Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  arch/s390/mm/fault.c
  3 *
  4 *  S390 version
  5 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  7 *               Ulrich Weigand (uweigand@de.ibm.com)
  8 *
  9 *  Derived from "arch/i386/mm/fault.c"
 10 *    Copyright (C) 1995  Linus Torvalds
 11 */
 12
 13#include <linux/kernel_stat.h>
 14#include <linux/perf_event.h>
 15#include <linux/signal.h>
 16#include <linux/sched.h>
 
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/module.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 34#include <asm/asm-offsets.h>
 35#include <asm/system.h>
 36#include <asm/pgtable.h>
 
 37#include <asm/irq.h>
 38#include <asm/mmu_context.h>
 39#include <asm/compat.h>
 40#include "../kernel/entry.h"
 41
 42#ifndef CONFIG_64BIT
 43#define __FAIL_ADDR_MASK 0x7ffff000
 44#define __SUBCODE_MASK 0x0200
 45#define __PF_RES_FIELD 0ULL
 46#else /* CONFIG_64BIT */
 47#define __FAIL_ADDR_MASK -4096L
 48#define __SUBCODE_MASK 0x0600
 49#define __PF_RES_FIELD 0x8000000000000000ULL
 50#endif /* CONFIG_64BIT */
 51
 52#define VM_FAULT_BADCONTEXT	0x010000
 53#define VM_FAULT_BADMAP		0x020000
 54#define VM_FAULT_BADACCESS	0x040000
 
 
 55
 56static unsigned long store_indication;
 
 
 
 
 
 57
 58void fault_init(void)
 59{
 60	if (test_facility(2) && test_facility(75))
 61		store_indication = 0xc00;
 62}
 63
 64static inline int notify_page_fault(struct pt_regs *regs)
 65{
 66	int ret = 0;
 67
 68	/* kprobe_running() needs smp_processor_id() */
 69	if (kprobes_built_in() && !user_mode(regs)) {
 70		preempt_disable();
 71		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 72			ret = 1;
 73		preempt_enable();
 74	}
 75	return ret;
 76}
 77
 78
 79/*
 80 * Unlock any spinlocks which will prevent us from getting the
 81 * message out.
 82 */
 83void bust_spinlocks(int yes)
 84{
 85	if (yes) {
 86		oops_in_progress = 1;
 87	} else {
 88		int loglevel_save = console_loglevel;
 89		console_unblank();
 90		oops_in_progress = 0;
 91		/*
 92		 * OK, the message is on the console.  Now we call printk()
 93		 * without oops_in_progress set so that printk will give klogd
 94		 * a poke.  Hold onto your hats...
 95		 */
 96		console_loglevel = 15;
 97		printk(" ");
 98		console_loglevel = loglevel_save;
 
 
 
 
 
 
 99	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100}
101
102/*
103 * Returns the address space associated with the fault.
104 * Returns 0 for kernel space and 1 for user space.
105 */
106static inline int user_space_fault(unsigned long trans_exc_code)
107{
108	/*
109	 * The lowest two bits of the translation exception
110	 * identification indicate which paging table was used.
111	 */
112	trans_exc_code &= 3;
113	if (trans_exc_code == 2)
114		/* Access via secondary space, set_fs setting decides */
115		return current->thread.mm_segment.ar4;
116	if (user_mode == HOME_SPACE_MODE)
117		/* User space if the access has been done via home space. */
118		return trans_exc_code == 3;
119	/*
120	 * If the user space is not the home space the kernel runs in home
121	 * space. Access via secondary space has already been covered,
122	 * access via primary space or access register is from user space
123	 * and access via home space is from the kernel.
124	 */
125	return trans_exc_code != 3;
126}
127
128static inline void report_user_fault(struct pt_regs *regs, long int_code,
129				     int signr, unsigned long address)
130{
131	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
132		return;
133	if (!unhandled_signal(current, signr))
134		return;
135	if (!printk_ratelimit())
136		return;
137	printk("User process fault: interruption code 0x%lX ", int_code);
138	print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
139	printk("\n");
140	printk("failing address: %lX\n", address);
 
 
141	show_regs(regs);
142}
143
144/*
145 * Send SIGSEGV to task.  This is an external routine
146 * to keep the stack usage of do_page_fault small.
147 */
148static noinline void do_sigsegv(struct pt_regs *regs, long int_code,
149				int si_code, unsigned long trans_exc_code)
150{
151	struct siginfo si;
152	unsigned long address;
 
 
153
154	address = trans_exc_code & __FAIL_ADDR_MASK;
155	current->thread.prot_addr = address;
156	current->thread.trap_no = int_code;
157	report_user_fault(regs, int_code, SIGSEGV, address);
158	si.si_signo = SIGSEGV;
159	si.si_code = si_code;
160	si.si_addr = (void __user *) address;
161	force_sig_info(SIGSEGV, &si, current);
 
