Loading...
1/*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/cache.h>
17#include <linux/profile.h>
18#include <linux/errno.h>
19#include <linux/ftrace.h>
20#include <linux/mm.h>
21#include <linux/err.h>
22#include <linux/cpu.h>
23#include <linux/smp.h>
24#include <linux/seq_file.h>
25#include <linux/irq.h>
26#include <linux/percpu.h>
27#include <linux/clockchips.h>
28#include <linux/completion.h>
29
30#include <linux/atomic.h>
31#include <asm/cacheflush.h>
32#include <asm/cpu.h>
33#include <asm/cputype.h>
34#include <asm/mmu_context.h>
35#include <asm/pgtable.h>
36#include <asm/pgalloc.h>
37#include <asm/processor.h>
38#include <asm/sections.h>
39#include <asm/tlbflush.h>
40#include <asm/ptrace.h>
41#include <asm/localtimer.h>
42
43/*
44 * as from 2.5, kernels no longer have an init_tasks structure
45 * so we need some other way of telling a new secondary core
46 * where to place its SVC stack
47 */
48struct secondary_data secondary_data;
49
50enum ipi_msg_type {
51 IPI_TIMER = 2,
52 IPI_RESCHEDULE,
53 IPI_CALL_FUNC,
54 IPI_CALL_FUNC_SINGLE,
55 IPI_CPU_STOP,
56};
57
58int __cpuinit __cpu_up(unsigned int cpu)
59{
60 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
61 struct task_struct *idle = ci->idle;
62 pgd_t *pgd;
63 int ret;
64
65 /*
66 * Spawn a new process manually, if not already done.
67 * Grab a pointer to its task struct so we can mess with it
68 */
69 if (!idle) {
70 idle = fork_idle(cpu);
71 if (IS_ERR(idle)) {
72 printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
73 return PTR_ERR(idle);
74 }
75 ci->idle = idle;
76 } else {
77 /*
78 * Since this idle thread is being re-used, call
79 * init_idle() to reinitialize the thread structure.
80 */
81 init_idle(idle, cpu);
82 }
83
84 /*
85 * Allocate initial page tables to allow the new CPU to
86 * enable the MMU safely. This essentially means a set
87 * of our "standard" page tables, with the addition of
88 * a 1:1 mapping for the physical address of the kernel.
89 */
90 pgd = pgd_alloc(&init_mm);
91 if (!pgd)
92 return -ENOMEM;
93
94 if (PHYS_OFFSET != PAGE_OFFSET) {
95#ifndef CONFIG_HOTPLUG_CPU
96 identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
97#endif
98 identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
99 identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
100 }
101
102 /*
103 * We need to tell the secondary core where to find
104 * its stack and the page tables.
105 */
106 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107 secondary_data.pgdir = virt_to_phys(pgd);
108 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
109 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
110 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
111
112 /*
113 * Now bring the CPU into our world.
114 */
115 ret = boot_secondary(cpu, idle);
116 if (ret == 0) {
117 unsigned long timeout;
118
119 /*
120 * CPU was successfully started, wait for it
121 * to come online or time out.
122 */
123 timeout = jiffies + HZ;
124 while (time_before(jiffies, timeout)) {
125 if (cpu_online(cpu))
126 break;
127
128 udelay(10);
129 barrier();
130 }
131
132 if (!cpu_online(cpu)) {
133 pr_crit("CPU%u: failed to come online\n", cpu);
134 ret = -EIO;
135 }
136 } else {
137 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138 }
139
140 secondary_data.stack = NULL;
141 secondary_data.pgdir = 0;
142
143 if (PHYS_OFFSET != PAGE_OFFSET) {
144#ifndef CONFIG_HOTPLUG_CPU
145 identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
146#endif
147 identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
148 identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
149 }
150
151 pgd_free(&init_mm, pgd);
152
153 return ret;
154}
155
156#ifdef CONFIG_HOTPLUG_CPU
157static void percpu_timer_stop(void);
158
159/*
160 * __cpu_disable runs on the processor to be shutdown.
161 */
162int __cpu_disable(void)
163{
164 unsigned int cpu = smp_processor_id();
165 struct task_struct *p;
166 int ret;
167
168 ret = platform_cpu_disable(cpu);
169 if (ret)
170 return ret;
171
172 /*
173 * Take this CPU offline. Once we clear this, we can't return,
174 * and we must not schedule until we're ready to give up the cpu.
175 */
176 set_cpu_online(cpu, false);
177
178 /*
179 * OK - migrate IRQs away from this CPU
180 */
181 migrate_irqs();
182
183 /*
184 * Stop the local timer for this CPU.
185 */
186 percpu_timer_stop();
187
188 /*
189 * Flush user cache and TLB mappings, and then remove this CPU
190 * from the vm mask set of all processes.
191 */
192 flush_cache_all();
193 local_flush_tlb_all();
194
195 read_lock(&tasklist_lock);
196 for_each_process(p) {
197 if (p->mm)
198 cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
199 }
200 read_unlock(&tasklist_lock);
201
202 return 0;
203}
204
205static DECLARE_COMPLETION(cpu_died);
206
207/*
208 * called on the thread which is asking for a CPU to be shutdown -
209 * waits until shutdown has completed, or it is timed out.
