Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * SPARC64 Huge TLB page support.
  3 *
  4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
  5 */
  6
  7#include <linux/init.h>
  8#include <linux/module.h>
  9#include <linux/fs.h>
 10#include <linux/mm.h>
 
 11#include <linux/hugetlb.h>
 12#include <linux/pagemap.h>
 13#include <linux/sysctl.h>
 14
 15#include <asm/mman.h>
 16#include <asm/pgalloc.h>
 
 17#include <asm/tlb.h>
 18#include <asm/tlbflush.h>
 19#include <asm/cacheflush.h>
 20#include <asm/mmu_context.h>
 21
 22/* Slightly simplified from the non-hugepage variant because by
 23 * definition we don't have to worry about any page coloring stuff
 24 */
 25#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
 26#define VA_EXCLUDE_END   (0xfffff80000000000UL + (1UL << 32UL))
 27
 28static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
 29							unsigned long addr,
 30							unsigned long len,
 31							unsigned long pgoff,
 32							unsigned long flags)
 33{
 34	struct mm_struct *mm = current->mm;
 35	struct vm_area_struct * vma;
 36	unsigned long task_size = TASK_SIZE;
 37	unsigned long start_addr;
 38
 39	if (test_thread_flag(TIF_32BIT))
 40		task_size = STACK_TOP32;
 41	if (unlikely(len >= VA_EXCLUDE_START))
 42		return -ENOMEM;
 43
 44	if (len > mm->cached_hole_size) {
 45	        start_addr = addr = mm->free_area_cache;
 46	} else {
 47	        start_addr = addr = TASK_UNMAPPED_BASE;
 48	        mm->cached_hole_size = 0;
 49	}
 50
 51	task_size -= len;
 52
 53full_search:
 54	addr = ALIGN(addr, HPAGE_SIZE);
 55
 56	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
 57		/* At this point:  (!vma || addr < vma->vm_end). */
 58		if (addr < VA_EXCLUDE_START &&
 59		    (addr + len) >= VA_EXCLUDE_START) {
 60			addr = VA_EXCLUDE_END;
 61			vma = find_vma(mm, VA_EXCLUDE_END);
 62		}
 63		if (unlikely(task_size < addr)) {
 64			if (start_addr != TASK_UNMAPPED_BASE) {
 65				start_addr = addr = TASK_UNMAPPED_BASE;
 66				mm->cached_hole_size = 0;
 67				goto full_search;
 68			}
 69			return -ENOMEM;
 70		}
 71		if (likely(!vma || addr + len <= vma->vm_start)) {
 72			/*
 73			 * Remember the place where we stopped the search:
 74			 */
 75			mm->free_area_cache = addr + len;
 76			return addr;
 77		}
 78		if (addr + mm->cached_hole_size < vma->vm_start)
 79		        mm->cached_hole_size = vma->vm_start - addr;
 80
 81		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 82	}
 
 
 83}
 84
 85static unsigned long
 86hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
 87				  const unsigned long len,
 88				  const unsigned long pgoff,
 89				  const unsigned long flags)
 90{
 91	struct vm_area_struct *vma;
 92	struct mm_struct *mm = current->mm;
 93	unsigned long addr = addr0;
 