 
162}
163
164static noinline void do_no_context(struct pt_regs *regs, long int_code,
165				   unsigned long trans_exc_code)
166{
167	const struct exception_table_entry *fixup;
168	unsigned long address;
169
170	/* Are we prepared to handle this kernel fault?  */
171	fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
172	if (fixup) {
173		regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
174		return;
175	}
176
177	/*
178	 * Oops. The kernel tried to access some bad page. We'll have to
179	 * terminate things with extreme prejudice.
180	 */
181	address = trans_exc_code & __FAIL_ADDR_MASK;
182	if (!user_space_fault(trans_exc_code))
183		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
184		       " at virtual kernel address %p\n", (void *)address);
185	else
186		printk(KERN_ALERT "Unable to handle kernel paging request"
187		       " at virtual user address %p\n", (void *)address);
188
189	die("Oops", regs, int_code);
190	do_exit(SIGKILL);
191}
192
193static noinline void do_low_address(struct pt_regs *regs, long int_code,
194				    unsigned long trans_exc_code)
195{
196	/* Low-address protection hit in kernel mode means
197	   NULL pointer write access in kernel mode.  */
198	if (regs->psw.mask & PSW_MASK_PSTATE) {
199		/* Low-address protection hit in user mode 'cannot happen'. */
200		die ("Low-address protection", regs, int_code);
201		do_exit(SIGKILL);
202	}
203
204	do_no_context(regs, int_code, trans_exc_code);
205}
206
207static noinline void do_sigbus(struct pt_regs *regs, long int_code,
208			       unsigned long trans_exc_code)
209{
210	struct task_struct *tsk = current;
211	unsigned long address;
212	struct siginfo si;
213
214	/*
215	 * Send a sigbus, regardless of whether we were in kernel
216	 * or user mode.
217	 */
218	address = trans_exc_code & __FAIL_ADDR_MASK;
219	tsk->thread.prot_addr = address;
220	tsk->thread.trap_no = int_code;
221	si.si_signo = SIGBUS;
222	si.si_errno = 0;
223	si.si_code = BUS_ADRERR;
224	si.si_addr = (void __user *) address;
225	force_sig_info(SIGBUS, &si, tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226}
227
228static noinline void do_fault_error(struct pt_regs *regs, long int_code,
229				    unsigned long trans_exc_code, int fault)
230{
231	int si_code;
232
233	switch (fault) {
234	case VM_FAULT_BADACCESS:
 
 
 
235	case VM_FAULT_BADMAP:
236		/* Bad memory access. Check if it is kernel or user space. */
237		if (regs->psw.mask & PSW_MASK_PSTATE) {
238			/* User mode accesses just cause a SIGSEGV */
239			si_code = (fault == VM_FAULT_BADMAP) ?
240				SEGV_MAPERR : SEGV_ACCERR;
241			do_sigsegv(regs, int_code, si_code, trans_exc_code);
242			return;
243		}
 
244	case VM_FAULT_BADCONTEXT:
245		do_no_context(regs, int_code, trans_exc_code);
 
 
 
 
 
 
246		break;
247	default: /* fault & VM_FAULT_ERROR */
248		if (fault & VM_FAULT_OOM) {
249			if (!(regs->psw.mask & PSW_MASK_PSTATE))
250				do_no_context(regs, int_code, trans_exc_code);
251			else
252				pagefault_out_of_memory();
 
 
 
 
 
 
253		} else if (fault & VM_FAULT_SIGBUS) {
254			/* Kernel mode? Handle exceptions or die */
255			if (!(regs->psw.mask & PSW_MASK_PSTATE))
256				do_no_context(regs, int_code, trans_exc_code);
257			else
258				do_sigbus(regs, int_code, trans_exc_code);
259		} else
260			BUG();
261		break;
262	}
263}
264
265/*
266 * This routine handles page faults.  It determines the address,
267 * and the problem, and then passes it off to one of the appropriate
268 * routines.
269 *
270 * interruption code (int_code):
271 *   04       Protection           ->  Write-Protection  (suprression)
272 *   10       Segment translation  ->  Not present       (nullification)
273 *   11       Page translation     ->  Not present       (nullification)
274 *   3b       Region third trans.  ->  Not present       (nullification)
275 */
276static inline int do_exception(struct pt_regs *regs, int access,
277			       unsigned long trans_exc_code)
278{
 
279	struct task_struct *tsk;
280	struct mm_struct *mm;
281	struct vm_area_struct *vma;
 
 
282	unsigned long address;
283	unsigned int flags;
284	int fault;
 
 
 
 
 
 
 
285
286	if (notify_page_fault(regs))
287		return 0;
288
289	tsk = current;
290	mm = tsk->mm;
 
291
292	/*
293	 * Verify that the fault happened in user space, that
294	 * we are not in an interrupt and that there is a 
295	 * user context.
296	 */
297	fault = VM_FAULT_BADCONTEXT;
298	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
 
 
299		goto out;
 
 
 
 
 
 
 
 
 
300
301	address = trans_exc_code & __FAIL_ADDR_MASK;
302	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
303	flags = FAULT_FLAG_ALLOW_RETRY;
 
 
304	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
305		flags |= FAULT_FLAG_WRITE;
306	down_read(&mm->mmap_sem);
307
308#ifdef CONFIG_PGSTE
309	if (test_tsk_thread_flag(current, TIF_SIE) && S390_lowcore.gmap) {
310		address = gmap_fault(address,
311				     (struct gmap *) S390_lowcore.gmap);
 
 
 
312		if (address == -EFAULT) {
313			fault = VM_FAULT_BADMAP;
314			goto out_up;
315		}
316		if (address == -ENOMEM) {
317			fault = VM_FAULT_OOM;
318			goto out_up;
319		}
320	}
321#endif
322
323retry:
324	fault = VM_FAULT_BADMAP;
325	vma = find_vma(mm, address);
326	if (!vma)
327		goto out_up;
328
329	if (unlikely(vma->vm_start > address)) {
330		if (!(vma->vm_flags & VM_GROWSDOWN))
331			goto out_up;
332		if (expand_stack(vma, address))
333			goto out_up;
334	}
335
336	/*
337	 * Ok, we have a good vm_area for this memory access, so
338	 * we can handle it..
339	 */
340	fault = VM_FAULT_BADACCESS;
341	if (unlikely(!(vma->vm_flags & access)))
342		goto out_up;
343
344	if (is_vm_hugetlb_page(vma))
345		address &= HPAGE_MASK;
346	/*
347	 * If for any reason at all we couldn't handle the fault,
348	 * make sure we exit gracefully rather than endlessly redo
349	 * the fault.
350	 */
351	fault = handle_mm_fault(mm, vma, address, flags);
 
 
 
 
 
 
 
