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1079			if (ptep == NULL)
1080				early_pgtable_allocfail("pte");
1081			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1082			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1083		}
1084		if (start > (0xffffffffUL - PMD_SIZE))
1085			break;
1086		start = (start + PMD_SIZE) & PMD_MASK;
1087	}
1088}
1089
1090static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1091						  unsigned long end)
1092{
1093	pgd_t *pgdp;
1094	pmd_t *pmdp;
1095	pte_t *ptep;
1096
1097	while(start < end) {
1098		pgdp = pgd_offset_k(start);
1099		if(srmmu_pgd_none(*pgdp)) {
1100			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1101			if (pmdp == NULL)
1102				early_pgtable_allocfail("pmd");
1103			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1104			srmmu_pgd_set(pgdp, pmdp);
1105		}
1106		pmdp = srmmu_pmd_offset(pgdp, start);
1107		if(srmmu_pmd_none(*pmdp)) {
1108			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1109							     PTE_SIZE);
1110			if (ptep == NULL)
1111				early_pgtable_allocfail("pte");
1112			memset(ptep, 0, PTE_SIZE);
1113			srmmu_pmd_set(pmdp, ptep);
1114		}
1115		if (start > (0xffffffffUL - PMD_SIZE))
1116			break;
1117		start = (start + PMD_SIZE) & PMD_MASK;
1118	}
1119}
1120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121/*
1122 * This is much cleaner than poking around physical address space
1123 * looking at the prom's page table directly which is what most
1124 * other OS's do.  Yuck... this is much better.
1125 */
1126static void __init srmmu_inherit_prom_mappings(unsigned long start,
1127					       unsigned long end)
1128{
 
 
1129	pgd_t *pgdp;
1130	pmd_t *pmdp;
1131	pte_t *ptep;
1132	int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1133	unsigned long prompte;
1134
1135	while(start <= end) {
1136		if (start == 0)
1137			break; /* probably wrap around */
1138		if(start == 0xfef00000)
1139			start = KADB_DEBUGGER_BEGVM;
1140		if(!(prompte = srmmu_hwprobe(start))) {
 
 
1141			start += PAGE_SIZE;
1142			continue;
1143		}
1144    
1145		/* A red snapper, see what it really is. */
1146		what = 0;
1147    
1148		if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1149			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
 
1150				what = 1;
1151		}
1152    
1153		if(!(start & ~(SRMMU_PGDIR_MASK))) {
1154			if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1155			   prompte)
1156				what = 2;
1157		}
1158    
1159		pgdp = pgd_offset_k(start);
1160		if(what == 2) {
1161			*(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1162			start += SRMMU_PGDIR_SIZE;
1163			continue;
1164		}
1165		if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1166			pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 
1167			if (pmdp == NULL)
1168				early_pgtable_allocfail("pmd");
1169			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1170			srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1171		}
1172		pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1173		if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1174			ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1175							     PTE_SIZE);
1176			if (ptep == NULL)
1177				early_pgtable_allocfail("pte");
1178			memset(__nocache_fix(ptep), 0, PTE_SIZE);
1179			srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1180		}
1181		if(what == 1) {
1182			/*
1183			 * We bend the rule where all 16 PTPs in a pmd_t point
1184			 * inside the same PTE page, and we leak a perfectly
1185			 * good hardware PTE piece. Alternatives seem worse.
1186			 */
1187			unsigned int x;	/* Index of HW PMD in soft cluster */
 
1188			x = (start >> PMD_SHIFT) & 15;
1189			*(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
 
1190			start += SRMMU_REAL_PMD_SIZE;
1191			continue;
1192		}
1193		ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1194		*(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1195		start += PAGE_SIZE;
1196	}
1197}
1198
1199#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1200
1201/* Create a third-level SRMMU 16MB page mapping. */
1202static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1203{
1204	pgd_t *pgdp = pgd_offset_k(vaddr);
1205	unsigned long big_pte;
1206
1207	big_pte = KERNEL_PTE(phys_base >> 4);
1208	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1209}
1210
1211/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1212static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1213{
1214	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1215	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1216	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1217	/* Map "low" memory only */
1218	const unsigned long min_vaddr = PAGE_OFFSET;
1219	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1220
1221	if (vstart < min_vaddr || vstart >= max_vaddr)
1222		return vstart;
1223	
1224	if (vend > max_vaddr || vend < min_vaddr)
1225		vend = max_vaddr;
1226
1227	while(vstart < vend) {
1228		do_large_mapping(vstart, pstart);
1229		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1230	}
1231	return vstart;
1232}
1233
1234static inline void memprobe_error(char *msg)
1235{
1236	prom_printf(msg);
1237	prom_printf("Halting now...\n");
1238	prom_halt();
1239}
1240
1241static inline void map_kernel(void)
1242{
1243	int i;
1244
1245	if (phys_base > 0) {
1246		do_large_mapping(PAGE_OFFSET, phys_base);
1247	}
1248
1249	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1250		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1251	}
1252
1253	BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1254}
1255
1256/* Paging initialization on the Sparc Reference MMU. */
1257extern void sparc_context_init(int);
1258
1259void (*poke_srmmu)(void) __cpuinitdata = NULL;
1260
1261extern unsigned long bootmem_init(unsigned long *pages_avail);
1262
1263void __init srmmu_paging_init(void)
1264{
1265	int i;
1266	phandle cpunode;
1267	char node_str[128];
1268	pgd_t *pgd;
1269	pmd_t *pmd;
1270	pte_t *pte;
1271	unsigned long pages_avail;
1272
 
1273	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
1274
1275	if (sparc_cpu_model == sun4d)
1276		num_contexts = 65536; /* We know it is Viking */
1277	else {
1278		/* Find the number of contexts on the srmmu. */
1279		cpunode = prom_getchild(prom_root_node);
1280		num_contexts = 0;
1281		while(cpunode != 0) {
1282			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1283			if(!strcmp(node_str, "cpu")) {
1284				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1285				break;
1286			}
1287			cpunode = prom_getsibling(cpunode);
1288		}
1289	}
1290
1291	if(!num_contexts) {
1292		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1293		prom_halt();
1294	}
1295
1296	pages_avail = 0;
1297	last_valid_pfn = bootmem_init(&pages_avail);
1298
1299	srmmu_nocache_calcsize();
1300	srmmu_nocache_init();
1301        srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1302	map_kernel();
1303
1304	/* ctx table has to be physically aligned to its size */
1305	srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1306	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1307
1308	for(i = 0; i < num_contexts; i++)
1309		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1310
1311	flush_cache_all();
1312	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1313#ifdef CONFIG_SMP
1314	/* Stop from hanging here... */
1315	local_flush_tlb_all();
1316#else
1317	flush_tlb_all();
1318#endif
1319	poke_srmmu();
1320
1321	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1322	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1323
1324	srmmu_allocate_ptable_skeleton(
1325		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1326	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1327
1328	pgd = pgd_offset_k(PKMAP_BASE);
1329	pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1330	pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1331	pkmap_page_table = pte;
1332
1333	flush_cache_all();
1334	flush_tlb_all();
1335
1336	sparc_context_init(num_contexts);
1337
1338	kmap_init();
1339
1340	{
1341		unsigned long zones_size[MAX_NR_ZONES];
1342		unsigned long zholes_size[MAX_NR_ZONES];
1343		unsigned long npages;
1344		int znum;
1345
1346		for (znum = 0; znum < MAX_NR_ZONES; znum++)
1347			zones_size[znum] = zholes_size[znum] = 0;
1348
1349		npages = max_low_pfn - pfn_base;
1350
1351		zones_size[ZONE_DMA] = npages;
1352		zholes_size[ZONE_DMA] = npages - pages_avail;
1353
1354		npages = highend_pfn - max_low_pfn;
1355		zones_size[ZONE_HIGHMEM] = npages;
1356		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1357
1358		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1359	}
1360}
1361
1362static void srmmu_mmu_info(struct seq_file *m)
1363{
1364	seq_printf(m, 
1365		   "MMU type\t: %s\n"
1366		   "contexts\t: %d\n"
1367		   "nocache total\t: %ld\n"
1368		   "nocache used\t: %d\n",
1369		   srmmu_name,
1370		   num_contexts,
1371		   srmmu_nocache_size,
1372		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1373}
1374
1375static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1376{
 
