Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 
 
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/ftrace.h>
 20#include <linux/mm.h>
 21#include <linux/err.h>
 22#include <linux/cpu.h>
 23#include <linux/smp.h>
 24#include <linux/seq_file.h>
 25#include <linux/irq.h>
 
 26#include <linux/percpu.h>
 27#include <linux/clockchips.h>
 28#include <linux/completion.h>
 
 
 29
 30#include <linux/atomic.h>
 
 
 31#include <asm/cacheflush.h>
 32#include <asm/cpu.h>
 33#include <asm/cputype.h>
 
 
 
 34#include <asm/mmu_context.h>
 35#include <asm/pgtable.h>
 36#include <asm/pgalloc.h>
 
 37#include <asm/processor.h>
 38#include <asm/sections.h>
 39#include <asm/tlbflush.h>
 40#include <asm/ptrace.h>
 41#include <asm/localtimer.h>
 
 
 
 
 
 
 42
 43/*
 44 * as from 2.5, kernels no longer have an init_tasks structure
 45 * so we need some other way of telling a new secondary core
 46 * where to place its SVC stack
 47 */
 48struct secondary_data secondary_data;
 49
 50enum ipi_msg_type {
 51	IPI_TIMER = 2,
 
 52	IPI_RESCHEDULE,
 53	IPI_CALL_FUNC,
 54	IPI_CALL_FUNC_SINGLE,
 55	IPI_CPU_STOP,
 
 
 
 
 
 
 
 
 
 
 
 
 56};
 57
 58int __cpuinit __cpu_up(unsigned int cpu)
 
 
 
 
 59{
 60	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
 61	struct task_struct *idle = ci->idle;
 62	pgd_t *pgd;
 63	int ret;
 64
 65	/*
 66	 * Spawn a new process manually, if not already done.
 67	 * Grab a pointer to its task struct so we can mess with it
 68	 */
 69	if (!idle) {
 70		idle = fork_idle(cpu);
 71		if (IS_ERR(idle)) {
 72			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
 73			return PTR_ERR(idle);
 74		}
 75		ci->idle = idle;
 76	} else {
 77		/*
 78		 * Since this idle thread is being re-used, call
 79		 * init_idle() to reinitialize the thread structure.
 80		 */
 81		init_idle(idle, cpu);
 82	}
 83
 84	/*
 85	 * Allocate initial page tables to allow the new CPU to
 86	 * enable the MMU safely.  This essentially means a set
 87	 * of our "standard" page tables, with the addition of
 88	 * a 1:1 mapping for the physical address of the kernel.
 89	 */
 90	pgd = pgd_alloc(&init_mm);
 91	if (!pgd)
 92		return -ENOMEM;
 93
 94	if (PHYS_OFFSET != PAGE_OFFSET) {
 95#ifndef CONFIG_HOTPLUG_CPU
 96		identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
 
 
 
 
 
 
 
 
 
 97#endif
 98		identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
 99		identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
100	}
 
 
 
 
 
 
 
 
101
102	/*
103	 * We need to tell the secondary core where to find
104	 * its stack and the page tables.
105	 */
106	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107	secondary_data.pgdir = virt_to_phys(pgd);
108	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
109	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
110	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
 
 
 
 
 
111
112	/*
113	 * Now bring the CPU into our world.
114	 */
115	ret = boot_secondary(cpu, idle);
116	if (ret == 0) {
117		unsigned long timeout;
118
119		/*
120		 * CPU was successfully started, wait for it
121		 * to come online or time out.
122		 */
123		timeout = jiffies + HZ;
124		while (time_before(jiffies, timeout)) {
125			if (cpu_online(cpu))
126				break;
127
128			udelay(10);
129			barrier();
130		}
131
132		if (!cpu_online(cpu)) {
133			pr_crit("CPU%u: failed to come online\n", cpu);
134			ret = -EIO;
135		}
136	} else {
137		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138	}
139
140	secondary_data.stack = NULL;
141	secondary_data.pgdir = 0;
142
143	if (PHYS_OFFSET != PAGE_OFFSET) {
144#ifndef CONFIG_HOTPLUG_CPU
145		identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
146#endif
147		identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
148		identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
149	}
150
151	pgd_free(&init_mm, pgd);
 
 
 
 
 
152
153	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
154}
155
156#ifdef CONFIG_HOTPLUG_CPU
157static void percpu_timer_stop(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
159/*
160 * __cpu_disable runs on the processor to be shutdown.
161 */
162int __cpu_disable(void)
163{
164	unsigned int cpu = smp_processor_id();
165	struct task_struct *p;
166	int ret;
167
168	ret = platform_cpu_disable(cpu);
169	if (ret)
170		return ret;
171
172	/*
173	 * Take this CPU offline.  Once we clear this, we can't return,
174	 * and we must not schedule until we're ready to give up the cpu.
175	 */
176	set_cpu_online(cpu, false);
177
178	/*
179	 * OK - migrate IRQs away from this CPU
180	 */
181	migrate_irqs();
182
183	/*
184	 * Stop the local timer for this CPU.
185	 */
186	percpu_timer_stop();
187
188	/*
189	 * Flush user cache and TLB mappings, and then remove this CPU
190	 * from the vm mask set of all processes.
 