352	if (unlikely(fault & VM_FAULT_ERROR))
353		goto out_up;
354
355	/*
356	 * Major/minor page fault accounting is only done on the
357	 * initial attempt. If we go through a retry, it is extremely
358	 * likely that the page will be found in page cache at that point.
359	 */
360	if (flags & FAULT_FLAG_ALLOW_RETRY) {
361		if (fault & VM_FAULT_MAJOR) {
362			tsk->maj_flt++;
363			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
364				      regs, address);
365		} else {
366			tsk->min_flt++;
367			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
368				      regs, address);
369		}
370		if (fault & VM_FAULT_RETRY) {
 
 
 
 
 
 
 
 
371			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
372			 * of starvation. */
373			flags &= ~FAULT_FLAG_ALLOW_RETRY;
 
 
374			down_read(&mm->mmap_sem);
375			goto retry;
376		}
377	}
378	/*
379	 * The instruction that caused the program check will
380	 * be repeated. Don't signal single step via SIGTRAP.
381	 */
382	clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
 
 
 
 
 
 
 
383	fault = 0;
384out_up:
385	up_read(&mm->mmap_sem);
386out:
387	return fault;
388}
389
390void __kprobes do_protection_exception(struct pt_regs *regs, long pgm_int_code,
391				       unsigned long trans_exc_code)
392{
393	int fault;
 
 
394
395	/* Protection exception is suppressing, decrement psw address. */
396	regs->psw.addr -= (pgm_int_code >> 16);
 
 
 
 
 
 
397	/*
398	 * Check for low-address protection.  This needs to be treated
399	 * as a special case because the translation exception code
400	 * field is not guaranteed to contain valid data in this case.
401	 */
402	if (unlikely(!(trans_exc_code & 4))) {
403		do_low_address(regs, pgm_int_code, trans_exc_code);
404		return;
405	}
406	fault = do_exception(regs, VM_WRITE, trans_exc_code);
 
 
 
 
 
 
 
 
407	if (unlikely(fault))
408		do_fault_error(regs, 4, trans_exc_code, fault);
409}
 
410
411void __kprobes do_dat_exception(struct pt_regs *regs, long pgm_int_code,
412				unsigned long trans_exc_code)
413{
414	int access, fault;
 
415
416	access = VM_READ | VM_EXEC | VM_WRITE;
417	fault = do_exception(regs, access, trans_exc_code);
418	if (unlikely(fault))
419		do_fault_error(regs, pgm_int_code & 255, trans_exc_code, fault);
420}
421
422#ifdef CONFIG_64BIT
423void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code,
424				 unsigned long trans_exc_code)
425{
426	struct mm_struct *mm = current->mm;
427	struct vm_area_struct *vma;
428
429	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
430		goto no_context;
431
432	down_read(&mm->mmap_sem);
433	vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
434	up_read(&mm->mmap_sem);
435
436	if (vma) {
437		update_mm(mm, current);
438		return;
439	}
440
441	/* User mode accesses just cause a SIGSEGV */
442	if (regs->psw.mask & PSW_MASK_PSTATE) {
443		do_sigsegv(regs, pgm_int_code, SEGV_MAPERR, trans_exc_code);
444		return;
445	}
446
447no_context:
448	do_no_context(regs, pgm_int_code, trans_exc_code);
449}
450#endif
451
452int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
453{
454	struct pt_regs regs;
455	int access, fault;
456
457	regs.psw.mask = psw_kernel_bits;
458	if (!irqs_disabled())
459		regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
460	regs.psw.addr = (unsigned long) __builtin_return_address(0);
461	regs.psw.addr |= PSW_ADDR_AMODE;
462	uaddr &= PAGE_MASK;
463	access = write ? VM_WRITE : VM_READ;
464	fault = do_exception(&regs, access, uaddr | 2);
465	if (unlikely(fault)) {
466		if (fault & VM_FAULT_OOM)
467			return -EFAULT;
468		else if (fault & VM_FAULT_SIGBUS)
469			do_sigbus(&regs, pgm_int_code, uaddr);
470	}
471	return fault ? -EFAULT : 0;
472}
 
473
474#ifdef CONFIG_PFAULT 
475/*
476 * 'pfault' pseudo page faults routines.
477 */
478static int pfault_disable;
479
480static int __init nopfault(char *str)
481{
482	pfault_disable = 1;
483	return 1;
484}
485
486__setup("nopfault", nopfault);
487
488struct pfault_refbk {
489	u16 refdiagc;
490	u16 reffcode;
491	u16 refdwlen;
492	u16 refversn;
493	u64 refgaddr;
494	u64 refselmk;
495	u64 refcmpmk;
496	u64 reserved;
497} __attribute__ ((packed, aligned(8)));
498
 
 
 
 
 
 
 
 
 
 
 
499int pfault_init(void)
500{
501	struct pfault_refbk refbk = {
502		.refdiagc = 0x258,
503		.reffcode = 0,
504		.refdwlen = 5,
505		.refversn = 2,
506		.refgaddr = __LC_CURRENT_PID,
507		.refselmk = 1ULL << 48,
508		.refcmpmk = 1ULL << 48,
509		.reserved = __PF_RES_FIELD };
510        int rc;
511
512	if (!MACHINE_IS_VM || pfault_disable)
513		return -1;
 
514	asm volatile(
515		"	diag	%1,%0,0x258\n"
516		"0:	j	2f\n"
517		"1:	la	%0,8\n"
518		"2:\n"
519		EX_TABLE(0b,1b)
520		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
 
521        return rc;
522}
523
 
 
 
 
 
 
 
524void pfault_fini(void)
525{
526	struct pfault_refbk refbk = {
527		.refdiagc = 0x258,
528		.reffcode = 1,
529		.refdwlen = 5,
530		.refversn = 2,
531	};
532
533	if (!MACHINE_IS_VM || pfault_disable)
534		return;
 