210 */
211void __cpu_die(unsigned int cpu)
212{
213 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
214 pr_err("CPU%u: cpu didn't die\n", cpu);
215 return;
216 }
217 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
218
219 if (!platform_cpu_kill(cpu))
220 printk("CPU%u: unable to kill\n", cpu);
221}
222
223/*
224 * Called from the idle thread for the CPU which has been shutdown.
225 *
226 * Note that we disable IRQs here, but do not re-enable them
227 * before returning to the caller. This is also the behaviour
228 * of the other hotplug-cpu capable cores, so presumably coming
229 * out of idle fixes this.
230 */
231void __ref cpu_die(void)
232{
233 unsigned int cpu = smp_processor_id();
234
235 idle_task_exit();
236
237 local_irq_disable();
238 mb();
239
240 /* Tell __cpu_die() that this CPU is now safe to dispose of */
241 complete(&cpu_died);
242
243 /*
244 * actual CPU shutdown procedure is at least platform (if not
245 * CPU) specific.
246 */
247 platform_cpu_die(cpu);
248
249 /*
250 * Do not return to the idle loop - jump back to the secondary
251 * cpu initialisation. There's some initialisation which needs
252 * to be repeated to undo the effects of taking the CPU offline.
253 */
254 __asm__("mov sp, %0\n"
255 " mov fp, #0\n"
256 " b secondary_start_kernel"
257 :
258 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
259}
260#endif /* CONFIG_HOTPLUG_CPU */
261
262/*
263 * Called by both boot and secondaries to move global data into
264 * per-processor storage.
265 */
266static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
267{
268 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
269
270 cpu_info->loops_per_jiffy = loops_per_jiffy;
271}
272
273/*
274 * This is the secondary CPU boot entry. We're using this CPUs
275 * idle thread stack, but a set of temporary page tables.
276 */
277asmlinkage void __cpuinit secondary_start_kernel(void)
278{
279 struct mm_struct *mm = &init_mm;
280 unsigned int cpu = smp_processor_id();
281
282 printk("CPU%u: Booted secondary processor\n", cpu);
283
284 /*
285 * All kernel threads share the same mm context; grab a
286 * reference and switch to it.
287 */
288 atomic_inc(&mm->mm_count);
289 current->active_mm = mm;
290 cpumask_set_cpu(cpu, mm_cpumask(mm));
291 cpu_switch_mm(mm->pgd, mm);
292 enter_lazy_tlb(mm, current);
293 local_flush_tlb_all();
294
295 cpu_init();
296 preempt_disable();
297 trace_hardirqs_off();
298
299 /*
300 * Give the platform a chance to do its own initialisation.
301 */
302 platform_secondary_init(cpu);
303
304 /*
305 * Enable local interrupts.
306 */
307 notify_cpu_starting(cpu);
308 local_irq_enable();
309 local_fiq_enable();
310
311 /*
312 * Setup the percpu timer for this CPU.
313 */
314 percpu_timer_setup();
315
316 calibrate_delay();
317
318 smp_store_cpu_info(cpu);
319
320 /*
321 * OK, now it's safe to let the boot CPU continue. Wait for
322 * the CPU migration code to notice that the CPU is online
323 * before we continue.
324 */
325 set_cpu_online(cpu, true);
326 while (!cpu_active(cpu))
327 cpu_relax();
328
329 /*
330 * OK, it's off to the idle thread for us
331 */
332 cpu_idle();
333}
334
335void __init smp_cpus_done(unsigned int max_cpus)
336{
337 int cpu;
338 unsigned long bogosum = 0;
339
340 for_each_online_cpu(cpu)
341 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
342
343 printk(KERN_INFO "SMP: Total of %d processors activated "
344 "(%lu.%02lu BogoMIPS).\n",
345 num_online_cpus(),
346 bogosum / (500000/HZ),
347 (bogosum / (5000/HZ)) % 100);
348}
349
350void __init smp_prepare_boot_cpu(void)
351{
352 unsigned int cpu = smp_processor_id();
353
354 per_cpu(cpu_data, cpu).idle = current;
355}
356
357void __init smp_prepare_cpus(unsigned int max_cpus)
358{
359 unsigned int ncores = num_possible_cpus();
360
361 smp_store_cpu_info(smp_processor_id());
362
363 /*
364 * are we trying to boot more cores than exist?
365 */
366 if (max_cpus > ncores)
367 max_cpus = ncores;
368 if (ncores > 1 && max_cpus) {
369 /*
370 * Enable the local timer or broadcast device for the
371 * boot CPU, but only if we have more than one CPU.
372 */
373 percpu_timer_setup();
374
375 /*
376 * Initialise the present map, which describes the set of CPUs
377 * actually populated at the present time. A platform should
378 * re-initialize the map in platform_smp_prepare_cpus() if
379 * present != possible (e.g. physical hotplug).