 
 
191	 */
192	flush_cache_all();
193	local_flush_tlb_all();
194
195	read_lock(&tasklist_lock);
196	for_each_process(p) {
197		if (p->mm)
198			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
199	}
200	read_unlock(&tasklist_lock);
201
202	return 0;
203}
204
205static DECLARE_COMPLETION(cpu_died);
206
207/*
208 * called on the thread which is asking for a CPU to be shutdown -
209 * waits until shutdown has completed, or it is timed out.
210 */
211void __cpu_die(unsigned int cpu)
212{
213	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
214		pr_err("CPU%u: cpu didn't die\n", cpu);
215		return;
216	}
217	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
218
 
 
 
 
 
 
 
 
219	if (!platform_cpu_kill(cpu))
220		printk("CPU%u: unable to kill\n", cpu);
221}
222
223/*
224 * Called from the idle thread for the CPU which has been shutdown.
225 *
226 * Note that we disable IRQs here, but do not re-enable them
227 * before returning to the caller. This is also the behaviour
228 * of the other hotplug-cpu capable cores, so presumably coming
229 * out of idle fixes this.
230 */
231void __ref cpu_die(void)
232{
233	unsigned int cpu = smp_processor_id();
234
235	idle_task_exit();
236
237	local_irq_disable();
238	mb();
239
240	/* Tell __cpu_die() that this CPU is now safe to dispose of */
241	complete(&cpu_died);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
243	/*
244	 * actual CPU shutdown procedure is at least platform (if not
245	 * CPU) specific.
 
 
 
 
 
 
 
 
246	 */
247	platform_cpu_die(cpu);
 
 
 
 
248
249	/*
250	 * Do not return to the idle loop - jump back to the secondary
251	 * cpu initialisation.  There's some initialisation which needs
252	 * to be repeated to undo the effects of taking the CPU offline.
253	 */
254	__asm__("mov	sp, %0\n"
255	"	mov	fp, #0\n"
256	"	b	secondary_start_kernel"
257		:
258		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
259}
260#endif /* CONFIG_HOTPLUG_CPU */
261
262/*
263 * Called by both boot and secondaries to move global data into
264 * per-processor storage.
265 */
266static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
267{
268	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
269
270	cpu_info->loops_per_jiffy = loops_per_jiffy;
 
 
 
 
271}
272
273/*
274 * This is the secondary CPU boot entry.  We're using this CPUs
275 * idle thread stack, but a set of temporary page tables.
276 */
277asmlinkage void __cpuinit secondary_start_kernel(void)
278{
279	struct mm_struct *mm = &init_mm;
280	unsigned int cpu = smp_processor_id();
281
282	printk("CPU%u: Booted secondary processor\n", cpu);
 
 
 
 
 
 
 
 
 
283
284	/*
285	 * All kernel threads share the same mm context; grab a
286	 * reference and switch to it.
287	 */
288	atomic_inc(&mm->mm_count);
 
289	current->active_mm = mm;
290	cpumask_set_cpu(cpu, mm_cpumask(mm));
291	cpu_switch_mm(mm->pgd, mm);
292	enter_lazy_tlb(mm, current);
293	local_flush_tlb_all();
294
295	cpu_init();
 
 
 
 
 
 
296	preempt_disable();
297	trace_hardirqs_off();
298
299	/*
300	 * Give the platform a chance to do its own initialisation.
301	 */
302	platform_secondary_init(cpu);
 
303
304	/*
305	 * Enable local interrupts.
306	 */
307	notify_cpu_starting(cpu);
308	local_irq_enable();
309	local_fiq_enable();
310
311	/*
312	 * Setup the percpu timer for this CPU.
313	 */
314	percpu_timer_setup();
315
316	calibrate_delay();
317
318	smp_store_cpu_info(cpu);
319
320	/*
321	 * OK, now it's safe to let the boot CPU continue.  Wait for
322	 * the CPU migration code to notice that the CPU is online
323	 * before we continue.
324	 */
325	set_cpu_online(cpu, true);
326	while (!cpu_active(cpu))
327		cpu_relax();
 
 
 
 
 
 
328
329	/*
330	 * OK, it's off to the idle thread for us
331	 */
332	cpu_idle();
333}
334
335void __init smp_cpus_done(unsigned int max_cpus)
336{
337	int cpu;
338	unsigned long bogosum = 0;
339
340	for_each_online_cpu(cpu)
341		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
342
343	printk(KERN_INFO "SMP: Total of %d processors activated "
344	       "(%lu.%02lu BogoMIPS).\n",
345	       num_online_cpus(),
346	       bogosum / (500000/HZ),
347	       (bogosum / (5000/HZ)) % 100);
 
 
348}
349
350void __init smp_prepare_boot_cpu(void)
351{
352	unsigned int cpu = smp_processor_id();
353
354	per_cpu(cpu_data, cpu).idle = current;
355}
356
357void __init smp_prepare_cpus(unsigned int max_cpus)
358{
359	unsigned int ncores = num_possible_cpus();
360
 
