Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * SPARC64 Huge TLB page support.
  3 *
  4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
  5 */
  6
  7#include <linux/init.h>
  8#include <linux/module.h>
  9#include <linux/fs.h>
 10#include <linux/mm.h>
 11#include <linux/hugetlb.h>
 12#include <linux/pagemap.h>
 13#include <linux/sysctl.h>
 14
 15#include <asm/mman.h>
 16#include <asm/pgalloc.h>
 17#include <asm/tlb.h>
 18#include <asm/tlbflush.h>
 19#include <asm/cacheflush.h>
 20#include <asm/mmu_context.h>
 21
 22/* Slightly simplified from the non-hugepage variant because by
 23 * definition we don't have to worry about any page coloring stuff
 24 */
 25#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
 26#define VA_EXCLUDE_END   (0xfffff80000000000UL + (1UL << 32UL))
 27
 28static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
 29							unsigned long addr,
 30							unsigned long len,
 31							unsigned long pgoff,
 32							unsigned long flags)
 33{
 34	struct mm_struct *mm = current->mm;
 35	struct vm_area_struct * vma;
 36	unsigned long task_size = TASK_SIZE;
 37	unsigned long start_addr;
 38
 39	if (test_thread_flag(TIF_32BIT))
 40		task_size = STACK_TOP32;
 41	if (unlikely(len >= VA_EXCLUDE_START))
 42		return -ENOMEM;
 43
 44	if (len > mm->cached_hole_size) {
 45	        start_addr = addr = mm->free_area_cache;
 46	} else {
 47	        start_addr = addr = TASK_UNMAPPED_BASE;
 48	        mm->cached_hole_size = 0;
 49	}
 50
 51	task_size -= len;
 52
 53full_search:
 54	addr = ALIGN(addr, HPAGE_SIZE);
 55
 56	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
 57		/* At this point:  (!vma || addr < vma->vm_end). */
 58		if (addr < VA_EXCLUDE_START &&
 59		    (addr + len) >= VA_EXCLUDE_START) {
 60			addr = VA_EXCLUDE_END;
 61			vma = find_vma(mm, VA_EXCLUDE_END);
 62		}
 63		if (unlikely(task_size < addr)) {
 64			if (start_addr != TASK_UNMAPPED_BASE) {
 65				start_addr = addr = TASK_UNMAPPED_BASE;
 66				mm->cached_hole_size = 0;
 67				goto full_search;
 68			}
 69			return -ENOMEM;
 70		}
 71		if (likely(!vma || addr + len <= vma->vm_start)) {
 72			/*
 73			 * Remember the place where we stopped the search:
 74			 */
 75			mm->free_area_cache = addr + len;
 76			return addr;
 77		}
 78		if (addr + mm->cached_hole_size < vma->vm_start)
 79		        mm->cached_hole_size = vma->vm_start - addr;
 80
 81		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
 82	}
 83}
 84
 85static unsigned long
 86hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
 87				  const unsigned long len,
 88				  const unsigned long pgoff,
 89				  const unsigned long flags)
 90{
 91	struct vm_area_struct *vma;
 92	struct mm_struct *mm = current->mm;
 93	unsigned long addr = addr0;
 94
 95	/* This should only ever run for 32-bit processes.  */
 96	BUG_ON(!test_thread_flag(TIF_32BIT));
 97
 98	/* check if free_area_cache is useful for us */
 99	if (len <= mm->cached_hole_size) {
100 	        mm->cached_hole_size = 0;
101 		mm->free_area_cache = mm->mmap_base;
102 	}
103
104	/* either no address requested or can't fit in requested address hole */
105	addr = mm->free_area_cache & HPAGE_MASK;
106
107	/* make sure it can fit in the remaining address space */
108	if (likely(addr > len)) {
109		vma = find_vma(mm, addr-len);
110		if (!vma || addr <= vma->vm_start) {
111			/* remember the address as a hint for next time */
112			return (mm->free_area_cache = addr-len);
113		}
114	}
115
116	if (unlikely(mm->mmap_base < len))
117		goto bottomup;
118
119	addr = (mm->mmap_base-len) & HPAGE_MASK;
120
121	do {
122		/*
123		 * Lookup failure means no vma is above this address,
124		 * else if new region fits below vma->vm_start,
125		 * return with success:
126		 */
127		vma = find_vma(mm, addr);
128		if (likely(!vma || addr+len <= vma->vm_start)) {
129			/* remember the address as a hint for next time */
130			return (mm->free_area_cache = addr);
131		}
132
133 		/* remember the largest hole we saw so far */
134 		if (addr + mm->cached_hole_size < vma->vm_start)
135 		        mm->cached_hole_size = vma->vm_start - addr;
136
137		/* try just below the current vma->vm_start */
138		addr = (vma->vm_start-len) & HPAGE_MASK;
139	} while (likely(len < vma->vm_start));
140
141bottomup:
142	/*
143	 * A failed mmap() very likely causes application failure,
144	 * so fall back to the bottom-up function here. This scenario
145	 * can happen with large stack limits and large mmap()
146	 * allocations.