535	asm volatile(
536		"	diag	%0,0,0x258\n"
537		"0:\n"
538		EX_TABLE(0b,0b)
539		: : "a" (&refbk), "m" (refbk) : "cc");
540}
541
542static DEFINE_SPINLOCK(pfault_lock);
543static LIST_HEAD(pfault_list);
544
545static void pfault_interrupt(unsigned int ext_int_code,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546			     unsigned int param32, unsigned long param64)
547{
548	struct task_struct *tsk;
549	__u16 subcode;
550	pid_t pid;
551
552	/*
553	 * Get the external interruption subcode & pfault
554	 * initial/completion signal bit. VM stores this 
555	 * in the 'cpu address' field associated with the
556         * external interrupt. 
557	 */
558	subcode = ext_int_code >> 16;
559	if ((subcode & 0xff00) != __SUBCODE_MASK)
560		return;
561	kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
562	if (subcode & 0x0080) {
563		/* Get the token (= pid of the affected task). */
564		pid = sizeof(void *) == 4 ? param32 : param64;
565		rcu_read_lock();
566		tsk = find_task_by_pid_ns(pid, &init_pid_ns);
567		if (tsk)
568			get_task_struct(tsk);
569		rcu_read_unlock();
570		if (!tsk)
571			return;
572	} else {
573		tsk = current;
574	}
575	spin_lock(&pfault_lock);
576	if (subcode & 0x0080) {
577		/* signal bit is set -> a page has been swapped in by VM */
578		if (tsk->thread.pfault_wait == 1) {
579			/* Initial interrupt was faster than the completion
580			 * interrupt. pfault_wait is valid. Set pfault_wait
581			 * back to zero and wake up the process. This can
582			 * safely be done because the task is still sleeping
583			 * and can't produce new pfaults. */
584			tsk->thread.pfault_wait = 0;
585			list_del(&tsk->thread.list);
586			wake_up_process(tsk);
 
587		} else {
588			/* Completion interrupt was faster than initial
589			 * interrupt. Set pfault_wait to -1 so the initial
590			 * interrupt doesn't put the task to sleep. */
591			tsk->thread.pfault_wait = -1;
 
 
 
 
 
592		}
593		put_task_struct(tsk);
594	} else {
595		/* signal bit not set -> a real page is missing. */
596		if (tsk->thread.pfault_wait == -1) {
 
 
 
 
 
597			/* Completion interrupt was faster than the initial
598			 * interrupt (pfault_wait == -1). Set pfault_wait
599			 * back to zero and exit. */
600			tsk->thread.pfault_wait = 0;
601		} else {
602			/* Initial interrupt arrived before completion
603			 * interrupt. Let the task sleep. */
 
 
 
 
604			tsk->thread.pfault_wait = 1;
605			list_add(&tsk->thread.list, &pfault_list);
606			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 
 
 
 
607			set_tsk_need_resched(tsk);
 
608		}
609	}
 
610	spin_unlock(&pfault_lock);
 
611}
612
613static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
614				       unsigned long action, void *hcpu)
615{
616	struct thread_struct *thread, *next;
617	struct task_struct *tsk;
618
619	switch (action) {
620	case CPU_DEAD:
621	case CPU_DEAD_FROZEN:
622		spin_lock_irq(&pfault_lock);
623		list_for_each_entry_safe(thread, next, &pfault_list, list) {
624			thread->pfault_wait = 0;
625			list_del(&thread->list);
626			tsk = container_of(thread, struct task_struct, thread);
627			wake_up_process(tsk);
628		}
629		spin_unlock_irq(&pfault_lock);
630		break;
631	default:
632		break;
633	}
634	return NOTIFY_OK;
 
635}
636
637static int __init pfault_irq_init(void)
638{
639	int rc;
640
641	if (!MACHINE_IS_VM)
642		return 0;
643	rc = register_external_interrupt(0x2603, pfault_interrupt);
644	if (rc)
645		goto out_extint;
646	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
647	if (rc)
648		goto out_pfault;
649	service_subclass_irq_register();
650	hotcpu_notifier(pfault_cpu_notify, 0);
 
651	return 0;
652
653out_pfault:
654	unregister_external_interrupt(0x2603, pfault_interrupt);
655out_extint:
656	pfault_disable = 1;
657	return rc;
658}
659early_initcall(pfault_irq_init);
660
661#endif /* CONFIG_PFAULT */
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  6 *               Ulrich Weigand (uweigand@de.ibm.com)
  7 *
  8 *  Derived from "arch/i386/mm/fault.c"
  9 *    Copyright (C) 1995  Linus Torvalds
 10 */
 11
 12#include <linux/kernel_stat.h>
 13#include <linux/perf_event.h>
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/extable.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 34#include <asm/asm-offsets.h>
 35#include <asm/diag.h>
 36#include <asm/pgtable.h>
 37#include <asm/gmap.h>
 38#include <asm/irq.h>
 39#include <asm/mmu_context.h>
 40#include <asm/facility.h>
 41#include "../kernel/entry.h"
 42
 
 
 
 
 
 43#define __FAIL_ADDR_MASK -4096L
 44#define __SUBCODE_MASK 0x0600
 45#define __PF_RES_FIELD 0x8000000000000000ULL
 
 46
 47#define VM_FAULT_BADCONTEXT	0x010000
 48#define VM_FAULT_BADMAP		0x020000
 49#define VM_FAULT_BADACCESS	0x040000
 50#define VM_FAULT_SIGNAL		0x080000
 51#define VM_FAULT_PFAULT		0x100000
 52
 53enum fault_type {
 54	KERNEL_FAULT,
 55	USER_FAULT,
 56	VDSO_FAULT,
 57	GMAP_FAULT,
 58};
 59
 60static unsigned long store_indication __read_mostly;
 
 
 
 
 61
 62static int __init fault_init(void)
 63{
 64	if (test_facility(75))
 65		store_indication = 0xc00;
 66	return 0;
 
 
 
 
 
 
 
 67}
 68early_initcall(fault_init);
 69
 70/*
 71 * Find out which address space caused the exception.
 