380 */
381 init_cpu_present(&cpu_possible_map);
382
383 /*
384 * Initialise the SCU if there are more than one CPU
385 * and let them know where to start.
386 */
387 platform_smp_prepare_cpus(max_cpus);
388 }
389}
390
391static void (*smp_cross_call)(const struct cpumask *, unsigned int);
392
393void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
394{
395 smp_cross_call = fn;
396}
397
398void arch_send_call_function_ipi_mask(const struct cpumask *mask)
399{
400 smp_cross_call(mask, IPI_CALL_FUNC);
401}
402
403void arch_send_call_function_single_ipi(int cpu)
404{
405 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
406}
407
408static const char *ipi_types[NR_IPI] = {
409#define S(x,s) [x - IPI_TIMER] = s
410 S(IPI_TIMER, "Timer broadcast interrupts"),
411 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
412 S(IPI_CALL_FUNC, "Function call interrupts"),
413 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
414 S(IPI_CPU_STOP, "CPU stop interrupts"),
415};
416
417void show_ipi_list(struct seq_file *p, int prec)
418{
419 unsigned int cpu, i;
420
421 for (i = 0; i < NR_IPI; i++) {
422 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
423
424 for_each_present_cpu(cpu)
425 seq_printf(p, "%10u ",
426 __get_irq_stat(cpu, ipi_irqs[i]));
427
428 seq_printf(p, " %s\n", ipi_types[i]);
429 }
430}
431
432u64 smp_irq_stat_cpu(unsigned int cpu)
433{
434 u64 sum = 0;
435 int i;
436
437 for (i = 0; i < NR_IPI; i++)
438 sum += __get_irq_stat(cpu, ipi_irqs[i]);
439
440#ifdef CONFIG_LOCAL_TIMERS
441 sum += __get_irq_stat(cpu, local_timer_irqs);
442#endif
443
444 return sum;
445}
446
447/*
448 * Timer (local or broadcast) support
449 */
450static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
451
452static void ipi_timer(void)
453{
454 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
455 irq_enter();
456 evt->event_handler(evt);
457 irq_exit();
458}
459
460#ifdef CONFIG_LOCAL_TIMERS
461asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
462{
463 struct pt_regs *old_regs = set_irq_regs(regs);
464 int cpu = smp_processor_id();
465
466 if (local_timer_ack()) {
467 __inc_irq_stat(cpu, local_timer_irqs);
468 ipi_timer();
469 }
470
471 set_irq_regs(old_regs);
472}
473
474void show_local_irqs(struct seq_file *p, int prec)
475{
476 unsigned int cpu;
477
478 seq_printf(p, "%*s: ", prec, "LOC");
479
480 for_each_present_cpu(cpu)
481 seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
482
483 seq_printf(p, " Local timer interrupts\n");
484}
485#endif
486
487#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
488static void smp_timer_broadcast(const struct cpumask *mask)
489{
490 smp_cross_call(mask, IPI_TIMER);
491}
492#else
493#define smp_timer_broadcast NULL
494#endif
495
496static void broadcast_timer_set_mode(enum clock_event_mode mode,
497 struct clock_event_device *evt)
498{
499}
500
501static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
502{
503 evt->name = "dummy_timer";
504 evt->features = CLOCK_EVT_FEAT_ONESHOT |
505 CLOCK_EVT_FEAT_PERIODIC |
506 CLOCK_EVT_FEAT_DUMMY;
507 evt->rating = 400;
508 evt->mult = 1;
509 evt->set_mode = broadcast_timer_set_mode;
510
511 clockevents_register_device(evt);
512}
513
514void __cpuinit percpu_timer_setup(void)
515{
516 unsigned int cpu = smp_processor_id();
517 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
518
519 evt->cpumask = cpumask_of(cpu);
520 evt->broadcast = smp_timer_broadcast;
521
522 if (local_timer_setup(evt))
523 broadcast_timer_setup(evt);
524}
525
526#ifdef CONFIG_HOTPLUG_CPU
527/*
528 * The generic clock events code purposely does not stop the local timer
529 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
530 * manually here.
