Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  arch/s390/mm/fault.c
  3 *
  4 *  S390 version
  5 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  7 *               Ulrich Weigand (uweigand@de.ibm.com)
  8 *
  9 *  Derived from "arch/i386/mm/fault.c"
 10 *    Copyright (C) 1995  Linus Torvalds
 11 */
 12
 13#include <linux/kernel_stat.h>
 14#include <linux/perf_event.h>
 15#include <linux/signal.h>
 16#include <linux/sched.h>
 
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/module.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 34#include <asm/asm-offsets.h>
 35#include <asm/system.h>
 36#include <asm/pgtable.h>
 
 37#include <asm/irq.h>
 38#include <asm/mmu_context.h>
 39#include <asm/compat.h>
 40#include "../kernel/entry.h"
 41
 42#ifndef CONFIG_64BIT
 43#define __FAIL_ADDR_MASK 0x7ffff000
 44#define __SUBCODE_MASK 0x0200
 45#define __PF_RES_FIELD 0ULL
 46#else /* CONFIG_64BIT */
 47#define __FAIL_ADDR_MASK -4096L
 48#define __SUBCODE_MASK 0x0600
 49#define __PF_RES_FIELD 0x8000000000000000ULL
 50#endif /* CONFIG_64BIT */
 51
 52#define VM_FAULT_BADCONTEXT	0x010000
 53#define VM_FAULT_BADMAP		0x020000
 54#define VM_FAULT_BADACCESS	0x040000
 
 
 
 
 
 
 
 
 
 55
 56static unsigned long store_indication;
 57
 58void fault_init(void)
 59{
 60	if (test_facility(2) && test_facility(75))
 61		store_indication = 0xc00;
 
 62}
 
 63
 64static inline int notify_page_fault(struct pt_regs *regs)
 65{
 66	int ret = 0;
 67
 68	/* kprobe_running() needs smp_processor_id() */
 69	if (kprobes_built_in() && !user_mode(regs)) {
 70		preempt_disable();
 71		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 72			ret = 1;
 73		preempt_enable();
 74	}
 75	return ret;
 76}
 77
 78
 79/*
 80 * Unlock any spinlocks which will prevent us from getting the
 81 * message out.
 82 */
 83void bust_spinlocks(int yes)
 84{
 85	if (yes) {
 86		oops_in_progress = 1;
 87	} else {
 88		int loglevel_save = console_loglevel;
 89		console_unblank();
 90		oops_in_progress = 0;
 91		/*
 92		 * OK, the message is on the console.  Now we call printk()
 93		 * without oops_in_progress set so that printk will give klogd
 94		 * a poke.  Hold onto your hats...
 95		 */
 96		console_loglevel = 15;
 97		printk(" ");
 98		console_loglevel = loglevel_save;
 99	}
100}
101
102/*
103 * Returns the address space associated with the fault.
104 * Returns 0 for kernel space and 1 for user space.
105 */
106static inline int user_space_fault(unsigned long trans_exc_code)
107{
108	/*
109	 * The lowest two bits of the translation exception
110	 * identification indicate which paging table was used.
111	 */
112	trans_exc_code &= 3;
113	if (trans_exc_code == 2)
114		/* Access via secondary space, set_fs setting decides */
115		return current->thread.mm_segment.ar4;
116	if (user_mode == HOME_SPACE_MODE)
117		/* User space if the access has been done via home space. */
118		return trans_exc_code == 3;
119	/*
120	 * If the user space is not the home space the kernel runs in home
121	 * space. Access via secondary space has already been covered,
122	 * access via primary space or access register is from user space
123	 * and access via home space is from the kernel.
124	 */
125	return trans_exc_code != 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126}
127
128static inline void report_user_fault(struct pt_regs *regs, long int_code,
129				     int signr, unsigned long address)
 
130{
131	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
132		return;
133	if (!unhandled_signal(current, signr))
134		return;
135	if (!printk_ratelimit())
136		return;
137	printk("User process fault: interruption code 0x%lX ", int_code);
138	print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
139	printk("\n");
140	printk("failing address: %lX\n", address);
 
 
141	show_regs(regs);
142}
143
144/*
145 * Send SIGSEGV to task.  This is an external routine
146 * to keep the stack usage of do_page_fault small.
147 */
148static noinline void do_sigsegv(struct pt_regs *regs, long int_code,
149				int si_code, unsigned long trans_exc_code)
150{
151	struct siginfo si;
152	unsigned long address;
153
154	address = trans_exc_code & __FAIL_ADDR_MASK;
155	current->thread.prot_addr = address;
156	current->thread.trap_no = int_code;
157	report_user_fault(regs, int_code, SIGSEGV, address);
158	si.si_signo = SIGSEGV;
 