 72 */
 73static enum fault_type get_fault_type(struct pt_regs *regs)
 74{
 75	unsigned long trans_exc_code;
 76
 77	trans_exc_code = regs->int_parm_long & 3;
 78	if (likely(trans_exc_code == 0)) {
 79		/* primary space exception */
 80		if (IS_ENABLED(CONFIG_PGSTE) &&
 81		    test_pt_regs_flag(regs, PIF_GUEST_FAULT))
 82			return GMAP_FAULT;
 83		if (current->thread.mm_segment == USER_DS)
 84			return USER_FAULT;
 85		return KERNEL_FAULT;
 86	}
 87	if (trans_exc_code == 2) {
 88		/* secondary space exception */
 89		if (current->thread.mm_segment & 1) {
 90			if (current->thread.mm_segment == USER_DS_SACF)
 91				return USER_FAULT;
 92			return KERNEL_FAULT;
 93		}
 94		return VDSO_FAULT;
 95	}
 96	if (trans_exc_code == 1) {
 97		/* access register mode, not used in the kernel */
 98		return USER_FAULT;
 99	}
100	/* home space exception -> access via kernel ASCE */
101	return KERNEL_FAULT;
102}
103
104static int bad_address(void *p)
105{
106	unsigned long dummy;
107
108	return probe_kernel_address((unsigned long *)p, dummy);
109}
110
111static void dump_pagetable(unsigned long asce, unsigned long address)
112{
113	unsigned long *table = __va(asce & _ASCE_ORIGIN);
114
115	pr_alert("AS:%016lx ", asce);
116	switch (asce & _ASCE_TYPE_MASK) {
117	case _ASCE_TYPE_REGION1:
118		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
119		if (bad_address(table))
120			goto bad;
121		pr_cont("R1:%016lx ", *table);
122		if (*table & _REGION_ENTRY_INVALID)
123			goto out;
124		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
125		/* fallthrough */
126	case _ASCE_TYPE_REGION2:
127		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
128		if (bad_address(table))
129			goto bad;
130		pr_cont("R2:%016lx ", *table);
131		if (*table & _REGION_ENTRY_INVALID)
132			goto out;
133		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
134		/* fallthrough */
135	case _ASCE_TYPE_REGION3:
136		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
137		if (bad_address(table))
138			goto bad;
139		pr_cont("R3:%016lx ", *table);
140		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
141			goto out;
142		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
143		/* fallthrough */
144	case _ASCE_TYPE_SEGMENT:
145		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
146		if (bad_address(table))
147			goto bad;
148		pr_cont("S:%016lx ", *table);
149		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
150			goto out;
151		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
152	}
153	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
154	if (bad_address(table))
155		goto bad;
156	pr_cont("P:%016lx ", *table);
157out:
158	pr_cont("\n");
159	return;
160bad:
161	pr_cont("BAD\n");
162}
163
164static void dump_fault_info(struct pt_regs *regs)
165{
166	unsigned long asce;
167
168	pr_alert("Failing address: %016lx TEID: %016lx\n",
169		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
170	pr_alert("Fault in ");
171	switch (regs->int_parm_long & 3) {
172	case 3:
173		pr_cont("home space ");
174		break;
175	case 2:
176		pr_cont("secondary space ");
177		break;
178	case 1:
179		pr_cont("access register ");
180		break;
181	case 0:
182		pr_cont("primary space ");
183		break;
184	}
185	pr_cont("mode while using ");
186	switch (get_fault_type(regs)) {
187	case USER_FAULT:
188		asce = S390_lowcore.user_asce;
189		pr_cont("user ");
190		break;
191	case VDSO_FAULT:
192		asce = S390_lowcore.vdso_asce;
193		pr_cont("vdso ");
194		break;
195	case GMAP_FAULT:
196		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
197		pr_cont("gmap ");
198		break;
199	case KERNEL_FAULT:
200		asce = S390_lowcore.kernel_asce;
201		pr_cont("kernel ");
202		break;
203	default:
204		unreachable();
205	}
206	pr_cont("ASCE.\n");
207	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
208}
209
210int show_unhandled_signals = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
212void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
 
213{
214	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
215		return;
216	if (!unhandled_signal(current, signr))
217		return;
218	if (!printk_ratelimit())
219		return;
220	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
221	       regs->int_code & 0xffff, regs->int_code >> 17);
222	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
223	printk(KERN_CONT "\n");
224	if (is_mm_fault)
225		dump_fault_info(regs);
226	show_regs(regs);
227}
228
229/*
230 * Send SIGSEGV to task.  This is an external routine
231 * to keep the stack usage of do_page_fault small.
232 */
233static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
 
234{
235	report_user_fault(regs, SIGSEGV, 1);
236	force_sig_fault(SIGSEGV, si_code,
237			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
238}
239
240const struct exception_table_entry *s390_search_extables(unsigned long addr)
241{
242	const struct exception_table_entry *fixup;
243
244	fixup = search_extable(__start_dma_ex_table,
245			       __stop_dma_ex_table - __start_dma_ex_table,
246			       addr);
247	if (!fixup)
248		fixup = search_exception_tables(addr);
249	return fixup;
250}
251
252static noinline void do_no_context(struct pt_regs *regs)
 
253{
254	const struct exception_table_entry *fixup;
 
255
256	/* Are we prepared to handle this kernel fault?  */
257	fixup = s390_search_extables(regs->psw.addr);
258	if (fixup) {
259		regs->psw.addr = extable_fixup(fixup);
260		return;
261	}
262
263	/*
264	 * Oops. The kernel tried to access some bad page. We'll have to
265	 * terminate things with extreme prejudice.
266	 */
267	if (get_fault_type(regs) == KERNEL_FAULT)
 
268		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
269		       " in virtual kernel address space\n");
270	else
271		printk(KERN_ALERT "Unable to handle kernel paging request"
272		       " in virtual user address space\n");
273	dump_fault_info(regs);
274	die(regs, "Oops");
275	do_exit(SIGKILL);
276}
277
278static noinline void do_low_address(struct pt_regs *regs)
 