531 */
532static void percpu_timer_stop(void)
533{
534 unsigned int cpu = smp_processor_id();
535 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
536
537 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
538}
539#endif
540
541static DEFINE_SPINLOCK(stop_lock);
542
543/*
544 * ipi_cpu_stop - handle IPI from smp_send_stop()
545 */
546static void ipi_cpu_stop(unsigned int cpu)
547{
548 if (system_state == SYSTEM_BOOTING ||
549 system_state == SYSTEM_RUNNING) {
550 spin_lock(&stop_lock);
551 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
552 dump_stack();
553 spin_unlock(&stop_lock);
554 }
555
556 set_cpu_online(cpu, false);
557
558 local_fiq_disable();
559 local_irq_disable();
560
561 while (1)
562 cpu_relax();
563}
564
565/*
566 * Main handler for inter-processor interrupts
567 */
568asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
569{
570 unsigned int cpu = smp_processor_id();
571 struct pt_regs *old_regs = set_irq_regs(regs);
572
573 if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
574 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
575
576 switch (ipinr) {
577 case IPI_TIMER:
578 ipi_timer();
579 break;
580
581 case IPI_RESCHEDULE:
582 scheduler_ipi();
583 break;
584
585 case IPI_CALL_FUNC:
586 generic_smp_call_function_interrupt();
587 break;
588
589 case IPI_CALL_FUNC_SINGLE:
590 generic_smp_call_function_single_interrupt();
591 break;
592
593 case IPI_CPU_STOP:
594 ipi_cpu_stop(cpu);
595 break;
596
597 default:
598 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
599 cpu, ipinr);
600 break;
601 }
602 set_irq_regs(old_regs);
603}
604
605void smp_send_reschedule(int cpu)
606{
607 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
608}
609
610void smp_send_stop(void)
611{
612 unsigned long timeout;
613
614 if (num_online_cpus() > 1) {
615 cpumask_t mask = cpu_online_map;
616 cpu_clear(smp_processor_id(), mask);
617
618 smp_cross_call(&mask, IPI_CPU_STOP);
619 }
620
621 /* Wait up to one second for other CPUs to stop */
622 timeout = USEC_PER_SEC;
623 while (num_online_cpus() > 1 && timeout--)
624 udelay(1);
625
626 if (num_online_cpus() > 1)
627 pr_warning("SMP: failed to stop secondary CPUs\n");
628}
629
630/*
631 * not supported here
632 */
633int setup_profiling_timer(unsigned int multiplier)
634{
635 return -EINVAL;
636}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 */
7#include <linux/module.h>
8#include <linux/delay.h>
9#include <linux/init.h>
10#include <linux/spinlock.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/hotplug.h>
13#include <linux/sched/task_stack.h>
14#include <linux/interrupt.h>
15#include <linux/cache.h>
16#include <linux/profile.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/err.h>
20#include <linux/cpu.h>
21#include <linux/seq_file.h>
22#include <linux/irq.h>
23#include <linux/nmi.h>
24#include <linux/percpu.h>
25#include <linux/clockchips.h>
26#include <linux/completion.h>
27#include <linux/cpufreq.h>
28#include <linux/irq_work.h>
29#include <linux/kernel_stat.h>
30
31#include <linux/atomic.h>
32#include <asm/bugs.h>
33#include <asm/smp.h>
34#include <asm/cacheflush.h>
35#include <asm/cpu.h>
36#include <asm/cputype.h>
37#include <asm/exception.h>
38#include <asm/idmap.h>
39#include <asm/topology.h>
40#include <asm/mmu_context.h>
41#include <asm/procinfo.h>
42#include <asm/processor.h>
43#include <asm/sections.h>
44#include <asm/tlbflush.h>
45#include <asm/ptrace.h>
46#include <asm/smp_plat.h>
47#include <asm/virt.h>
48#include <asm/mach/arch.h>
49#include <asm/mpu.h>
50
51#define CREATE_TRACE_POINTS
52#include <trace/events/ipi.h>
53
54/*
55 * as from 2.5, kernels no longer have an init_tasks structure
56 * so we need some other way of telling a new secondary core
57 * where to place its SVC stack
58 */
59struct secondary_data secondary_data;
60
61enum ipi_msg_type {
62 IPI_WAKEUP,
63 IPI_TIMER,
64 IPI_RESCHEDULE,
65 IPI_CALL_FUNC,
66 IPI_CPU_STOP,
67 IPI_IRQ_WORK,
68 IPI_COMPLETION,
69 NR_IPI,
70 /*
71 * CPU_BACKTRACE is special and not included in NR_IPI
72 * or tracable with trace_ipi_*
73 */
74 IPI_CPU_BACKTRACE = NR_IPI,
75 /*
76 * SGI8-15 can be reserved by secure firmware, and thus may
77 * not be usable by the kernel. Please keep the above limited
78 * to at most 8 entries.
79 */
80 MAX_IPI
81};
82
83static int ipi_irq_base __read_mostly;
84static int nr_ipi __read_mostly = NR_IPI;
85static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
86
87static void ipi_setup(int cpu);
88
89static DECLARE_COMPLETION(cpu_running);
90
91static struct smp_operations smp_ops __ro_after_init;
92
93void __init smp_set_ops(const struct smp_operations *ops)
94{
95 if (ops)
96 smp_ops = *ops;
97};
98
99static unsigned long get_arch_pgd(pgd_t *pgd)
100{
101#ifdef CONFIG_ARM_LPAE
102 return __phys_to_pfn(virt_to_phys(pgd));
103#else
104 return virt_to_phys(pgd);
105#endif
106}
107
108#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
109static int secondary_biglittle_prepare(unsigned int cpu)
110{
111 if (!cpu_vtable[cpu])
112 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
113
114 return cpu_vtable[cpu] ? 0 : -ENOMEM;
115}
116
117static void secondary_biglittle_init(void)
118{
119 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
120}
121#else
122static int secondary_biglittle_prepare(unsigned int cpu)
123{
124 return 0;
125}
126
127static void secondary_biglittle_init(void)
128{
129}
130#endif
131
132int __cpu_up(unsigned int cpu, struct task_struct *idle)
133{
134 int ret;
135
136 if (!smp_ops.smp_boot_secondary)
137 return -ENOSYS;
138
139 ret = secondary_biglittle_prepare(cpu);
140 if (ret)
141 return ret;
142
143 /*
144 * We need to tell the secondary core where to find
145 * its stack and the page tables.