159	si.si_code = si_code;
160	si.si_addr = (void __user *) address;
161	force_sig_info(SIGSEGV, &si, current);
162}
163
164static noinline void do_no_context(struct pt_regs *regs, long int_code,
165				   unsigned long trans_exc_code)
166{
167	const struct exception_table_entry *fixup;
168	unsigned long address;
169
170	/* Are we prepared to handle this kernel fault?  */
171	fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
172	if (fixup) {
173		regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
174		return;
175	}
176
177	/*
178	 * Oops. The kernel tried to access some bad page. We'll have to
179	 * terminate things with extreme prejudice.
180	 */
181	address = trans_exc_code & __FAIL_ADDR_MASK;
182	if (!user_space_fault(trans_exc_code))
183		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
184		       " at virtual kernel address %p\n", (void *)address);
185	else
186		printk(KERN_ALERT "Unable to handle kernel paging request"
187		       " at virtual user address %p\n", (void *)address);
188
189	die("Oops", regs, int_code);
190	do_exit(SIGKILL);
191}
192
193static noinline void do_low_address(struct pt_regs *regs, long int_code,
194				    unsigned long trans_exc_code)
195{
196	/* Low-address protection hit in kernel mode means
197	   NULL pointer write access in kernel mode.  */
198	if (regs->psw.mask & PSW_MASK_PSTATE) {
199		/* Low-address protection hit in user mode 'cannot happen'. */
200		die ("Low-address protection", regs, int_code);
201		do_exit(SIGKILL);
202	}
203
204	do_no_context(regs, int_code, trans_exc_code);
205}
206
207static noinline void do_sigbus(struct pt_regs *regs, long int_code,
208			       unsigned long trans_exc_code)
209{
210	struct task_struct *tsk = current;
211	unsigned long address;
212	struct siginfo si;
213
214	/*
215	 * Send a sigbus, regardless of whether we were in kernel
216	 * or user mode.
217	 */
218	address = trans_exc_code & __FAIL_ADDR_MASK;
219	tsk->thread.prot_addr = address;
220	tsk->thread.trap_no = int_code;
221	si.si_signo = SIGBUS;
222	si.si_errno = 0;
223	si.si_code = BUS_ADRERR;
224	si.si_addr = (void __user *) address;
225	force_sig_info(SIGBUS, &si, tsk);
226}
227
228static noinline void do_fault_error(struct pt_regs *regs, long int_code,
229				    unsigned long trans_exc_code, int fault)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230{
231	int si_code;
232
233	switch (fault) {
234	case VM_FAULT_BADACCESS:
 
 
235	case VM_FAULT_BADMAP:
236		/* Bad memory access. Check if it is kernel or user space. */
237		if (regs->psw.mask & PSW_MASK_PSTATE) {
238			/* User mode accesses just cause a SIGSEGV */
239			si_code = (fault == VM_FAULT_BADMAP) ?
240				SEGV_MAPERR : SEGV_ACCERR;
241			do_sigsegv(regs, int_code, si_code, trans_exc_code);
242			return;
243		}
244	case VM_FAULT_BADCONTEXT:
245		do_no_context(regs, int_code, trans_exc_code);
 
 
 
 
 
246		break;
247	default: /* fault & VM_FAULT_ERROR */
248		if (fault & VM_FAULT_OOM) {
249			if (!(regs->psw.mask & PSW_MASK_PSTATE))
250				do_no_context(regs, int_code, trans_exc_code);
251			else
252				pagefault_out_of_memory();
 
 
 
 
 
 
253		} else if (fault & VM_FAULT_SIGBUS) {
254			/* Kernel mode? Handle exceptions or die */
255			if (!(regs->psw.mask & PSW_MASK_PSTATE))
256				do_no_context(regs, int_code, trans_exc_code);
257			else
258				do_sigbus(regs, int_code, trans_exc_code);
259		} else
260			BUG();
261		break;
262	}
263}
264
265/*
266 * This routine handles page faults.  It determines the address,
267 * and the problem, and then passes it off to one of the appropriate
268 * routines.
269 *
270 * interruption code (int_code):
271 *   04       Protection           ->  Write-Protection  (suprression)
272 *   10       Segment translation  ->  Not present       (nullification)
273 *   11       Page translation     ->  Not present       (nullification)
274 *   3b       Region third trans.  ->  Not present       (nullification)
275 */
276static inline int do_exception(struct pt_regs *regs, int access,
277			       unsigned long trans_exc_code)
278{
 
279	struct task_struct *tsk;
280	struct mm_struct *mm;
281	struct vm_area_struct *vma;
 
 
282	unsigned long address;
283	unsigned int flags;
284	int fault;
285
 
 
 
 
 
 
 
286	if (notify_page_fault(regs))
287		return 0;
288
289	tsk = current;
290	mm = tsk->mm;
 
291
292	/*
293	 * Verify that the fault happened in user space, that
294	 * we are not in an interrupt and that there is a 
295	 * user context.
296	 */
297	fault = VM_FAULT_BADCONTEXT;
298	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
 
 
 
 
 
299		goto out;
 
 
 
 
 
 
300
301	address = trans_exc_code & __FAIL_ADDR_MASK;
302	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
303	flags = FAULT_FLAG_ALLOW_RETRY;
 
 
304	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
305		flags |= FAULT_FLAG_WRITE;
306	down_read(&mm->mmap_sem);
307
308#ifdef CONFIG_PGSTE
309	if (test_tsk_thread_flag(current, TIF_SIE) && S390_lowcore.gmap) {
310		address = gmap_fault(address,
311				     (struct gmap *) S390_lowcore.gmap);
 
 
 
312		if (address == -EFAULT) {
313			fault = VM_FAULT_BADMAP;
314			goto out_up;
315		}
316		if (address == -ENOMEM) {
317			fault = VM_FAULT_OOM;
318			goto out_up;
319		}
320	}
321#endif
322
323retry:
324	fault = VM_FAULT_BADMAP;
325	vma = find_vma(mm, address);
326	if (!vma)
327		goto out_up;
328
329	if (unlikely(vma->vm_start > address)) {
330		if (!(vma->vm_flags & VM_GROWSDOWN))
331			goto out_up;
332		if (expand_stack(vma, address))
333			goto out_up;
334	}
335
336	/*
337	 * Ok, we have a good vm_area for this memory access, so
338	 * we can handle it..
339	 */
340	fault = VM_FAULT_BADACCESS;
341	if (unlikely(!(vma->vm_flags & access)))
342		goto out_up;
343
344	if (is_vm_hugetlb_page(vma))
345		address &= HPAGE_MASK;
346	/*
347	 * If for any reason at all we couldn't handle the fault,
348	 * make sure we exit gracefully rather than endlessly redo
349	 * the fault.
350	 */
351	fault = handle_mm_fault(mm, vma, address, flags);
 
 
 
 
 
352	if (unlikely(fault & VM_FAULT_ERROR))
353		goto out_up;
354
355	/*
356	 * Major/minor page fault accounting is only done on the
357	 * initial attempt. If we go through a retry, it is extremely
358	 * likely that the page will be found in page cache at that point.
359	 */
360	if (flags & FAULT_FLAG_ALLOW_RETRY) {
361		if (fault & VM_FAULT_MAJOR) {
362			tsk->maj_flt++;
363			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
364				      regs, address);
365		} else {
366			tsk->min_flt++;
367			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
368				      regs, address);
369		}
370		if (fault & VM_FAULT_RETRY) {
 