279{
280	/* Low-address protection hit in kernel mode means
281	   NULL pointer write access in kernel mode.  */
282	if (regs->psw.mask & PSW_MASK_PSTATE) {
283		/* Low-address protection hit in user mode 'cannot happen'. */
284		die (regs, "Low-address protection");
285		do_exit(SIGKILL);
286	}
287
288	do_no_context(regs);
289}
290
291static noinline void do_sigbus(struct pt_regs *regs)
 
292{
 
 
 
 
293	/*
294	 * Send a sigbus, regardless of whether we were in kernel
295	 * or user mode.
296	 */
297	force_sig_fault(SIGBUS, BUS_ADRERR,
298			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
299}
300
301static noinline int signal_return(struct pt_regs *regs)
302{
303	u16 instruction;
304	int rc;
305
306	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
307	if (rc)
308		return rc;
309	if (instruction == 0x0a77) {
310		set_pt_regs_flag(regs, PIF_SYSCALL);
311		regs->int_code = 0x00040077;
312		return 0;
313	} else if (instruction == 0x0aad) {
314		set_pt_regs_flag(regs, PIF_SYSCALL);
315		regs->int_code = 0x000400ad;
316		return 0;
317	}
318	return -EACCES;
319}
320
321static noinline void do_fault_error(struct pt_regs *regs, int access,
322					vm_fault_t fault)
323{
324	int si_code;
325
326	switch (fault) {
327	case VM_FAULT_BADACCESS:
328		if (access == VM_EXEC && signal_return(regs) == 0)
329			break;
330		/* fallthrough */
331	case VM_FAULT_BADMAP:
332		/* Bad memory access. Check if it is kernel or user space. */
333		if (user_mode(regs)) {
334			/* User mode accesses just cause a SIGSEGV */
335			si_code = (fault == VM_FAULT_BADMAP) ?
336				SEGV_MAPERR : SEGV_ACCERR;
337			do_sigsegv(regs, si_code);
338			break;
339		}
340		/* fallthrough */
341	case VM_FAULT_BADCONTEXT:
342		/* fallthrough */
343	case VM_FAULT_PFAULT:
344		do_no_context(regs);
345		break;
346	case VM_FAULT_SIGNAL:
347		if (!user_mode(regs))
348			do_no_context(regs);
349		break;
350	default: /* fault & VM_FAULT_ERROR */
351		if (fault & VM_FAULT_OOM) {
352			if (!user_mode(regs))
353				do_no_context(regs);
354			else
355				pagefault_out_of_memory();
356		} else if (fault & VM_FAULT_SIGSEGV) {
357			/* Kernel mode? Handle exceptions or die */
358			if (!user_mode(regs))
359				do_no_context(regs);
360			else
361				do_sigsegv(regs, SEGV_MAPERR);
362		} else if (fault & VM_FAULT_SIGBUS) {
363			/* Kernel mode? Handle exceptions or die */
364			if (!user_mode(regs))
365				do_no_context(regs);
366			else
367				do_sigbus(regs);
368		} else
369			BUG();
370		break;
371	}
372}
373
374/*
375 * This routine handles page faults.  It determines the address,
376 * and the problem, and then passes it off to one of the appropriate
377 * routines.
378 *
379 * interruption code (int_code):
380 *   04       Protection           ->  Write-Protection  (suprression)
381 *   10       Segment translation  ->  Not present       (nullification)
382 *   11       Page translation     ->  Not present       (nullification)
383 *   3b       Region third trans.  ->  Not present       (nullification)
384 */
385static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
 
386{
387	struct gmap *gmap;
388	struct task_struct *tsk;
389	struct mm_struct *mm;
390	struct vm_area_struct *vma;
391	enum fault_type type;
392	unsigned long trans_exc_code;
393	unsigned long address;
394	unsigned int flags;
395	vm_fault_t fault;
396
397	tsk = current;
398	/*
399	 * The instruction that caused the program check has
400	 * been nullified. Don't signal single step via SIGTRAP.
401	 */
402	clear_pt_regs_flag(regs, PIF_PER_TRAP);
403
404	if (kprobe_page_fault(regs, 14))
405		return 0;
406
 
407	mm = tsk->mm;
408	trans_exc_code = regs->int_parm_long;
409
410	/*
411	 * Verify that the fault happened in user space, that
412	 * we are not in an interrupt and that there is a 
413	 * user context.
414	 */
415	fault = VM_FAULT_BADCONTEXT;
416	type = get_fault_type(regs);
417	switch (type) {
418	case KERNEL_FAULT:
419		goto out;
420	case VDSO_FAULT:
421		fault = VM_FAULT_BADMAP;
422		goto out;
423	case USER_FAULT:
424	case GMAP_FAULT:
425		if (faulthandler_disabled() || !mm)
426			goto out;
427		break;
428	}
429
430	address = trans_exc_code & __FAIL_ADDR_MASK;
431	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
432	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
433	if (user_mode(regs))
434		flags |= FAULT_FLAG_USER;
435	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
436		flags |= FAULT_FLAG_WRITE;
437	down_read(&mm->mmap_sem);
438
439	gmap = NULL;
440	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
441		gmap = (struct gmap *) S390_lowcore.gmap;
442		current->thread.gmap_addr = address;
443		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
444		current->thread.gmap_int_code = regs->int_code & 0xffff;
445		address = __gmap_translate(gmap, address);
446		if (address == -EFAULT) {
447			fault = VM_FAULT_BADMAP;
448			goto out_up;
449		}
450		if (gmap->pfault_enabled)
451			flags |= FAULT_FLAG_RETRY_NOWAIT;
 