 
1377}
1378
1379static void srmmu_destroy_context(struct mm_struct *mm)
1380{
 
1381
1382	if(mm->context != NO_CONTEXT) {
1383		flush_cache_mm(mm);
1384		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1385		flush_tlb_mm(mm);
1386		spin_lock(&srmmu_context_spinlock);
1387		free_context(mm->context);
1388		spin_unlock(&srmmu_context_spinlock);
1389		mm->context = NO_CONTEXT;
1390	}
1391}
1392
1393/* Init various srmmu chip types. */
1394static void __init srmmu_is_bad(void)
1395{
1396	prom_printf("Could not determine SRMMU chip type.\n");
1397	prom_halt();
1398}
1399
1400static void __init init_vac_layout(void)
1401{
1402	phandle nd;
1403	int cache_lines;
1404	char node_str[128];
1405#ifdef CONFIG_SMP
1406	int cpu = 0;
1407	unsigned long max_size = 0;
1408	unsigned long min_line_size = 0x10000000;
1409#endif
1410
1411	nd = prom_getchild(prom_root_node);
1412	while((nd = prom_getsibling(nd)) != 0) {
1413		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1414		if(!strcmp(node_str, "cpu")) {
1415			vac_line_size = prom_getint(nd, "cache-line-size");
1416			if (vac_line_size == -1) {
1417				prom_printf("can't determine cache-line-size, "
1418					    "halting.\n");
1419				prom_halt();
1420			}
1421			cache_lines = prom_getint(nd, "cache-nlines");
1422			if (cache_lines == -1) {
1423				prom_printf("can't determine cache-nlines, halting.\n");
1424				prom_halt();
1425			}
1426
1427			vac_cache_size = cache_lines * vac_line_size;
1428#ifdef CONFIG_SMP
1429			if(vac_cache_size > max_size)
1430				max_size = vac_cache_size;
1431			if(vac_line_size < min_line_size)
1432				min_line_size = vac_line_size;
1433			//FIXME: cpus not contiguous!!
1434			cpu++;
1435			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1436				break;
1437#else
1438			break;
1439#endif
1440		}
1441	}
1442	if(nd == 0) {
1443		prom_printf("No CPU nodes found, halting.\n");
1444		prom_halt();
1445	}
1446#ifdef CONFIG_SMP
1447	vac_cache_size = max_size;
1448	vac_line_size = min_line_size;
1449#endif
1450	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1451	       (int)vac_cache_size, (int)vac_line_size);
1452}
1453
1454static void __cpuinit poke_hypersparc(void)
1455{
1456	volatile unsigned long clear;
1457	unsigned long mreg = srmmu_get_mmureg();
1458
1459	hyper_flush_unconditional_combined();
1460
1461	mreg &= ~(HYPERSPARC_CWENABLE);
1462	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1463	mreg |= (HYPERSPARC_CMODE);
1464
1465	srmmu_set_mmureg(mreg);
1466
1467#if 0 /* XXX I think this is bad news... -DaveM */
1468	hyper_clear_all_tags();
1469#endif
1470
1471	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1472	hyper_flush_whole_icache();
1473	clear = srmmu_get_faddr();
1474	clear = srmmu_get_fstatus();
1475}
1476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477static void __init init_hypersparc(void)
1478{
1479	srmmu_name = "ROSS HyperSparc";
1480	srmmu_modtype = HyperSparc;
1481
1482	init_vac_layout();
1483
1484	is_hypersparc = 1;
1485
1486	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1487	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1488	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1489	BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1490	BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1491	BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1492	BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1493
1494	BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1495	BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1496	BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1497	BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1498
1499	BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1500	BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1501	BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1502
1503
1504	poke_srmmu = poke_hypersparc;
1505
1506	hypersparc_setup_blockops();
1507}
1508
1509static void __cpuinit poke_cypress(void)
1510{
1511	unsigned long mreg = srmmu_get_mmureg();
1512	unsigned long faddr, tagval;
1513	volatile unsigned long cypress_sucks;
1514	volatile unsigned long clear;
1515
1516	clear = srmmu_get_faddr();
1517	clear = srmmu_get_fstatus();
1518
1519	if (!(mreg & CYPRESS_CENABLE)) {
1520		for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1521			__asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1522					     "sta %%g0, [%0] %2\n\t" : :
1523					     "r" (faddr), "r" (0x40000),
1524					     "i" (ASI_M_DATAC_TAG));
1525		}
1526	} else {
1527		for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1528			__asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1529					     "=r" (tagval) :
1530					     "r" (faddr), "r" (0x40000),
1531					     "i" (ASI_M_DATAC_TAG));
1532
1533			/* If modified and valid, kick it. */
1534			if((tagval & 0x60) == 0x60)
1535				cypress_sucks = *(unsigned long *)
1536							(0xf0020000 + faddr);
1537		}
1538	}
1539
1540	/* And one more, for our good neighbor, Mr. Broken Cypress. */
1541	clear = srmmu_get_faddr();
1542	clear = srmmu_get_fstatus();
1543
1544	mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1545	srmmu_set_mmureg(mreg);
1546}
1547
1548static void __init init_cypress_common(void)
1549{
1550	init_vac_layout();
1551
1552	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1553	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1554	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1555	BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1556	BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1557	BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1558	BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1559
1560	BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1561	BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1562	BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1563	BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1564
1565
1566	BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1567	BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1568	BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1569
1570	poke_srmmu = poke_cypress;
1571}
1572
1573static void __init init_cypress_604(void)
1574{
1575	srmmu_name = "ROSS Cypress-604(UP)";
1576	srmmu_modtype = Cypress;
1577	init_cypress_common();
1578}
1579
1580static void __init init_cypress_605(unsigned long mrev)
1581{
1582	srmmu_name = "ROSS Cypress-605(MP)";
1583	if(mrev == 0xe) {
1584		srmmu_modtype = Cypress_vE;
1585		hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1586	} else {
1587		if(mrev == 0xd) {
1588			srmmu_modtype = Cypress_vD;
1589			hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1590		} else {
1591			srmmu_modtype = Cypress;
1592		}
1593	}
1594	init_cypress_common();
1595}
1596
1597static void __cpuinit poke_swift(void)
1598{
1599	unsigned long mreg;
1600
1601	/* Clear any crap from the cache or else... */
1602	swift_flush_cache_all();
1603
1604	/* Enable I & D caches */
1605	mreg = srmmu_get_mmureg();
1606	mreg |= (SWIFT_IE | SWIFT_DE);
1607	/*
1608	 * The Swift branch folding logic is completely broken.  At
1609	 * trap time, if things are just right, if can mistakenly
1610	 * think that a trap is coming from kernel mode when in fact
1611	 * it is coming from user mode (it mis-executes the branch in
1612	 * the trap code).  So you see things like crashme completely
1613	 * hosing your machine which is completely unacceptable.  Turn
1614	 * this shit off... nice job Fujitsu.
1615	 */
1616	mreg &= ~(SWIFT_BF);
1617	srmmu_set_mmureg(mreg);
1618}
1619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620#define SWIFT_MASKID_ADDR  0x10003018
1621static void __init init_swift(void)
1622{
1623	unsigned long swift_rev;
1624
1625	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1626			     "srl %0, 0x18, %0\n\t" :
1627			     "=r" (swift_rev) :
1628			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1629	srmmu_name = "Fujitsu Swift";
1630	switch(swift_rev) {
1631	case 0x11:
1632	case 0x20:
1633	case 0x23:
1634	case 0x30:
1635		srmmu_modtype = Swift_lots_o_bugs;
1636		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1637		/*
1638		 * Gee george, I wonder why Sun is so hush hush about
1639		 * this hardware bug... really braindamage stuff going
1640		 * on here.  However I think we can find a way to avoid
1641		 * all of the workaround overhead under Linux.  Basically,
1642		 * any page fault can cause kernel pages to become user
1643		 * accessible (the mmu gets confused and clears some of
1644		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1645		 * horrible eh?  But wait, after extensive testing it appears
1646		 * that if you use pgd_t level large kernel pte's (like the
1647		 * 4MB pages on the Pentium) the bug does not get tripped
1648		 * at all.  This avoids almost all of the major overhead.
1649		 * Welcome to a world where your vendor tells you to,
1650		 * "apply this kernel patch" instead of "sorry for the
1651		 * broken hardware, send it back and we'll give you
1652		 * properly functioning parts"
1653		 */
1654		break;
1655	case 0x25:
1656	case 0x31:
1657		srmmu_modtype = Swift_bad_c;
1658		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1659		/*
1660		 * You see Sun allude to this hardware bug but never
1661		 * admit things directly, they'll say things like,
1662		 * "the Swift chip cache problems" or similar.
1663		 */
1664		break;
1665	default:
1666		srmmu_modtype = Swift_ok;
1667		break;
1668	}
1669
1670	BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1671	BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1672	BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1673	BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1674
1675
1676	BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1677	BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1678	BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1679	BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1680
1681	BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1682	BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1683	BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1684
1685	BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1686
1687	flush_page_for_dma_global = 0;
1688
1689	/*
1690	 * Are you now convinced that the Swift is one of the
1691	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1692	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1693	 * you examined the microcode of the Swift you'd find
1694	 * XXX's all over the place.
1695	 */
1696	poke_srmmu = poke_swift;
1697}
1698
1699static void turbosparc_flush_cache_all(void)
1700{
1701	flush_user_windows();
1702	turbosparc_idflash_clear();
1703}
1704
1705static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1706{
1707	FLUSH_BEGIN(mm)
1708	flush_user_windows();
1709	turbosparc_idflash_clear();
1710	FLUSH_END
1711}
1712
1713static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1714{
1715	FLUSH_BEGIN(vma->vm_mm)
1716	flush_user_windows();
1717	turbosparc_idflash_clear();
1718	FLUSH_END
1719}
1720
1721static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1722{
1723	FLUSH_BEGIN(vma->vm_mm)
1724	flush_user_windows();
1725	if (vma->vm_flags & VM_EXEC)
1726		turbosparc_flush_icache();
1727	turbosparc_flush_dcache();
1728	FLUSH_END
1729}
1730
1731/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1732static void turbosparc_flush_page_to_ram(unsigned long page)
1733{
1734#ifdef TURBOSPARC_WRITEBACK
1735	volatile unsigned long clear;
1736
1737	if (srmmu_hwprobe(page))
1738		turbosparc_flush_page_cache(page);
1739	clear = srmmu_get_fstatus();
1740#endif
1741}
1742
1743static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744{
1745}
1746
1747static void turbosparc_flush_page_for_dma(unsigned long page)
1748{
1749	turbosparc_flush_dcache();
1750}
1751
1752static void turbosparc_flush_tlb_all(void)
1753{
1754	srmmu_flush_whole_tlb();
1755}
1756
1757static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1758{
1759	FLUSH_BEGIN(mm)
1760	srmmu_flush_whole_tlb();
1761	FLUSH_END
1762}
1763
1764static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1765{
1766	FLUSH_BEGIN(vma->vm_mm)
1767	srmmu_flush_whole_tlb();
1768	FLUSH_END
1769}
1770
1771static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1772{
1773	FLUSH_BEGIN(vma->vm_mm)
1774	srmmu_flush_whole_tlb();
1775	FLUSH_END
1776}
1777
1778
1779static void __cpuinit poke_turbosparc(void)
1780{
1781	unsigned long mreg = srmmu_get_mmureg();
1782	unsigned long ccreg;
1783
1784	/* Clear any crap from the cache or else... */
1785	turbosparc_flush_cache_all();
1786	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
 