147	 */
148	mm->cached_hole_size = ~0UL;
149  	mm->free_area_cache = TASK_UNMAPPED_BASE;
150	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
151	/*
152	 * Restore the topdown base:
153	 */
154	mm->free_area_cache = mm->mmap_base;
155	mm->cached_hole_size = ~0UL;
156
157	return addr;
158}
159
160unsigned long
161hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
162		unsigned long len, unsigned long pgoff, unsigned long flags)
163{
164	struct mm_struct *mm = current->mm;
165	struct vm_area_struct *vma;
166	unsigned long task_size = TASK_SIZE;
167
168	if (test_thread_flag(TIF_32BIT))
169		task_size = STACK_TOP32;
170
171	if (len & ~HPAGE_MASK)
172		return -EINVAL;
173	if (len > task_size)
174		return -ENOMEM;
175
176	if (flags & MAP_FIXED) {
177		if (prepare_hugepage_range(file, addr, len))
178			return -EINVAL;
179		return addr;
180	}
181
182	if (addr) {
183		addr = ALIGN(addr, HPAGE_SIZE);
184		vma = find_vma(mm, addr);
185		if (task_size - len >= addr &&
186		    (!vma || addr + len <= vma->vm_start))
187			return addr;
188	}
189	if (mm->get_unmapped_area == arch_get_unmapped_area)
190		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
191				pgoff, flags);
192	else
193		return hugetlb_get_unmapped_area_topdown(file, addr, len,
194				pgoff, flags);
195}
196
197pte_t *huge_pte_alloc(struct mm_struct *mm,
198			unsigned long addr, unsigned long sz)
199{
200	pgd_t *pgd;
201	pud_t *pud;
202	pmd_t *pmd;
203	pte_t *pte = NULL;
204
205	/* We must align the address, because our caller will run
206	 * set_huge_pte_at() on whatever we return, which writes out
207	 * all of the sub-ptes for the hugepage range.  So we have
208	 * to give it the first such sub-pte.
209	 */
210	addr &= HPAGE_MASK;
211
212	pgd = pgd_offset(mm, addr);
213	pud = pud_alloc(mm, pgd, addr);
214	if (pud) {
215		pmd = pmd_alloc(mm, pud, addr);
216		if (pmd)
217			pte = pte_alloc_map(mm, NULL, pmd, addr);
218	}
219	return pte;
220}
221
222pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
223{
224	pgd_t *pgd;
225	pud_t *pud;
226	pmd_t *pmd;
227	pte_t *pte = NULL;
228
229	addr &= HPAGE_MASK;
230
231	pgd = pgd_offset(mm, addr);
232	if (!pgd_none(*pgd)) {
233		pud = pud_offset(pgd, addr);
234		if (!pud_none(*pud)) {
235			pmd = pmd_offset(pud, addr);
236			if (!pmd_none(*pmd))
237				pte = pte_offset_map(pmd, addr);
238		}
239	}
240	return pte;
241}
242
243int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
244{
245	return 0;
246}
247
248void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
249		     pte_t *ptep, pte_t entry)
250{
251	int i;
252
253	if (!pte_present(*ptep) && pte_present(entry))
254		mm->context.huge_pte_count++;
255
256	addr &= HPAGE_MASK;
257	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
258		set_pte_at(mm, addr, ptep, entry);
259		ptep++;
260		addr += PAGE_SIZE;
261		pte_val(entry) += PAGE_SIZE;
262	}
263}
264
265pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
266			      pte_t *ptep)
267{
268	pte_t entry;
269	int i;
270
271	entry = *ptep;
272	if (pte_present(entry))
273		mm->context.huge_pte_count--;
274
275	addr &= HPAGE_MASK;
276
277	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
278		pte_clear(mm, addr, ptep);
279		addr += PAGE_SIZE;
280		ptep++;
281	}
282
283	return entry;
284}
285
286struct page *follow_huge_addr(struct mm_struct *mm,
287			      unsigned long address, int write)
288{
289	return ERR_PTR(-EINVAL);
290}
291
292int pmd_huge(pmd_t pmd)
293{
294	return 0;
295}
296
297int pud_huge(pud_t pud)
298{
299	return 0;
300}
301
302struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
303			     pmd_t *pmd, int write)
304{
305	return NULL;
306}
307
308static void context_reload(void *__data)
309{
310	struct mm_struct *mm = __data;
311
312	if (mm == current->mm)
313		load_secondary_context(mm);
314}
315
316void hugetlb_prefault_arch_hook(struct mm_struct *mm)
317{
318	struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
319
320	if (likely(tp->tsb != NULL))
321		return;
322
323	tsb_grow(mm, MM_TSB_HUGE, 0);
324	tsb_context_switch(mm);
325	smp_tsb_sync(mm);
326
327	/* On UltraSPARC-III+ and later, configure the second half of
328	 * the Data-TLB for huge pages.
