Loading...
1/*
2 * SPARC64 Huge TLB page support.
3 *
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
5 */
6
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/fs.h>
10#include <linux/mm.h>
11#include <linux/hugetlb.h>
12#include <linux/pagemap.h>
13#include <linux/sysctl.h>
14
15#include <asm/mman.h>
16#include <asm/pgalloc.h>
17#include <asm/tlb.h>
18#include <asm/tlbflush.h>
19#include <asm/cacheflush.h>
20#include <asm/mmu_context.h>
21
22/* Slightly simplified from the non-hugepage variant because by
23 * definition we don't have to worry about any page coloring stuff
24 */
25#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
26#define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
27
28static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
29 unsigned long addr,
30 unsigned long len,
31 unsigned long pgoff,
32 unsigned long flags)
33{
34 struct mm_struct *mm = current->mm;
35 struct vm_area_struct * vma;
36 unsigned long task_size = TASK_SIZE;
37 unsigned long start_addr;
38
39 if (test_thread_flag(TIF_32BIT))
40 task_size = STACK_TOP32;
41 if (unlikely(len >= VA_EXCLUDE_START))
42 return -ENOMEM;
43
44 if (len > mm->cached_hole_size) {
45 start_addr = addr = mm->free_area_cache;
46 } else {
47 start_addr = addr = TASK_UNMAPPED_BASE;
48 mm->cached_hole_size = 0;
49 }
50
51 task_size -= len;
52
53full_search:
54 addr = ALIGN(addr, HPAGE_SIZE);
55
56 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
57 /* At this point: (!vma || addr < vma->vm_end). */
58 if (addr < VA_EXCLUDE_START &&
59 (addr + len) >= VA_EXCLUDE_START) {
60 addr = VA_EXCLUDE_END;
61 vma = find_vma(mm, VA_EXCLUDE_END);
62 }
63 if (unlikely(task_size < addr)) {
64 if (start_addr != TASK_UNMAPPED_BASE) {
65 start_addr = addr = TASK_UNMAPPED_BASE;
66 mm->cached_hole_size = 0;
67 goto full_search;
68 }
69 return -ENOMEM;
70 }
71 if (likely(!vma || addr + len <= vma->vm_start)) {
72 /*
73 * Remember the place where we stopped the search:
74 */
75 mm->free_area_cache = addr + len;
76 return addr;
77 }
78 if (addr + mm->cached_hole_size < vma->vm_start)
79 mm->cached_hole_size = vma->vm_start - addr;
80
81 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
82 }
83}
84
85static unsigned long
86hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
87 const unsigned long len,
88 const unsigned long pgoff,
89 const unsigned long flags)
90{
91 struct vm_area_struct *vma;
92 struct mm_struct *mm = current->mm;
93 unsigned long addr = addr0;
94
95 /* This should only ever run for 32-bit processes. */
96 BUG_ON(!test_thread_flag(TIF_32BIT));
97
98 /* check if free_area_cache is useful for us */
99 if (len <= mm->cached_hole_size) {
100 mm->cached_hole_size = 0;
101 mm->free_area_cache = mm->mmap_base;
102 }
103
104 /* either no address requested or can't fit in requested address hole */
105 addr = mm->free_area_cache & HPAGE_MASK;
106
107 /* make sure it can fit in the remaining address space */
108 if (likely(addr > len)) {
109 vma = find_vma(mm, addr-len);
110 if (!vma || addr <= vma->vm_start) {
111 /* remember the address as a hint for next time */
112 return (mm->free_area_cache = addr-len);
113 }
114 }
115
116 if (unlikely(mm->mmap_base < len))
117 goto bottomup;
118
119 addr = (mm->mmap_base-len) & HPAGE_MASK;
120
121 do {
122 /*
123 * Lookup failure means no vma is above this address,
124 * else if new region fits below vma->vm_start,
125 * return with success:
126 */
127 vma = find_vma(mm, addr);
128 if (likely(!vma || addr+len <= vma->vm_start)) {
129 /* remember the address as a hint for next time */
130 return (mm->free_area_cache = addr);
131 }
132
133 /* remember the largest hole we saw so far */
134 if (addr + mm->cached_hole_size < vma->vm_start)
135 mm->cached_hole_size = vma->vm_start - addr;
136
137 /* try just below the current vma->vm_start */
138 addr = (vma->vm_start-len) & HPAGE_MASK;
139 } while (likely(len < vma->vm_start));
140
141bottomup:
142 /*
143 * A failed mmap() very likely causes application failure,
144 * so fall back to the bottom-up function here. This scenario
145 * can happen with large stack limits and large mmap()
146 * allocations.