1787	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1788	srmmu_set_mmureg(mreg);
1789	
1790	ccreg = turbosparc_get_ccreg();
1791
1792#ifdef TURBOSPARC_WRITEBACK
1793	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1794	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1795			/* Write-back D-cache, emulate VLSI
1796			 * abortion number three, not number one */
1797#else
1798	/* For now let's play safe, optimize later */
1799	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1800			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1801	ccreg &= ~(TURBOSPARC_uS2);
1802			/* Emulate VLSI abortion number three, not number one */
1803#endif
1804
1805	switch (ccreg & 7) {
1806	case 0: /* No SE cache */
1807	case 7: /* Test mode */
1808		break;
1809	default:
1810		ccreg |= (TURBOSPARC_SCENABLE);
1811	}
1812	turbosparc_set_ccreg (ccreg);
1813
1814	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1815	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1816	srmmu_set_mmureg(mreg);
1817}
1818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819static void __init init_turbosparc(void)
1820{
1821	srmmu_name = "Fujitsu TurboSparc";
1822	srmmu_modtype = TurboSparc;
1823
1824	BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1825	BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1826	BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1827	BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1828
1829	BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1830	BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1831	BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1832	BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1833
1834	BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1835
1836	BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1837	BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1838
1839	poke_srmmu = poke_turbosparc;
1840}
1841
1842static void __cpuinit poke_tsunami(void)
1843{
1844	unsigned long mreg = srmmu_get_mmureg();
1845
1846	tsunami_flush_icache();
1847	tsunami_flush_dcache();
1848	mreg &= ~TSUNAMI_ITD;
1849	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1850	srmmu_set_mmureg(mreg);
1851}
1852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1853static void __init init_tsunami(void)
1854{
1855	/*
1856	 * Tsunami's pretty sane, Sun and TI actually got it
1857	 * somewhat right this time.  Fujitsu should have
1858	 * taken some lessons from them.
1859	 */
1860
1861	srmmu_name = "TI Tsunami";
1862	srmmu_modtype = Tsunami;
1863
1864	BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1865	BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1866	BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1867	BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1868
1869
1870	BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1871	BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1872	BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1873	BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1874
1875	BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1876	BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1877	BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1878
1879	poke_srmmu = poke_tsunami;
1880
1881	tsunami_setup_blockops();
1882}
1883
1884static void __cpuinit poke_viking(void)
1885{
1886	unsigned long mreg = srmmu_get_mmureg();
1887	static int smp_catch;
1888
1889	if(viking_mxcc_present) {
1890		unsigned long mxcc_control = mxcc_get_creg();
1891
1892		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1893		mxcc_control &= ~(MXCC_CTL_RRC);
1894		mxcc_set_creg(mxcc_control);
1895
1896		/*
1897		 * We don't need memory parity checks.
1898		 * XXX This is a mess, have to dig out later. ecd.
1899		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1900		 */
1901
1902		/* We do cache ptables on MXCC. */
1903		mreg |= VIKING_TCENABLE;
1904	} else {
1905		unsigned long bpreg;
1906
1907		mreg &= ~(VIKING_TCENABLE);
1908		if(smp_catch++) {
1909			/* Must disable mixed-cmd mode here for other cpu's. */
1910			bpreg = viking_get_bpreg();
1911			bpreg &= ~(VIKING_ACTION_MIX);
1912			viking_set_bpreg(bpreg);
1913
1914			/* Just in case PROM does something funny. */
1915			msi_set_sync();
1916		}
1917	}
1918
1919	mreg |= VIKING_SPENABLE;
1920	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1921	mreg |= VIKING_SBENABLE;
1922	mreg &= ~(VIKING_ACENABLE);
1923	srmmu_set_mmureg(mreg);
1924}
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926static void __init init_viking(void)
1927{
1928	unsigned long mreg = srmmu_get_mmureg();
1929
1930	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1931	if(mreg & VIKING_MMODE) {
1932		srmmu_name = "TI Viking";
1933		viking_mxcc_present = 0;
1934		msi_set_sync();
1935
1936		BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1937		BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1938		BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1939
1940		/*
1941		 * We need this to make sure old viking takes no hits
1942		 * on it's cache for dma snoops to workaround the
1943		 * "load from non-cacheable memory" interrupt bug.
1944		 * This is only necessary because of the new way in
1945		 * which we use the IOMMU.
1946		 */
1947		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1948
 
 
1949		flush_page_for_dma_global = 0;
1950	} else {
1951		srmmu_name = "TI Viking/MXCC";
1952		viking_mxcc_present = 1;
1953
1954		srmmu_cache_pagetables = 1;
1955
1956		/* MXCC vikings lack the DMA snooping bug. */
1957		BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1958	}
1959
1960	BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1961	BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1962	BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1963	BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1964
1965#ifdef CONFIG_SMP
1966	if (sparc_cpu_model == sun4d) {
1967		BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1968		BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1969		BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1970		BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1971	} else
1972#endif
1973	{
1974		BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1975		BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1976		BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1977		BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1978	}
1979
1980	BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1981	BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1982
1983	poke_srmmu = poke_viking;
1984}
1985
1986#ifdef CONFIG_SPARC_LEON
1987
1988void __init poke_leonsparc(void)
1989{
1990}
1991
1992void __init init_leon(void)
1993{
1994
1995	srmmu_name = "LEON";
1996
1997	BTFIXUPSET_CALL(flush_cache_all, leon_flush_cache_all,
1998			BTFIXUPCALL_NORM);
1999	BTFIXUPSET_CALL(flush_cache_mm, leon_flush_cache_all,
2000			BTFIXUPCALL_NORM);
2001	BTFIXUPSET_CALL(flush_cache_page, leon_flush_pcache_all,
2002			BTFIXUPCALL_NORM);
2003	BTFIXUPSET_CALL(flush_cache_range, leon_flush_cache_all,
2004			BTFIXUPCALL_NORM);
2005	BTFIXUPSET_CALL(flush_page_for_dma, leon_flush_dcache_all,
2006			BTFIXUPCALL_NORM);
2007
2008	BTFIXUPSET_CALL(flush_tlb_all, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2009	BTFIXUPSET_CALL(flush_tlb_mm, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2010	BTFIXUPSET_CALL(flush_tlb_page, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2011	BTFIXUPSET_CALL(flush_tlb_range, leon_flush_tlb_all, BTFIXUPCALL_NORM);
2012
2013	BTFIXUPSET_CALL(__flush_page_to_ram, leon_flush_cache_all,
2014			BTFIXUPCALL_NOP);
2015	BTFIXUPSET_CALL(flush_sig_insns, leon_flush_cache_all, BTFIXUPCALL_NOP);
2016
2017	poke_srmmu = poke_leonsparc;
2018
2019	srmmu_cache_pagetables = 0;
2020
2021	leon_flush_during_switch = leon_flush_needed();
2022}
2023#endif
2024
2025/* Probe for the srmmu chip version. */
2026static void __init get_srmmu_type(void)
2027{
2028	unsigned long mreg, psr;
2029	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2030
2031	srmmu_modtype = SRMMU_INVAL_MOD;
2032	hwbug_bitmask = 0;
2033
2034	mreg = srmmu_get_mmureg(); psr = get_psr();
2035	mod_typ = (mreg & 0xf0000000) >> 28;
2036	mod_rev = (mreg & 0x0f000000) >> 24;
2037	psr_typ = (psr >> 28) & 0xf;
2038	psr_vers = (psr >> 24) & 0xf;
2039
2040	/* First, check for sparc-leon. */
2041	if (sparc_cpu_model == sparc_leon) {
2042		init_leon();
2043		return;
2044	}
2045
2046	/* Second, check for HyperSparc or Cypress. */
2047	if(mod_typ == 1) {
2048		switch(mod_rev) {
2049		case 7:
2050			/* UP or MP Hypersparc */
2051			init_hypersparc();
2052			break;
2053		case 0:
2054		case 2:
2055			/* Uniprocessor Cypress */
2056			init_cypress_604();
2057			break;
2058		case 10:
2059		case 11:
2060		case 12:
2061			/* _REALLY OLD_ Cypress MP chips... */
2062		case 13:
2063		case 14:
2064		case 15:
2065			/* MP Cypress mmu/cache-controller */
2066			init_cypress_605(mod_rev);
2067			break;
2068		default:
2069			/* Some other Cypress revision, assume a 605. */
2070			init_cypress_605(mod_rev);
2071			break;
2072		}
2073		return;
2074	}
2075	
2076	/*
2077	 * Now Fujitsu TurboSparc. It might happen that it is
2078	 * in Swift emulation mode, so we will check later...
2079	 */
2080	if (psr_typ == 0 && psr_vers == 5) {
2081		init_turbosparc();
2082		return;
2083	}
2084
2085	/* Next check for Fujitsu Swift. */
2086	if(psr_typ == 0 && psr_vers == 4) {
2087		phandle cpunode;
2088		char node_str[128];
2089
2090		/* Look if it is not a TurboSparc emulating Swift... */
2091		cpunode = prom_getchild(prom_root_node);
2092		while((cpunode = prom_getsibling(cpunode)) != 0) {
2093			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2094			if(!strcmp(node_str, "cpu")) {
2095				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2096				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2097					init_turbosparc();
2098					return;
2099				}
2100				break;
2101			}
2102		}
2103		
2104		init_swift();
2105		return;
2106	}
2107
2108	/* Now the Viking family of srmmu. */
2109	if(psr_typ == 4 &&
2110	   ((psr_vers == 0) ||
2111	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2112		init_viking();
2113		return;
2114	}
2115
2116	/* Finally the Tsunami. */
2117	if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2118		init_tsunami();
2119		return;
2120	}
2121
2122	/* Oh well */
2123	srmmu_is_bad();
2124}
2125
2126/* don't laugh, static pagetables */
2127static void srmmu_check_pgt_cache(int low, int high)
 
2128{
 
 
2129}
2130
2131extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2132	tsetup_mmu_patchme, rtrap_mmu_patchme;
2133
2134extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2135	tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2136
2137extern unsigned long srmmu_fault;
2138
2139#define PATCH_BRANCH(insn, dest) do { \
2140		iaddr = &(insn); \
2141		daddr = &(dest); \
2142		*iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2143	} while(0)
2144
2145static void __init patch_window_trap_handlers(void)
2146{
2147	unsigned long *iaddr, *daddr;
2148	
2149	PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2150	PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2151	PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2152	PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2153	PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2154	PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2155	PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2156}
2157
2158#ifdef CONFIG_SMP
2159/* Local cross-calls. */
2160static void smp_flush_page_for_dma(unsigned long page)
2161{
2162	xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2163	local_flush_page_for_dma(page);
2164}
2165
2166#endif
2167
2168static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2169{
2170	return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
 
 
 
 
 
 
 
2171}
2172
2173static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2174{
2175	return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
2176}
2177
2178static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
 
 
2179{
2180	prot &= ~__pgprot(SRMMU_CACHE);
2181
2182	return prot;
 
 
 
 
 
 
 
 
2183}
2184
2185/* Load up routines and constants for sun4m and sun4d mmu */
2186void __init ld_mmu_srmmu(void)
 
2187{
2188	extern void ld_mmu_iommu(void);
2189	extern void ld_mmu_iounit(void);
2190	extern void ___xchg32_sun4md(void);
2191
2192	BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2193	BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2194	BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2195
2196	BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2197	BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2198
2199	BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2200	PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2201	BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2202	BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2203	BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2204	page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2205
2206	/* Functions */
2207	BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2208#ifndef CONFIG_SMP	
2209	BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2210#endif
2211	BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
 
 
 
 
2212
2213	BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2214	BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
 
2215
2216	BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2217	BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2218	BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2219
2220	BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2221	BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2222
2223	BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2224	BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2225	BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2226
2227	BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2228	BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2229	BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2230	BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2231
2232	BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2233	BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2234	BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2235	BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2236	BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2237	BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2238	
2239	BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2240	BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2241	BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2242
2243	BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2244	BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2245	BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2246	BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2247	BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2248	BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2249	BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2250	BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2251
2252	BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2253	BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2254	BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2255	BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2256	BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2257	BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2258	BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2259	BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2260	BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2261	BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2262	BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2263	BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2264
2265	BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2266	BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2267
2268	BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2269	BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2270	BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2271
2272	BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
 
 
2273
2274	BTFIXUPSET_CALL(alloc_thread_info_node, srmmu_alloc_thread_info_node, BTFIXUPCALL_NORM);
2275	BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276
2277	BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2278	BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279
 
 
 
 
2280	get_srmmu_type();
2281	patch_window_trap_handlers();
2282
2283#ifdef CONFIG_SMP
2284	/* El switcheroo... */
 