 
361	smp_store_cpu_info(smp_processor_id());
362
363	/*
364	 * are we trying to boot more cores than exist?
365	 */
366	if (max_cpus > ncores)
367		max_cpus = ncores;
368	if (ncores > 1 && max_cpus) {
369		/*
370		 * Enable the local timer or broadcast device for the
371		 * boot CPU, but only if we have more than one CPU.
372		 */
373		percpu_timer_setup();
374
375		/*
376		 * Initialise the present map, which describes the set of CPUs
377		 * actually populated at the present time. A platform should
378		 * re-initialize the map in platform_smp_prepare_cpus() if
379		 * present != possible (e.g. physical hotplug).
380		 */
381		init_cpu_present(&cpu_possible_map);
382
383		/*
384		 * Initialise the SCU if there are more than one CPU
385		 * and let them know where to start.
386		 */
387		platform_smp_prepare_cpus(max_cpus);
 
388	}
389}
390
391static void (*smp_cross_call)(const struct cpumask *, unsigned int);
392
393void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
394{
395	smp_cross_call = fn;
396}
397
398void arch_send_call_function_ipi_mask(const struct cpumask *mask)
399{
400	smp_cross_call(mask, IPI_CALL_FUNC);
401}
402
403void arch_send_call_function_single_ipi(int cpu)
404{
405	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
406}
407
408static const char *ipi_types[NR_IPI] = {
409#define S(x,s)	[x - IPI_TIMER] = s
 
410	S(IPI_TIMER, "Timer broadcast interrupts"),
411	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
412	S(IPI_CALL_FUNC, "Function call interrupts"),
413	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
414	S(IPI_CPU_STOP, "CPU stop interrupts"),
 
 
415};
416
 
 
 
 
 
 
417void show_ipi_list(struct seq_file *p, int prec)
418{
419	unsigned int cpu, i;
420
421	for (i = 0; i < NR_IPI; i++) {
422		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
423
424		for_each_present_cpu(cpu)
425			seq_printf(p, "%10u ",
426				   __get_irq_stat(cpu, ipi_irqs[i]));
427
428		seq_printf(p, " %s\n", ipi_types[i]);
429	}
430}
431
432u64 smp_irq_stat_cpu(unsigned int cpu)
433{
434	u64 sum = 0;
435	int i;
436
437	for (i = 0; i < NR_IPI; i++)
438		sum += __get_irq_stat(cpu, ipi_irqs[i]);
439
440#ifdef CONFIG_LOCAL_TIMERS
441	sum += __get_irq_stat(cpu, local_timer_irqs);
442#endif
443
444	return sum;
445}
446
447/*
448 * Timer (local or broadcast) support
449 */
450static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
451
452static void ipi_timer(void)
453{
454	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
455	irq_enter();
456	evt->event_handler(evt);
457	irq_exit();
458}
459
460#ifdef CONFIG_LOCAL_TIMERS
461asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
462{
463	struct pt_regs *old_regs = set_irq_regs(regs);
464	int cpu = smp_processor_id();
465
466	if (local_timer_ack()) {
467		__inc_irq_stat(cpu, local_timer_irqs);
468		ipi_timer();
469	}
470
471	set_irq_regs(old_regs);
472}
473
474void show_local_irqs(struct seq_file *p, int prec)
475{
476	unsigned int cpu;
477
478	seq_printf(p, "%*s: ", prec, "LOC");
479
480	for_each_present_cpu(cpu)
481		seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
482
483	seq_printf(p, " Local timer interrupts\n");
484}
485#endif
486
487#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
488static void smp_timer_broadcast(const struct cpumask *mask)
489{
490	smp_cross_call(mask, IPI_TIMER);
 
491}
492#else
493#define smp_timer_broadcast	NULL
494#endif
495
496static void broadcast_timer_set_mode(enum clock_event_mode mode,
497	struct clock_event_device *evt)
498{
499}
500
501static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
502{
503	evt->name	= "dummy_timer";
504	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
505			  CLOCK_EVT_FEAT_PERIODIC |
506			  CLOCK_EVT_FEAT_DUMMY;
507	evt->rating	= 400;
508	evt->mult	= 1;
509	evt->set_mode	= broadcast_timer_set_mode;
510
511	clockevents_register_device(evt);
512}
513
514void __cpuinit percpu_timer_setup(void)
515{
516	unsigned int cpu = smp_processor_id();
517	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
518
519	evt->cpumask = cpumask_of(cpu);
520	evt->broadcast = smp_timer_broadcast;
521
522	if (local_timer_setup(evt))
523		broadcast_timer_setup(evt);
524}
525
526#ifdef CONFIG_HOTPLUG_CPU
527/*
528 * The generic clock events code purposely does not stop the local timer
529 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
530 * manually here.
531 */
532static void percpu_timer_stop(void)
533{
534	unsigned int cpu = smp_processor_id();
535	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
536
537	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
538}
539#endif
540
541static DEFINE_SPINLOCK(stop_lock);
542
543/*
544 * ipi_cpu_stop - handle IPI from smp_send_stop()
545 */
546static void ipi_cpu_stop(unsigned int cpu)
547{
548	if (system_state == SYSTEM_BOOTING ||
549	    system_state == SYSTEM_RUNNING) {
550		spin_lock(&stop_lock);
551		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
552		dump_stack();
553		spin_unlock(&stop_lock);
554	}
555
556	set_cpu_online(cpu, false);
557
558	local_fiq_disable();
559	local_irq_disable();
560
561	while (1)
562		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
563}
564
565/*
566 * Main handler for inter-processor interrupts
567 */
568asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
569{
 