147 */
148 mm->cached_hole_size = ~0UL;
149 mm->free_area_cache = TASK_UNMAPPED_BASE;
150 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
151 /*
152 * Restore the topdown base:
153 */
154 mm->free_area_cache = mm->mmap_base;
155 mm->cached_hole_size = ~0UL;
156
157 return addr;
158}
159
160unsigned long
161hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
162 unsigned long len, unsigned long pgoff, unsigned long flags)
163{
164 struct mm_struct *mm = current->mm;
165 struct vm_area_struct *vma;
166 unsigned long task_size = TASK_SIZE;
167
168 if (test_thread_flag(TIF_32BIT))
169 task_size = STACK_TOP32;
170
171 if (len & ~HPAGE_MASK)
172 return -EINVAL;
173 if (len > task_size)
174 return -ENOMEM;
175
176 if (flags & MAP_FIXED) {
177 if (prepare_hugepage_range(file, addr, len))
178 return -EINVAL;
179 return addr;
180 }
181
182 if (addr) {
183 addr = ALIGN(addr, HPAGE_SIZE);
184 vma = find_vma(mm, addr);
185 if (task_size - len >= addr &&
186 (!vma || addr + len <= vma->vm_start))
187 return addr;
188 }
189 if (mm->get_unmapped_area == arch_get_unmapped_area)
190 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
191 pgoff, flags);
192 else
193 return hugetlb_get_unmapped_area_topdown(file, addr, len,
194 pgoff, flags);
195}
196
197pte_t *huge_pte_alloc(struct mm_struct *mm,
198 unsigned long addr, unsigned long sz)
199{
200 pgd_t *pgd;
201 pud_t *pud;
202 pmd_t *pmd;
203 pte_t *pte = NULL;
204
205 /* We must align the address, because our caller will run
206 * set_huge_pte_at() on whatever we return, which writes out
207 * all of the sub-ptes for the hugepage range. So we have
208 * to give it the first such sub-pte.
209 */
210 addr &= HPAGE_MASK;
211
212 pgd = pgd_offset(mm, addr);
213 pud = pud_alloc(mm, pgd, addr);
214 if (pud) {
215 pmd = pmd_alloc(mm, pud, addr);
216 if (pmd)
217 pte = pte_alloc_map(mm, NULL, pmd, addr);
218 }
219 return pte;
220}
221
222pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
223{
224 pgd_t *pgd;
225 pud_t *pud;
226 pmd_t *pmd;
227 pte_t *pte = NULL;
228
229 addr &= HPAGE_MASK;
230
231 pgd = pgd_offset(mm, addr);
232 if (!pgd_none(*pgd)) {
233 pud = pud_offset(pgd, addr);
234 if (!pud_none(*pud)) {
235 pmd = pmd_offset(pud, addr);
236 if (!pmd_none(*pmd))
237 pte = pte_offset_map(pmd, addr);
238 }
239 }
240 return pte;
241}
242
243int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
244{
245 return 0;
246}
247
248void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
249 pte_t *ptep, pte_t entry)
250{
251 int i;
252
253 if (!pte_present(*ptep) && pte_present(entry))
254 mm->context.huge_pte_count++;
255
256 addr &= HPAGE_MASK;
257 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
258 set_pte_at(mm, addr, ptep, entry);
259 ptep++;
260 addr += PAGE_SIZE;
261 pte_val(entry) += PAGE_SIZE;
262 }
263}
264
265pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
266 pte_t *ptep)
267{
268 pte_t entry;
269 int i;
270
271 entry = *ptep;
272 if (pte_present(entry))
273 mm->context.huge_pte_count--;
274
275 addr &= HPAGE_MASK;
276
277 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
278 pte_clear(mm, addr, ptep);
279 addr += PAGE_SIZE;
280 ptep++;
281 }
282
283 return entry;
284}
285
286struct page *follow_huge_addr(struct mm_struct *mm,
287 unsigned long address, int write)
288{
289 return ERR_PTR(-EINVAL);
290}
291
292int pmd_huge(pmd_t pmd)
293{
294 return 0;
295}
296
297int pud_huge(pud_t pud)
298{
299 return 0;
300}
301
302struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
303 pmd_t *pmd, int write)
304{
305 return NULL;
306}
307
308static void context_reload(void *__data)
309{
310 struct mm_struct *mm = __data;
311
312 if (mm == current->mm)
313 load_secondary_context(mm);
314}
315
316void hugetlb_prefault_arch_hook(struct mm_struct *mm)
317{
318 struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
319
320 if (likely(tp->tsb != NULL))
321 return;
322
323 tsb_grow(mm, MM_TSB_HUGE, 0);
324 tsb_context_switch(mm);
325 smp_tsb_sync(mm);
326
327 /* On UltraSPARC-III+ and later, configure the second half of
328 * the Data-TLB for huge pages.
