Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 
 
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/ftrace.h>
 20#include <linux/mm.h>
 21#include <linux/err.h>
 22#include <linux/cpu.h>
 23#include <linux/smp.h>
 24#include <linux/seq_file.h>
 25#include <linux/irq.h>
 
 26#include <linux/percpu.h>
 27#include <linux/clockchips.h>
 28#include <linux/completion.h>
 
 
 
 29
 30#include <linux/atomic.h>
 
 
 31#include <asm/cacheflush.h>
 32#include <asm/cpu.h>
 33#include <asm/cputype.h>
 
 
 
 34#include <asm/mmu_context.h>
 35#include <asm/pgtable.h>
 36#include <asm/pgalloc.h>
 37#include <asm/processor.h>
 38#include <asm/sections.h>
 39#include <asm/tlbflush.h>
 40#include <asm/ptrace.h>
 41#include <asm/localtimer.h>
 
 
 
 
 
 
 42
 43/*
 44 * as from 2.5, kernels no longer have an init_tasks structure
 45 * so we need some other way of telling a new secondary core
 46 * where to place its SVC stack
 47 */
 48struct secondary_data secondary_data;
 49
 50enum ipi_msg_type {
 51	IPI_TIMER = 2,
 
 52	IPI_RESCHEDULE,
 53	IPI_CALL_FUNC,
 54	IPI_CALL_FUNC_SINGLE,
 55	IPI_CPU_STOP,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56};
 57
 58int __cpuinit __cpu_up(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 59{
 60	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
 61	struct task_struct *idle = ci->idle;
 62	pgd_t *pgd;
 63	int ret;
 64
 65	/*
 66	 * Spawn a new process manually, if not already done.
 67	 * Grab a pointer to its task struct so we can mess with it
 68	 */
 69	if (!idle) {
 70		idle = fork_idle(cpu);
 71		if (IS_ERR(idle)) {
 72			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
 73			return PTR_ERR(idle);
 74		}
 75		ci->idle = idle;
 76	} else {
 77		/*
 78		 * Since this idle thread is being re-used, call
 79		 * init_idle() to reinitialize the thread structure.
 80		 */
 81		init_idle(idle, cpu);
 82	}
 83
 84	/*
 85	 * Allocate initial page tables to allow the new CPU to
 86	 * enable the MMU safely.  This essentially means a set
 87	 * of our "standard" page tables, with the addition of
 88	 * a 1:1 mapping for the physical address of the kernel.
 89	 */
 90	pgd = pgd_alloc(&init_mm);
 91	if (!pgd)
 92		return -ENOMEM;
 93
 94	if (PHYS_OFFSET != PAGE_OFFSET) {
 95#ifndef CONFIG_HOTPLUG_CPU
 96		identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
 
 
 
 
 
 
 
 
 
 97#endif
 98		identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
 99		identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
100	}
 
 
 
 
 
 
 
 
101
102	/*
103	 * We need to tell the secondary core where to find
104	 * its stack and the page tables.
105	 */
106	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107	secondary_data.pgdir = virt_to_phys(pgd);
108	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
109	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
110	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
 
 
 
 
 
 
111
112	/*
113	 * Now bring the CPU into our world.
114	 */
115	ret = boot_secondary(cpu, idle);
116	if (ret == 0) {
117		unsigned long timeout;
118
119		/*
120		 * CPU was successfully started, wait for it
121		 * to come online or time out.
122		 */
123		timeout = jiffies + HZ;
124		while (time_before(jiffies, timeout)) {
125			if (cpu_online(cpu))
126				break;
127
128			udelay(10);
129			barrier();
130		}
131
132		if (!cpu_online(cpu)) {
133			pr_crit("CPU%u: failed to come online\n", cpu);
134			ret = -EIO;
135		}
136	} else {
137		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138	}
139
140	secondary_data.stack = NULL;
141	secondary_data.pgdir = 0;
142
143	if (PHYS_OFFSET != PAGE_OFFSET) {
144#ifndef CONFIG_HOTPLUG_CPU
145		identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
146#endif
147		identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
148		identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
149	}
150
151	pgd_free(&init_mm, pgd);
 