329	 */
330	if (tlb_type == cheetah_plus) {
331		unsigned long ctx;
332
333		spin_lock(&ctx_alloc_lock);
334		ctx = mm->context.sparc64_ctx_val;
335		ctx &= ~CTX_PGSZ_MASK;
336		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
337		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
338
339		if (ctx != mm->context.sparc64_ctx_val) {
340			/* When changing the page size fields, we
341			 * must perform a context flush so that no
342			 * stale entries match.  This flush must
343			 * occur with the original context register
344			 * settings.
345			 */
346			do_flush_tlb_mm(mm);
347
348			/* Reload the context register of all processors
349			 * also executing in this address space.
350			 */
351			mm->context.sparc64_ctx_val = ctx;
352			on_each_cpu(context_reload, mm, 0);
353		}
354		spin_unlock(&ctx_alloc_lock);
355	}
356}
v3.5.6
  1/*
  2 * SPARC64 Huge TLB page support.
  3 *
  4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
  5 */
  6
  7#include <linux/init.h>
 
  8#include <linux/fs.h>
  9#include <linux/mm.h>
 10#include <linux/hugetlb.h>
 11#include <linux/pagemap.h>
 12#include <linux/sysctl.h>
 13
 14#include <asm/mman.h>
 15#include <asm/pgalloc.h>
 16#include <asm/tlb.h>
 17#include <asm/tlbflush.h>
 18#include <asm/cacheflush.h>
 19#include <asm/mmu_context.h>
 20
 21/* Slightly simplified from the non-hugepage variant because by
 22 * definition we don't have to worry about any page coloring stuff
 23 */
 24#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
 25#define VA_EXCLUDE_END   (0xfffff80000000000UL + (1UL << 32UL))
 26
 27static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
 28							unsigned long addr,
 29							unsigned long len,
 30							unsigned long pgoff,
 31							unsigned long flags)
 32{
 33	struct mm_struct *mm = current->mm;
 34	struct vm_area_struct * vma;
 35	unsigned long task_size = TASK_SIZE;
 36	unsigned long start_addr;
 37
 38	if (test_thread_flag(TIF_32BIT))
 39		task_size = STACK_TOP32;
 40	if (unlikely(len >= VA_EXCLUDE_START))
 41		return -ENOMEM;
 42
 43	if (len > mm->cached_hole_size) {
 44	        start_addr = addr = mm->free_area_cache;
 45	} else {
 46	        start_addr = addr = TASK_UNMAPPED_BASE;
 47	        mm->cached_hole_size = 0;
 48	}
 49
 50	task_size -= len;
 51
 52full_search:
 53	addr = ALIGN(addr, HPAGE_SIZE);
 54
 55	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
 56		/* At this point:  (!vma || addr < vma->vm_end). */
 57		if (addr < VA_EXCLUDE_START &&
 58		    (addr + len) >= VA_EXCLUDE_START) {
 59			addr = VA_EXCLUDE_END;
 60			vma = find_vma(mm, VA_EXCLUDE_END);
 61		}
 62		if (unlikely(task_size < addr)) {
 63			if (start_addr != TASK_UNMAPPED_BASE) {
 64				start_addr = addr = TASK_UNMAPPED_BASE;
 65				mm->cached_hole_size = 0;
 66				goto full_search;
 67			}
 68			return -ENOMEM;
 69		}
 70		if (likely(!vma || addr + len <= vma->vm_start)) {
 71			/*
 72			 * Remember the place where we stopped the search:
 73			 */
 74			mm->free_area_cache = addr + len;
 75			return addr;
 76		}
 77		if (addr + mm->cached_hole_size < vma->vm_start)
 78		        mm->cached_hole_size = vma->vm_start - addr;
 79
 80		addr = ALIGN(vma->vm_end, HPAGE_SIZE);
 81	}
 82}
 83
 84static unsigned long
 85hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
 86				  const unsigned long len,
 87				  const unsigned long pgoff,
 88				  const unsigned long flags)
 89{
 90	struct vm_area_struct *vma;
 91	struct mm_struct *mm = current->mm;