 94
 95	/* This should only ever run for 32-bit processes.  */
 96	BUG_ON(!test_thread_flag(TIF_32BIT));
 97
 98	/* check if free_area_cache is useful for us */
 99	if (len <= mm->cached_hole_size) {
100 	        mm->cached_hole_size = 0;
101 		mm->free_area_cache = mm->mmap_base;
102 	}
103
104	/* either no address requested or can't fit in requested address hole */
105	addr = mm->free_area_cache & HPAGE_MASK;
106
107	/* make sure it can fit in the remaining address space */
108	if (likely(addr > len)) {
109		vma = find_vma(mm, addr-len);
110		if (!vma || addr <= vma->vm_start) {
111			/* remember the address as a hint for next time */
112			return (mm->free_area_cache = addr-len);
113		}
114	}
115
116	if (unlikely(mm->mmap_base < len))
117		goto bottomup;
118
119	addr = (mm->mmap_base-len) & HPAGE_MASK;
120
121	do {
122		/*
123		 * Lookup failure means no vma is above this address,
124		 * else if new region fits below vma->vm_start,
125		 * return with success:
126		 */
127		vma = find_vma(mm, addr);
128		if (likely(!vma || addr+len <= vma->vm_start)) {
129			/* remember the address as a hint for next time */
130			return (mm->free_area_cache = addr);
131		}
132
133 		/* remember the largest hole we saw so far */
134 		if (addr + mm->cached_hole_size < vma->vm_start)
135 		        mm->cached_hole_size = vma->vm_start - addr;
136
137		/* try just below the current vma->vm_start */
138		addr = (vma->vm_start-len) & HPAGE_MASK;
139	} while (likely(len < vma->vm_start));
140
141bottomup:
142	/*
143	 * A failed mmap() very likely causes application failure,
144	 * so fall back to the bottom-up function here. This scenario
145	 * can happen with large stack limits and large mmap()
146	 * allocations.
147	 */
148	mm->cached_hole_size = ~0UL;
149  	mm->free_area_cache = TASK_UNMAPPED_BASE;
150	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
151	/*
152	 * Restore the topdown base:
153	 */
154	mm->free_area_cache = mm->mmap_base;
155	mm->cached_hole_size = ~0UL;
156
157	return addr;
158}
159
160unsigned long
161hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
162		unsigned long len, unsigned long pgoff, unsigned long flags)
163{
 
164	struct mm_struct *mm = current->mm;
165	struct vm_area_struct *vma;
166	unsigned long task_size = TASK_SIZE;
167
168	if (test_thread_flag(TIF_32BIT))
169		task_size = STACK_TOP32;
170
171	if (len & ~HPAGE_MASK)
172		return -EINVAL;
173	if (len > task_size)
174		return -ENOMEM;
175
176	if (flags & MAP_FIXED) {
177		if (prepare_hugepage_range(file, addr, len))
178			return -EINVAL;
179		return addr;
180	}
181
182	if (addr) {
183		addr = ALIGN(addr, HPAGE_SIZE);
184		vma = find_vma(mm, addr);
185		if (task_size - len >= addr &&
186		    (!vma || addr + len <= vma->vm_start))
187			return addr;
188	}
189	if (mm->get_unmapped_area == arch_get_unmapped_area)
190		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
191				pgoff, flags);
192	else
193		return hugetlb_get_unmapped_area_topdown(file, addr, len,
194				pgoff, flags);
195}
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197pte_t *huge_pte_alloc(struct mm_struct *mm,
198			unsigned long addr, unsigned long sz)
199{
200	pgd_t *pgd;
201	pud_t *pud;
202	pmd_t *pmd;
203	pte_t *pte = NULL;
204
205	/* We must align the address, because our caller will run
206	 * set_huge_pte_at() on whatever we return, which writes out
207	 * all of the sub-ptes for the hugepage range.  So we have
208	 * to give it the first such sub-pte.
209	 */
210	addr &= HPAGE_MASK;
211
212	pgd = pgd_offset(mm, addr);
213	pud = pud_alloc(mm, pgd, addr);
214	if (pud) {
215		pmd = pmd_alloc(mm, pud, addr);
216		if (pmd)
217			pte = pte_alloc_map(mm, NULL, pmd, addr);
218	}
219	return pte;
 
 
 
 
220}
221
222pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 
223{
224	pgd_t *pgd;
225	pud_t *pud;
226	pmd_t *pmd;
227	pte_t *pte = NULL;
228
229	addr &= HPAGE_MASK;
230
231	pgd = pgd_offset(mm, addr);
232	if (!pgd_none(*pgd)) {
233		pud = pud_offset(pgd, addr);
234		if (!pud_none(*pud)) {
235			pmd = pmd_offset(pud, addr);
236			if (!pmd_none(*pmd))
237				pte = pte_offset_map(pmd, addr);
238		}
239	}
240	return pte;
241}
242
243int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
244{
245	return 0;
246}
247
248void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
249		     pte_t *ptep, pte_t entry)
250{
251	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
253	if (!pte_present(*ptep) && pte_present(entry))
254		mm->context.huge_pte_count++;
255
256	addr &= HPAGE_MASK;
257	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
258		set_pte_at(mm, addr, ptep, entry);
259		ptep++;
260		addr += PAGE_SIZE;
261		pte_val(entry) += PAGE_SIZE;
262	}
 