 
 
 
 
 
 
 
371			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
372			 * of starvation. */
373			flags &= ~FAULT_FLAG_ALLOW_RETRY;
 
 
374			down_read(&mm->mmap_sem);
375			goto retry;
376		}
377	}
378	/*
379	 * The instruction that caused the program check will
380	 * be repeated. Don't signal single step via SIGTRAP.
381	 */
382	clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
 
 
 
 
 
 
 
383	fault = 0;
384out_up:
385	up_read(&mm->mmap_sem);
386out:
387	return fault;
388}
389
390void __kprobes do_protection_exception(struct pt_regs *regs, long pgm_int_code,
391				       unsigned long trans_exc_code)
392{
393	int fault;
 
394
395	/* Protection exception is suppressing, decrement psw address. */
396	regs->psw.addr -= (pgm_int_code >> 16);
 
 
 
 
 
 
397	/*
398	 * Check for low-address protection.  This needs to be treated
399	 * as a special case because the translation exception code
400	 * field is not guaranteed to contain valid data in this case.
401	 */
402	if (unlikely(!(trans_exc_code & 4))) {
403		do_low_address(regs, pgm_int_code, trans_exc_code);
404		return;
405	}
406	fault = do_exception(regs, VM_WRITE, trans_exc_code);
 
 
 
 
 
 
 
 
407	if (unlikely(fault))
408		do_fault_error(regs, 4, trans_exc_code, fault);
409}
 
410
411void __kprobes do_dat_exception(struct pt_regs *regs, long pgm_int_code,
412				unsigned long trans_exc_code)
413{
414	int access, fault;
415
416	access = VM_READ | VM_EXEC | VM_WRITE;
417	fault = do_exception(regs, access, trans_exc_code);
418	if (unlikely(fault))
419		do_fault_error(regs, pgm_int_code & 255, trans_exc_code, fault);
420}
421
422#ifdef CONFIG_64BIT
423void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code,
424				 unsigned long trans_exc_code)
425{
426	struct mm_struct *mm = current->mm;
427	struct vm_area_struct *vma;
428
429	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
430		goto no_context;
431
432	down_read(&mm->mmap_sem);
433	vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
434	up_read(&mm->mmap_sem);
435
436	if (vma) {
437		update_mm(mm, current);
438		return;
439	}
440
441	/* User mode accesses just cause a SIGSEGV */
442	if (regs->psw.mask & PSW_MASK_PSTATE) {
443		do_sigsegv(regs, pgm_int_code, SEGV_MAPERR, trans_exc_code);
444		return;
445	}
446
447no_context:
448	do_no_context(regs, pgm_int_code, trans_exc_code);
449}
450#endif
451
452int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
453{
454	struct pt_regs regs;
455	int access, fault;
456
457	regs.psw.mask = psw_kernel_bits;
458	if (!irqs_disabled())
459		regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
460	regs.psw.addr = (unsigned long) __builtin_return_address(0);
461	regs.psw.addr |= PSW_ADDR_AMODE;
462	uaddr &= PAGE_MASK;
463	access = write ? VM_WRITE : VM_READ;
464	fault = do_exception(&regs, access, uaddr | 2);
465	if (unlikely(fault)) {
466		if (fault & VM_FAULT_OOM)
467			return -EFAULT;
468		else if (fault & VM_FAULT_SIGBUS)
469			do_sigbus(&regs, pgm_int_code, uaddr);
470	}
471	return fault ? -EFAULT : 0;
472}
 
473
474#ifdef CONFIG_PFAULT 
475/*
476 * 'pfault' pseudo page faults routines.
477 */
478static int pfault_disable;
479
480static int __init nopfault(char *str)
481{
482	pfault_disable = 1;
483	return 1;
484}
485
486__setup("nopfault", nopfault);
487
488struct pfault_refbk {
489	u16 refdiagc;
490	u16 reffcode;
491	u16 refdwlen;
492	u16 refversn;
493	u64 refgaddr;
494	u64 refselmk;
495	u64 refcmpmk;
496	u64 reserved;
497} __attribute__ ((packed, aligned(8)));
498
499int pfault_init(void)
500{
501	struct pfault_refbk refbk = {
502		.refdiagc = 0x258,
503		.reffcode = 0,
504		.refdwlen = 5,
505		.refversn = 2,
506		.refgaddr = __LC_CURRENT_PID,
507		.refselmk = 1ULL << 48,
508		.refcmpmk = 1ULL << 48,
509		.reserved = __PF_RES_FIELD };
510        int rc;
511
512	if (!MACHINE_IS_VM || pfault_disable)
513		return -1;
 
514	asm volatile(
515		"	diag	%1,%0,0x258\n"
516		"0:	j	2f\n"
517		"1:	la	%0,8\n"
518		"2:\n"
519		EX_TABLE(0b,1b)
520		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
521        return rc;
522}
523
524void pfault_fini(void)
525{
526	struct pfault_refbk refbk = {
527		.refdiagc = 0x258,
528		.reffcode = 1,
529		.refdwlen = 5,
530		.refversn = 2,
531	};
532
533	if (!MACHINE_IS_VM || pfault_disable)
534		return;
 