329 */
330 if (tlb_type == cheetah_plus) {
331 unsigned long ctx;
332
333 spin_lock(&ctx_alloc_lock);
334 ctx = mm->context.sparc64_ctx_val;
335 ctx &= ~CTX_PGSZ_MASK;
336 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
337 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
338
339 if (ctx != mm->context.sparc64_ctx_val) {
340 /* When changing the page size fields, we
341 * must perform a context flush so that no
342 * stale entries match. This flush must
343 * occur with the original context register
344 * settings.
345 */
346 do_flush_tlb_mm(mm);
347
348 /* Reload the context register of all processors
349 * also executing in this address space.
350 */
351 mm->context.sparc64_ctx_val = ctx;
352 on_each_cpu(context_reload, mm, 0);
353 }
354 spin_unlock(&ctx_alloc_lock);
355 }
356}
1/*
2 * SPARC64 Huge TLB page support.
3 *
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
5 */
6
7#include <linux/init.h>
8#include <linux/fs.h>
9#include <linux/mm.h>
10#include <linux/hugetlb.h>
11#include <linux/pagemap.h>
12#include <linux/sysctl.h>
13
14#include <asm/mman.h>
15#include <asm/pgalloc.h>
16#include <asm/tlb.h>
17#include <asm/tlbflush.h>
18#include <asm/cacheflush.h>
19#include <asm/mmu_context.h>
20
21/* Slightly simplified from the non-hugepage variant because by
22 * definition we don't have to worry about any page coloring stuff
23 */
24#define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
25#define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
26
27static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
28 unsigned long addr,
29 unsigned long len,
30 unsigned long pgoff,
31 unsigned long flags)
32{
33 struct mm_struct *mm = current->mm;
34 struct vm_area_struct * vma;
35 unsigned long task_size = TASK_SIZE;
36 unsigned long start_addr;
37
38 if (test_thread_flag(TIF_32BIT))
39 task_size = STACK_TOP32;
40 if (unlikely(len >= VA_EXCLUDE_START))
41 return -ENOMEM;
42
43 if (len > mm->cached_hole_size) {
44 start_addr = addr = mm->free_area_cache;
45 } else {
46 start_addr = addr = TASK_UNMAPPED_BASE;
47 mm->cached_hole_size = 0;
48 }
49
50 task_size -= len;
51
52full_search:
53 addr = ALIGN(addr, HPAGE_SIZE);
54
55 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
56 /* At this point: (!vma || addr < vma->vm_end). */
57 if (addr < VA_EXCLUDE_START &&
58 (addr + len) >= VA_EXCLUDE_START) {
59 addr = VA_EXCLUDE_END;
60 vma = find_vma(mm, VA_EXCLUDE_END);
61 }
62 if (unlikely(task_size < addr)) {
63 if (start_addr != TASK_UNMAPPED_BASE) {
64 start_addr = addr = TASK_UNMAPPED_BASE;
65 mm->cached_hole_size = 0;
66 goto full_search;
67 }
68 return -ENOMEM;
69 }
70 if (likely(!vma || addr + len <= vma->vm_start)) {
71 /*
72 * Remember the place where we stopped the search:
73 */
74 mm->free_area_cache = addr + len;
75 return addr;
76 }
77 if (addr + mm->cached_hole_size < vma->vm_start)
78 mm->cached_hole_size = vma->vm_start - addr;
79
80 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
81 }
82}
83
84static unsigned long
85hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
86 const unsigned long len,
87 const unsigned long pgoff,
88 const unsigned long flags)
89{
90 struct vm_area_struct *vma;
91 struct mm_struct *mm = current->mm;
92 unsigned long addr = addr0;
93