2285
2286	BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2287	BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2288	BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2289	BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2290	BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2291	BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2292	BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2293	BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2294	BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2295	BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2296	BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2297
2298	BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2299	BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2300	BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2301	BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2302	if (sparc_cpu_model != sun4d &&
2303	    sparc_cpu_model != sparc_leon) {
2304		BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2305		BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2306		BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2307		BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2308	}
2309	BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2310	BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2311	BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2312
2313	if (poke_srmmu == poke_viking) {
2314		/* Avoid unnecessary cross calls. */
2315		BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
2316		BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
2317		BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
2318		BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
2319		BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
2320		BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
2321		BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
 
2322	}
 
 
 
 
2323#endif
2324
2325	if (sparc_cpu_model == sun4d)
2326		ld_mmu_iounit();
2327	else
2328		ld_mmu_iommu();
2329#ifdef CONFIG_SMP
2330	if (sparc_cpu_model == sun4d)
2331		sun4d_init_smp();
2332	else if (sparc_cpu_model == sparc_leon)
2333		leon_init_smp();
2334	else
2335		sun4m_init_smp();
2336#endif
2337}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
 
 
 
 
 
 
 
 
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
 
 
 
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
 
 
 
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
 
 
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
 
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
 
 
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END	}
  77#endif
  78
 
 
 
  79int flush_page_for_dma_global = 1;
  80
 
 
 
 
 
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 
 104static struct bit_map srmmu_nocache_map;
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112	pte_t pte;
 
 113
 114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115	set_pte((pte_t *)ctxp, pte);
 
 
 116}
 117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118/*
 119 * Locations of MSI Registers.
 
 120 */
 121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
 
 
 
 
 
 
 
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131			      "andn %%g3, %2, %%g3\n\t"
 132			      "sta %%g3, [%0] %1\n\t" : :
 133			      "r" (MSI_MBUS_ARBEN),
 134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138{
 139	unsigned long ptp;	/* Physical address, shifted right by 4 */
 140	int i;
 141
 142	ptp = __nocache_pa(ptep) >> 4;
 143	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 144		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 145		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 146	}
 147}
 148
 149void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 150{
 151	unsigned long ptp;	/* Physical address, shifted right by 4 */
 152	int i;
 153
 154	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 155	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 156		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 157		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 158	}
 159}
 160
 161/* Find an entry in the third-level page table.. */
 162pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163{
 164	void *pte;
 165
 166	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 167	return (pte_t *) pte +
 168	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 169}
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171/*
 172 * size: bytes to allocate in the nocache area.
 173 * align: bytes, number to align at.
 174 * Returns the virtual address of the allocated area.
 175 */
 176static void *__srmmu_get_nocache(int size, int align)
 177{
 178	int offset;
 179	unsigned long addr;
 180
 181	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 182		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 183		       size);
 184		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 185	}
 186	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 187		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 188		       size);
 189		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 190	}
 191	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 192
 193	offset = bit_map_string_get(&srmmu_nocache_map,
 194				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 195				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 196	if (offset == -1) {
 197		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 198		       size, (int) srmmu_nocache_size,
 199		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 200		return NULL;
 201	}
 202
 203	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 204	return (void *)addr;
 205}
 206
 207void *srmmu_get_nocache(int size, int align)
 208{
 209	void *tmp;
 210
 211	tmp = __srmmu_get_nocache(size, align);
 212
 213	if (tmp)
 214		memset(tmp, 0, size);
 215
 216	return tmp;
 217}
 218
 219void srmmu_free_nocache(void *addr, int size)
 220{
 221	unsigned long vaddr;
 222	int offset;
 223
 224	vaddr = (unsigned long)addr;
 225	if (vaddr < SRMMU_NOCACHE_VADDR) {
 226		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 227		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 228		BUG();
 229	}
 230	if (vaddr + size > srmmu_nocache_end) {
 231		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 232		    vaddr, srmmu_nocache_end);
 233		BUG();
 234	}
 235	if (!is_power_of_2(size)) {
 236		printk("Size 0x%x is not a power of 2\n", size);
 237		BUG();
 238	}
 239	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 240		printk("Size 0x%x is too small\n", size);
 241		BUG();
 242	}
 243	if (vaddr & (size - 1)) {
 244		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 245		BUG();
 246	}
 247
 248	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 249	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 250
 251	bit_map_clear(&srmmu_nocache_map, offset, size);
 252}
 253
 254static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 255						 unsigned long end);
 256
 257/* Return how much physical memory we have.  */
 258static unsigned long __init probe_memory(void)
 259{
 260	unsigned long total = 0;
 261	int i;
 262
 263	for (i = 0; sp_banks[i].num_bytes; i++)
 264		total += sp_banks[i].num_bytes;
 265
 266	return total;
 267}
 268
 269/*
 270 * Reserve nocache dynamically proportionally to the amount of
 271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 272 */
 273static void __init srmmu_nocache_calcsize(void)
 274{
 275	unsigned long sysmemavail = probe_memory() / 1024;
 276	int srmmu_nocache_npages;
 277
 278	srmmu_nocache_npages =
 279		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 280
 281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 282	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 283	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 284		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 285
 286	/* anything above 1280 blows up */
 287	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 288		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 289
 290	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 291	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 292}
 293
 294static void __init srmmu_nocache_init(void)
 295{
 296	void *srmmu_nocache_bitmap;
 297	unsigned int bitmap_bits;
 298	pgd_t *pgd;
 299	pmd_t *pmd;
 300	pte_t *pte;
 301	unsigned long paddr, vaddr;
 302	unsigned long pteval;
 303
 304	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 305
 306	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 307					    SRMMU_NOCACHE_ALIGN_MAX);
 308	if (!srmmu_nocache_pool)
 309		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 310		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 311	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 312
 313	srmmu_nocache_bitmap =
 314		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 315			       SMP_CACHE_BYTES);
 316	if (!srmmu_nocache_bitmap)
 317		panic("%s: Failed to allocate %zu bytes\n", __func__,
 318		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 319	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 320
 321	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 322	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 323	init_mm.pgd = srmmu_swapper_pg_dir;
 324
 325	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 326
 327	paddr = __pa((unsigned long)srmmu_nocache_pool);
 328	vaddr = SRMMU_NOCACHE_VADDR;
 329
 330	while (vaddr < srmmu_nocache_end) {
 331		pgd = pgd_offset_k(vaddr);
 332		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 333		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 334
 335		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 336
 337		if (srmmu_cache_pagetables)
 338			pteval |= SRMMU_CACHE;
 339
 340		set_pte(__nocache_fix(pte), __pte(pteval));
 341
 342		vaddr += PAGE_SIZE;
 343		paddr += PAGE_SIZE;
 344	}
 345
 346	flush_cache_all();
 347	flush_tlb_all();
 348}
 349
 350pgd_t *get_pgd_fast(void)
 351{
 352	pgd_t *pgd = NULL;
 353
 354	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 355	if (pgd) {
 356		pgd_t *init = pgd_offset_k(0);
 357		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 358		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 359						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 360	}
 361
 362	return pgd;
 363}
 364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365/*
 366 * Hardware needs alignment to 256 only, but we align to whole page size
 367 * to reduce fragmentation problems due to the buddy principle.
 368 * XXX Provide actual fragmentation statistics in /proc.
 369 *
 370 * Alignments up to the page size are the same for physical and virtual
 371 * addresses of the nocache area.
 372 */
 373pgtable_t pte_alloc_one(struct mm_struct *mm)
 
 
 
 
 
 
 
 374{
 375	unsigned long pte;
 376	struct page *page;
 377
 378	if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
 379		return NULL;
 380	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 381	if (!pgtable_pte_page_ctor(page)) {
 382		__free_page(page);
 383		return NULL;
 384	}
 385	return page;
 386}
 387
 388void pte_free(struct mm_struct *mm, pgtable_t pte)
 
 
 
 
 
 389{
 390	unsigned long p;
 391
 392	pgtable_pte_page_dtor(pte);
 393	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 394	if (p == 0)
 395		BUG();
 396	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 397
 398	/* free non cached virtual address*/
 399	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 400}
 401
 402/* context handling - a dynamically sized pool is used */
 403#define NO_CONTEXT	-1
 404
 405struct ctx_list {
 406	struct ctx_list *next;
 407	struct ctx_list *prev;
 408	unsigned int ctx_number;
 409	struct mm_struct *ctx_mm;
 410};
 411
 412static struct ctx_list *ctx_list_pool;
 413static struct ctx_list ctx_free;
 414static struct ctx_list ctx_used;
 415
 416/* At boot time we determine the number of contexts */
 417static int num_contexts;
 418
 419static inline void remove_from_ctx_list(struct ctx_list *entry)
 420{
 421	entry->next->prev = entry->prev;
 422	entry->prev->next = entry->next;
 423}
 424
 425static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 426{
 427	entry->next = head;
 428	(entry->prev = head->prev)->next = entry;
 429	head->prev = entry;
 430}
 431#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 432#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 433
 434
 435static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 436{
 437	struct ctx_list *ctxp;
 438
 439	ctxp = ctx_free.next;
 440	if (ctxp != &ctx_free) {
 441		remove_from_ctx_list(ctxp);
 442		add_to_used_ctxlist(ctxp);
 443		mm->context = ctxp->ctx_number;
 444		ctxp->ctx_mm = mm;
 445		return;
 446	}
 447	ctxp = ctx_used.next;
 448	if (ctxp->ctx_mm == old_mm)
 449		ctxp = ctxp->next;
 450	if (ctxp == &ctx_used)
 451		panic("out of mmu contexts");
 452	flush_cache_mm(ctxp->ctx_mm);
 453	flush_tlb_mm(ctxp->ctx_mm);
 454	remove_from_ctx_list(ctxp);
 455	add_to_used_ctxlist(ctxp);
 456	ctxp->ctx_mm->context = NO_CONTEXT;
 457	ctxp->ctx_mm = mm;
 458	mm->context = ctxp->ctx_number;
 459}
 460
 461static inline void free_context(int context)
 462{
 463	struct ctx_list *ctx_old;
 464
 465	ctx_old = ctx_list_pool + context;
 466	remove_from_ctx_list(ctx_old);
 467	add_to_free_ctxlist(ctx_old);
 468}
 469
 470static void __init sparc_context_init(int numctx)
 471{
 472	int ctx;
 473	unsigned long size;
 474
 475	size = numctx * sizeof(struct ctx_list);
 476	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 477	if (!ctx_list_pool)
 478		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 479
 480	for (ctx = 0; ctx < numctx; ctx++) {
 481		struct ctx_list *clist;
 482
 483		clist = (ctx_list_pool + ctx);
 484		clist->ctx_number = ctx;
 485		clist->ctx_mm = NULL;
 486	}
 487	ctx_free.next = ctx_free.prev = &ctx_free;
 488	ctx_used.next = ctx_used.prev = &ctx_used;
 489	for (ctx = 0; ctx < numctx; ctx++)
 490		add_to_free_ctxlist(ctx_list_pool + ctx);
 491}
 492
 493void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 494	       struct task_struct *tsk)
 495{
 496	unsigned long flags;
 497
 498	if (mm->context == NO_CONTEXT) {
 499		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 500		alloc_context(old_mm, mm);
 501		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 502		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 503	}
 504
 505	if (sparc_cpu_model == sparc_leon)
 506		leon_switch_mm();
 507
 508	if (is_hypersparc)
 509		hyper_flush_whole_icache();
 510
 511	srmmu_set_context(mm->context);
 512}
 513
 514/* Low level IO area allocation on the SRMMU. */
 515static inline void srmmu_mapioaddr(unsigned long physaddr,
 516				   unsigned long virt_addr, int bus_type)
 517{
 518	pgd_t *pgdp;
 519	pmd_t *pmdp;
 520	pte_t *ptep;
 521	unsigned long tmp;
 522
 523	physaddr &= PAGE_MASK;
 524	pgdp = pgd_offset_k(virt_addr);
 525	pmdp = pmd_offset(pgdp, virt_addr);
 526	ptep = pte_offset_kernel(pmdp, virt_addr);
 527	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 528
 529	/* I need to test whether this is consistent over all
 