535	asm volatile(
536		"	diag	%0,0,0x258\n"
537		"0:\n"
538		EX_TABLE(0b,0b)
539		: : "a" (&refbk), "m" (refbk) : "cc");
540}
541
542static DEFINE_SPINLOCK(pfault_lock);
543static LIST_HEAD(pfault_list);
544
545static void pfault_interrupt(unsigned int ext_int_code,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546			     unsigned int param32, unsigned long param64)
547{
548	struct task_struct *tsk;
549	__u16 subcode;
550	pid_t pid;
551
552	/*
553	 * Get the external interruption subcode & pfault
554	 * initial/completion signal bit. VM stores this 
555	 * in the 'cpu address' field associated with the
556         * external interrupt. 
557	 */
558	subcode = ext_int_code >> 16;
559	if ((subcode & 0xff00) != __SUBCODE_MASK)
560		return;
561	kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
562	if (subcode & 0x0080) {
563		/* Get the token (= pid of the affected task). */
564		pid = sizeof(void *) == 4 ? param32 : param64;
565		rcu_read_lock();
566		tsk = find_task_by_pid_ns(pid, &init_pid_ns);
567		if (tsk)
568			get_task_struct(tsk);
569		rcu_read_unlock();
570		if (!tsk)
571			return;
572	} else {
573		tsk = current;
574	}
575	spin_lock(&pfault_lock);
576	if (subcode & 0x0080) {
577		/* signal bit is set -> a page has been swapped in by VM */
578		if (tsk->thread.pfault_wait == 1) {
579			/* Initial interrupt was faster than the completion
580			 * interrupt. pfault_wait is valid. Set pfault_wait
581			 * back to zero and wake up the process. This can
582			 * safely be done because the task is still sleeping
583			 * and can't produce new pfaults. */
584			tsk->thread.pfault_wait = 0;
585			list_del(&tsk->thread.list);
586			wake_up_process(tsk);
 
587		} else {
588			/* Completion interrupt was faster than initial
589			 * interrupt. Set pfault_wait to -1 so the initial
590			 * interrupt doesn't put the task to sleep. */
591			tsk->thread.pfault_wait = -1;
 
 
 
 
 
592		}
593		put_task_struct(tsk);
594	} else {
595		/* signal bit not set -> a real page is missing. */
596		if (tsk->thread.pfault_wait == -1) {
 
 
 
 
 
597			/* Completion interrupt was faster than the initial
598			 * interrupt (pfault_wait == -1). Set pfault_wait
599			 * back to zero and exit. */
600			tsk->thread.pfault_wait = 0;
601		} else {
602			/* Initial interrupt arrived before completion
603			 * interrupt. Let the task sleep. */
 
 
 
 
604			tsk->thread.pfault_wait = 1;
605			list_add(&tsk->thread.list, &pfault_list);
606			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 
 
 
 
607			set_tsk_need_resched(tsk);
 
608		}
609	}
 
610	spin_unlock(&pfault_lock);
 
611}
612
613static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
614				       unsigned long action, void *hcpu)
615{
616	struct thread_struct *thread, *next;
617	struct task_struct *tsk;
618
619	switch (action) {
620	case CPU_DEAD:
621	case CPU_DEAD_FROZEN:
622		spin_lock_irq(&pfault_lock);
623		list_for_each_entry_safe(thread, next, &pfault_list, list) {
624			thread->pfault_wait = 0;
625			list_del(&thread->list);
626			tsk = container_of(thread, struct task_struct, thread);
627			wake_up_process(tsk);
628		}
629		spin_unlock_irq(&pfault_lock);
630		break;
631	default:
632		break;
633	}
634	return NOTIFY_OK;
 
635}
636
637static int __init pfault_irq_init(void)
638{
639	int rc;
640
641	if (!MACHINE_IS_VM)
642		return 0;
643	rc = register_external_interrupt(0x2603, pfault_interrupt);
644	if (rc)
645		goto out_extint;
646	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
647	if (rc)
648		goto out_pfault;
649	service_subclass_irq_register();
650	hotcpu_notifier(pfault_cpu_notify, 0);
 
651	return 0;
652
653out_pfault:
654	unregister_external_interrupt(0x2603, pfault_interrupt);
655out_extint:
656	pfault_disable = 1;
657	return rc;
658}
659early_initcall(pfault_irq_init);
660
661#endif /* CONFIG_PFAULT */
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  6 *               Ulrich Weigand (uweigand@de.ibm.com)
  7 *
  8 *  Derived from "arch/i386/mm/fault.c"
  9 *    Copyright (C) 1995  Linus Torvalds
 10 */
 11
 12#include <linux/kernel_stat.h>
 13#include <linux/perf_event.h>
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/extable.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 34#include <asm/asm-offsets.h>
 35#include <asm/diag.h>
 36#include <asm/pgtable.h>
 37#include <asm/gmap.h>
 38#include <asm/irq.h>
 39#include <asm/mmu_context.h>
 40#include <asm/facility.h>
 41#include "../kernel/entry.h"
 42
 
 
 
 
 
 43#define __FAIL_ADDR_MASK -4096L
 44#define __SUBCODE_MASK 0x0600
 45#define __PF_RES_FIELD 0x8000000000000000ULL
 