94 /* This should only ever run for 32-bit processes. */
95 BUG_ON(!test_thread_flag(TIF_32BIT));
96
97 /* check if free_area_cache is useful for us */
98 if (len <= mm->cached_hole_size) {
99 mm->cached_hole_size = 0;
100 mm->free_area_cache = mm->mmap_base;
101 }
102
103 /* either no address requested or can't fit in requested address hole */
104 addr = mm->free_area_cache & HPAGE_MASK;
105
106 /* make sure it can fit in the remaining address space */
107 if (likely(addr > len)) {
108 vma = find_vma(mm, addr-len);
109 if (!vma || addr <= vma->vm_start) {
110 /* remember the address as a hint for next time */
111 return (mm->free_area_cache = addr-len);
112 }
113 }
114
115 if (unlikely(mm->mmap_base < len))
116 goto bottomup;
117
118 addr = (mm->mmap_base-len) & HPAGE_MASK;
119
120 do {
121 /*
122 * Lookup failure means no vma is above this address,
123 * else if new region fits below vma->vm_start,
124 * return with success:
125 */
126 vma = find_vma(mm, addr);
127 if (likely(!vma || addr+len <= vma->vm_start)) {
128 /* remember the address as a hint for next time */
129 return (mm->free_area_cache = addr);
130 }
131
132 /* remember the largest hole we saw so far */
133 if (addr + mm->cached_hole_size < vma->vm_start)
134 mm->cached_hole_size = vma->vm_start - addr;
135
136 /* try just below the current vma->vm_start */
137 addr = (vma->vm_start-len) & HPAGE_MASK;
138 } while (likely(len < vma->vm_start));
139
140bottomup:
141 /*
142 * A failed mmap() very likely causes application failure,
143 * so fall back to the bottom-up function here. This scenario
144 * can happen with large stack limits and large mmap()
145 * allocations.
146 */
147 mm->cached_hole_size = ~0UL;
148 mm->free_area_cache = TASK_UNMAPPED_BASE;
149 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
150 /*
151 * Restore the topdown base:
152 */
153 mm->free_area_cache = mm->mmap_base;
154 mm->cached_hole_size = ~0UL;
155
156 return addr;
157}
158
159unsigned long
160hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
161 unsigned long len, unsigned long pgoff, unsigned long flags)
162{
163 struct mm_struct *mm = current->mm;
164 struct vm_area_struct *vma;
165 unsigned long task_size = TASK_SIZE;
166
167 if (test_thread_flag(TIF_32BIT))
168 task_size = STACK_TOP32;
169
170 if (len & ~HPAGE_MASK)
171 return -EINVAL;
172 if (len > task_size)
173 return -ENOMEM;
174
175 if (flags & MAP_FIXED) {
176 if (prepare_hugepage_range(file, addr, len))
177 return -EINVAL;
178 return addr;
179 }
180
181 if (addr) {
182 addr = ALIGN(addr, HPAGE_SIZE);
183 vma = find_vma(mm, addr);
184 if (task_size - len >= addr &&
185 (!vma || addr + len <= vma->vm_start))
186 return addr;
187 }
188 if (mm->get_unmapped_area == arch_get_unmapped_area)
189 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
190 pgoff, flags);
191 else
192 return hugetlb_get_unmapped_area_topdown(file, addr, len,
193 pgoff, flags);
194}
195
196pte_t *huge_pte_alloc(struct mm_struct *mm,
197 unsigned long addr, unsigned long sz)
198{
199 pgd_t *pgd;
200 pud_t *pud;
201 pmd_t *pmd;
202 pte_t *pte = NULL;
203
204 /* We must align the address, because our caller will run
205 * set_huge_pte_at() on whatever we return, which writes out
206 * all of the sub-ptes for the hugepage range. So we have
207 * to give it the first such sub-pte.