146 */
147 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
148#ifdef CONFIG_ARM_MPU
149 secondary_data.mpu_rgn_info = &mpu_rgn_info;
150#endif
151
152#ifdef CONFIG_MMU
153 secondary_data.pgdir = virt_to_phys(idmap_pgd);
154 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
155#endif
156 secondary_data.task = idle;
157 sync_cache_w(&secondary_data);
158
159 /*
160 * Now bring the CPU into our world.
161 */
162 ret = smp_ops.smp_boot_secondary(cpu, idle);
163 if (ret == 0) {
164 /*
165 * CPU was successfully started, wait for it
166 * to come online or time out.
167 */
168 wait_for_completion_timeout(&cpu_running,
169 msecs_to_jiffies(1000));
170
171 if (!cpu_online(cpu)) {
172 pr_crit("CPU%u: failed to come online\n", cpu);
173 ret = -EIO;
174 }
175 } else {
176 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
177 }
178
179
180 memset(&secondary_data, 0, sizeof(secondary_data));
181 return ret;
182}
183
184/* platform specific SMP operations */
185void __init smp_init_cpus(void)
186{
187 if (smp_ops.smp_init_cpus)
188 smp_ops.smp_init_cpus();
189}
190
191int platform_can_secondary_boot(void)
192{
193 return !!smp_ops.smp_boot_secondary;
194}
195
196int platform_can_cpu_hotplug(void)
197{
198#ifdef CONFIG_HOTPLUG_CPU
199 if (smp_ops.cpu_kill)
200 return 1;
201#endif
202
203 return 0;
204}
205
206#ifdef CONFIG_HOTPLUG_CPU
207static int platform_cpu_kill(unsigned int cpu)
208{
209 if (smp_ops.cpu_kill)
210 return smp_ops.cpu_kill(cpu);
211 return 1;
212}
213
214static int platform_cpu_disable(unsigned int cpu)
215{
216 if (smp_ops.cpu_disable)
217 return smp_ops.cpu_disable(cpu);
218
219 return 0;
220}
221
222int platform_can_hotplug_cpu(unsigned int cpu)
223{
224 /* cpu_die must be specified to support hotplug */
225 if (!smp_ops.cpu_die)
226 return 0;
227
228 if (smp_ops.cpu_can_disable)
229 return smp_ops.cpu_can_disable(cpu);
230
231 /*
232 * By default, allow disabling all CPUs except the first one,
233 * since this is special on a lot of platforms, e.g. because
234 * of clock tick interrupts.
235 */
236 return cpu != 0;
237}
238
239static void ipi_teardown(int cpu)
240{
241 int i;
242
243 if (WARN_ON_ONCE(!ipi_irq_base))
244 return;
245
246 for (i = 0; i < nr_ipi; i++)
247 disable_percpu_irq(ipi_irq_base + i);
248}
249
250/*
251 * __cpu_disable runs on the processor to be shutdown.
252 */
253int __cpu_disable(void)
254{
255 unsigned int cpu = smp_processor_id();
256 int ret;
257
258 ret = platform_cpu_disable(cpu);
259 if (ret)
260 return ret;
261
262#ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
263 remove_cpu_topology(cpu);
264#endif
265
266 /*
267 * Take this CPU offline. Once we clear this, we can't return,
268 * and we must not schedule until we're ready to give up the cpu.
269 */
270 set_cpu_online(cpu, false);
271 ipi_teardown(cpu);
272
273 /*
274 * OK - migrate IRQs away from this CPU
275 */
276 irq_migrate_all_off_this_cpu();
277
278 /*
279 * Flush user cache and TLB mappings, and then remove this CPU
280 * from the vm mask set of all processes.
281 *
282 * Caches are flushed to the Level of Unification Inner Shareable
283 * to write-back dirty lines to unified caches shared by all CPUs.
284 */
285 flush_cache_louis();
286 local_flush_tlb_all();
287
288 return 0;
289}
290
291/*
292 * called on the thread which is asking for a CPU to be shutdown -
293 * waits until shutdown has completed, or it is timed out.
294 */
295void __cpu_die(unsigned int cpu)
296{
297 if (!cpu_wait_death(cpu, 5)) {
298 pr_err("CPU%u: cpu didn't die\n", cpu);
299 return;
300 }
301 pr_debug("CPU%u: shutdown\n", cpu);
302
303 clear_tasks_mm_cpumask(cpu);
304 /*
305 * platform_cpu_kill() is generally expected to do the powering off
306 * and/or cutting of clocks to the dying CPU. Optionally, this may
307 * be done by the CPU which is dying in preference to supporting
308 * this call, but that means there is _no_ synchronisation between
309 * the requesting CPU and the dying CPU actually losing power.