 
 
 
 
263}
264
265pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
266			      pte_t *ptep)
267{
 
 
268	pte_t entry;
269	int i;
270
271	entry = *ptep;
272	if (pte_present(entry))
273		mm->context.huge_pte_count--;
274
275	addr &= HPAGE_MASK;
 
 
 
 
 
 
276
277	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
278		pte_clear(mm, addr, ptep);
279		addr += PAGE_SIZE;
280		ptep++;
281	}
282
283	return entry;
284}
285
286struct page *follow_huge_addr(struct mm_struct *mm,
287			      unsigned long address, int write)
288{
289	return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
290}
291
292int pmd_huge(pmd_t pmd)
293{
294	return 0;
 
295}
296
297int pud_huge(pud_t pud)
298{
299	return 0;
 
300}
301
302struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
303			     pmd_t *pmd, int write)
304{
305	return NULL;
 
 
 
 
306}
307
308static void context_reload(void *__data)
 
 
309{
310	struct mm_struct *mm = __data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311
312	if (mm == current->mm)
313		load_secondary_context(mm);
 
 
314}
315
316void hugetlb_prefault_arch_hook(struct mm_struct *mm)
 
 
317{
318	struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319
320	if (likely(tp->tsb != NULL))
 
 
 
 
 
 
 
 
321		return;
322
323	tsb_grow(mm, MM_TSB_HUGE, 0);
324	tsb_context_switch(mm);
325	smp_tsb_sync(mm);
 
 
326
327	/* On UltraSPARC-III+ and later, configure the second half of
328	 * the Data-TLB for huge pages.
329	 */
330	if (tlb_type == cheetah_plus) {
331		unsigned long ctx;
 
332
333		spin_lock(&ctx_alloc_lock);
334		ctx = mm->context.sparc64_ctx_val;
335		ctx &= ~CTX_PGSZ_MASK;
336		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
337		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
338
339		if (ctx != mm->context.sparc64_ctx_val) {
340			/* When changing the page size fields, we
341			 * must perform a context flush so that no
342			 * stale entries match.  This flush must
343			 * occur with the original context register
344			 * settings.
345			 */
346			do_flush_tlb_mm(mm);
347
348			/* Reload the context register of all processors
349			 * also executing in this address space.
350			 */
351			mm->context.sparc64_ctx_val = ctx;
352			on_each_cpu(context_reload, mm, 0);
353		}
354		spin_unlock(&ctx_alloc_lock);
355	}
 
 
 
 
 
 
 
 
 
 
 
 
356}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * SPARC64 Huge TLB page support.
  4 *
  5 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
  6 */
  7
 
 
  8#include <linux/fs.h>
  9#include <linux/mm.h>
 10#include <linux/sched/mm.h>
 11#include <linux/hugetlb.h>
 12#include <linux/pagemap.h>
 13#include <linux/sysctl.h>
 14
 15#include <asm/mman.h>
 16#include <asm/pgalloc.h>
 17#include <asm/pgtable.h>
 18#include <asm/tlb.h>
 19#include <asm/tlbflush.h>
 20#include <asm/cacheflush.h>
 21#include <asm/mmu_context.h>
 22
 23/* Slightly simplified from the non-hugepage variant because by
 24 * definition we don't have to worry about any page coloring stuff
 25 */
 
 
 26
 27static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
 28							unsigned long addr,
 29							unsigned long len,
 30							unsigned long pgoff,
 31							unsigned long flags)
 32{
 33	struct hstate *h = hstate_file(filp);
 