 92	unsigned long addr = addr0;
 93
 94	/* This should only ever run for 32-bit processes.  */
 95	BUG_ON(!test_thread_flag(TIF_32BIT));
 96
 97	/* check if free_area_cache is useful for us */
 98	if (len <= mm->cached_hole_size) {
 99 	        mm->cached_hole_size = 0;
100 		mm->free_area_cache = mm->mmap_base;
101 	}
102
103	/* either no address requested or can't fit in requested address hole */
104	addr = mm->free_area_cache & HPAGE_MASK;
105
106	/* make sure it can fit in the remaining address space */
107	if (likely(addr > len)) {
108		vma = find_vma(mm, addr-len);
109		if (!vma || addr <= vma->vm_start) {
110			/* remember the address as a hint for next time */
111			return (mm->free_area_cache = addr-len);
112		}
113	}
114
115	if (unlikely(mm->mmap_base < len))
116		goto bottomup;
117
118	addr = (mm->mmap_base-len) & HPAGE_MASK;
119
120	do {
121		/*
122		 * Lookup failure means no vma is above this address,
123		 * else if new region fits below vma->vm_start,
124		 * return with success:
125		 */
126		vma = find_vma(mm, addr);
127		if (likely(!vma || addr+len <= vma->vm_start)) {
128			/* remember the address as a hint for next time */
129			return (mm->free_area_cache = addr);
130		}
131
132 		/* remember the largest hole we saw so far */
133 		if (addr + mm->cached_hole_size < vma->vm_start)
134 		        mm->cached_hole_size = vma->vm_start - addr;
135
136		/* try just below the current vma->vm_start */
137		addr = (vma->vm_start-len) & HPAGE_MASK;
138	} while (likely(len < vma->vm_start));
139
140bottomup:
141	/*
142	 * A failed mmap() very likely causes application failure,
143	 * so fall back to the bottom-up function here. This scenario
144	 * can happen with large stack limits and large mmap()
145	 * allocations.
146	 */
147	mm->cached_hole_size = ~0UL;
148  	mm->free_area_cache = TASK_UNMAPPED_BASE;
149	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
150	/*
151	 * Restore the topdown base:
152	 */
153	mm->free_area_cache = mm->mmap_base;
154	mm->cached_hole_size = ~0UL;
155
156	return addr;
157}
158
159unsigned long
160hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
161		unsigned long len, unsigned long pgoff, unsigned long flags)
162{
163	struct mm_struct *mm = current->mm;
164	struct vm_area_struct *vma;
165	unsigned long task_size = TASK_SIZE;
166
167	if (test_thread_flag(TIF_32BIT))
168		task_size = STACK_TOP32;
169
170	if (len & ~HPAGE_MASK)
171		return -EINVAL;
172	if (len > task_size)
173		return -ENOMEM;
174
175	if (flags & MAP_FIXED) {
176		if (prepare_hugepage_range(file, addr, len))
177			return -EINVAL;
178		return addr;
179	}
180
181	if (addr) {
182		addr = ALIGN(addr, HPAGE_SIZE);
183		vma = find_vma(mm, addr);
184		if (task_size - len >= addr &&
185		    (!vma || addr + len <= vma->vm_start))
186			return addr;
187	}
188	if (mm->get_unmapped_area == arch_get_unmapped_area)
189		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
190				pgoff, flags);
191	else
192		return hugetlb_get_unmapped_area_topdown(file, addr, len,
193				pgoff, flags);
194}
195
196pte_t *huge_pte_alloc(struct mm_struct *mm,
197			unsigned long addr, unsigned long sz)
198{
199	pgd_t *pgd;
200	pud_t *pud;
201	pmd_t *pmd;
202	pte_t *pte = NULL;
203
204	/* We must align the address, because our caller will run
205	 * set_huge_pte_at() on whatever we return, which writes out
206	 * all of the sub-ptes for the hugepage range.  So we have
207	 * to give it the first such sub-pte.