208 */
209 addr &= HPAGE_MASK;
210
211 pgd = pgd_offset(mm, addr);
212 pud = pud_alloc(mm, pgd, addr);
213 if (pud) {
214 pmd = pmd_alloc(mm, pud, addr);
215 if (pmd)
216 pte = pte_alloc_map(mm, NULL, pmd, addr);
217 }
218 return pte;
219}
220
221pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
222{
223 pgd_t *pgd;
224 pud_t *pud;
225 pmd_t *pmd;
226 pte_t *pte = NULL;
227
228 addr &= HPAGE_MASK;
229
230 pgd = pgd_offset(mm, addr);
231 if (!pgd_none(*pgd)) {
232 pud = pud_offset(pgd, addr);
233 if (!pud_none(*pud)) {
234 pmd = pmd_offset(pud, addr);
235 if (!pmd_none(*pmd))
236 pte = pte_offset_map(pmd, addr);
237 }
238 }
239 return pte;
240}
241
242int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
243{
244 return 0;
245}
246
247void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
248 pte_t *ptep, pte_t entry)
249{
250 int i;
251
252 if (!pte_present(*ptep) && pte_present(entry))
253 mm->context.huge_pte_count++;
254
255 addr &= HPAGE_MASK;
256 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
257 set_pte_at(mm, addr, ptep, entry);
258 ptep++;
259 addr += PAGE_SIZE;
260 pte_val(entry) += PAGE_SIZE;
261 }
262}
263
264pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
265 pte_t *ptep)
266{
267 pte_t entry;
268 int i;
269
270 entry = *ptep;
271 if (pte_present(entry))
272 mm->context.huge_pte_count--;
273
274 addr &= HPAGE_MASK;
275
276 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
277 pte_clear(mm, addr, ptep);
278 addr += PAGE_SIZE;
279 ptep++;
280 }
281
282 return entry;
283}
284
285struct page *follow_huge_addr(struct mm_struct *mm,
286 unsigned long address, int write)
287{
288 return ERR_PTR(-EINVAL);
289}
290
291int pmd_huge(pmd_t pmd)
292{
293 return 0;
294}
295
296int pud_huge(pud_t pud)
297{
298 return 0;
299}
300
301struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
302 pmd_t *pmd, int write)
303{
304 return NULL;
305}
306
307static void context_reload(void *__data)
308{
309 struct mm_struct *mm = __data;
310
311 if (mm == current->mm)
312 load_secondary_context(mm);
313}
314
315void hugetlb_prefault_arch_hook(struct mm_struct *mm)
316{
317 struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
318
319 if (likely(tp->tsb != NULL))
320 return;
321
322 tsb_grow(mm, MM_TSB_HUGE, 0);
323 tsb_context_switch(mm);
324 smp_tsb_sync(mm);
325
326 /* On UltraSPARC-III+ and later, configure the second half of
327 * the Data-TLB for huge pages.
328 */
329 if (tlb_type == cheetah_plus) {
330 unsigned long ctx;
331
332 spin_lock(&ctx_alloc_lock);
333 ctx = mm->context.sparc64_ctx_val;
334 ctx &= ~CTX_PGSZ_MASK;
335 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
336 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
337
338 if (ctx != mm->context.sparc64_ctx_val) {
339 /* When changing the page size fields, we
340 * must perform a context flush so that no
341 * stale entries match. This flush must
342 * occur with the original context register
343 * settings.
344 */
345 do_flush_tlb_mm(mm);
346
347 /* Reload the context register of all processors
348 * also executing in this address space.
349 */
350 mm->context.sparc64_ctx_val = ctx;
351 on_each_cpu(context_reload, mm, 0);
352 }
353 spin_unlock(&ctx_alloc_lock);
354 }
355}