 530	 * sun4m's.  The bus_type represents the upper 4 bits of
 531	 * 36-bit physical address on the I/O space lines...
 532	 */
 533	tmp |= (bus_type << 28);
 534	tmp |= SRMMU_PRIV;
 535	__flush_page_to_ram(virt_addr);
 536	set_pte(ptep, __pte(tmp));
 537}
 538
 539void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 540		      unsigned long xva, unsigned int len)
 541{
 542	while (len != 0) {
 543		len -= PAGE_SIZE;
 544		srmmu_mapioaddr(xpa, xva, bus);
 545		xva += PAGE_SIZE;
 546		xpa += PAGE_SIZE;
 547	}
 548	flush_tlb_all();
 549}
 550
 551static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 552{
 553	pgd_t *pgdp;
 554	pmd_t *pmdp;
 555	pte_t *ptep;
 556
 557	pgdp = pgd_offset_k(virt_addr);
 558	pmdp = pmd_offset(pgdp, virt_addr);
 559	ptep = pte_offset_kernel(pmdp, virt_addr);
 560
 561	/* No need to flush uncacheable page. */
 562	__pte_clear(ptep);
 563}
 564
 565void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 566{
 567	while (len != 0) {
 568		len -= PAGE_SIZE;
 569		srmmu_unmapioaddr(virt_addr);
 570		virt_addr += PAGE_SIZE;
 571	}
 572	flush_tlb_all();
 573}
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575/* tsunami.S */
 576extern void tsunami_flush_cache_all(void);
 577extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 578extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 579extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 580extern void tsunami_flush_page_to_ram(unsigned long page);
 581extern void tsunami_flush_page_for_dma(unsigned long page);
 582extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 583extern void tsunami_flush_tlb_all(void);
 584extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 585extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 586extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 587extern void tsunami_setup_blockops(void);
 588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589/* swift.S */
 590extern void swift_flush_cache_all(void);
 591extern void swift_flush_cache_mm(struct mm_struct *mm);
 592extern void swift_flush_cache_range(struct vm_area_struct *vma,
 593				    unsigned long start, unsigned long end);
 594extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 595extern void swift_flush_page_to_ram(unsigned long page);
 596extern void swift_flush_page_for_dma(unsigned long page);
 597extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 598extern void swift_flush_tlb_all(void);
 599extern void swift_flush_tlb_mm(struct mm_struct *mm);
 600extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 601				  unsigned long start, unsigned long end);
 602extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 603
 604#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 605void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 606{
 607	int cctx, ctx1;
 608
 609	page &= PAGE_MASK;
 610	if ((ctx1 = vma->vm_mm->context) != -1) {
 611		cctx = srmmu_get_context();
 612/* Is context # ever different from current context? P3 */
 613		if (cctx != ctx1) {
 614			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 615			srmmu_set_context(ctx1);
 616			swift_flush_page(page);
 617			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 618					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 619			srmmu_set_context(cctx);
 620		} else {
 621			 /* Rm. prot. bits from virt. c. */
 622			/* swift_flush_cache_all(); */
 623			/* swift_flush_cache_page(vma, page); */
 624			swift_flush_page(page);
 625
 626			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 627				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 628			/* same as above: srmmu_flush_tlb_page() */
 629		}
 630	}
 631}
 632#endif
 633
 634/*
 635 * The following are all MBUS based SRMMU modules, and therefore could
 636 * be found in a multiprocessor configuration.  On the whole, these
 637 * chips seems to be much more touchy about DVMA and page tables
 638 * with respect to cache coherency.
 639 */
 640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641/* viking.S */
 642extern void viking_flush_cache_all(void);
 643extern void viking_flush_cache_mm(struct mm_struct *mm);
 644extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 645				     unsigned long end);
 646extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 647extern void viking_flush_page_to_ram(unsigned long page);
 648extern void viking_flush_page_for_dma(unsigned long page);
 649extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 650extern void viking_flush_page(unsigned long page);
 651extern void viking_mxcc_flush_page(unsigned long page);
 652extern void viking_flush_tlb_all(void);
 653extern void viking_flush_tlb_mm(struct mm_struct *mm);
 654extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 655				   unsigned long end);
 656extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 657				  unsigned long page);
 658extern void sun4dsmp_flush_tlb_all(void);
 659extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 660extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 661				   unsigned long end);
 662extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 663				  unsigned long page);
 664
 665/* hypersparc.S */
 666extern void hypersparc_flush_cache_all(void);
 667extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 668extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 669extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 670extern void hypersparc_flush_page_to_ram(unsigned long page);
 671extern void hypersparc_flush_page_for_dma(unsigned long page);
 672extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 673extern void hypersparc_flush_tlb_all(void);
 674extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 675extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 676extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 677extern void hypersparc_setup_blockops(void);
 678
 679/*
 680 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 681 *       kernel mappings are done with one single contiguous chunk of
 682 *       ram.  On small ram machines (classics mainly) we only get
 683 *       around 8mb mapped for us.
 684 */
 685
 686static void __init early_pgtable_allocfail(char *type)
 687{
 688	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 689	prom_halt();
 690}
 691
 692static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 693							unsigned long end)
 694{
 695	pgd_t *pgdp;
 696	pmd_t *pmdp;
 697	pte_t *ptep;
 698
 699	while (start < end) {
 700		pgdp = pgd_offset_k(start);
 701		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 702			pmdp = __srmmu_get_nocache(
 703			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 704			if (pmdp == NULL)
 705				early_pgtable_allocfail("pmd");
 706			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 707			pgd_set(__nocache_fix(pgdp), pmdp);
 708		}
 709		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 710		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 711			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 712			if (ptep == NULL)
 713				early_pgtable_allocfail("pte");
 714			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 715			pmd_set(__nocache_fix(pmdp), ptep);
 716		}
 717		if (start > (0xffffffffUL - PMD_SIZE))
 718			break;
 719		start = (start + PMD_SIZE) & PMD_MASK;
 720	}
 721}
 722
 723static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 724						  unsigned long end)
 725{
 726	pgd_t *pgdp;
 727	pmd_t *pmdp;
 728	pte_t *ptep;
 729
 730	while (start < end) {
 731		pgdp = pgd_offset_k(start);
 732		if (pgd_none(*pgdp)) {
 733			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 734			if (pmdp == NULL)
 735				early_pgtable_allocfail("pmd");
 736			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 737			pgd_set(pgdp, pmdp);
 738		}
 739		pmdp = pmd_offset(pgdp, start);
 740		if (srmmu_pmd_none(*pmdp)) {
 741			ptep = __srmmu_get_nocache(PTE_SIZE,
 742							     PTE_SIZE);
 743			if (ptep == NULL)
 744				early_pgtable_allocfail("pte");
 745			memset(ptep, 0, PTE_SIZE);
 746			pmd_set(pmdp, ptep);
 747		}
 748		if (start > (0xffffffffUL - PMD_SIZE))
 749			break;
 750		start = (start + PMD_SIZE) & PMD_MASK;
 751	}
 752}
 753
 754/* These flush types are not available on all chips... */
 755static inline unsigned long srmmu_probe(unsigned long vaddr)
 756{
 757	unsigned long retval;
 758
 759	if (sparc_cpu_model != sparc_leon) {
 760
 761		vaddr &= PAGE_MASK;
 762		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 763				     "=r" (retval) :
 764				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 765	} else {
 766		retval = leon_swprobe(vaddr, NULL);
 767	}
 768	return retval;
 769}
 770
 771/*
 772 * This is much cleaner than poking around physical address space
 773 * looking at the prom's page table directly which is what most
 774 * other OS's do.  Yuck... this is much better.
 775 */
 776static void __init srmmu_inherit_prom_mappings(unsigned long start,
 777					       unsigned long end)
 778{
 779	unsigned long probed;
 780	unsigned long addr;
 781	pgd_t *pgdp;
 782	pmd_t *pmdp;
 783	pte_t *ptep;
 784	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 
 785
 786	while (start <= end) {
 787		if (start == 0)
 788			break; /* probably wrap around */
 789		if (start == 0xfef00000)
 790			start = KADB_DEBUGGER_BEGVM;
 791		probed = srmmu_probe(start);
 792		if (!probed) {
 793			/* continue probing until we find an entry */
 794			start += PAGE_SIZE;
 795			continue;
 796		}
 797
 798		/* A red snapper, see what it really is. */
 799		what = 0;
 800		addr = start - PAGE_SIZE;
 801
 802		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 803			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 804				what = 1;
 805		}
 806
 807		if (!(start & ~(SRMMU_PGDIR_MASK))) {
 808			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 
 809				what = 2;
 810		}
 811
 812		pgdp = pgd_offset_k(start);
 813		if (what == 2) {
 814			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 815			start += SRMMU_PGDIR_SIZE;
 816			continue;
 817		}
 818		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 819			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 820						   SRMMU_PMD_TABLE_SIZE);
 821			if (pmdp == NULL)
 822				early_pgtable_allocfail("pmd");
 823			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 824			pgd_set(__nocache_fix(pgdp), pmdp);
 825		}
 826		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 827		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 828			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 
 829			if (ptep == NULL)
 830				early_pgtable_allocfail("pte");
 831			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 832			pmd_set(__nocache_fix(pmdp), ptep);
 833		}
 834		if (what == 1) {
 835			/* We bend the rule where all 16 PTPs in a pmd_t point
 