 
452	}
 
453
454retry:
455	fault = VM_FAULT_BADMAP;
456	vma = find_vma(mm, address);
457	if (!vma)
458		goto out_up;
459
460	if (unlikely(vma->vm_start > address)) {
461		if (!(vma->vm_flags & VM_GROWSDOWN))
462			goto out_up;
463		if (expand_stack(vma, address))
464			goto out_up;
465	}
466
467	/*
468	 * Ok, we have a good vm_area for this memory access, so
469	 * we can handle it..
470	 */
471	fault = VM_FAULT_BADACCESS;
472	if (unlikely(!(vma->vm_flags & access)))
473		goto out_up;
474
475	if (is_vm_hugetlb_page(vma))
476		address &= HPAGE_MASK;
477	/*
478	 * If for any reason at all we couldn't handle the fault,
479	 * make sure we exit gracefully rather than endlessly redo
480	 * the fault.
481	 */
482	fault = handle_mm_fault(vma, address, flags);
483	/* No reason to continue if interrupted by SIGKILL. */
484	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
485		fault = VM_FAULT_SIGNAL;
486		if (flags & FAULT_FLAG_RETRY_NOWAIT)
487			goto out_up;
488		goto out;
489	}
490	if (unlikely(fault & VM_FAULT_ERROR))
491		goto out_up;
492
493	/*
494	 * Major/minor page fault accounting is only done on the
495	 * initial attempt. If we go through a retry, it is extremely
496	 * likely that the page will be found in page cache at that point.
497	 */
498	if (flags & FAULT_FLAG_ALLOW_RETRY) {
499		if (fault & VM_FAULT_MAJOR) {
500			tsk->maj_flt++;
501			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
502				      regs, address);
503		} else {
504			tsk->min_flt++;
505			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
506				      regs, address);
507		}
508		if (fault & VM_FAULT_RETRY) {
509			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
510			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
511				/* FAULT_FLAG_RETRY_NOWAIT has been set,
512				 * mmap_sem has not been released */
513				current->thread.gmap_pfault = 1;
514				fault = VM_FAULT_PFAULT;
515				goto out_up;
516			}
517			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
518			 * of starvation. */
519			flags &= ~(FAULT_FLAG_ALLOW_RETRY |
520				   FAULT_FLAG_RETRY_NOWAIT);
521			flags |= FAULT_FLAG_TRIED;
522			down_read(&mm->mmap_sem);
523			goto retry;
524		}
525	}
526	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
527		address =  __gmap_link(gmap, current->thread.gmap_addr,
528				       address);
529		if (address == -EFAULT) {
530			fault = VM_FAULT_BADMAP;
531			goto out_up;
532		}
533		if (address == -ENOMEM) {
534			fault = VM_FAULT_OOM;
535			goto out_up;
536		}
537	}
538	fault = 0;
539out_up:
540	up_read(&mm->mmap_sem);
541out:
542	return fault;
543}
544
545void do_protection_exception(struct pt_regs *regs)
 
546{
547	unsigned long trans_exc_code;
548	int access;
549	vm_fault_t fault;
550
551	trans_exc_code = regs->int_parm_long;
552	/*
553	 * Protection exceptions are suppressing, decrement psw address.
554	 * The exception to this rule are aborted transactions, for these
555	 * the PSW already points to the correct location.
556	 */
557	if (!(regs->int_code & 0x200))
558		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
559	/*
560	 * Check for low-address protection.  This needs to be treated
561	 * as a special case because the translation exception code
562	 * field is not guaranteed to contain valid data in this case.
563	 */
564	if (unlikely(!(trans_exc_code & 4))) {
565		do_low_address(regs);
566		return;
567	}
568	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
569		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
570					(regs->psw.addr & PAGE_MASK);
571		access = VM_EXEC;
572		fault = VM_FAULT_BADACCESS;
573	} else {
574		access = VM_WRITE;
575		fault = do_exception(regs, access);
576	}
577	if (unlikely(fault))
578		do_fault_error(regs, access, fault);
579}
580NOKPROBE_SYMBOL(do_protection_exception);
581
582void do_dat_exception(struct pt_regs *regs)
 
583{
584	int access;
585	vm_fault_t fault;
586
587	access = VM_READ | VM_EXEC | VM_WRITE;
588	fault = do_exception(regs, access);
589	if (unlikely(fault))
590		do_fault_error(regs, access, fault);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591}
592NOKPROBE_SYMBOL(do_dat_exception);
593
594#ifdef CONFIG_PFAULT 
595/*
596 * 'pfault' pseudo page faults routines.
597 */
598static int pfault_disable;
599
600static int __init nopfault(char *str)
601{
602	pfault_disable = 1;
603	return 1;
604}
605
606__setup("nopfault", nopfault);
607
608struct pfault_refbk {
609	u16 refdiagc;
610	u16 reffcode;
611	u16 refdwlen;
612	u16 refversn;
613	u64 refgaddr;
614	u64 refselmk;
615	u64 refcmpmk;
616	u64 reserved;
617} __attribute__ ((packed, aligned(8)));
618
619static struct pfault_refbk pfault_init_refbk = {
620	.refdiagc = 0x258,
621	.reffcode = 0,
622	.refdwlen = 5,
623	.refversn = 2,
624	.refgaddr = __LC_LPP,
625	.refselmk = 1ULL << 48,
626	.refcmpmk = 1ULL << 48,
627	.reserved = __PF_RES_FIELD
628};
629
630int pfault_init(void)
631{
 
 
 
 
 
 
 
 
 
632        int rc;
633
634	if (pfault_disable)
635		return -1;
636	diag_stat_inc(DIAG_STAT_X258);
637	asm volatile(
638		"	diag	%1,%0,0x258\n"
639		"0:	j	2f\n"
640		"1:	la	%0,8\n"
641		"2:\n"
642		EX_TABLE(0b,1b)
643		: "=d" (rc)
644		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
645        return rc;
646}
647
648static struct pfault_refbk pfault_fini_refbk = {
649	.refdiagc = 0x258,
650	.reffcode = 1,
651	.refdwlen = 5,
652	.refversn = 2,
653};
654
655void pfault_fini(void)
656{
 