 
 
 
 
152
153	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
154}
155
156#ifdef CONFIG_HOTPLUG_CPU
157static void percpu_timer_stop(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
159/*
160 * __cpu_disable runs on the processor to be shutdown.
161 */
162int __cpu_disable(void)
163{
164	unsigned int cpu = smp_processor_id();
165	struct task_struct *p;
166	int ret;
167
168	ret = platform_cpu_disable(cpu);
169	if (ret)
170		return ret;
171
 
 
 
 
172	/*
173	 * Take this CPU offline.  Once we clear this, we can't return,
174	 * and we must not schedule until we're ready to give up the cpu.
175	 */
176	set_cpu_online(cpu, false);
 
177
178	/*
179	 * OK - migrate IRQs away from this CPU
180	 */
181	migrate_irqs();
182
183	/*
184	 * Stop the local timer for this CPU.
185	 */
186	percpu_timer_stop();
187
188	/*
189	 * Flush user cache and TLB mappings, and then remove this CPU
190	 * from the vm mask set of all processes.
 
 
 
191	 */
192	flush_cache_all();
193	local_flush_tlb_all();
194
195	read_lock(&tasklist_lock);
196	for_each_process(p) {
197		if (p->mm)
198			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
199	}
200	read_unlock(&tasklist_lock);
201
202	return 0;
203}
204
205static DECLARE_COMPLETION(cpu_died);
206
207/*
208 * called on the thread which is asking for a CPU to be shutdown -
209 * waits until shutdown has completed, or it is timed out.
210 */
211void __cpu_die(unsigned int cpu)
212{
213	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
214		pr_err("CPU%u: cpu didn't die\n", cpu);
215		return;
216	}
217	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
218
 
 
 
 
 
 
 
 
219	if (!platform_cpu_kill(cpu))
220		printk("CPU%u: unable to kill\n", cpu);
221}
222
223/*
224 * Called from the idle thread for the CPU which has been shutdown.
225 *
226 * Note that we disable IRQs here, but do not re-enable them
227 * before returning to the caller. This is also the behaviour
228 * of the other hotplug-cpu capable cores, so presumably coming
229 * out of idle fixes this.
230 */
231void __ref cpu_die(void)
232{
233	unsigned int cpu = smp_processor_id();
234
235	idle_task_exit();
236
237	local_irq_disable();
238	mb();
239
240	/* Tell __cpu_die() that this CPU is now safe to dispose of */
241	complete(&cpu_died);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
243	/*
244	 * actual CPU shutdown procedure is at least platform (if not
245	 * CPU) specific.
 
 
 
 
 
 
 
 
246	 */
247	platform_cpu_die(cpu);
 
 
 
 
248
249	/*
250	 * Do not return to the idle loop - jump back to the secondary
251	 * cpu initialisation.  There's some initialisation which needs
252	 * to be repeated to undo the effects of taking the CPU offline.
253	 */
254	__asm__("mov	sp, %0\n"
255	"	mov	fp, #0\n"
 
256	"	b	secondary_start_kernel"
257		:
258		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
 
 
259}
260#endif /* CONFIG_HOTPLUG_CPU */
261
262/*
263 * Called by both boot and secondaries to move global data into
264 * per-processor storage.
265 */
266static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
267{
268	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
269
270	cpu_info->loops_per_jiffy = loops_per_jiffy;
 
 
 
 
 
 
 
 
 
 
271}
272
273/*
274 * This is the secondary CPU boot entry.  We're using this CPUs
275 * idle thread stack, but a set of temporary page tables.
276 */
277asmlinkage void __cpuinit secondary_start_kernel(void)
278{
279	struct mm_struct *mm = &init_mm;
280	unsigned int cpu = smp_processor_id();
 
 
281
282	printk("CPU%u: Booted secondary processor\n", cpu);
 
 
 
 
 
 
 
 
 
283
284	/*
285	 * All kernel threads share the same mm context; grab a
286	 * reference and switch to it.
287	 */
288	atomic_inc(&mm->mm_count);
 