310 */
311 if (!platform_cpu_kill(cpu))
312 pr_err("CPU%u: unable to kill\n", cpu);
313}
314
315/*
316 * Called from the idle thread for the CPU which has been shutdown.
317 *
318 * Note that we disable IRQs here, but do not re-enable them
319 * before returning to the caller. This is also the behaviour
320 * of the other hotplug-cpu capable cores, so presumably coming
321 * out of idle fixes this.
322 */
323void arch_cpu_idle_dead(void)
324{
325 unsigned int cpu = smp_processor_id();
326
327 idle_task_exit();
328
329 local_irq_disable();
330
331 /*
332 * Flush the data out of the L1 cache for this CPU. This must be
333 * before the completion to ensure that data is safely written out
334 * before platform_cpu_kill() gets called - which may disable
335 * *this* CPU and power down its cache.
336 */
337 flush_cache_louis();
338
339 /*
340 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
341 * this returns, power and/or clocks can be removed at any point
342 * from this CPU and its cache by platform_cpu_kill().
343 */
344 (void)cpu_report_death();
345
346 /*
347 * Ensure that the cache lines associated with that completion are
348 * written out. This covers the case where _this_ CPU is doing the
349 * powering down, to ensure that the completion is visible to the
350 * CPU waiting for this one.
351 */
352 flush_cache_louis();
353
354 /*
355 * The actual CPU shutdown procedure is at least platform (if not
356 * CPU) specific. This may remove power, or it may simply spin.
357 *
358 * Platforms are generally expected *NOT* to return from this call,
359 * although there are some which do because they have no way to
360 * power down the CPU. These platforms are the _only_ reason we
361 * have a return path which uses the fragment of assembly below.
362 *
363 * The return path should not be used for platforms which can
364 * power off the CPU.
365 */
366 if (smp_ops.cpu_die)
367 smp_ops.cpu_die(cpu);
368
369 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
370 cpu);
371
372 /*
373 * Do not return to the idle loop - jump back to the secondary
374 * cpu initialisation. There's some initialisation which needs
375 * to be repeated to undo the effects of taking the CPU offline.
376 */
377 __asm__("mov sp, %0\n"
378 " mov fp, #0\n"
379 " mov r0, %1\n"
380 " b secondary_start_kernel"
381 :
382 : "r" (task_stack_page(current) + THREAD_SIZE - 8),
383 "r" (current)
384 : "r0");
385}
386#endif /* CONFIG_HOTPLUG_CPU */
387
388/*
389 * Called by both boot and secondaries to move global data into
390 * per-processor storage.
391 */
392static void smp_store_cpu_info(unsigned int cpuid)
393{
394 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
395
396 cpu_info->loops_per_jiffy = loops_per_jiffy;
397 cpu_info->cpuid = read_cpuid_id();
398
399 store_cpu_topology(cpuid);
400 check_cpu_icache_size(cpuid);
401}
402
403static void set_current(struct task_struct *cur)
404{
405 /* Set TPIDRURO */
406 asm("mcr p15, 0, %0, c13, c0, 3" :: "r"(cur) : "memory");
407}
408
409/*
410 * This is the secondary CPU boot entry. We're using this CPUs
411 * idle thread stack, but a set of temporary page tables.
412 */
413asmlinkage void secondary_start_kernel(struct task_struct *task)
414{
415 struct mm_struct *mm = &init_mm;
416 unsigned int cpu;
417
418 set_current(task);
419
420 secondary_biglittle_init();
421
422 /*
423 * The identity mapping is uncached (strongly ordered), so
424 * switch away from it before attempting any exclusive accesses.
425 */
426 cpu_switch_mm(mm->pgd, mm);
427 local_flush_bp_all();
428 enter_lazy_tlb(mm, current);
429 local_flush_tlb_all();
430
431 /*
432 * All kernel threads share the same mm context; grab a
433 * reference and switch to it.
434 */
435 cpu = smp_processor_id();
436 mmgrab(mm);
437 current->active_mm = mm;
438 cpumask_set_cpu(cpu, mm_cpumask(mm));
439
440 cpu_init();
441
442#ifndef CONFIG_MMU
443 setup_vectors_base();
444#endif
445 pr_debug("CPU%u: Booted secondary processor\n", cpu);
446
447 trace_hardirqs_off();
448
449 /*
450 * Give the platform a chance to do its own initialisation.
451 */
452 if (smp_ops.smp_secondary_init)
453 smp_ops.smp_secondary_init(cpu);
454
455 notify_cpu_starting(cpu);
456
457 ipi_setup(cpu);
458
459 calibrate_delay();
460
461 smp_store_cpu_info(cpu);
462
463 /*
464 * OK, now it's safe to let the boot CPU continue. Wait for
465 * the CPU migration code to notice that the CPU is online
466 * before we continue - which happens after __cpu_up returns.