 34	unsigned long task_size = TASK_SIZE;
 35	struct vm_unmapped_area_info info;
 36
 37	if (test_thread_flag(TIF_32BIT))
 38		task_size = STACK_TOP32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39
 40	info.flags = 0;
 41	info.length = len;
 42	info.low_limit = TASK_UNMAPPED_BASE;
 43	info.high_limit = min(task_size, VA_EXCLUDE_START);
 44	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 45	info.align_offset = 0;
 46	addr = vm_unmapped_area(&info);
 47
 48	if ((addr & ~PAGE_MASK) && task_size > VA_EXCLUDE_END) {
 49		VM_BUG_ON(addr != -ENOMEM);
 50		info.low_limit = VA_EXCLUDE_END;
 51		info.high_limit = task_size;
 52		addr = vm_unmapped_area(&info);
 53	}
 54
 55	return addr;
 56}
 57
 58static unsigned long
 59hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
 60				  const unsigned long len,
 61				  const unsigned long pgoff,
 62				  const unsigned long flags)
 63{
 64	struct hstate *h = hstate_file(filp);
 65	struct mm_struct *mm = current->mm;
 66	unsigned long addr = addr0;
 67	struct vm_unmapped_area_info info;
 68
 69	/* This should only ever run for 32-bit processes.  */
 70	BUG_ON(!test_thread_flag(TIF_32BIT));
 71
 72	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 73	info.length = len;
 74	info.low_limit = PAGE_SIZE;
 75	info.high_limit = mm->mmap_base;
 76	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
 77	info.align_offset = 0;
 78	addr = vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79
 
 80	/*
 81	 * A failed mmap() very likely causes application failure,
 82	 * so fall back to the bottom-up function here. This scenario
 83	 * can happen with large stack limits and large mmap()
 84	 * allocations.
 85	 */
 86	if (addr & ~PAGE_MASK) {
 87		VM_BUG_ON(addr != -ENOMEM);
 88		info.flags = 0;
 89		info.low_limit = TASK_UNMAPPED_BASE;
 90		info.high_limit = STACK_TOP32;
 91		addr = vm_unmapped_area(&info);
 92	}
 