208	 */
209	addr &= HPAGE_MASK;
210
211	pgd = pgd_offset(mm, addr);
212	pud = pud_alloc(mm, pgd, addr);
213	if (pud) {
214		pmd = pmd_alloc(mm, pud, addr);
215		if (pmd)
216			pte = pte_alloc_map(mm, NULL, pmd, addr);
217	}
218	return pte;
219}
220
221pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
222{
223	pgd_t *pgd;
224	pud_t *pud;
225	pmd_t *pmd;
226	pte_t *pte = NULL;
227
228	addr &= HPAGE_MASK;
229
230	pgd = pgd_offset(mm, addr);
231	if (!pgd_none(*pgd)) {
232		pud = pud_offset(pgd, addr);
233		if (!pud_none(*pud)) {
234			pmd = pmd_offset(pud, addr);
235			if (!pmd_none(*pmd))
236				pte = pte_offset_map(pmd, addr);
237		}
238	}
239	return pte;
240}
241
242int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
243{
244	return 0;
245}
246
247void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
248		     pte_t *ptep, pte_t entry)
249{
250	int i;
251
252	if (!pte_present(*ptep) && pte_present(entry))
253		mm->context.huge_pte_count++;
254
255	addr &= HPAGE_MASK;
256	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
257		set_pte_at(mm, addr, ptep, entry);
258		ptep++;
259		addr += PAGE_SIZE;
260		pte_val(entry) += PAGE_SIZE;
261	}
262}
263
264pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
265			      pte_t *ptep)
266{
267	pte_t entry;
268	int i;
269
270	entry = *ptep;
271	if (pte_present(entry))
272		mm->context.huge_pte_count--;
273
274	addr &= HPAGE_MASK;
275
276	for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
277		pte_clear(mm, addr, ptep);
278		addr += PAGE_SIZE;
279		ptep++;
280	}
281
282	return entry;
283}
284
285struct page *follow_huge_addr(struct mm_struct *mm,
286			      unsigned long address, int write)
287{
288	return ERR_PTR(-EINVAL);
289}
290
291int pmd_huge(pmd_t pmd)
292{
293	return 0;
294}
295
296int pud_huge(pud_t pud)
297{
298	return 0;
299}
300
301struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
302			     pmd_t *pmd, int write)
303{
304	return NULL;
305}
306
307static void context_reload(void *__data)
308{
309	struct mm_struct *mm = __data;
310
311	if (mm == current->mm)
312		load_secondary_context(mm);
313}
314
315void hugetlb_prefault_arch_hook(struct mm_struct *mm)
316{
317	struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
318
319	if (likely(tp->tsb != NULL))
320		return;
321
322	tsb_grow(mm, MM_TSB_HUGE, 0);
323	tsb_context_switch(mm);
324	smp_tsb_sync(mm);
325
326	/* On UltraSPARC-III+ and later, configure the second half of
327	 * the Data-TLB for huge pages.
328	 */
329	if (tlb_type == cheetah_plus) {
330		unsigned long ctx;
331
332		spin_lock(&ctx_alloc_lock);
333		ctx = mm->context.sparc64_ctx_val;
334		ctx &= ~CTX_PGSZ_MASK;
335		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
336		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
337
338		if (ctx != mm->context.sparc64_ctx_val) {
339			/* When changing the page size fields, we
340			 * must perform a context flush so that no
341			 * stale entries match.  This flush must
342			 * occur with the original context register
343			 * settings.
344			 */
345			do_flush_tlb_mm(mm);
346
347			/* Reload the context register of all processors
348			 * also executing in this address space.
349			 */
350			mm->context.sparc64_ctx_val = ctx;
351			on_each_cpu(context_reload, mm, 0);
352		}
353		spin_unlock(&ctx_alloc_lock);
354	}
355}