 
 
 
 
 
657
658	if (pfault_disable)
659		return;
660	diag_stat_inc(DIAG_STAT_X258);
661	asm volatile(
662		"	diag	%0,0,0x258\n"
663		"0:	nopr	%%r7\n"
664		EX_TABLE(0b,0b)
665		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
666}
667
668static DEFINE_SPINLOCK(pfault_lock);
669static LIST_HEAD(pfault_list);
670
671#define PF_COMPLETE	0x0080
672
673/*
674 * The mechanism of our pfault code: if Linux is running as guest, runs a user
675 * space process and the user space process accesses a page that the host has
676 * paged out we get a pfault interrupt.
677 *
678 * This allows us, within the guest, to schedule a different process. Without
679 * this mechanism the host would have to suspend the whole virtual cpu until
680 * the page has been paged in.
681 *
682 * So when we get such an interrupt then we set the state of the current task
683 * to uninterruptible and also set the need_resched flag. Both happens within
684 * interrupt context(!). If we later on want to return to user space we
685 * recognize the need_resched flag and then call schedule().  It's not very
686 * obvious how this works...
687 *
688 * Of course we have a lot of additional fun with the completion interrupt (->
689 * host signals that a page of a process has been paged in and the process can
690 * continue to run). This interrupt can arrive on any cpu and, since we have
691 * virtual cpus, actually appear before the interrupt that signals that a page
692 * is missing.
693 */
694static void pfault_interrupt(struct ext_code ext_code,
695			     unsigned int param32, unsigned long param64)
696{
697	struct task_struct *tsk;
698	__u16 subcode;
699	pid_t pid;
700
701	/*
702	 * Get the external interruption subcode & pfault initial/completion
703	 * signal bit. VM stores this in the 'cpu address' field associated
704	 * with the external interrupt.
 
705	 */
706	subcode = ext_code.subcode;
707	if ((subcode & 0xff00) != __SUBCODE_MASK)
708		return;
709	inc_irq_stat(IRQEXT_PFL);
710	/* Get the token (= pid of the affected task). */
711	pid = param64 & LPP_PID_MASK;
712	rcu_read_lock();
713	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
714	if (tsk)
715		get_task_struct(tsk);
716	rcu_read_unlock();
717	if (!tsk)
718		return;
 
 
 
 
719	spin_lock(&pfault_lock);
720	if (subcode & PF_COMPLETE) {
721		/* signal bit is set -> a page has been swapped in by VM */
722		if (tsk->thread.pfault_wait == 1) {
723			/* Initial interrupt was faster than the completion
724			 * interrupt. pfault_wait is valid. Set pfault_wait
725			 * back to zero and wake up the process. This can
726			 * safely be done because the task is still sleeping
727			 * and can't produce new pfaults. */
728			tsk->thread.pfault_wait = 0;
729			list_del(&tsk->thread.list);
730			wake_up_process(tsk);
731			put_task_struct(tsk);
732		} else {
733			/* Completion interrupt was faster than initial
734			 * interrupt. Set pfault_wait to -1 so the initial
735			 * interrupt doesn't put the task to sleep.
736			 * If the task is not running, ignore the completion
737			 * interrupt since it must be a leftover of a PFAULT
738			 * CANCEL operation which didn't remove all pending
739			 * completion interrupts. */
740			if (tsk->state == TASK_RUNNING)
741				tsk->thread.pfault_wait = -1;
742		}
 
743	} else {
744		/* signal bit not set -> a real page is missing. */
745		if (WARN_ON_ONCE(tsk != current))
746			goto out;
747		if (tsk->thread.pfault_wait == 1) {
748			/* Already on the list with a reference: put to sleep */
749			goto block;
750		} else if (tsk->thread.pfault_wait == -1) {
751			/* Completion interrupt was faster than the initial
752			 * interrupt (pfault_wait == -1). Set pfault_wait
753			 * back to zero and exit. */
754			tsk->thread.pfault_wait = 0;
755		} else {
756			/* Initial interrupt arrived before completion
757			 * interrupt. Let the task sleep.
758			 * An extra task reference is needed since a different
759			 * cpu may set the task state to TASK_RUNNING again
760			 * before the scheduler is reached. */
761			get_task_struct(tsk);
762			tsk->thread.pfault_wait = 1;
763			list_add(&tsk->thread.list, &pfault_list);
764block:
765			/* Since this must be a userspace fault, there
766			 * is no kernel task state to trample. Rely on the
767			 * return to userspace schedule() to block. */
768			__set_current_state(TASK_UNINTERRUPTIBLE);
769			set_tsk_need_resched(tsk);
770			set_preempt_need_resched();
771		}
772	}
773out:
774	spin_unlock(&pfault_lock);
775	put_task_struct(tsk);
776}
777
778static int pfault_cpu_dead(unsigned int cpu)
 
779{
780	struct thread_struct *thread, *next;
781	struct task_struct *tsk;
782
783	spin_lock_irq(&pfault_lock);
784	list_for_each_entry_safe(thread, next, &pfault_list, list) {
785		thread->pfault_wait = 0;
786		list_del(&thread->list);
787		tsk = container_of(thread, struct task_struct, thread);
788		wake_up_process(tsk);
789		put_task_struct(tsk);
 
 
 
 
 
 
 
790	}
791	spin_unlock_irq(&pfault_lock);
792	return 0;
793}
794
795static int __init pfault_irq_init(void)
796{
797	int rc;
798
799	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
 
 
800	if (rc)
801		goto out_extint;
802	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
803	if (rc)
804		goto out_pfault;
805	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
806	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
807				  NULL, pfault_cpu_dead);
808	return 0;
809
810out_pfault:
811	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
812out_extint:
813	pfault_disable = 1;
814	return rc;
815}
816early_initcall(pfault_irq_init);
817
818#endif /* CONFIG_PFAULT */