 93
 94	return addr;
 95}
 96
 97unsigned long
 98hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 99		unsigned long len, unsigned long pgoff, unsigned long flags)
100{
101	struct hstate *h = hstate_file(file);
102	struct mm_struct *mm = current->mm;
103	struct vm_area_struct *vma;
104	unsigned long task_size = TASK_SIZE;
105
106	if (test_thread_flag(TIF_32BIT))
107		task_size = STACK_TOP32;
108
109	if (len & ~huge_page_mask(h))
110		return -EINVAL;
111	if (len > task_size)
112		return -ENOMEM;
113
114	if (flags & MAP_FIXED) {
115		if (prepare_hugepage_range(file, addr, len))
116			return -EINVAL;
117		return addr;
118	}
119
120	if (addr) {
121		addr = ALIGN(addr, huge_page_size(h));
122		vma = find_vma(mm, addr);
123		if (task_size - len >= addr &&
124		    (!vma || addr + len <= vm_start_gap(vma)))
125			return addr;
126	}
127	if (mm->get_unmapped_area == arch_get_unmapped_area)
128		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
129				pgoff, flags);
130	else
131		return hugetlb_get_unmapped_area_topdown(file, addr, len,
132				pgoff, flags);
133}
134
135static pte_t sun4u_hugepage_shift_to_tte(pte_t entry, unsigned int shift)
136{
137	return entry;
138}
139
140static pte_t sun4v_hugepage_shift_to_tte(pte_t entry, unsigned int shift)
141{
142	unsigned long hugepage_size = _PAGE_SZ4MB_4V;
143
144	pte_val(entry) = pte_val(entry) & ~_PAGE_SZALL_4V;
145
146	switch (shift) {
147	case HPAGE_16GB_SHIFT:
148		hugepage_size = _PAGE_SZ16GB_4V;
149		pte_val(entry) |= _PAGE_PUD_HUGE;
150		break;
151	case HPAGE_2GB_SHIFT:
152		hugepage_size = _PAGE_SZ2GB_4V;
153		pte_val(entry) |= _PAGE_PMD_HUGE;
154		break;
155	case HPAGE_256MB_SHIFT:
156		hugepage_size = _PAGE_SZ256MB_4V;
157		pte_val(entry) |= _PAGE_PMD_HUGE;
158		break;
159	case HPAGE_SHIFT:
160		pte_val(entry) |= _PAGE_PMD_HUGE;
161		break;
162	case HPAGE_64K_SHIFT:
163		hugepage_size = _PAGE_SZ64K_4V;
164		break;
165	default:
166		WARN_ONCE(1, "unsupported hugepage shift=%u\n", shift);
167	}
168
169	pte_val(entry) = pte_val(entry) | hugepage_size;
170	return entry;
171}
172
173static pte_t hugepage_shift_to_tte(pte_t entry, unsigned int shift)
174{
175	if (tlb_type == hypervisor)
176		return sun4v_hugepage_shift_to_tte(entry, shift);
177	else
178		return sun4u_hugepage_shift_to_tte(entry, shift);
179}
180
181pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma,
182			 struct page *page, int writeable)
183{
184	unsigned int shift = huge_page_shift(hstate_vma(vma));
185	pte_t pte;
186
187	pte = hugepage_shift_to_tte(entry, shift);
188
189#ifdef CONFIG_SPARC64
190	/* If this vma has ADI enabled on it, turn on TTE.mcd
191	 */
192	if (vma->vm_flags & VM_SPARC_ADI)
193		return pte_mkmcd(pte);
194	else
195		return pte_mknotmcd(pte);
196#else
197	return pte;
198#endif
199}
200
201static unsigned int sun4v_huge_tte_to_shift(pte_t entry)
202{
203	unsigned long tte_szbits = pte_val(entry) & _PAGE_SZALL_4V;
204	unsigned int shift;
205
206	switch (tte_szbits) {
207	case _PAGE_SZ16GB_4V:
208		shift = HPAGE_16GB_SHIFT;
209		break;
210	case _PAGE_SZ2GB_4V:
211		shift = HPAGE_2GB_SHIFT;
212		break;
213	case _PAGE_SZ256MB_4V:
214		shift = HPAGE_256MB_SHIFT;
215		break;
216	case _PAGE_SZ4MB_4V:
217		shift = REAL_HPAGE_SHIFT;
218		break;
219	case _PAGE_SZ64K_4V:
220		shift = HPAGE_64K_SHIFT;
221		break;
222	default:
223		shift = PAGE_SHIFT;
224		break;
225	}
226	return shift;
227}
228
229static unsigned int sun4u_huge_tte_to_shift(pte_t entry)
230{
231	unsigned long tte_szbits = pte_val(entry) & _PAGE_SZALL_4U;
232	unsigned int shift;
233
234	switch (tte_szbits) {
235	case _PAGE_SZ256MB_4U:
236		shift = HPAGE_256MB_SHIFT;
237		break;
238	case _PAGE_SZ4MB_4U:
239		shift = REAL_HPAGE_SHIFT;
240		break;
241	case _PAGE_SZ64K_4U:
242		shift = HPAGE_64K_SHIFT;
243		break;
244	default:
245		shift = PAGE_SHIFT;
246		break;
247	}
248	return shift;
249}
250
251static unsigned int huge_tte_to_shift(pte_t entry)
252{
253	unsigned long shift;
254
255	if (tlb_type == hypervisor)
256		shift = sun4v_huge_tte_to_shift(entry);
257	else
258		shift = sun4u_huge_tte_to_shift(entry);
259
260	if (shift == PAGE_SHIFT)
261		WARN_ONCE(1, "tto_to_shift: invalid hugepage tte=0x%lx\n",
262			  pte_val(entry));
263
264	return shift;
265}
266
267static unsigned long huge_tte_to_size(pte_t pte)
268{
269	unsigned long size = 1UL << huge_tte_to_shift(pte);
270
271	if (size == REAL_HPAGE_SIZE)
272		size = HPAGE_SIZE;
273	return size;
274}
275
276pte_t *huge_pte_alloc(struct mm_struct *mm,
277			unsigned long addr, unsigned long sz)
278{
279	pgd_t *pgd;
280	pud_t *pud;
281	pmd_t *pmd;
 