289	current->active_mm = mm;
290	cpumask_set_cpu(cpu, mm_cpumask(mm));
291	cpu_switch_mm(mm->pgd, mm);
292	enter_lazy_tlb(mm, current);
293	local_flush_tlb_all();
294
295	cpu_init();
296	preempt_disable();
 
 
 
 
 
297	trace_hardirqs_off();
298
299	/*
300	 * Give the platform a chance to do its own initialisation.
301	 */
302	platform_secondary_init(cpu);
 
303
304	/*
305	 * Enable local interrupts.
306	 */
307	notify_cpu_starting(cpu);
308	local_irq_enable();
309	local_fiq_enable();
310
311	/*
312	 * Setup the percpu timer for this CPU.
313	 */
314	percpu_timer_setup();
315
316	calibrate_delay();
317
318	smp_store_cpu_info(cpu);
319
320	/*
321	 * OK, now it's safe to let the boot CPU continue.  Wait for
322	 * the CPU migration code to notice that the CPU is online
323	 * before we continue.
324	 */
325	set_cpu_online(cpu, true);
326	while (!cpu_active(cpu))
327		cpu_relax();
 
 
 
 
 
 
328
329	/*
330	 * OK, it's off to the idle thread for us
331	 */
332	cpu_idle();
333}
334
335void __init smp_cpus_done(unsigned int max_cpus)
336{
337	int cpu;
338	unsigned long bogosum = 0;
339
340	for_each_online_cpu(cpu)
341		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
342
343	printk(KERN_INFO "SMP: Total of %d processors activated "
344	       "(%lu.%02lu BogoMIPS).\n",
345	       num_online_cpus(),
346	       bogosum / (500000/HZ),
347	       (bogosum / (5000/HZ)) % 100);
 
 
348}
349
350void __init smp_prepare_boot_cpu(void)
351{
352	unsigned int cpu = smp_processor_id();
353
354	per_cpu(cpu_data, cpu).idle = current;
355}
356
357void __init smp_prepare_cpus(unsigned int max_cpus)
358{
359	unsigned int ncores = num_possible_cpus();
360
 
 
361	smp_store_cpu_info(smp_processor_id());
362
363	/*
364	 * are we trying to boot more cores than exist?
365	 */
366	if (max_cpus > ncores)
367		max_cpus = ncores;
368	if (ncores > 1 && max_cpus) {
369		/*
370		 * Enable the local timer or broadcast device for the
371		 * boot CPU, but only if we have more than one CPU.
372		 */
373		percpu_timer_setup();
374
375		/*
376		 * Initialise the present map, which describes the set of CPUs
377		 * actually populated at the present time. A platform should
378		 * re-initialize the map in platform_smp_prepare_cpus() if
379		 * present != possible (e.g. physical hotplug).
380		 */
381		init_cpu_present(&cpu_possible_map);
382
383		/*
384		 * Initialise the SCU if there are more than one CPU
385		 * and let them know where to start.
386		 */
387		platform_smp_prepare_cpus(max_cpus);
 
388	}
389}
390
391static void (*smp_cross_call)(const struct cpumask *, unsigned int);
392
393void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
394{
395	smp_cross_call = fn;
396}
397
398void arch_send_call_function_ipi_mask(const struct cpumask *mask)
399{
400	smp_cross_call(mask, IPI_CALL_FUNC);
401}
402
403void arch_send_call_function_single_ipi(int cpu)
404{
405	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
406}
407
408static const char *ipi_types[NR_IPI] = {
409#define S(x,s)	[x - IPI_TIMER] = s
410	S(IPI_TIMER, "Timer broadcast interrupts"),
411	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
412	S(IPI_CALL_FUNC, "Function call interrupts"),
413	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
414	S(IPI_CPU_STOP, "CPU stop interrupts"),
415};
416
 
 
417void show_ipi_list(struct seq_file *p, int prec)
418{
419	unsigned int cpu, i;
420
421	for (i = 0; i < NR_IPI; i++) {
 
 
 