 
 
 
 
570	unsigned int cpu = smp_processor_id();
571	struct pt_regs *old_regs = set_irq_regs(regs);
572
573	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
574		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
 
 
575
576	switch (ipinr) {
 
 
 
 
577	case IPI_TIMER:
578		ipi_timer();
 
 
579		break;
 
580
581	case IPI_RESCHEDULE:
582		scheduler_ipi();
583		break;
584
585	case IPI_CALL_FUNC:
 
586		generic_smp_call_function_interrupt();
587		break;
588
589	case IPI_CALL_FUNC_SINGLE:
590		generic_smp_call_function_single_interrupt();
591		break;
592
593	case IPI_CPU_STOP:
 
594		ipi_cpu_stop(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595		break;
596
597	default:
598		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
599		       cpu, ipinr);
600		break;
601	}
 
 
 
602	set_irq_regs(old_regs);
603}
604
605void smp_send_reschedule(int cpu)
606{
607	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
608}
609
610void smp_send_stop(void)
611{
612	unsigned long timeout;
 
613
614	if (num_online_cpus() > 1) {
615		cpumask_t mask = cpu_online_map;
616		cpu_clear(smp_processor_id(), mask);
617
618		smp_cross_call(&mask, IPI_CPU_STOP);
619	}
620
621	/* Wait up to one second for other CPUs to stop */
622	timeout = USEC_PER_SEC;
623	while (num_online_cpus() > 1 && timeout--)
624		udelay(1);
625
626	if (num_online_cpus() > 1)
627		pr_warning("SMP: failed to stop secondary CPUs\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628}
629
630/*
631 * not supported here
632 */
633int setup_profiling_timer(unsigned int multiplier)
634{
635	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/kernel/smp.c
  4 *
  5 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
 
 
 
 
  6 */
  7#include <linux/module.h>
  8#include <linux/delay.h>
  9#include <linux/init.h>
 10#include <linux/spinlock.h>
 11#include <linux/sched/mm.h>
 12#include <linux/sched/hotplug.h>
 13#include <linux/sched/task_stack.h>
 14#include <linux/interrupt.h>
 15#include <linux/cache.h>
 16#include <linux/profile.h>
 17#include <linux/errno.h>
 
 18#include <linux/mm.h>
 19#include <linux/err.h>
 20#include <linux/cpu.h>
 
 21#include <linux/seq_file.h>
 22#include <linux/irq.h>
 23#include <linux/nmi.h>
 24#include <linux/percpu.h>
 25#include <linux/clockchips.h>
 26#include <linux/completion.h>
 27#include <linux/cpufreq.h>
 28#include <linux/irq_work.h>
 29
 30#include <linux/atomic.h>
 31#include <asm/bugs.h>
 32#include <asm/smp.h>
 33#include <asm/cacheflush.h>
 34#include <asm/cpu.h>
 35#include <asm/cputype.h>
 36#include <asm/exception.h>
 37#include <asm/idmap.h>
 38#include <asm/topology.h>
 39#include <asm/mmu_context.h>
 40#include <asm/pgtable.h>
 41#include <asm/pgalloc.h>
 42#include <asm/procinfo.h>
 43#include <asm/processor.h>
 44#include <asm/sections.h>
 45#include <asm/tlbflush.h>
 46#include <asm/ptrace.h>
 47#include <asm/smp_plat.h>
 48#include <asm/virt.h>
 49#include <asm/mach/arch.h>
 50#include <asm/mpu.h>
 51
 52#define CREATE_TRACE_POINTS
 53#include <trace/events/ipi.h>
 54
 55/*
 56 * as from 2.5, kernels no longer have an init_tasks structure
 57 * so we need some other way of telling a new secondary core
 58 * where to place its SVC stack
 59 */
 60struct secondary_data secondary_data;
 61
 62enum ipi_msg_type {
 63	IPI_WAKEUP,
 64	IPI_TIMER,
 65	IPI_RESCHEDULE,
 66	IPI_CALL_FUNC,
 
 67	IPI_CPU_STOP,
 68	IPI_IRQ_WORK,
 69	IPI_COMPLETION,
 70	/*
 71	 * CPU_BACKTRACE is special and not included in NR_IPI
 72	 * or tracable with trace_ipi_*
 73	 */
 74	IPI_CPU_BACKTRACE,
 75	/*
 76	 * SGI8-15 can be reserved by secure firmware, and thus may
 77	 * not be usable by the kernel. Please keep the above limited
 78	 * to at most 8 entries.
 79	 */
 80};
 81
 82static DECLARE_COMPLETION(cpu_running);
 83
 84static struct smp_operations smp_ops __ro_after_init;
 85
 86void __init smp_set_ops(const struct smp_operations *ops)
 87{
 88	if (ops)
 89		smp_ops = *ops;
 90};
 