 
 
 
 
 
 
 
282
283	pgd = pgd_offset(mm, addr);
284	pud = pud_alloc(mm, pgd, addr);
285	if (!pud)
286		return NULL;
287	if (sz >= PUD_SIZE)
288		return (pte_t *)pud;
289	pmd = pmd_alloc(mm, pud, addr);
290	if (!pmd)
291		return NULL;
292	if (sz >= PMD_SIZE)
293		return (pte_t *)pmd;
294	return pte_alloc_map(mm, pmd, addr);
295}
296
297pte_t *huge_pte_offset(struct mm_struct *mm,
298		       unsigned long addr, unsigned long sz)
299{
300	pgd_t *pgd;
301	pud_t *pud;
302	pmd_t *pmd;
 
 
 
303
304	pgd = pgd_offset(mm, addr);
305	if (pgd_none(*pgd))
306		return NULL;
307	pud = pud_offset(pgd, addr);
308	if (pud_none(*pud))
309		return NULL;
310	if (is_hugetlb_pud(*pud))
311		return (pte_t *)pud;
312	pmd = pmd_offset(pud, addr);
313	if (pmd_none(*pmd))
314		return NULL;
315	if (is_hugetlb_pmd(*pmd))
316		return (pte_t *)pmd;
317	return pte_offset_map(pmd, addr);
 
318}
319
320void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
321		     pte_t *ptep, pte_t entry)
322{
323	unsigned int nptes, orig_shift, shift;
324	unsigned long i, size;
325	pte_t orig;
326
327	size = huge_tte_to_size(entry);
328
329	shift = PAGE_SHIFT;
330	if (size >= PUD_SIZE)
331		shift = PUD_SHIFT;
332	else if (size >= PMD_SIZE)
333		shift = PMD_SHIFT;
334	else
335		shift = PAGE_SHIFT;
336
337	nptes = size >> shift;
338
339	if (!pte_present(*ptep) && pte_present(entry))
340		mm->context.hugetlb_pte_count += nptes;
341
342	addr &= ~(size - 1);
343	orig = *ptep;
344	orig_shift = pte_none(orig) ? PAGE_SHIFT : huge_tte_to_shift(orig);
345
346	for (i = 0; i < nptes; i++)
347		ptep[i] = __pte(pte_val(entry) + (i << shift));
348
349	maybe_tlb_batch_add(mm, addr, ptep, orig, 0, orig_shift);
350	/* An HPAGE_SIZE'ed page is composed of two REAL_HPAGE_SIZE'ed pages */
351	if (size == HPAGE_SIZE)
352		maybe_tlb_batch_add(mm, addr + REAL_HPAGE_SIZE, ptep, orig, 0,
353				    orig_shift);
354}
355
356pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
357			      pte_t *ptep)
358{
359	unsigned int i, nptes, orig_shift, shift;
360	unsigned long size;
361	pte_t entry;
 
362
363	entry = *ptep;
364	size = huge_tte_to_size(entry);
 
365
366	shift = PAGE_SHIFT;
367	if (size >= PUD_SIZE)
368		shift = PUD_SHIFT;
369	else if (size >= PMD_SIZE)
370		shift = PMD_SHIFT;
371	else
372		shift = PAGE_SHIFT;
373
374	nptes = size >> shift;
375	orig_shift = pte_none(entry) ? PAGE_SHIFT : huge_tte_to_shift(entry);
 
 
 