422		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
423
424		for_each_present_cpu(cpu)
425			seq_printf(p, "%10u ",
426				   __get_irq_stat(cpu, ipi_irqs[i]));
427
428		seq_printf(p, " %s\n", ipi_types[i]);
429	}
430}
431
432u64 smp_irq_stat_cpu(unsigned int cpu)
433{
434	u64 sum = 0;
435	int i;
436
437	for (i = 0; i < NR_IPI; i++)
438		sum += __get_irq_stat(cpu, ipi_irqs[i]);
439
440#ifdef CONFIG_LOCAL_TIMERS
441	sum += __get_irq_stat(cpu, local_timer_irqs);
442#endif
443
444	return sum;
445}
446
447/*
448 * Timer (local or broadcast) support
449 */
450static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
451
452static void ipi_timer(void)
453{
454	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
455	irq_enter();
456	evt->event_handler(evt);
457	irq_exit();
458}
459
460#ifdef CONFIG_LOCAL_TIMERS
461asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
462{
463	struct pt_regs *old_regs = set_irq_regs(regs);
464	int cpu = smp_processor_id();
465
466	if (local_timer_ack()) {
467		__inc_irq_stat(cpu, local_timer_irqs);
468		ipi_timer();
469	}
470
471	set_irq_regs(old_regs);
472}
473
474void show_local_irqs(struct seq_file *p, int prec)
 
475{
476	unsigned int cpu;
477
478	seq_printf(p, "%*s: ", prec, "LOC");
479
480	for_each_present_cpu(cpu)
481		seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
482
483	seq_printf(p, " Local timer interrupts\n");
484}
485#endif
486
487#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
488static void smp_timer_broadcast(const struct cpumask *mask)
489{
490	smp_cross_call(mask, IPI_TIMER);
491}
492#else
493#define smp_timer_broadcast	NULL
494#endif
495
496static void broadcast_timer_set_mode(enum clock_event_mode mode,
497	struct clock_event_device *evt)
498{
499}
500
501static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
502{
503	evt->name	= "dummy_timer";
504	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
505			  CLOCK_EVT_FEAT_PERIODIC |
506			  CLOCK_EVT_FEAT_DUMMY;
507	evt->rating	= 400;
508	evt->mult	= 1;
509	evt->set_mode	= broadcast_timer_set_mode;
510
511	clockevents_register_device(evt);
512}
513
514void __cpuinit percpu_timer_setup(void)
515{
516	unsigned int cpu = smp_processor_id();
517	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
518
519	evt->cpumask = cpumask_of(cpu);
520	evt->broadcast = smp_timer_broadcast;
521
522	if (local_timer_setup(evt))
523		broadcast_timer_setup(evt);
524}
525
526#ifdef CONFIG_HOTPLUG_CPU
527/*
528 * The generic clock events code purposely does not stop the local timer
529 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
530 * manually here.
531 */
532static void percpu_timer_stop(void)
533{
534	unsigned int cpu = smp_processor_id();
535	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
536
537	evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
538}
539#endif
540
541static DEFINE_SPINLOCK(stop_lock);
542
543/*
544 * ipi_cpu_stop - handle IPI from smp_send_stop()
545 */
546static void ipi_cpu_stop(unsigned int cpu)
547{
548	if (system_state == SYSTEM_BOOTING ||
549	    system_state == SYSTEM_RUNNING) {
550		spin_lock(&stop_lock);
551		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
 
552		dump_stack();
553		spin_unlock(&stop_lock);
554	}
555
556	set_cpu_online(cpu, false);
557
558	local_fiq_disable();
559	local_irq_disable();
560
561	while (1)
562		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
563}
564
565/*
566 * Main handler for inter-processor interrupts
567 */
568asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
569{
570	unsigned int cpu = smp_processor_id();
571	struct pt_regs *old_regs = set_irq_regs(regs);
572
573	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
574		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
575
576	switch (ipinr) {
 
 
 
 
577	case IPI_TIMER:
578		ipi_timer();
579		break;
 