 46
 47#define VM_FAULT_BADCONTEXT	0x010000
 48#define VM_FAULT_BADMAP		0x020000
 49#define VM_FAULT_BADACCESS	0x040000
 50#define VM_FAULT_SIGNAL		0x080000
 51#define VM_FAULT_PFAULT		0x100000
 52
 53enum fault_type {
 54	KERNEL_FAULT,
 55	USER_FAULT,
 56	VDSO_FAULT,
 57	GMAP_FAULT,
 58};
 59
 60static unsigned long store_indication __read_mostly;
 61
 62static int __init fault_init(void)
 63{
 64	if (test_facility(75))
 65		store_indication = 0xc00;
 66	return 0;
 67}
 68early_initcall(fault_init);
 69
 70static inline int notify_page_fault(struct pt_regs *regs)
 71{
 72	int ret = 0;
 73
 74	/* kprobe_running() needs smp_processor_id() */
 75	if (kprobes_built_in() && !user_mode(regs)) {
 76		preempt_disable();
 77		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 78			ret = 1;
 79		preempt_enable();
 80	}
 81	return ret;
 82}
 83
 84
 85/*
 86 * Unlock any spinlocks which will prevent us from getting the
 87 * message out.
 88 */
 89void bust_spinlocks(int yes)
 90{
 91	if (yes) {
 92		oops_in_progress = 1;
 93	} else {
 94		int loglevel_save = console_loglevel;
 95		console_unblank();
 96		oops_in_progress = 0;
 97		/*
 98		 * OK, the message is on the console.  Now we call printk()
 99		 * without oops_in_progress set so that printk will give klogd
100		 * a poke.  Hold onto your hats...
101		 */
102		console_loglevel = 15;
103		printk(" ");
104		console_loglevel = loglevel_save;
105	}
106}
107
108/*
109 * Find out which address space caused the exception.
110 * Access register mode is impossible, ignore space == 3.
111 */
112static inline enum fault_type get_fault_type(struct pt_regs *regs)
113{
114	unsigned long trans_exc_code;
115
116	trans_exc_code = regs->int_parm_long & 3;
117	if (likely(trans_exc_code == 0)) {
118		/* primary space exception */
119		if (IS_ENABLED(CONFIG_PGSTE) &&
120		    test_pt_regs_flag(regs, PIF_GUEST_FAULT))
121			return GMAP_FAULT;
122		if (current->thread.mm_segment == USER_DS)
123			return USER_FAULT;
124		return KERNEL_FAULT;
125	}
126	if (trans_exc_code == 2) {
127		/* secondary space exception */
128		if (current->thread.mm_segment & 1) {
129			if (current->thread.mm_segment == USER_DS_SACF)
130				return USER_FAULT;
131			return KERNEL_FAULT;
132		}
133		return VDSO_FAULT;
134	}
135	/* home space exception -> access via kernel ASCE */
136	return KERNEL_FAULT;
137}
138
139static int bad_address(void *p)
140{
141	unsigned long dummy;
142
143	return probe_kernel_address((unsigned long *)p, dummy);
144}
145
146static void dump_pagetable(unsigned long asce, unsigned long address)
147{
148	unsigned long *table = __va(asce & _ASCE_ORIGIN);
149
150	pr_alert("AS:%016lx ", asce);
151	switch (asce & _ASCE_TYPE_MASK) {
152	case _ASCE_TYPE_REGION1:
153		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
154		if (bad_address(table))
155			goto bad;
156		pr_cont("R1:%016lx ", *table);
157		if (*table & _REGION_ENTRY_INVALID)
158			goto out;
159		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
160		/* fallthrough */
161	case _ASCE_TYPE_REGION2:
162		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
163		if (bad_address(table))
164			goto bad;
165		pr_cont("R2:%016lx ", *table);
166		if (*table & _REGION_ENTRY_INVALID)
167			goto out;
168		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
169		/* fallthrough */
170	case _ASCE_TYPE_REGION3:
171		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
172		if (bad_address(table))
173			goto bad;
174		pr_cont("R3:%016lx ", *table);
175		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
176			goto out;
177		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
178		/* fallthrough */
179	case _ASCE_TYPE_SEGMENT:
180		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
181		if (bad_address(table))
182			goto bad;
183		pr_cont("S:%016lx ", *table);
184		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
185			goto out;
186		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
187	}
188	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
189	if (bad_address(table))
190		goto bad;
191	pr_cont("P:%016lx ", *table);
192out:
193	pr_cont("\n");
194	return;
195bad:
196	pr_cont("BAD\n");
197}
198
199static void dump_fault_info(struct pt_regs *regs)
200{
201	unsigned long asce;
202
203	pr_alert("Failing address: %016lx TEID: %016lx\n",
204		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
205	pr_alert("Fault in ");
206	switch (regs->int_parm_long & 3) {
207	case 3:
208		pr_cont("home space ");
209		break;
210	case 2:
211		pr_cont("secondary space ");
212		break;
213	case 1:
214		pr_cont("access register ");
215		break;
216	case 0:
217		pr_cont("primary space ");
218		break;
219	}
220	pr_cont("mode while using ");
221	switch (get_fault_type(regs)) {
222	case USER_FAULT:
223		asce = S390_lowcore.user_asce;
224		pr_cont("user ");
225		break;
226	case VDSO_FAULT:
227		asce = S390_lowcore.vdso_asce;
228		pr_cont("vdso ");
229		break;
230	case GMAP_FAULT:
231		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
232		pr_cont("gmap ");
233		break;
234	case KERNEL_FAULT:
235		asce = S390_lowcore.kernel_asce;
236		pr_cont("kernel ");
237		break;
238	}
239	pr_cont("ASCE.\n");
240	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
241}
242
243int show_unhandled_signals = 1;
244
245void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
246{
247	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
248		return;
249	if (!unhandled_signal(current, signr))
250		return;
251	if (!printk_ratelimit())
252		return;
253	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
254	       regs->int_code & 0xffff, regs->int_code >> 17);
255	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
256	printk(KERN_CONT "\n");
257	if (is_mm_fault)
258		dump_fault_info(regs);
259	show_regs(regs);
260}
261
262/*
263 * Send SIGSEGV to task.  This is an external routine
264 * to keep the stack usage of do_page_fault small.
265 */
266static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
 
267{
268	struct siginfo si;
 
269
270	report_user_fault(regs, SIGSEGV, 1);
 
 
 
271	si.si_signo = SIGSEGV;
272	si.si_errno = 0;
273	si.si_code = si_code;
274	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
275	force_sig_info(SIGSEGV, &si, current);
276}
277
278static noinline void do_no_context(struct pt_regs *regs)
 
279{
280	const struct exception_table_entry *fixup;
 
281
282	/* Are we prepared to handle this kernel fault?  */
283	fixup = search_exception_tables(regs->psw.addr);
284	if (fixup) {
285		regs->psw.addr = extable_fixup(fixup);
286		return;
287	}
288
289	/*
290	 * Oops. The kernel tried to access some bad page. We'll have to
291	 * terminate things with extreme prejudice.
292	 */
293	if (get_fault_type(regs) == KERNEL_FAULT)
 