376
377	if (pte_present(entry))
378		mm->context.hugetlb_pte_count -= nptes;
379
380	addr &= ~(size - 1);
381	for (i = 0; i < nptes; i++)
382		ptep[i] = __pte(0UL);
383
384	maybe_tlb_batch_add(mm, addr, ptep, entry, 0, orig_shift);
385	/* An HPAGE_SIZE'ed page is composed of two REAL_HPAGE_SIZE'ed pages */
386	if (size == HPAGE_SIZE)
387		maybe_tlb_batch_add(mm, addr + REAL_HPAGE_SIZE, ptep, entry, 0,
388				    orig_shift);
389
390	return entry;
391}
392
393int pmd_huge(pmd_t pmd)
394{
395	return !pmd_none(pmd) &&
396		(pmd_val(pmd) & (_PAGE_VALID|_PAGE_PMD_HUGE)) != _PAGE_VALID;
397}
398
399int pud_huge(pud_t pud)
400{
401	return !pud_none(pud) &&
402		(pud_val(pud) & (_PAGE_VALID|_PAGE_PUD_HUGE)) != _PAGE_VALID;
403}
404
405static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406			   unsigned long addr)
407{
408	pgtable_t token = pmd_pgtable(*pmd);
409
410	pmd_clear(pmd);
411	pte_free_tlb(tlb, token, addr);
412	mm_dec_nr_ptes(tlb->mm);
413}
414
415static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
416				   unsigned long addr, unsigned long end,
417				   unsigned long floor, unsigned long ceiling)
418{
419	pmd_t *pmd;
420	unsigned long next;
421	unsigned long start;
422
423	start = addr;
424	pmd = pmd_offset(pud, addr);
425	do {
426		next = pmd_addr_end(addr, end);
427		if (pmd_none(*pmd))
428			continue;
429		if (is_hugetlb_pmd(*pmd))
430			pmd_clear(pmd);
431		else
432			hugetlb_free_pte_range(tlb, pmd, addr);
433	} while (pmd++, addr = next, addr != end);
434
435	start &= PUD_MASK;
436	if (start < floor)
437		return;
438	if (ceiling) {
439		ceiling &= PUD_MASK;
440		if (!ceiling)
441			return;
442	}
443	if (end - 1 > ceiling - 1)
444		return;
445
446	pmd = pmd_offset(pud, start);
447	pud_clear(pud);
448	pmd_free_tlb(tlb, pmd, start);
449	mm_dec_nr_pmds(tlb->mm);
450}
451
452static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
453				   unsigned long addr, unsigned long end,
454				   unsigned long floor, unsigned long ceiling)
455{
456	pud_t *pud;
457	unsigned long next;
458	unsigned long start;
459
460	start = addr;
461	pud = pud_offset(pgd, addr);
462	do {
463		next = pud_addr_end(addr, end);
464		if (pud_none_or_clear_bad(pud))
465			continue;
466		if (is_hugetlb_pud(*pud))
467			pud_clear(pud);
468		else
469			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
470					       ceiling);
471	} while (pud++, addr = next, addr != end);
472
473	start &= PGDIR_MASK;
474	if (start < floor)
475		return;
476	if (ceiling) {
477		ceiling &= PGDIR_MASK;
478		if (!ceiling)
479			return;
480	}
481	if (end - 1 > ceiling - 1)
482		return;
483
484	pud = pud_offset(pgd, start);
485	pgd_clear(pgd);
486	pud_free_tlb(tlb, pud, start);
487	mm_dec_nr_puds(tlb->mm);
488}
489
490void hugetlb_free_pgd_range(struct mmu_gather *tlb,
491			    unsigned long addr, unsigned long end,
492			    unsigned long floor, unsigned long ceiling)
493{
494	pgd_t *pgd;
495	unsigned long next;
496
497	addr &= PMD_MASK;
498	if (addr < floor) {
499		addr += PMD_SIZE;
500		if (!addr)
501			return;
502	}
503	if (ceiling) {
504		ceiling &= PMD_MASK;
505		if (!ceiling)
506			return;
 
 
 
 
 
 
 
 
 
 
 
 
507	}
508	if (end - 1 > ceiling - 1)
509		end -= PMD_SIZE;
510	if (addr > end - 1)
511		return;
512
513	pgd = pgd_offset(tlb->mm, addr);
514	do {
515		next = pgd_addr_end(addr, end);
516		if (pgd_none_or_clear_bad(pgd))
517			continue;
518		hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
519	} while (pgd++, addr = next, addr != end);
520}