580
581	case IPI_RESCHEDULE:
582		scheduler_ipi();
583		break;
584
585	case IPI_CALL_FUNC:
586		generic_smp_call_function_interrupt();
587		break;
588
589	case IPI_CALL_FUNC_SINGLE:
590		generic_smp_call_function_single_interrupt();
591		break;
592
593	case IPI_CPU_STOP:
594		ipi_cpu_stop(cpu);
595		break;
596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597	default:
598		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
599		       cpu, ipinr);
600		break;
601	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602	set_irq_regs(old_regs);
603}
604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
605void smp_send_reschedule(int cpu)
606{
607	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
608}
609
610void smp_send_stop(void)
611{
612	unsigned long timeout;
 
613
614	if (num_online_cpus() > 1) {
615		cpumask_t mask = cpu_online_map;
616		cpu_clear(smp_processor_id(), mask);
617
618		smp_cross_call(&mask, IPI_CPU_STOP);
619	}
620
621	/* Wait up to one second for other CPUs to stop */
622	timeout = USEC_PER_SEC;
623	while (num_online_cpus() > 1 && timeout--)
624		udelay(1);
625
626	if (num_online_cpus() > 1)
627		pr_warning("SMP: failed to stop secondary CPUs\n");
628}
629
630/*
631 * not supported here
 
 
 
632 */
633int setup_profiling_timer(unsigned int multiplier)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634{
635	return -EINVAL;
636}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/kernel/smp.c
  4 *
  5 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
 
 
 
 
  6 */
  7#include <linux/module.h>
  8#include <linux/delay.h>
  9#include <linux/init.h>
 10#include <linux/spinlock.h>
 11#include <linux/sched/mm.h>
 12#include <linux/sched/hotplug.h>
 13#include <linux/sched/task_stack.h>
 14#include <linux/interrupt.h>
 15#include <linux/cache.h>
 16#include <linux/profile.h>
 17#include <linux/errno.h>
 
 18#include <linux/mm.h>
 19#include <linux/err.h>
 20#include <linux/cpu.h>
 
 21#include <linux/seq_file.h>
 22#include <linux/irq.h>
 23#include <linux/nmi.h>
 24#include <linux/percpu.h>
 25#include <linux/clockchips.h>
 26#include <linux/completion.h>
 27#include <linux/cpufreq.h>
 28#include <linux/irq_work.h>
 29#include <linux/kernel_stat.h>
 30
 31#include <linux/atomic.h>
 32#include <asm/bugs.h>
 33#include <asm/smp.h>
 34#include <asm/cacheflush.h>
 35#include <asm/cpu.h>
 36#include <asm/cputype.h>
 37#include <asm/exception.h>
 38#include <asm/idmap.h>
 39#include <asm/topology.h>
 40#include <asm/mmu_context.h>
 41#include <asm/procinfo.h>
 
 42#include <asm/processor.h>
 43#include <asm/sections.h>
 44#include <asm/tlbflush.h>
 45#include <asm/ptrace.h>
 46#include <asm/smp_plat.h>
 47#include <asm/virt.h>
 48#include <asm/mach/arch.h>
 49#include <asm/mpu.h>
 50
 51#define CREATE_TRACE_POINTS
 52#include <trace/events/ipi.h>
 53
 54/*
 55 * as from 2.5, kernels no longer have an init_tasks structure
 56 * so we need some other way of telling a new secondary core
 57 * where to place its SVC stack
 58 */
 59struct secondary_data secondary_data;
 60
 61enum ipi_msg_type {
 62	IPI_WAKEUP,
 63	IPI_TIMER,
 64	IPI_RESCHEDULE,
 65	IPI_CALL_FUNC,
 
 66	IPI_CPU_STOP,
 67	IPI_IRQ_WORK,
 68	IPI_COMPLETION,
 69	NR_IPI,
 70	/*
 71	 * CPU_BACKTRACE is special and not included in NR_IPI
 72	 * or tracable with trace_ipi_*
 73	 */
 74	IPI_CPU_BACKTRACE = NR_IPI,
 75	/*
 76	 * SGI8-15 can be reserved by secure firmware, and thus may
 77	 * not be usable by the kernel. Please keep the above limited
 78	 * to at most 8 entries.
 79	 */
 80	MAX_IPI
 81};
 82
 83static int ipi_irq_base __read_mostly;
 84static int nr_ipi __read_mostly = NR_IPI;
 85static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
 86
 87static void ipi_setup(int cpu);
 88
 89static DECLARE_COMPLETION(cpu_running);
 90
 91static struct smp_operations smp_ops __ro_after_init;
 92
 93void __init smp_set_ops(const struct smp_operations *ops)
 94{
 95	if (ops)
 96		smp_ops = *ops;
 97};
 