 836			 * inside the same PTE page, and we leak a perfectly
 837			 * good hardware PTE piece. Alternatives seem worse.
 838			 */
 839			unsigned int x;	/* Index of HW PMD in soft cluster */
 840			unsigned long *val;
 841			x = (start >> PMD_SHIFT) & 15;
 842			val = &pmdp->pmdv[x];
 843			*(unsigned long *)__nocache_fix(val) = probed;
 844			start += SRMMU_REAL_PMD_SIZE;
 845			continue;
 846		}
 847		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 848		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
 849		start += PAGE_SIZE;
 850	}
 851}
 852
 853#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 854
 855/* Create a third-level SRMMU 16MB page mapping. */
 856static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 857{
 858	pgd_t *pgdp = pgd_offset_k(vaddr);
 859	unsigned long big_pte;
 860
 861	big_pte = KERNEL_PTE(phys_base >> 4);
 862	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 863}
 864
 865/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 866static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 867{
 868	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 869	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 870	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 871	/* Map "low" memory only */
 872	const unsigned long min_vaddr = PAGE_OFFSET;
 873	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 874
 875	if (vstart < min_vaddr || vstart >= max_vaddr)
 876		return vstart;
 877
 878	if (vend > max_vaddr || vend < min_vaddr)
 879		vend = max_vaddr;
 880
 881	while (vstart < vend) {
 882		do_large_mapping(vstart, pstart);
 883		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 884	}
 885	return vstart;
 886}
 887
 888static void __init map_kernel(void)
 
 
 
 
 
 
 
 889{
 890	int i;
 891
 892	if (phys_base > 0) {
 893		do_large_mapping(PAGE_OFFSET, phys_base);
 894	}
 895
 896	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 897		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 898	}
 
 
 899}
 900
 901void (*poke_srmmu)(void) = NULL;
 
 
 
 
 
 902
 903void __init srmmu_paging_init(void)
 904{
 905	int i;
 906	phandle cpunode;
 907	char node_str[128];
 908	pgd_t *pgd;
 909	pmd_t *pmd;
 910	pte_t *pte;
 911	unsigned long pages_avail;
 912
 913	init_mm.context = (unsigned long) NO_CONTEXT;
 914	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 915
 916	if (sparc_cpu_model == sun4d)
 917		num_contexts = 65536; /* We know it is Viking */
 918	else {
 919		/* Find the number of contexts on the srmmu. */
 920		cpunode = prom_getchild(prom_root_node);
 921		num_contexts = 0;
 922		while (cpunode != 0) {
 923			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 924			if (!strcmp(node_str, "cpu")) {
 925				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 926				break;
 927			}
 928			cpunode = prom_getsibling(cpunode);
 929		}
 930	}
 931
 932	if (!num_contexts) {
 933		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 934		prom_halt();
 935	}
 936
 937	pages_avail = 0;
 938	last_valid_pfn = bootmem_init(&pages_avail);
 939
 940	srmmu_nocache_calcsize();
 941	srmmu_nocache_init();
 942	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 943	map_kernel();
 944
 945	/* ctx table has to be physically aligned to its size */
 946	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 947	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 948
 949	for (i = 0; i < num_contexts; i++)
 950		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 951
 952	flush_cache_all();
 953	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 954#ifdef CONFIG_SMP
 955	/* Stop from hanging here... */
 956	local_ops->tlb_all();
 957#else
 958	flush_tlb_all();
 959#endif
 960	poke_srmmu();
 961
 962	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 963	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 964
 965	srmmu_allocate_ptable_skeleton(
 966		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 967	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 968
 969	pgd = pgd_offset_k(PKMAP_BASE);
 970	pmd = pmd_offset(pgd, PKMAP_BASE);
 971	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 972	pkmap_page_table = pte;
 973
 974	flush_cache_all();
 975	flush_tlb_all();
 976
 977	sparc_context_init(num_contexts);
 978
 979	kmap_init();
 980
 981	{
 982		unsigned long zones_size[MAX_NR_ZONES];
 983		unsigned long zholes_size[MAX_NR_ZONES];
 984		unsigned long npages;
 985		int znum;
 986
 987		for (znum = 0; znum < MAX_NR_ZONES; znum++)
 988			zones_size[znum] = zholes_size[znum] = 0;
 989
 990		npages = max_low_pfn - pfn_base;
 991
 992		zones_size[ZONE_DMA] = npages;
 993		zholes_size[ZONE_DMA] = npages - pages_avail;
 994
 995		npages = highend_pfn - max_low_pfn;
 996		zones_size[ZONE_HIGHMEM] = npages;
 997		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 998
 999		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1000	}
1001}
1002
1003void mmu_info(struct seq_file *m)
1004{
1005	seq_printf(m,
1006		   "MMU type\t: %s\n"
1007		   "contexts\t: %d\n"
1008		   "nocache total\t: %ld\n"
1009		   "nocache used\t: %d\n",
1010		   srmmu_name,
1011		   num_contexts,
1012		   srmmu_nocache_size,
1013		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1014}
1015
1016int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1017{
1018	mm->context = NO_CONTEXT;
1019	return 0;
1020}
1021
1022void destroy_context(struct mm_struct *mm)
1023{
1024	unsigned long flags;
1025
1026	if (mm->context != NO_CONTEXT) {
1027		flush_cache_mm(mm);
1028		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1029		flush_tlb_mm(mm);
1030		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1031		free_context(mm->context);
1032		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1033		mm->context = NO_CONTEXT;
1034	}
1035}
1036
1037/* Init various srmmu chip types. */
1038static void __init srmmu_is_bad(void)
1039{
1040	prom_printf("Could not determine SRMMU chip type.\n");
1041	prom_halt();
1042}
1043
1044static void __init init_vac_layout(void)
1045{
1046	phandle nd;
1047	int cache_lines;
1048	char node_str[128];
1049#ifdef CONFIG_SMP
1050	int cpu = 0;
1051	unsigned long max_size = 0;
1052	unsigned long min_line_size = 0x10000000;
1053#endif
1054
1055	nd = prom_getchild(prom_root_node);
1056	while ((nd = prom_getsibling(nd)) != 0) {
1057		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1058		if (!strcmp(node_str, "cpu")) {
1059			vac_line_size = prom_getint(nd, "cache-line-size");
1060			if (vac_line_size == -1) {
1061				prom_printf("can't determine cache-line-size, halting.\n");
 