 91
 92static unsigned long get_arch_pgd(pgd_t *pgd)
 93{
 94#ifdef CONFIG_ARM_LPAE
 95	return __phys_to_pfn(virt_to_phys(pgd));
 96#else
 97	return virt_to_phys(pgd);
 98#endif
 99}
 
 
 
 
 
 
 
 
 
 
100
101#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102static int secondary_biglittle_prepare(unsigned int cpu)
103{
104	if (!cpu_vtable[cpu])
105		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106
107	return cpu_vtable[cpu] ? 0 : -ENOMEM;
108}
109
110static void secondary_biglittle_init(void)
111{
112	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113}
114#else
115static int secondary_biglittle_prepare(unsigned int cpu)
116{
117	return 0;
118}
119
120static void secondary_biglittle_init(void)
121{
122}
123#endif
124
125int __cpu_up(unsigned int cpu, struct task_struct *idle)
126{
127	int ret;
128
129	if (!smp_ops.smp_boot_secondary)
130		return -ENOSYS;
131
132	ret = secondary_biglittle_prepare(cpu);
133	if (ret)
134		return ret;
135
136	/*
137	 * We need to tell the secondary core where to find
138	 * its stack and the page tables.
139	 */
140	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141#ifdef CONFIG_ARM_MPU
142	secondary_data.mpu_rgn_info = &mpu_rgn_info;
143#endif
144
145#ifdef CONFIG_MMU
146	secondary_data.pgdir = virt_to_phys(idmap_pgd);
147	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148#endif
149	sync_cache_w(&secondary_data);
150
151	/*
152	 * Now bring the CPU into our world.
153	 */
154	ret = smp_ops.smp_boot_secondary(cpu, idle);
155	if (ret == 0) {
 
 
156		/*
157		 * CPU was successfully started, wait for it
158		 * to come online or time out.
159		 */
160		wait_for_completion_timeout(&cpu_running,
161						 msecs_to_jiffies(1000));
 
 
 
 
 
 
162
163		if (!cpu_online(cpu)) {
164			pr_crit("CPU%u: failed to come online\n", cpu);
165			ret = -EIO;
166		}
167	} else {
168		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169	}
170
 
 
171
172	memset(&secondary_data, 0, sizeof(secondary_data));
173	return ret;
174}
 
 
 
 
175
176/* platform specific SMP operations */
177void __init smp_init_cpus(void)
178{
179	if (smp_ops.smp_init_cpus)
180		smp_ops.smp_init_cpus();
181}
182
183int platform_can_secondary_boot(void)
184{
185	return !!smp_ops.smp_boot_secondary;
186}
187
188int platform_can_cpu_hotplug(void)
189{
190#ifdef CONFIG_HOTPLUG_CPU
191	if (smp_ops.cpu_kill)
192		return 1;
193#endif
194
195	return 0;
196}
197
198#ifdef CONFIG_HOTPLUG_CPU
199static int platform_cpu_kill(unsigned int cpu)
200{
201	if (smp_ops.cpu_kill)
202		return smp_ops.cpu_kill(cpu);
203	return 1;
204}
205
206static int platform_cpu_disable(unsigned int cpu)
207{
208	if (smp_ops.cpu_disable)
209		return smp_ops.cpu_disable(cpu);
210
211	return 0;
212}
213
214int platform_can_hotplug_cpu(unsigned int cpu)
215{
216	/* cpu_die must be specified to support hotplug */
217	if (!smp_ops.cpu_die)
218		return 0;
219
220	if (smp_ops.cpu_can_disable)
221		return smp_ops.cpu_can_disable(cpu);
222
223	/*
224	 * By default, allow disabling all CPUs except the first one,
225	 * since this is special on a lot of platforms, e.g. because
226	 * of clock tick interrupts.
227	 */
228	return cpu != 0;
229}
230
231/*
232 * __cpu_disable runs on the processor to be shutdown.
233 */
234int __cpu_disable(void)
235{
236	unsigned int cpu = smp_processor_id();
 
237	int ret;
238
239	ret = platform_cpu_disable(cpu);
240	if (ret)
241		return ret;
242
243	/*
244	 * Take this CPU offline.  Once we clear this, we can't return,
245	 * and we must not schedule until we're ready to give up the cpu.
246	 */
247	set_cpu_online(cpu, false);
248
249	/*
250	 * OK - migrate IRQs away from this CPU
251	 */
252	irq_migrate_all_off_this_cpu();
 
 
 
 
 
253
254	/*
255	 * Flush user cache and TLB mappings, and then remove this CPU
256	 * from the vm mask set of all processes.
257	 *
258	 * Caches are flushed to the Level of Unification Inner Shareable
259	 * to write-back dirty lines to unified caches shared by all CPUs.
260	 */
261	flush_cache_louis();
262	local_flush_tlb_all();
263
 
 
 
 
 
 
 