 98
 99static unsigned long get_arch_pgd(pgd_t *pgd)
100{
101#ifdef CONFIG_ARM_LPAE
102	return __phys_to_pfn(virt_to_phys(pgd));
103#else
104	return virt_to_phys(pgd);
105#endif
106}
 
 
 
 
 
 
 
 
 
 
107
108#if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
109static int secondary_biglittle_prepare(unsigned int cpu)
110{
111	if (!cpu_vtable[cpu])
112		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
113
114	return cpu_vtable[cpu] ? 0 : -ENOMEM;
115}
116
117static void secondary_biglittle_init(void)
118{
119	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
120}
121#else
122static int secondary_biglittle_prepare(unsigned int cpu)
123{
124	return 0;
125}
126
127static void secondary_biglittle_init(void)
128{
129}
130#endif
131
132int __cpu_up(unsigned int cpu, struct task_struct *idle)
133{
134	int ret;
135
136	if (!smp_ops.smp_boot_secondary)
137		return -ENOSYS;
138
139	ret = secondary_biglittle_prepare(cpu);
140	if (ret)
141		return ret;
142
143	/*
144	 * We need to tell the secondary core where to find
145	 * its stack and the page tables.
146	 */
147	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
148#ifdef CONFIG_ARM_MPU
149	secondary_data.mpu_rgn_info = &mpu_rgn_info;
150#endif
151
152#ifdef CONFIG_MMU
153	secondary_data.pgdir = virt_to_phys(idmap_pgd);
154	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
155#endif
156	secondary_data.task = idle;
157	sync_cache_w(&secondary_data);
158
159	/*
160	 * Now bring the CPU into our world.
161	 */
162	ret = smp_ops.smp_boot_secondary(cpu, idle);
163	if (ret == 0) {
 
 
164		/*
165		 * CPU was successfully started, wait for it
166		 * to come online or time out.
167		 */
168		wait_for_completion_timeout(&cpu_running,
169						 msecs_to_jiffies(1000));
 
 
 
 
 
 
170
171		if (!cpu_online(cpu)) {
172			pr_crit("CPU%u: failed to come online\n", cpu);
173			ret = -EIO;
174		}
175	} else {
176		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
177	}
178
 
 
179
180	memset(&secondary_data, 0, sizeof(secondary_data));
181	return ret;
182}
 
 
 
 
183
184/* platform specific SMP operations */
185void __init smp_init_cpus(void)
186{
187	if (smp_ops.smp_init_cpus)
188		smp_ops.smp_init_cpus();
189}
190
191int platform_can_secondary_boot(void)
192{
193	return !!smp_ops.smp_boot_secondary;
194}
195
196int platform_can_cpu_hotplug(void)
197{
198#ifdef CONFIG_HOTPLUG_CPU
199	if (smp_ops.cpu_kill)
200		return 1;
201#endif
202
203	return 0;
204}
205
206#ifdef CONFIG_HOTPLUG_CPU
207static int platform_cpu_kill(unsigned int cpu)
208{
209	if (smp_ops.cpu_kill)
210		return smp_ops.cpu_kill(cpu);
211	return 1;
212}
213
214static int platform_cpu_disable(unsigned int cpu)
215{
216	if (smp_ops.cpu_disable)
217		return smp_ops.cpu_disable(cpu);
218
219	return 0;
220}
221
222int platform_can_hotplug_cpu(unsigned int cpu)
223{
224	/* cpu_die must be specified to support hotplug */
225	if (!smp_ops.cpu_die)
226		return 0;
227
228	if (smp_ops.cpu_can_disable)
229		return smp_ops.cpu_can_disable(cpu);
230
231	/*
232	 * By default, allow disabling all CPUs except the first one,
233	 * since this is special on a lot of platforms, e.g. because
234	 * of clock tick interrupts.
235	 */
236	return cpu != 0;
237}
238
239static void ipi_teardown(int cpu)
240{
241	int i;
242
243	if (WARN_ON_ONCE(!ipi_irq_base))
244		return;
245
246	for (i = 0; i < nr_ipi; i++)
247		disable_percpu_irq(ipi_irq_base + i);
248}
249
250/*
251 * __cpu_disable runs on the processor to be shutdown.
252 */
253int __cpu_disable(void)
254{
255	unsigned int cpu = smp_processor_id();
 