467 */
468 set_cpu_online(cpu, true);
469
470 check_other_bugs();
471
472 complete(&cpu_running);
473
474 local_irq_enable();
475 local_fiq_enable();
476 local_abt_enable();
477
478 /*
479 * OK, it's off to the idle thread for us
480 */
481 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
482}
483
484void __init smp_cpus_done(unsigned int max_cpus)
485{
486 int cpu;
487 unsigned long bogosum = 0;
488
489 for_each_online_cpu(cpu)
490 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
491
492 printk(KERN_INFO "SMP: Total of %d processors activated "
493 "(%lu.%02lu BogoMIPS).\n",
494 num_online_cpus(),
495 bogosum / (500000/HZ),
496 (bogosum / (5000/HZ)) % 100);
497
498 hyp_mode_check();
499}
500
501void __init smp_prepare_boot_cpu(void)
502{
503 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
504}
505
506void __init smp_prepare_cpus(unsigned int max_cpus)
507{
508 unsigned int ncores = num_possible_cpus();
509
510 init_cpu_topology();
511
512 smp_store_cpu_info(smp_processor_id());
513
514 /*
515 * are we trying to boot more cores than exist?
516 */
517 if (max_cpus > ncores)
518 max_cpus = ncores;
519 if (ncores > 1 && max_cpus) {
520 /*
521 * Initialise the present map, which describes the set of CPUs
522 * actually populated at the present time. A platform should
523 * re-initialize the map in the platforms smp_prepare_cpus()
524 * if present != possible (e.g. physical hotplug).
525 */
526 init_cpu_present(cpu_possible_mask);
527
528 /*
529 * Initialise the SCU if there are more than one CPU
530 * and let them know where to start.
531 */
532 if (smp_ops.smp_prepare_cpus)
533 smp_ops.smp_prepare_cpus(max_cpus);
534 }
535}
536
537static const char *ipi_types[NR_IPI] __tracepoint_string = {
538 [IPI_WAKEUP] = "CPU wakeup interrupts",
539 [IPI_TIMER] = "Timer broadcast interrupts",
540 [IPI_RESCHEDULE] = "Rescheduling interrupts",
541 [IPI_CALL_FUNC] = "Function call interrupts",
542 [IPI_CPU_STOP] = "CPU stop interrupts",
543 [IPI_IRQ_WORK] = "IRQ work interrupts",
544 [IPI_COMPLETION] = "completion interrupts",
545};
546
547static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
548
549void show_ipi_list(struct seq_file *p, int prec)
550{
551 unsigned int cpu, i;
552
553 for (i = 0; i < NR_IPI; i++) {
554 if (!ipi_desc[i])
555 continue;
556
557 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
558
559 for_each_online_cpu(cpu)
560 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
561
562 seq_printf(p, " %s\n", ipi_types[i]);
563 }
564}
565
566void arch_send_call_function_ipi_mask(const struct cpumask *mask)
567{
568 smp_cross_call(mask, IPI_CALL_FUNC);
569}
570
571void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
572{
573 smp_cross_call(mask, IPI_WAKEUP);
574}
575
576void arch_send_call_function_single_ipi(int cpu)
577{
578 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
579}
580
581#ifdef CONFIG_IRQ_WORK
582void arch_irq_work_raise(void)
583{
584 if (arch_irq_work_has_interrupt())
585 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
586}
587#endif
588
589#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
590void tick_broadcast(const struct cpumask *mask)
591{
592 smp_cross_call(mask, IPI_TIMER);
593}
594#endif
595
596static DEFINE_RAW_SPINLOCK(stop_lock);
597
598/*
599 * ipi_cpu_stop - handle IPI from smp_send_stop()
600 */
601static void ipi_cpu_stop(unsigned int cpu)
602{
603 local_fiq_disable();
604
605 if (system_state <= SYSTEM_RUNNING) {
606 raw_spin_lock(&stop_lock);
607 pr_crit("CPU%u: stopping\n", cpu);
608 dump_stack();
609 raw_spin_unlock(&stop_lock);
610 }
611
612 set_cpu_online(cpu, false);
613
614 while (1) {
615 cpu_relax();
616 wfe();
617 }
618}
619
620static DEFINE_PER_CPU(struct completion *, cpu_completion);
621
622int register_ipi_completion(struct completion *completion, int cpu)
623{
624 per_cpu(cpu_completion, cpu) = completion;
625 return IPI_COMPLETION;
626}
627
628static void ipi_complete(unsigned int cpu)
629{
630 complete(per_cpu(cpu_completion, cpu));
631}
632
633/*
634 * Main handler for inter-processor interrupts
635 */
636static void do_handle_IPI(int ipinr)
637{
638 unsigned int cpu = smp_processor_id();
639
640 if ((unsigned)ipinr < NR_IPI)
641 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
642
643 switch (ipinr) {
644 case IPI_WAKEUP:
645 break;
646
647#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
648 case IPI_TIMER:
649 tick_receive_broadcast();
650 break;
651#endif
652
653 case IPI_RESCHEDULE:
654 scheduler_ipi();
655 break;
656
657 case IPI_CALL_FUNC:
658 generic_smp_call_function_interrupt();
659 break;
660
661 case IPI_CPU_STOP:
662 ipi_cpu_stop(cpu);
663 break;
664
665#ifdef CONFIG_IRQ_WORK
666 case IPI_IRQ_WORK:
667 irq_work_run();
668 break;
669#endif
670