264	return 0;
265}
266
 
 
267/*
268 * called on the thread which is asking for a CPU to be shutdown -
269 * waits until shutdown has completed, or it is timed out.
270 */
271void __cpu_die(unsigned int cpu)
272{
273	if (!cpu_wait_death(cpu, 5)) {
274		pr_err("CPU%u: cpu didn't die\n", cpu);
275		return;
276	}
277	pr_debug("CPU%u: shutdown\n", cpu);
278
279	clear_tasks_mm_cpumask(cpu);
280	/*
281	 * platform_cpu_kill() is generally expected to do the powering off
282	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
283	 * be done by the CPU which is dying in preference to supporting
284	 * this call, but that means there is _no_ synchronisation between
285	 * the requesting CPU and the dying CPU actually losing power.
286	 */
287	if (!platform_cpu_kill(cpu))
288		pr_err("CPU%u: unable to kill\n", cpu);
289}
290
291/*
292 * Called from the idle thread for the CPU which has been shutdown.
293 *
294 * Note that we disable IRQs here, but do not re-enable them
295 * before returning to the caller. This is also the behaviour
296 * of the other hotplug-cpu capable cores, so presumably coming
297 * out of idle fixes this.
298 */
299void arch_cpu_idle_dead(void)
300{
301	unsigned int cpu = smp_processor_id();
302
303	idle_task_exit();
304
305	local_irq_disable();
 
306
307	/*
308	 * Flush the data out of the L1 cache for this CPU.  This must be
309	 * before the completion to ensure that data is safely written out
310	 * before platform_cpu_kill() gets called - which may disable
311	 * *this* CPU and power down its cache.
312	 */
313	flush_cache_louis();
314
315	/*
316	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
317	 * this returns, power and/or clocks can be removed at any point
318	 * from this CPU and its cache by platform_cpu_kill().
319	 */
320	(void)cpu_report_death();
321
322	/*
323	 * Ensure that the cache lines associated with that completion are
324	 * written out.  This covers the case where _this_ CPU is doing the
325	 * powering down, to ensure that the completion is visible to the
326	 * CPU waiting for this one.
327	 */
328	flush_cache_louis();
329
330	/*
331	 * The actual CPU shutdown procedure is at least platform (if not
332	 * CPU) specific.  This may remove power, or it may simply spin.
333	 *
334	 * Platforms are generally expected *NOT* to return from this call,
335	 * although there are some which do because they have no way to
336	 * power down the CPU.  These platforms are the _only_ reason we
337	 * have a return path which uses the fragment of assembly below.
338	 *
339	 * The return path should not be used for platforms which can
340	 * power off the CPU.
341	 */
342	if (smp_ops.cpu_die)
343		smp_ops.cpu_die(cpu);
344
345	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
346		cpu);
347
348	/*
349	 * Do not return to the idle loop - jump back to the secondary
350	 * cpu initialisation.  There's some initialisation which needs
351	 * to be repeated to undo the effects of taking the CPU offline.
352	 */
353	__asm__("mov	sp, %0\n"
354	"	mov	fp, #0\n"
355	"	b	secondary_start_kernel"
356		:
357		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
358}
359#endif /* CONFIG_HOTPLUG_CPU */
360
361/*
362 * Called by both boot and secondaries to move global data into
363 * per-processor storage.
364 */
365static void smp_store_cpu_info(unsigned int cpuid)
366{
367	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
368
369	cpu_info->loops_per_jiffy = loops_per_jiffy;
370	cpu_info->cpuid = read_cpuid_id();
371
372	store_cpu_topology(cpuid);
373	check_cpu_icache_size(cpuid);
374}
375
376/*
377 * This is the secondary CPU boot entry.  We're using this CPUs
378 * idle thread stack, but a set of temporary page tables.
379 */
380asmlinkage void secondary_start_kernel(void)
381{
382	struct mm_struct *mm = &init_mm;
383	unsigned int cpu;
384
385	secondary_biglittle_init();
386
387	/*
388	 * The identity mapping is uncached (strongly ordered), so
389	 * switch away from it before attempting any exclusive accesses.
390	 */
391	cpu_switch_mm(mm->pgd, mm);
392	local_flush_bp_all();
393	enter_lazy_tlb(mm, current);
394	local_flush_tlb_all();
395
396	/*
397	 * All kernel threads share the same mm context; grab a
398	 * reference and switch to it.
399	 */
400	cpu = smp_processor_id();
401	mmgrab(mm);
402	current->active_mm = mm;
403	cpumask_set_cpu(cpu, mm_cpumask(mm));
 
 
 
404
405	cpu_init();
406
407#ifndef CONFIG_MMU
408	setup_vectors_base();
409#endif
410	pr_debug("CPU%u: Booted secondary processor\n", cpu);
411
412	preempt_disable();
413	trace_hardirqs_off();
414
415	/*
416	 * Give the platform a chance to do its own initialisation.
417	 */
418	if (smp_ops.smp_secondary_init)
419		smp_ops.smp_secondary_init(cpu);
420
 
 
 
421	notify_cpu_starting(cpu);
 
 
 
 
 
 
 