294		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
295		       " in virtual kernel address space\n");
296	else
297		printk(KERN_ALERT "Unable to handle kernel paging request"
298		       " in virtual user address space\n");
299	dump_fault_info(regs);
300	die(regs, "Oops");
301	do_exit(SIGKILL);
302}
303
304static noinline void do_low_address(struct pt_regs *regs)
 
305{
306	/* Low-address protection hit in kernel mode means
307	   NULL pointer write access in kernel mode.  */
308	if (regs->psw.mask & PSW_MASK_PSTATE) {
309		/* Low-address protection hit in user mode 'cannot happen'. */
310		die (regs, "Low-address protection");
311		do_exit(SIGKILL);
312	}
313
314	do_no_context(regs);
315}
316
317static noinline void do_sigbus(struct pt_regs *regs)
 
318{
319	struct task_struct *tsk = current;
 
320	struct siginfo si;
321
322	/*
323	 * Send a sigbus, regardless of whether we were in kernel
324	 * or user mode.
325	 */
 
 
 
326	si.si_signo = SIGBUS;
327	si.si_errno = 0;
328	si.si_code = BUS_ADRERR;
329	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
330	force_sig_info(SIGBUS, &si, tsk);
331}
332
333static noinline int signal_return(struct pt_regs *regs)
334{
335	u16 instruction;
336	int rc;
337
338	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
339	if (rc)
340		return rc;
341	if (instruction == 0x0a77) {
342		set_pt_regs_flag(regs, PIF_SYSCALL);
343		regs->int_code = 0x00040077;
344		return 0;
345	} else if (instruction == 0x0aad) {
346		set_pt_regs_flag(regs, PIF_SYSCALL);
347		regs->int_code = 0x000400ad;
348		return 0;
349	}
350	return -EACCES;
351}
352
353static noinline void do_fault_error(struct pt_regs *regs, int access, int fault)
354{
355	int si_code;
356
357	switch (fault) {
358	case VM_FAULT_BADACCESS:
359		if (access == VM_EXEC && signal_return(regs) == 0)
360			break;
361	case VM_FAULT_BADMAP:
362		/* Bad memory access. Check if it is kernel or user space. */
363		if (user_mode(regs)) {
364			/* User mode accesses just cause a SIGSEGV */
365			si_code = (fault == VM_FAULT_BADMAP) ?
366				SEGV_MAPERR : SEGV_ACCERR;
367			do_sigsegv(regs, si_code);
368			break;
369		}
370	case VM_FAULT_BADCONTEXT:
371	case VM_FAULT_PFAULT:
372		do_no_context(regs);
373		break;
374	case VM_FAULT_SIGNAL:
375		if (!user_mode(regs))
376			do_no_context(regs);
377		break;
378	default: /* fault & VM_FAULT_ERROR */
379		if (fault & VM_FAULT_OOM) {
380			if (!user_mode(regs))
381				do_no_context(regs);
382			else
383				pagefault_out_of_memory();
384		} else if (fault & VM_FAULT_SIGSEGV) {
385			/* Kernel mode? Handle exceptions or die */
386			if (!user_mode(regs))
387				do_no_context(regs);
388			else
389				do_sigsegv(regs, SEGV_MAPERR);
390		} else if (fault & VM_FAULT_SIGBUS) {
391			/* Kernel mode? Handle exceptions or die */
392			if (!user_mode(regs))
393				do_no_context(regs);
394			else
395				do_sigbus(regs);
396		} else
397			BUG();
398		break;
399	}
400}
401
402/*
403 * This routine handles page faults.  It determines the address,
404 * and the problem, and then passes it off to one of the appropriate
405 * routines.
406 *
407 * interruption code (int_code):
408 *   04       Protection           ->  Write-Protection  (suprression)
409 *   10       Segment translation  ->  Not present       (nullification)
410 *   11       Page translation     ->  Not present       (nullification)
411 *   3b       Region third trans.  ->  Not present       (nullification)
412 */
413static inline int do_exception(struct pt_regs *regs, int access)
 
414{
415	struct gmap *gmap;
416	struct task_struct *tsk;
417	struct mm_struct *mm;
418	struct vm_area_struct *vma;
419	enum fault_type type;
420	unsigned long trans_exc_code;
421	unsigned long address;
422	unsigned int flags;
423	int fault;
424
425	tsk = current;
426	/*
427	 * The instruction that caused the program check has
428	 * been nullified. Don't signal single step via SIGTRAP.
429	 */
430	clear_pt_regs_flag(regs, PIF_PER_TRAP);
431
432	if (notify_page_fault(regs))
433		return 0;
434
 
435	mm = tsk->mm;
436	trans_exc_code = regs->int_parm_long;
437
438	/*
439	 * Verify that the fault happened in user space, that
440	 * we are not in an interrupt and that there is a 
441	 * user context.
442	 */
443	fault = VM_FAULT_BADCONTEXT;
444	type = get_fault_type(regs);
445	switch (type) {
446	case KERNEL_FAULT:
447		goto out;
448	case VDSO_FAULT:
449		fault = VM_FAULT_BADMAP;
450		goto out;
451	case USER_FAULT:
452	case GMAP_FAULT:
453		if (faulthandler_disabled() || !mm)
454			goto out;
455		break;
456	}
457
458	address = trans_exc_code & __FAIL_ADDR_MASK;
459	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
461	if (user_mode(regs))
462		flags |= FAULT_FLAG_USER;
463	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
464		flags |= FAULT_FLAG_WRITE;
465	down_read(&mm->mmap_sem);
466
467	gmap = NULL;
468	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
469		gmap = (struct gmap *) S390_lowcore.gmap;
470		current->thread.gmap_addr = address;
471		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
472		current->thread.gmap_int_code = regs->int_code & 0xffff;
473		address = __gmap_translate(gmap, address);
474		if (address == -EFAULT) {
475			fault = VM_FAULT_BADMAP;
476			goto out_up;
477		}
478		if (gmap->pfault_enabled)
479			flags |= FAULT_FLAG_RETRY_NOWAIT;
 