1062				prom_halt();
1063			}
1064			cache_lines = prom_getint(nd, "cache-nlines");
1065			if (cache_lines == -1) {
1066				prom_printf("can't determine cache-nlines, halting.\n");
1067				prom_halt();
1068			}
1069
1070			vac_cache_size = cache_lines * vac_line_size;
1071#ifdef CONFIG_SMP
1072			if (vac_cache_size > max_size)
1073				max_size = vac_cache_size;
1074			if (vac_line_size < min_line_size)
1075				min_line_size = vac_line_size;
1076			//FIXME: cpus not contiguous!!
1077			cpu++;
1078			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1079				break;
1080#else
1081			break;
1082#endif
1083		}
1084	}
1085	if (nd == 0) {
1086		prom_printf("No CPU nodes found, halting.\n");
1087		prom_halt();
1088	}
1089#ifdef CONFIG_SMP
1090	vac_cache_size = max_size;
1091	vac_line_size = min_line_size;
1092#endif
1093	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094	       (int)vac_cache_size, (int)vac_line_size);
1095}
1096
1097static void poke_hypersparc(void)
1098{
1099	volatile unsigned long clear;
1100	unsigned long mreg = srmmu_get_mmureg();
1101
1102	hyper_flush_unconditional_combined();
1103
1104	mreg &= ~(HYPERSPARC_CWENABLE);
1105	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1106	mreg |= (HYPERSPARC_CMODE);
1107
1108	srmmu_set_mmureg(mreg);
1109
1110#if 0 /* XXX I think this is bad news... -DaveM */
1111	hyper_clear_all_tags();
1112#endif
1113
1114	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1115	hyper_flush_whole_icache();
1116	clear = srmmu_get_faddr();
1117	clear = srmmu_get_fstatus();
1118}
1119
1120static const struct sparc32_cachetlb_ops hypersparc_ops = {
1121	.cache_all	= hypersparc_flush_cache_all,
1122	.cache_mm	= hypersparc_flush_cache_mm,
1123	.cache_page	= hypersparc_flush_cache_page,
1124	.cache_range	= hypersparc_flush_cache_range,
1125	.tlb_all	= hypersparc_flush_tlb_all,
1126	.tlb_mm		= hypersparc_flush_tlb_mm,
1127	.tlb_page	= hypersparc_flush_tlb_page,
1128	.tlb_range	= hypersparc_flush_tlb_range,
1129	.page_to_ram	= hypersparc_flush_page_to_ram,
1130	.sig_insns	= hypersparc_flush_sig_insns,
1131	.page_for_dma	= hypersparc_flush_page_for_dma,
1132};
1133
1134static void __init init_hypersparc(void)
1135{
1136	srmmu_name = "ROSS HyperSparc";
1137	srmmu_modtype = HyperSparc;
1138
1139	init_vac_layout();
1140
1141	is_hypersparc = 1;
1142	sparc32_cachetlb_ops = &hypersparc_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143
1144	poke_srmmu = poke_hypersparc;
1145
1146	hypersparc_setup_blockops();
1147}
1148
1149static void poke_swift(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150{
1151	unsigned long mreg;
1152
1153	/* Clear any crap from the cache or else... */
1154	swift_flush_cache_all();
1155
1156	/* Enable I & D caches */
1157	mreg = srmmu_get_mmureg();
1158	mreg |= (SWIFT_IE | SWIFT_DE);
1159	/*
1160	 * The Swift branch folding logic is completely broken.  At
1161	 * trap time, if things are just right, if can mistakenly
1162	 * think that a trap is coming from kernel mode when in fact
1163	 * it is coming from user mode (it mis-executes the branch in
1164	 * the trap code).  So you see things like crashme completely
1165	 * hosing your machine which is completely unacceptable.  Turn
1166	 * this shit off... nice job Fujitsu.
1167	 */
1168	mreg &= ~(SWIFT_BF);
1169	srmmu_set_mmureg(mreg);
1170}
1171
1172static const struct sparc32_cachetlb_ops swift_ops = {
1173	.cache_all	= swift_flush_cache_all,
1174	.cache_mm	= swift_flush_cache_mm,
1175	.cache_page	= swift_flush_cache_page,
1176	.cache_range	= swift_flush_cache_range,
1177	.tlb_all	= swift_flush_tlb_all,
1178	.tlb_mm		= swift_flush_tlb_mm,
1179	.tlb_page	= swift_flush_tlb_page,
1180	.tlb_range	= swift_flush_tlb_range,
1181	.page_to_ram	= swift_flush_page_to_ram,
1182	.sig_insns	= swift_flush_sig_insns,
1183	.page_for_dma	= swift_flush_page_for_dma,
1184};
1185
1186#define SWIFT_MASKID_ADDR  0x10003018
1187static void __init init_swift(void)
1188{
1189	unsigned long swift_rev;
1190
1191	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1192			     "srl %0, 0x18, %0\n\t" :
1193			     "=r" (swift_rev) :
1194			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1195	srmmu_name = "Fujitsu Swift";
1196	switch (swift_rev) {
1197	case 0x11:
1198	case 0x20:
1199	case 0x23:
1200	case 0x30:
1201		srmmu_modtype = Swift_lots_o_bugs;
1202		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1203		/*
1204		 * Gee george, I wonder why Sun is so hush hush about
1205		 * this hardware bug... really braindamage stuff going
1206		 * on here.  However I think we can find a way to avoid
1207		 * all of the workaround overhead under Linux.  Basically,
1208		 * any page fault can cause kernel pages to become user
1209		 * accessible (the mmu gets confused and clears some of
1210		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1211		 * horrible eh?  But wait, after extensive testing it appears
1212		 * that if you use pgd_t level large kernel pte's (like the
1213		 * 4MB pages on the Pentium) the bug does not get tripped
1214		 * at all.  This avoids almost all of the major overhead.
1215		 * Welcome to a world where your vendor tells you to,
1216		 * "apply this kernel patch" instead of "sorry for the
1217		 * broken hardware, send it back and we'll give you
1218		 * properly functioning parts"
1219		 */
1220		break;
1221	case 0x25:
1222	case 0x31:
1223		srmmu_modtype = Swift_bad_c;
1224		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1225		/*
1226		 * You see Sun allude to this hardware bug but never
1227		 * admit things directly, they'll say things like,
1228		 * "the Swift chip cache problems" or similar.
1229		 */
1230		break;
1231	default:
1232		srmmu_modtype = Swift_ok;
1233		break;
1234	}
1235
1236	sparc32_cachetlb_ops = &swift_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237	flush_page_for_dma_global = 0;
1238
1239	/*
1240	 * Are you now convinced that the Swift is one of the
1241	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1242	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1243	 * you examined the microcode of the Swift you'd find
1244	 * XXX's all over the place.
1245	 */
1246	poke_srmmu = poke_swift;
1247}
1248
1249static void turbosparc_flush_cache_all(void)
1250{
1251	flush_user_windows();
1252	turbosparc_idflash_clear();
1253}
1254
1255static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1256{
1257	FLUSH_BEGIN(mm)
1258	flush_user_windows();
1259	turbosparc_idflash_clear();
1260	FLUSH_END
1261}
1262
1263static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1264{
1265	FLUSH_BEGIN(vma->vm_mm)
1266	flush_user_windows();
1267	turbosparc_idflash_clear();
1268	FLUSH_END
1269}
1270
1271static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1272{
1273	FLUSH_BEGIN(vma->vm_mm)
1274	flush_user_windows();
1275	if (vma->vm_flags & VM_EXEC)
1276		turbosparc_flush_icache();
1277	turbosparc_flush_dcache();
1278	FLUSH_END
1279}
1280
1281/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282static void turbosparc_flush_page_to_ram(unsigned long page)
1283{
1284#ifdef TURBOSPARC_WRITEBACK
1285	volatile unsigned long clear;
1286
1287	if (srmmu_probe(page))
1288		turbosparc_flush_page_cache(page);
1289	clear = srmmu_get_fstatus();
1290#endif
1291}
1292
1293static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1294{
1295}
1296
1297static void turbosparc_flush_page_for_dma(unsigned long page)
1298{
1299	turbosparc_flush_dcache();
1300}
1301
1302static void turbosparc_flush_tlb_all(void)
1303{
1304	srmmu_flush_whole_tlb();
1305}
1306
1307static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1308{
1309	FLUSH_BEGIN(mm)
1310	srmmu_flush_whole_tlb();
1311	FLUSH_END
1312}
1313
1314static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1315{
1316	FLUSH_BEGIN(vma->vm_mm)
1317	srmmu_flush_whole_tlb();
1318	FLUSH_END
1319}
1320
1321static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1322{
1323	FLUSH_BEGIN(vma->vm_mm)
1324	srmmu_flush_whole_tlb();
1325	FLUSH_END
1326}
1327
1328
1329static void poke_turbosparc(void)
1330{
1331	unsigned long mreg = srmmu_get_mmureg();
1332	unsigned long ccreg;
1333
1334	/* Clear any crap from the cache or else... */
1335	turbosparc_flush_cache_all();
1336	/* Temporarily disable I & D caches */
1337	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1338	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1339	srmmu_set_mmureg(mreg);
1340
1341	ccreg = turbosparc_get_ccreg();
1342
1343#ifdef TURBOSPARC_WRITEBACK
1344	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1345	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1346			/* Write-back D-cache, emulate VLSI
1347			 * abortion number three, not number one */
1348#else
1349	/* For now let's play safe, optimize later */
1350	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1351			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1352	ccreg &= ~(TURBOSPARC_uS2);
1353			/* Emulate VLSI abortion number three, not number one */
1354#endif
1355
1356	switch (ccreg & 7) {
1357	case 0: /* No SE cache */
1358	case 7: /* Test mode */
1359		break;
1360	default:
1361		ccreg |= (TURBOSPARC_SCENABLE);
1362	}
1363	turbosparc_set_ccreg(ccreg);
1364
1365	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1366	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1367	srmmu_set_mmureg(mreg);
1368}
1369
1370static const struct sparc32_cachetlb_ops turbosparc_ops = {
1371	.cache_all	= turbosparc_flush_cache_all,
1372	.cache_mm	= turbosparc_flush_cache_mm,
1373	.cache_page	= turbosparc_flush_cache_page,
1374	.cache_range	= turbosparc_flush_cache_range,
1375	.tlb_all	= turbosparc_flush_tlb_all,
1376	.tlb_mm		= turbosparc_flush_tlb_mm,
1377	.tlb_page	= turbosparc_flush_tlb_page,
1378	.tlb_range	= turbosparc_flush_tlb_range,
1379	.page_to_ram	= turbosparc_flush_page_to_ram,
1380	.sig_insns	= turbosparc_flush_sig_insns,
1381	.page_for_dma	= turbosparc_flush_page_for_dma,
1382};
1383
1384static void __init init_turbosparc(void)
1385{
1386	srmmu_name = "Fujitsu TurboSparc";
1387	srmmu_modtype = TurboSparc;
1388	sparc32_cachetlb_ops = &turbosparc_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389	poke_srmmu = poke_turbosparc;
1390}
1391
1392static void poke_tsunami(void)
1393{
1394	unsigned long mreg = srmmu_get_mmureg();
1395
1396	tsunami_flush_icache();
1397	tsunami_flush_dcache();
1398	mreg &= ~TSUNAMI_ITD;
1399	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1400	srmmu_set_mmureg(mreg);
1401}
1402
1403static const struct sparc32_cachetlb_ops tsunami_ops = {
1404	.cache_all	= tsunami_flush_cache_all,
1405	.cache_mm	= tsunami_flush_cache_mm,
1406	.cache_page	= tsunami_flush_cache_page,
1407	.cache_range	= tsunami_flush_cache_range,
1408	.tlb_all	= tsunami_flush_tlb_all,
1409	.tlb_mm		= tsunami_flush_tlb_mm,
1410	.tlb_page	= tsunami_flush_tlb_page,
1411	.tlb_range	= tsunami_flush_tlb_range,
1412	.page_to_ram	= tsunami_flush_page_to_ram,
1413	.sig_insns	= tsunami_flush_sig_insns,
1414	.page_for_dma	= tsunami_flush_page_for_dma,
1415};
1416
1417static void __init init_tsunami(void)
1418{
1419	/*
1420	 * Tsunami's pretty sane, Sun and TI actually got it
1421	 * somewhat right this time.  Fujitsu should have
1422	 * taken some lessons from them.
1423	 */
1424
1425	srmmu_name = "TI Tsunami";
1426	srmmu_modtype = Tsunami;
1427	sparc32_cachetlb_ops = &tsunami_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428	poke_srmmu = poke_tsunami;
1429
1430	tsunami_setup_blockops();
1431}
1432
1433static void poke_viking(void)
1434{
1435	unsigned long mreg = srmmu_get_mmureg();
1436	static int smp_catch;
1437
1438	if (viking_mxcc_present) {
1439		unsigned long mxcc_control = mxcc_get_creg();
1440
1441		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1442		mxcc_control &= ~(MXCC_CTL_RRC);
1443		mxcc_set_creg(mxcc_control);
1444
1445		/*
1446		 * We don't need memory parity checks.
1447		 * XXX This is a mess, have to dig out later. ecd.
1448		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1449		 */
1450
1451		/* We do cache ptables on MXCC. */
1452		mreg |= VIKING_TCENABLE;
1453	} else {
1454		unsigned long bpreg;
1455
1456		mreg &= ~(VIKING_TCENABLE);
1457		if (smp_catch++) {
1458			/* Must disable mixed-cmd mode here for other cpu's. */
1459			bpreg = viking_get_bpreg();
1460			bpreg &= ~(VIKING_ACTION_MIX);
1461			viking_set_bpreg(bpreg);
1462
1463			/* Just in case PROM does something funny. */
1464			msi_set_sync();
1465		}
1466	}
1467
1468	mreg |= VIKING_SPENABLE;
1469	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1470	mreg |= VIKING_SBENABLE;
1471	mreg &= ~(VIKING_ACENABLE);
1472	srmmu_set_mmureg(mreg);
1473}
1474
1475static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1476	.cache_all	= viking_flush_cache_all,
1477	.cache_mm	= viking_flush_cache_mm,
1478	.cache_page	= viking_flush_cache_page,
1479	.cache_range	= viking_flush_cache_range,
1480	.tlb_all	= viking_flush_tlb_all,
1481	.tlb_mm		= viking_flush_tlb_mm,
1482	.tlb_page	= viking_flush_tlb_page,
1483	.tlb_range	= viking_flush_tlb_range,
1484	.page_to_ram	= viking_flush_page_to_ram,
1485	.sig_insns	= viking_flush_sig_insns,
1486	.page_for_dma	= viking_flush_page_for_dma,
1487};
1488
1489#ifdef CONFIG_SMP
1490/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491 * perform the local TLB flush and all the other cpus will see it.
1492 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493 * that requires that we add some synchronization to these flushes.
1494 *
1495 * The bug is that the fifo which keeps track of all the pending TLB
1496 * broadcasts in the system is an entry or two too small, so if we
1497 * have too many going at once we'll overflow that fifo and lose a TLB
1498 * flush resulting in corruption.
1499 *
1500 * Our workaround is to take a global spinlock around the TLB flushes,
1501 * which guarentees we won't ever have too many pending.  It's a big
1502 * hammer, but a semaphore like system to make sure we only have N TLB
1503 * flushes going at once will require SMP locking anyways so there's
1504 * no real value in trying any harder than this.
1505 */
1506static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1507	.cache_all	= viking_flush_cache_all,
1508	.cache_mm	= viking_flush_cache_mm,
1509	.cache_page	= viking_flush_cache_page,
1510	.cache_range	= viking_flush_cache_range,
1511	.tlb_all	= sun4dsmp_flush_tlb_all,
1512	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1513	.tlb_page	= sun4dsmp_flush_tlb_page,
1514	.tlb_range	= sun4dsmp_flush_tlb_range,
1515	.page_to_ram	= viking_flush_page_to_ram,
1516	.sig_insns	= viking_flush_sig_insns,
1517	.page_for_dma	= viking_flush_page_for_dma,
1518};
1519#endif
1520
1521static void __init init_viking(void)
1522{
1523	unsigned long mreg = srmmu_get_mmureg();
1524
1525	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1526	if (mreg & VIKING_MMODE) {
1527		srmmu_name = "TI Viking";
1528		viking_mxcc_present = 0;
1529		msi_set_sync();
1530
 