422
423	calibrate_delay();
424
425	smp_store_cpu_info(cpu);
426
427	/*
428	 * OK, now it's safe to let the boot CPU continue.  Wait for
429	 * the CPU migration code to notice that the CPU is online
430	 * before we continue - which happens after __cpu_up returns.
431	 */
432	set_cpu_online(cpu, true);
433
434	check_other_bugs();
435
436	complete(&cpu_running);
437
438	local_irq_enable();
439	local_fiq_enable();
440	local_abt_enable();
441
442	/*
443	 * OK, it's off to the idle thread for us
444	 */
445	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
446}
447
448void __init smp_cpus_done(unsigned int max_cpus)
449{
450	int cpu;
451	unsigned long bogosum = 0;
452
453	for_each_online_cpu(cpu)
454		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
455
456	printk(KERN_INFO "SMP: Total of %d processors activated "
457	       "(%lu.%02lu BogoMIPS).\n",
458	       num_online_cpus(),
459	       bogosum / (500000/HZ),
460	       (bogosum / (5000/HZ)) % 100);
461
462	hyp_mode_check();
463}
464
465void __init smp_prepare_boot_cpu(void)
466{
467	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 
 
468}
469
470void __init smp_prepare_cpus(unsigned int max_cpus)
471{
472	unsigned int ncores = num_possible_cpus();
473
474	init_cpu_topology();
475
476	smp_store_cpu_info(smp_processor_id());
477
478	/*
479	 * are we trying to boot more cores than exist?
480	 */
481	if (max_cpus > ncores)
482		max_cpus = ncores;
483	if (ncores > 1 && max_cpus) {
484		/*
 
 
 
 
 
 
485		 * Initialise the present map, which describes the set of CPUs
486		 * actually populated at the present time. A platform should
487		 * re-initialize the map in the platforms smp_prepare_cpus()
488		 * if present != possible (e.g. physical hotplug).
489		 */
490		init_cpu_present(cpu_possible_mask);
491
492		/*
493		 * Initialise the SCU if there are more than one CPU
494		 * and let them know where to start.
495		 */
496		if (smp_ops.smp_prepare_cpus)
497			smp_ops.smp_prepare_cpus(max_cpus);
498	}
499}
500
501static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
502
503void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
504{
505	if (!__smp_cross_call)
506		__smp_cross_call = fn;
 
 
 
 
 
 
 
 
 
507}
508
509static const char *ipi_types[NR_IPI] __tracepoint_string = {
510#define S(x,s)	[x] = s
511	S(IPI_WAKEUP, "CPU wakeup interrupts"),
512	S(IPI_TIMER, "Timer broadcast interrupts"),
513	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
514	S(IPI_CALL_FUNC, "Function call interrupts"),
 
515	S(IPI_CPU_STOP, "CPU stop interrupts"),
516	S(IPI_IRQ_WORK, "IRQ work interrupts"),
517	S(IPI_COMPLETION, "completion interrupts"),
518};
519
520static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
521{
522	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
523	__smp_cross_call(target, ipinr);
524}
525
526void show_ipi_list(struct seq_file *p, int prec)
527{
528	unsigned int cpu, i;
529
530	for (i = 0; i < NR_IPI; i++) {
531		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
532
533		for_each_online_cpu(cpu)
534			seq_printf(p, "%10u ",
535				   __get_irq_stat(cpu, ipi_irqs[i]));
536
537		seq_printf(p, " %s\n", ipi_types[i]);
538	}
539}
540
541u64 smp_irq_stat_cpu(unsigned int cpu)
542{
543	u64 sum = 0;
544	int i;
545
546	for (i = 0; i < NR_IPI; i++)
547		sum += __get_irq_stat(cpu, ipi_irqs[i]);
548
 
 
 
 
549	return sum;
550}
551
552void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 
 
 
 
 
553{
554	smp_cross_call(mask, IPI_CALL_FUNC);
 
 
 
555}
556
557void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 
558{
559	smp_cross_call(mask, IPI_WAKEUP);
 
 
 
 
 
 
 
 
560}
561
562void arch_send_call_function_single_ipi(int cpu)
563{
564	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 
 
 
 
 
 
 
565}
 
566
567#ifdef CONFIG_IRQ_WORK
568void arch_irq_work_raise(void)
569{
570	if (arch_irq_work_has_interrupt())
571		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
572}
 
 
573#endif
574
575#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576void tick_broadcast(const struct cpumask *mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577{
578	smp_cross_call(mask, IPI_TIMER);
 
 
 
579}
580#endif
581
582static DEFINE_RAW_SPINLOCK(stop_lock);
583
584/*
585 * ipi_cpu_stop - handle IPI from smp_send_stop()
586 */
587static void ipi_cpu_stop(unsigned int cpu)
588{
589	if (system_state <= SYSTEM_RUNNING) {
590		raw_spin_lock(&stop_lock);
591		pr_crit("CPU%u: stopping\n", cpu);
 