671 case IPI_COMPLETION:
672 ipi_complete(cpu);
673 break;
674
675 case IPI_CPU_BACKTRACE:
676 printk_deferred_enter();
677 nmi_cpu_backtrace(get_irq_regs());
678 printk_deferred_exit();
679 break;
680
681 default:
682 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
683 cpu, ipinr);
684 break;
685 }
686
687 if ((unsigned)ipinr < NR_IPI)
688 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
689}
690
691/* Legacy version, should go away once all irqchips have been converted */
692void handle_IPI(int ipinr, struct pt_regs *regs)
693{
694 struct pt_regs *old_regs = set_irq_regs(regs);
695
696 irq_enter();
697 do_handle_IPI(ipinr);
698 irq_exit();
699
700 set_irq_regs(old_regs);
701}
702
703static irqreturn_t ipi_handler(int irq, void *data)
704{
705 do_handle_IPI(irq - ipi_irq_base);
706 return IRQ_HANDLED;
707}
708
709static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
710{
711 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
712 __ipi_send_mask(ipi_desc[ipinr], target);
713}
714
715static void ipi_setup(int cpu)
716{
717 int i;
718
719 if (WARN_ON_ONCE(!ipi_irq_base))
720 return;
721
722 for (i = 0; i < nr_ipi; i++)
723 enable_percpu_irq(ipi_irq_base + i, 0);
724}
725
726void __init set_smp_ipi_range(int ipi_base, int n)
727{
728 int i;
729
730 WARN_ON(n < MAX_IPI);
731 nr_ipi = min(n, MAX_IPI);
732
733 for (i = 0; i < nr_ipi; i++) {
734 int err;
735
736 err = request_percpu_irq(ipi_base + i, ipi_handler,
737 "IPI", &irq_stat);
738 WARN_ON(err);
739
740 ipi_desc[i] = irq_to_desc(ipi_base + i);
741 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
742 }
743
744 ipi_irq_base = ipi_base;
745
746 /* Setup the boot CPU immediately */
747 ipi_setup(smp_processor_id());
748}
749
750void smp_send_reschedule(int cpu)
751{
752 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
753}
754
755void smp_send_stop(void)
756{
757 unsigned long timeout;
758 struct cpumask mask;
759
760 cpumask_copy(&mask, cpu_online_mask);
761 cpumask_clear_cpu(smp_processor_id(), &mask);
762 if (!cpumask_empty(&mask))
763 smp_cross_call(&mask, IPI_CPU_STOP);
764
765 /* Wait up to one second for other CPUs to stop */
766 timeout = USEC_PER_SEC;
767 while (num_online_cpus() > 1 && timeout--)
768 udelay(1);
769
770 if (num_online_cpus() > 1)
771 pr_warn("SMP: failed to stop secondary CPUs\n");
772}
773
774/* In case panic() and panic() called at the same time on CPU1 and CPU2,
775 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
776 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
777 * kdump fails. So split out the panic_smp_self_stop() and add
778 * set_cpu_online(smp_processor_id(), false).
779 */
780void panic_smp_self_stop(void)
781{
782 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
783 smp_processor_id());
784 set_cpu_online(smp_processor_id(), false);
785 while (1)
786 cpu_relax();
787}
788
789#ifdef CONFIG_CPU_FREQ
790
791static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
792static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
793static unsigned long global_l_p_j_ref;
794static unsigned long global_l_p_j_ref_freq;
795
796static int cpufreq_callback(struct notifier_block *nb,
797 unsigned long val, void *data)
798{
799 struct cpufreq_freqs *freq = data;
800 struct cpumask *cpus = freq->policy->cpus;
801 int cpu, first = cpumask_first(cpus);
802 unsigned int lpj;
803
804 if (freq->flags & CPUFREQ_CONST_LOOPS)
805 return NOTIFY_OK;
806
807 if (!per_cpu(l_p_j_ref, first)) {
808 for_each_cpu(cpu, cpus) {
809 per_cpu(l_p_j_ref, cpu) =
810 per_cpu(cpu_data, cpu).loops_per_jiffy;
811 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
812 }
813
814 if (!global_l_p_j_ref) {
815 global_l_p_j_ref = loops_per_jiffy;
816 global_l_p_j_ref_freq = freq->old;
817 }
818 }
819
820 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
821 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
822 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
823 global_l_p_j_ref_freq,
824 freq->new);
825
826 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
827 per_cpu(l_p_j_ref_freq, first), freq->new);
828 for_each_cpu(cpu, cpus)
829 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
830 }
831 return NOTIFY_OK;
832}
833
834static struct notifier_block cpufreq_notifier = {
835 .notifier_call = cpufreq_callback,
836};
837
838static int __init register_cpufreq_notifier(void)
839{
840 return cpufreq_register_notifier(&cpufreq_notifier,
841 CPUFREQ_TRANSITION_NOTIFIER);
842}
843core_initcall(register_cpufreq_notifier);
844
845#endif
846
847static void raise_nmi(cpumask_t *mask)
848{
849 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
850}
851
852void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
853{
854 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
855}