 
 
 
1531		/*
1532		 * We need this to make sure old viking takes no hits
1533		 * on it's cache for dma snoops to workaround the
1534		 * "load from non-cacheable memory" interrupt bug.
1535		 * This is only necessary because of the new way in
1536		 * which we use the IOMMU.
1537		 */
1538		viking_ops.page_for_dma = viking_flush_page;
1539#ifdef CONFIG_SMP
1540		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1541#endif
1542		flush_page_for_dma_global = 0;
1543	} else {
1544		srmmu_name = "TI Viking/MXCC";
1545		viking_mxcc_present = 1;
 
1546		srmmu_cache_pagetables = 1;
 
 
 
1547	}
1548
1549	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1550		&viking_ops;
 
 
 
1551#ifdef CONFIG_SMP
1552	if (sparc_cpu_model == sun4d)
1553		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1554			&viking_sun4d_smp_ops;
 
 
 
1555#endif
 
 
 
 
 
 
 
 
 
1556
1557	poke_srmmu = poke_viking;
1558}
1559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560/* Probe for the srmmu chip version. */
1561static void __init get_srmmu_type(void)
1562{
1563	unsigned long mreg, psr;
1564	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1565
1566	srmmu_modtype = SRMMU_INVAL_MOD;
1567	hwbug_bitmask = 0;
1568
1569	mreg = srmmu_get_mmureg(); psr = get_psr();
1570	mod_typ = (mreg & 0xf0000000) >> 28;
1571	mod_rev = (mreg & 0x0f000000) >> 24;
1572	psr_typ = (psr >> 28) & 0xf;
1573	psr_vers = (psr >> 24) & 0xf;
1574
1575	/* First, check for sparc-leon. */
1576	if (sparc_cpu_model == sparc_leon) {
1577		init_leon();
1578		return;
1579	}
1580
1581	/* Second, check for HyperSparc or Cypress. */
1582	if (mod_typ == 1) {
1583		switch (mod_rev) {
1584		case 7:
1585			/* UP or MP Hypersparc */
1586			init_hypersparc();
1587			break;
1588		case 0:
1589		case 2:
 
 
 
1590		case 10:
1591		case 11:
1592		case 12:
 
1593		case 13:
1594		case 14:
1595		case 15:
 
 
 
1596		default:
1597			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1598			prom_halt();
1599			break;
1600		}
1601		return;
1602	}
1603
1604	/* Now Fujitsu TurboSparc. It might happen that it is
 
1605	 * in Swift emulation mode, so we will check later...
1606	 */
1607	if (psr_typ == 0 && psr_vers == 5) {
1608		init_turbosparc();
1609		return;
1610	}
1611
1612	/* Next check for Fujitsu Swift. */
1613	if (psr_typ == 0 && psr_vers == 4) {
1614		phandle cpunode;
1615		char node_str[128];
1616
1617		/* Look if it is not a TurboSparc emulating Swift... */
1618		cpunode = prom_getchild(prom_root_node);
1619		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1620			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1621			if (!strcmp(node_str, "cpu")) {
1622				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1623				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1624					init_turbosparc();
1625					return;
1626				}
1627				break;
1628			}
1629		}
1630
1631		init_swift();
1632		return;
1633	}
1634
1635	/* Now the Viking family of srmmu. */
1636	if (psr_typ == 4 &&
1637	   ((psr_vers == 0) ||
1638	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1639		init_viking();
1640		return;
1641	}
1642
1643	/* Finally the Tsunami. */
1644	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1645		init_tsunami();
1646		return;
1647	}
1648
1649	/* Oh well */
1650	srmmu_is_bad();
1651}
1652
1653#ifdef CONFIG_SMP
1654/* Local cross-calls. */
1655static void smp_flush_page_for_dma(unsigned long page)
1656{
1657	xc1((smpfunc_t) local_ops->page_for_dma, page);
1658	local_ops->page_for_dma(page);
1659}
1660
1661static void smp_flush_cache_all(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662{
1663	xc0((smpfunc_t) local_ops->cache_all);
1664	local_ops->cache_all();
 
 
 
 
 
 
 
1665}
1666
1667static void smp_flush_tlb_all(void)
 
 
1668{
1669	xc0((smpfunc_t) local_ops->tlb_all);
1670	local_ops->tlb_all();
1671}
1672
1673static void smp_flush_cache_mm(struct mm_struct *mm)
 
 
1674{
1675	if (mm->context != NO_CONTEXT) {
1676		cpumask_t cpu_mask;
1677		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1678		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1679		if (!cpumask_empty(&cpu_mask))
1680			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1681		local_ops->cache_mm(mm);
1682	}
1683}
1684
1685static void smp_flush_tlb_mm(struct mm_struct *mm)
1686{
1687	if (mm->context != NO_CONTEXT) {
1688		cpumask_t cpu_mask;
1689		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1690		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1691		if (!cpumask_empty(&cpu_mask)) {
1692			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1693			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1694				cpumask_copy(mm_cpumask(mm),
1695					     cpumask_of(smp_processor_id()));
1696		}
1697		local_ops->tlb_mm(mm);
1698	}
1699}
1700
1701static void smp_flush_cache_range(struct vm_area_struct *vma,
1702				  unsigned long start,
1703				  unsigned long end)
1704{
1705	struct mm_struct *mm = vma->vm_mm;
1706
1707	if (mm->context != NO_CONTEXT) {
1708		cpumask_t cpu_mask;
1709		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711		if (!cpumask_empty(&cpu_mask))
1712			xc3((smpfunc_t) local_ops->cache_range,
1713			    (unsigned long) vma, start, end);
1714		local_ops->cache_range(vma, start, end);
1715	}
1716}
1717
1718static void smp_flush_tlb_range(struct vm_area_struct *vma,
1719				unsigned long start,
1720				unsigned long end)
1721{
1722	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723
1724	if (mm->context != NO_CONTEXT) {
1725		cpumask_t cpu_mask;
1726		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1727		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1728		if (!cpumask_empty(&cpu_mask))
1729			xc3((smpfunc_t) local_ops->tlb_range,
1730			    (unsigned long) vma, start, end);
1731		local_ops->tlb_range(vma, start, end);
1732	}
1733}
1734
1735static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1736{
1737	struct mm_struct *mm = vma->vm_mm;
1738
1739	if (mm->context != NO_CONTEXT) {
1740		cpumask_t cpu_mask;
1741		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743		if (!cpumask_empty(&cpu_mask))
1744			xc2((smpfunc_t) local_ops->cache_page,
1745			    (unsigned long) vma, page);
1746		local_ops->cache_page(vma, page);
1747	}
1748}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749
1750static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1751{
1752	struct mm_struct *mm = vma->vm_mm;
1753
1754	if (mm->context != NO_CONTEXT) {
1755		cpumask_t cpu_mask;
1756		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758		if (!cpumask_empty(&cpu_mask))
1759			xc2((smpfunc_t) local_ops->tlb_page,
1760			    (unsigned long) vma, page);
1761		local_ops->tlb_page(vma, page);
1762	}
1763}
1764
1765static void smp_flush_page_to_ram(unsigned long page)
1766{
1767	/* Current theory is that those who call this are the one's
1768	 * who have just dirtied their cache with the pages contents
1769	 * in kernel space, therefore we only run this on local cpu.
1770	 *
1771	 * XXX This experiment failed, research further... -DaveM
1772	 */
1773#if 1
1774	xc1((smpfunc_t) local_ops->page_to_ram, page);
1775#endif
1776	local_ops->page_to_ram(page);
1777}
1778
1779static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1780{
1781	cpumask_t cpu_mask;
1782	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1783	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1784	if (!cpumask_empty(&cpu_mask))
1785		xc2((smpfunc_t) local_ops->sig_insns,
1786		    (unsigned long) mm, insn_addr);
1787	local_ops->sig_insns(mm, insn_addr);
1788}
1789
1790static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1791	.cache_all	= smp_flush_cache_all,
1792	.cache_mm	= smp_flush_cache_mm,
1793	.cache_page	= smp_flush_cache_page,
1794	.cache_range	= smp_flush_cache_range,
1795	.tlb_all	= smp_flush_tlb_all,
1796	.tlb_mm		= smp_flush_tlb_mm,
1797	.tlb_page	= smp_flush_tlb_page,
1798	.tlb_range	= smp_flush_tlb_range,
1799	.page_to_ram	= smp_flush_page_to_ram,
1800	.sig_insns	= smp_flush_sig_insns,
1801	.page_for_dma	= smp_flush_page_for_dma,
1802};
1803#endif
1804
1805/* Load up routines and constants for sun4m and sun4d mmu */
1806void __init load_mmu(void)
1807{
1808	/* Functions */
1809	get_srmmu_type();
 
1810
1811#ifdef CONFIG_SMP
1812	/* El switcheroo... */
1813	local_ops = sparc32_cachetlb_ops;
1814
1815	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1816		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1817		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1818		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1819		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1820	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821
1822	if (poke_srmmu == poke_viking) {
1823		/* Avoid unnecessary cross calls. */
1824		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1825		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1826		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1827		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1828
1829		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1830		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1831		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1832	}
1833
1834	/* It really is const after this point. */
1835	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1836		&smp_cachetlb_ops;
1837#endif
1838
1839	if (sparc_cpu_model == sun4d)
1840		ld_mmu_iounit();
1841	else
1842		ld_mmu_iommu();
1843#ifdef CONFIG_SMP
1844	if (sparc_cpu_model == sun4d)
1845		sun4d_init_smp();
1846	else if (sparc_cpu_model == sparc_leon)
1847		leon_init_smp();
1848	else
1849		sun4m_init_smp();
1850#endif
1851}