 
480	}
 
481
482retry:
483	fault = VM_FAULT_BADMAP;
484	vma = find_vma(mm, address);
485	if (!vma)
486		goto out_up;
487
488	if (unlikely(vma->vm_start > address)) {
489		if (!(vma->vm_flags & VM_GROWSDOWN))
490			goto out_up;
491		if (expand_stack(vma, address))
492			goto out_up;
493	}
494
495	/*
496	 * Ok, we have a good vm_area for this memory access, so
497	 * we can handle it..
498	 */
499	fault = VM_FAULT_BADACCESS;
500	if (unlikely(!(vma->vm_flags & access)))
501		goto out_up;
502
503	if (is_vm_hugetlb_page(vma))
504		address &= HPAGE_MASK;
505	/*
506	 * If for any reason at all we couldn't handle the fault,
507	 * make sure we exit gracefully rather than endlessly redo
508	 * the fault.
509	 */
510	fault = handle_mm_fault(vma, address, flags);
511	/* No reason to continue if interrupted by SIGKILL. */
512	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
513		fault = VM_FAULT_SIGNAL;
514		goto out;
515	}
516	if (unlikely(fault & VM_FAULT_ERROR))
517		goto out_up;
518
519	/*
520	 * Major/minor page fault accounting is only done on the
521	 * initial attempt. If we go through a retry, it is extremely
522	 * likely that the page will be found in page cache at that point.
523	 */
524	if (flags & FAULT_FLAG_ALLOW_RETRY) {
525		if (fault & VM_FAULT_MAJOR) {
526			tsk->maj_flt++;
527			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
528				      regs, address);
529		} else {
530			tsk->min_flt++;
531			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
532				      regs, address);
533		}
534		if (fault & VM_FAULT_RETRY) {
535			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
536			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
537				/* FAULT_FLAG_RETRY_NOWAIT has been set,
538				 * mmap_sem has not been released */
539				current->thread.gmap_pfault = 1;
540				fault = VM_FAULT_PFAULT;
541				goto out_up;
542			}
543			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
544			 * of starvation. */
545			flags &= ~(FAULT_FLAG_ALLOW_RETRY |
546				   FAULT_FLAG_RETRY_NOWAIT);
547			flags |= FAULT_FLAG_TRIED;
548			down_read(&mm->mmap_sem);
549			goto retry;
550		}
551	}
552	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
553		address =  __gmap_link(gmap, current->thread.gmap_addr,
554				       address);
555		if (address == -EFAULT) {
556			fault = VM_FAULT_BADMAP;
557			goto out_up;
558		}
559		if (address == -ENOMEM) {
560			fault = VM_FAULT_OOM;
561			goto out_up;
562		}
563	}
564	fault = 0;
565out_up:
566	up_read(&mm->mmap_sem);
567out:
568	return fault;
569}
570
571void do_protection_exception(struct pt_regs *regs)
 
572{
573	unsigned long trans_exc_code;
574	int access, fault;
575
576	trans_exc_code = regs->int_parm_long;
577	/*
578	 * Protection exceptions are suppressing, decrement psw address.
579	 * The exception to this rule are aborted transactions, for these
580	 * the PSW already points to the correct location.
581	 */
582	if (!(regs->int_code & 0x200))
583		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
584	/*
585	 * Check for low-address protection.  This needs to be treated
586	 * as a special case because the translation exception code
587	 * field is not guaranteed to contain valid data in this case.
588	 */
589	if (unlikely(!(trans_exc_code & 4))) {
590		do_low_address(regs);
591		return;
592	}
593	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
594		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
595					(regs->psw.addr & PAGE_MASK);
596		access = VM_EXEC;
597		fault = VM_FAULT_BADACCESS;
598	} else {
599		access = VM_WRITE;
600		fault = do_exception(regs, access);
601	}
602	if (unlikely(fault))
603		do_fault_error(regs, access, fault);
604}
605NOKPROBE_SYMBOL(do_protection_exception);
606
607void do_dat_exception(struct pt_regs *regs)
 