256	int ret;
257
258	ret = platform_cpu_disable(cpu);
259	if (ret)
260		return ret;
261
262#ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
263	remove_cpu_topology(cpu);
264#endif
265
266	/*
267	 * Take this CPU offline.  Once we clear this, we can't return,
268	 * and we must not schedule until we're ready to give up the cpu.
269	 */
270	set_cpu_online(cpu, false);
271	ipi_teardown(cpu);
272
273	/*
274	 * OK - migrate IRQs away from this CPU
275	 */
276	irq_migrate_all_off_this_cpu();
 
 
 
 
 
277
278	/*
279	 * Flush user cache and TLB mappings, and then remove this CPU
280	 * from the vm mask set of all processes.
281	 *
282	 * Caches are flushed to the Level of Unification Inner Shareable
283	 * to write-back dirty lines to unified caches shared by all CPUs.
284	 */
285	flush_cache_louis();
286	local_flush_tlb_all();
287
 
 
 
 
 
 
 
288	return 0;
289}
290
 
 
291/*
292 * called on the thread which is asking for a CPU to be shutdown -
293 * waits until shutdown has completed, or it is timed out.
294 */
295void __cpu_die(unsigned int cpu)
296{
297	if (!cpu_wait_death(cpu, 5)) {
298		pr_err("CPU%u: cpu didn't die\n", cpu);
299		return;
300	}
301	pr_debug("CPU%u: shutdown\n", cpu);
302
303	clear_tasks_mm_cpumask(cpu);
304	/*
305	 * platform_cpu_kill() is generally expected to do the powering off
306	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
307	 * be done by the CPU which is dying in preference to supporting
308	 * this call, but that means there is _no_ synchronisation between
309	 * the requesting CPU and the dying CPU actually losing power.
310	 */
311	if (!platform_cpu_kill(cpu))
312		pr_err("CPU%u: unable to kill\n", cpu);
313}
314
315/*
316 * Called from the idle thread for the CPU which has been shutdown.
317 *
318 * Note that we disable IRQs here, but do not re-enable them
319 * before returning to the caller. This is also the behaviour
320 * of the other hotplug-cpu capable cores, so presumably coming
321 * out of idle fixes this.
322 */
323void arch_cpu_idle_dead(void)
324{
325	unsigned int cpu = smp_processor_id();
326
327	idle_task_exit();
328
329	local_irq_disable();
 