592		dump_stack();
593		raw_spin_unlock(&stop_lock);
594	}
595
596	set_cpu_online(cpu, false);
597
598	local_fiq_disable();
599	local_irq_disable();
600
601	while (1) {
602		cpu_relax();
603		wfe();
604	}
605}
606
607static DEFINE_PER_CPU(struct completion *, cpu_completion);
608
609int register_ipi_completion(struct completion *completion, int cpu)
610{
611	per_cpu(cpu_completion, cpu) = completion;
612	return IPI_COMPLETION;
613}
614
615static void ipi_complete(unsigned int cpu)
616{
617	complete(per_cpu(cpu_completion, cpu));
618}
619
620/*
621 * Main handler for inter-processor interrupts
622 */
623asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
624{
625	handle_IPI(ipinr, regs);
626}
627
628void handle_IPI(int ipinr, struct pt_regs *regs)
629{
630	unsigned int cpu = smp_processor_id();
631	struct pt_regs *old_regs = set_irq_regs(regs);
632
633	if ((unsigned)ipinr < NR_IPI) {
634		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
635		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
636	}
637
638	switch (ipinr) {
639	case IPI_WAKEUP:
640		break;
641
642#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
643	case IPI_TIMER:
644		irq_enter();
645		tick_receive_broadcast();
646		irq_exit();
647		break;
648#endif
649
650	case IPI_RESCHEDULE:
651		scheduler_ipi();
652		break;
653
654	case IPI_CALL_FUNC:
655		irq_enter();
656		generic_smp_call_function_interrupt();
657		irq_exit();
 
 
 
658		break;
659
660	case IPI_CPU_STOP:
661		irq_enter();
662		ipi_cpu_stop(cpu);
663		irq_exit();
664		break;
665
666#ifdef CONFIG_IRQ_WORK
667	case IPI_IRQ_WORK:
668		irq_enter();
669		irq_work_run();
670		irq_exit();
671		break;
672#endif
673
674	case IPI_COMPLETION:
675		irq_enter();
676		ipi_complete(cpu);
677		irq_exit();
678		break;
679
680	case IPI_CPU_BACKTRACE:
681		printk_nmi_enter();
682		irq_enter();
683		nmi_cpu_backtrace(regs);
684		irq_exit();
685		printk_nmi_exit();
686		break;
687
688	default:
689		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
690		        cpu, ipinr);
691		break;
692	}
693
694	if ((unsigned)ipinr < NR_IPI)
695		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
696	set_irq_regs(old_regs);
697}
698
699void smp_send_reschedule(int cpu)
700{
701	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
702}
703
704void smp_send_stop(void)
705{
706	unsigned long timeout;
707	struct cpumask mask;
708
709	cpumask_copy(&mask, cpu_online_mask);
710	cpumask_clear_cpu(smp_processor_id(), &mask);
711	if (!cpumask_empty(&mask))
 
712		smp_cross_call(&mask, IPI_CPU_STOP);
 
713
714	/* Wait up to one second for other CPUs to stop */
715	timeout = USEC_PER_SEC;
716	while (num_online_cpus() > 1 && timeout--)
717		udelay(1);
718
719	if (num_online_cpus() > 1)
720		pr_warn("SMP: failed to stop secondary CPUs\n");
721}
722
723/* In case panic() and panic() called at the same time on CPU1 and CPU2,
724 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
725 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
726 * kdump fails. So split out the panic_smp_self_stop() and add
727 * set_cpu_online(smp_processor_id(), false).
728 */
729void panic_smp_self_stop(void)
730{
731	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
732	         smp_processor_id());
733	set_cpu_online(smp_processor_id(), false);
734	while (1)
735		cpu_relax();
736}
737
738/*
739 * not supported here
740 */
741int setup_profiling_timer(unsigned int multiplier)
742{
743	return -EINVAL;
744}
745
746#ifdef CONFIG_CPU_FREQ
747
748static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
749static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
750static unsigned long global_l_p_j_ref;
751static unsigned long global_l_p_j_ref_freq;
752
753static int cpufreq_callback(struct notifier_block *nb,
754					unsigned long val, void *data)
755{
756	struct cpufreq_freqs *freq = data;
757	struct cpumask *cpus = freq->policy->cpus;
758	int cpu, first = cpumask_first(cpus);
759	unsigned int lpj;
760
761	if (freq->flags & CPUFREQ_CONST_LOOPS)
762		return NOTIFY_OK;
763
764	if (!per_cpu(l_p_j_ref, first)) {
765		for_each_cpu(cpu, cpus) {
766			per_cpu(l_p_j_ref, cpu) =
767				per_cpu(cpu_data, cpu).loops_per_jiffy;
768			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
769		}
770
771		if (!global_l_p_j_ref) {
772			global_l_p_j_ref = loops_per_jiffy;
773			global_l_p_j_ref_freq = freq->old;
774		}
775	}
776
777	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
778	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
779		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
780						global_l_p_j_ref_freq,
781						freq->new);
782
783		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
784				    per_cpu(l_p_j_ref_freq, first), freq->new);
785		for_each_cpu(cpu, cpus)
786			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
787	}
788	return NOTIFY_OK;
789}
790
791static struct notifier_block cpufreq_notifier = {
792	.notifier_call  = cpufreq_callback,
793};
794
795static int __init register_cpufreq_notifier(void)
796{
797	return cpufreq_register_notifier(&cpufreq_notifier,
798						CPUFREQ_TRANSITION_NOTIFIER);
799}
800core_initcall(register_cpufreq_notifier);
801
802#endif
803
804static void raise_nmi(cpumask_t *mask)
805{
806	__smp_cross_call(mask, IPI_CPU_BACKTRACE);
807}
808
809void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
810{
811	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
812}