608{
609	int access, fault;
610
611	access = VM_READ | VM_EXEC | VM_WRITE;
612	fault = do_exception(regs, access);
613	if (unlikely(fault))
614		do_fault_error(regs, access, fault);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615}
616NOKPROBE_SYMBOL(do_dat_exception);
617
618#ifdef CONFIG_PFAULT 
619/*
620 * 'pfault' pseudo page faults routines.
621 */
622static int pfault_disable;
623
624static int __init nopfault(char *str)
625{
626	pfault_disable = 1;
627	return 1;
628}
629
630__setup("nopfault", nopfault);
631
632struct pfault_refbk {
633	u16 refdiagc;
634	u16 reffcode;
635	u16 refdwlen;
636	u16 refversn;
637	u64 refgaddr;
638	u64 refselmk;
639	u64 refcmpmk;
640	u64 reserved;
641} __attribute__ ((packed, aligned(8)));
642
643int pfault_init(void)
644{
645	struct pfault_refbk refbk = {
646		.refdiagc = 0x258,
647		.reffcode = 0,
648		.refdwlen = 5,
649		.refversn = 2,
650		.refgaddr = __LC_LPP,
651		.refselmk = 1ULL << 48,
652		.refcmpmk = 1ULL << 48,
653		.reserved = __PF_RES_FIELD };
654        int rc;
655
656	if (pfault_disable)
657		return -1;
658	diag_stat_inc(DIAG_STAT_X258);
659	asm volatile(
660		"	diag	%1,%0,0x258\n"
661		"0:	j	2f\n"
662		"1:	la	%0,8\n"
663		"2:\n"
664		EX_TABLE(0b,1b)
665		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
666        return rc;
667}
668
669void pfault_fini(void)
670{
671	struct pfault_refbk refbk = {
672		.refdiagc = 0x258,
673		.reffcode = 1,
674		.refdwlen = 5,
675		.refversn = 2,
676	};
677
678	if (pfault_disable)
679		return;
680	diag_stat_inc(DIAG_STAT_X258);
681	asm volatile(
682		"	diag	%0,0,0x258\n"
683		"0:	nopr	%%r7\n"
684		EX_TABLE(0b,0b)
685		: : "a" (&refbk), "m" (refbk) : "cc");
686}
687
688static DEFINE_SPINLOCK(pfault_lock);
689static LIST_HEAD(pfault_list);
690
691#define PF_COMPLETE	0x0080
692
693/*
694 * The mechanism of our pfault code: if Linux is running as guest, runs a user
695 * space process and the user space process accesses a page that the host has
696 * paged out we get a pfault interrupt.
697 *
698 * This allows us, within the guest, to schedule a different process. Without
699 * this mechanism the host would have to suspend the whole virtual cpu until
700 * the page has been paged in.
701 *
702 * So when we get such an interrupt then we set the state of the current task
703 * to uninterruptible and also set the need_resched flag. Both happens within
704 * interrupt context(!). If we later on want to return to user space we
705 * recognize the need_resched flag and then call schedule().  It's not very
706 * obvious how this works...
707 *
708 * Of course we have a lot of additional fun with the completion interrupt (->
709 * host signals that a page of a process has been paged in and the process can
710 * continue to run). This interrupt can arrive on any cpu and, since we have
711 * virtual cpus, actually appear before the interrupt that signals that a page
712 * is missing.
713 */
714static void pfault_interrupt(struct ext_code ext_code,
715			     unsigned int param32, unsigned long param64)
716{
717	struct task_struct *tsk;
718	__u16 subcode;
719	pid_t pid;
720
721	/*
722	 * Get the external interruption subcode & pfault initial/completion
723	 * signal bit. VM stores this in the 'cpu address' field associated
724	 * with the external interrupt.
 
725	 */
726	subcode = ext_code.subcode;
727	if ((subcode & 0xff00) != __SUBCODE_MASK)
728		return;
729	inc_irq_stat(IRQEXT_PFL);
730	/* Get the token (= pid of the affected task). */
731	pid = param64 & LPP_PID_MASK;
732	rcu_read_lock();
733	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
734	if (tsk)
735		get_task_struct(tsk);
736	rcu_read_unlock();
737	if (!tsk)
738		return;
 
 
 
 
739	spin_lock(&pfault_lock);
740	if (subcode & PF_COMPLETE) {
741		/* signal bit is set -> a page has been swapped in by VM */
742		if (tsk->thread.pfault_wait == 1) {
743			/* Initial interrupt was faster than the completion
744			 * interrupt. pfault_wait is valid. Set pfault_wait
745			 * back to zero and wake up the process. This can
746			 * safely be done because the task is still sleeping
747			 * and can't produce new pfaults. */
748			tsk->thread.pfault_wait = 0;
749			list_del(&tsk->thread.list);
750			wake_up_process(tsk);
751			put_task_struct(tsk);
752		} else {
753			/* Completion interrupt was faster than initial
754			 * interrupt. Set pfault_wait to -1 so the initial
755			 * interrupt doesn't put the task to sleep.
756			 * If the task is not running, ignore the completion
757			 * interrupt since it must be a leftover of a PFAULT
758			 * CANCEL operation which didn't remove all pending
759			 * completion interrupts. */
760			if (tsk->state == TASK_RUNNING)
761				tsk->thread.pfault_wait = -1;
762		}
 
763	} else {
764		/* signal bit not set -> a real page is missing. */
765		if (WARN_ON_ONCE(tsk != current))
766			goto out;
767		if (tsk->thread.pfault_wait == 1) {
768			/* Already on the list with a reference: put to sleep */
769			goto block;
770		} else if (tsk->thread.pfault_wait == -1) {
771			/* Completion interrupt was faster than the initial
772			 * interrupt (pfault_wait == -1). Set pfault_wait
773			 * back to zero and exit. */
774			tsk->thread.pfault_wait = 0;
775		} else {
776			/* Initial interrupt arrived before completion
777			 * interrupt. Let the task sleep.
778			 * An extra task reference is needed since a different
779			 * cpu may set the task state to TASK_RUNNING again
780			 * before the scheduler is reached. */
781			get_task_struct(tsk);
782			tsk->thread.pfault_wait = 1;
783			list_add(&tsk->thread.list, &pfault_list);
784block:
785			/* Since this must be a userspace fault, there
786			 * is no kernel task state to trample. Rely on the
787			 * return to userspace schedule() to block. */
788			__set_current_state(TASK_UNINTERRUPTIBLE);
789			set_tsk_need_resched(tsk);
790			set_preempt_need_resched();
791		}
792	}
793out:
794	spin_unlock(&pfault_lock);
795	put_task_struct(tsk);
796}
797
798static int pfault_cpu_dead(unsigned int cpu)
 
799{
800	struct thread_struct *thread, *next;
801	struct task_struct *tsk;
802
803	spin_lock_irq(&pfault_lock);
804	list_for_each_entry_safe(thread, next, &pfault_list, list) {
805		thread->pfault_wait = 0;
806		list_del(&thread->list);
807		tsk = container_of(thread, struct task_struct, thread);
808		wake_up_process(tsk);
809		put_task_struct(tsk);
 
 
 
 
 
 
 
810	}
811	spin_unlock_irq(&pfault_lock);
812	return 0;
813}
814
815static int __init pfault_irq_init(void)
816{
817	int rc;
818
819	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
 
 
820	if (rc)
821		goto out_extint;
822	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
823	if (rc)
824		goto out_pfault;
825	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
826	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
827				  NULL, pfault_cpu_dead);
828	return 0;
829
830out_pfault:
831	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
832out_extint:
833	pfault_disable = 1;
834	return rc;
835}
836early_initcall(pfault_irq_init);
837
838#endif /* CONFIG_PFAULT */