330
331	/*
332	 * Flush the data out of the L1 cache for this CPU.  This must be
333	 * before the completion to ensure that data is safely written out
334	 * before platform_cpu_kill() gets called - which may disable
335	 * *this* CPU and power down its cache.
336	 */
337	flush_cache_louis();
338
339	/*
340	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
341	 * this returns, power and/or clocks can be removed at any point
342	 * from this CPU and its cache by platform_cpu_kill().
343	 */
344	(void)cpu_report_death();
345
346	/*
347	 * Ensure that the cache lines associated with that completion are
348	 * written out.  This covers the case where _this_ CPU is doing the
349	 * powering down, to ensure that the completion is visible to the
350	 * CPU waiting for this one.
351	 */
352	flush_cache_louis();
353
354	/*
355	 * The actual CPU shutdown procedure is at least platform (if not
356	 * CPU) specific.  This may remove power, or it may simply spin.
357	 *
358	 * Platforms are generally expected *NOT* to return from this call,
359	 * although there are some which do because they have no way to
360	 * power down the CPU.  These platforms are the _only_ reason we
361	 * have a return path which uses the fragment of assembly below.
362	 *
363	 * The return path should not be used for platforms which can
364	 * power off the CPU.
365	 */
366	if (smp_ops.cpu_die)
367		smp_ops.cpu_die(cpu);
368
369	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
370		cpu);
371
372	/*
373	 * Do not return to the idle loop - jump back to the secondary
374	 * cpu initialisation.  There's some initialisation which needs
375	 * to be repeated to undo the effects of taking the CPU offline.
376	 */
377	__asm__("mov	sp, %0\n"
378	"	mov	fp, #0\n"
379	"	mov	r0, %1\n"
380	"	b	secondary_start_kernel"
381		:
382		: "r" (task_stack_page(current) + THREAD_SIZE - 8),
383		  "r" (current)
384		: "r0");
385}
386#endif /* CONFIG_HOTPLUG_CPU */
387
388/*
389 * Called by both boot and secondaries to move global data into
390 * per-processor storage.
391 */
392static void smp_store_cpu_info(unsigned int cpuid)
393{
394	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
395
396	cpu_info->loops_per_jiffy = loops_per_jiffy;
397	cpu_info->cpuid = read_cpuid_id();
398
399	store_cpu_topology(cpuid);
400	check_cpu_icache_size(cpuid);
401}
402
403static void set_current(struct task_struct *cur)
404{
405	/* Set TPIDRURO */
406	asm("mcr p15, 0, %0, c13, c0, 3" :: "r"(cur) : "memory");
407}
408
409/*
410 * This is the secondary CPU boot entry.  We're using this CPUs
411 * idle thread stack, but a set of temporary page tables.
412 */
413asmlinkage void secondary_start_kernel(struct task_struct *task)
414{
415	struct mm_struct *mm = &init_mm;
416	unsigned int cpu;
417
418	set_current(task);
419
420	secondary_biglittle_init();
421
422	/*
423	 * The identity mapping is uncached (strongly ordered), so
424	 * switch away from it before attempting any exclusive accesses.
425	 */
426	cpu_switch_mm(mm->pgd, mm);
427	local_flush_bp_all();
428	enter_lazy_tlb(mm, current);
429	local_flush_tlb_all();
430
431	/*
432	 * All kernel threads share the same mm context; grab a
433	 * reference and switch to it.
434	 */
435	cpu = smp_processor_id();
436	mmgrab(mm);
437	current->active_mm = mm;
438	cpumask_set_cpu(cpu, mm_cpumask(mm));
 
 
 
439
440	cpu_init();
441
442#ifndef CONFIG_MMU
443	setup_vectors_base();
444#endif
445	pr_debug("CPU%u: Booted secondary processor\n", cpu);
446
447	trace_hardirqs_off();
448
449	/*
450	 * Give the platform a chance to do its own initialisation.
451	 */
452	if (smp_ops.smp_secondary_init)
453		smp_ops.smp_secondary_init(cpu);
454
 
 
 
455	notify_cpu_starting(cpu);
 
 
456
457	ipi_setup(cpu);
 
 
 
458
459	calibrate_delay();
460
461	smp_store_cpu_info(cpu);
462
463	/*
464	 * OK, now it's safe to let the boot CPU continue.  Wait for
465	 * the CPU migration code to notice that the CPU is online
466	 * before we continue - which happens after __cpu_up returns.
467	 */
468	set_cpu_online(cpu, true);
469
470	check_other_bugs();
471
472	complete(&cpu_running);
473
474	local_irq_enable();
475	local_fiq_enable();
476	local_abt_enable();
477
478	/*
479	 * OK, it's off to the idle thread for us
480	 */
481	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
482}
483
484void __init smp_cpus_done(unsigned int max_cpus)
485{
486	int cpu;
487	unsigned long bogosum = 0;
488
489	for_each_online_cpu(cpu)
490		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
491
492	printk(KERN_INFO "SMP: Total of %d processors activated "
493	       "(%lu.%02lu BogoMIPS).\n",
494	       num_online_cpus(),
495	       bogosum / (500000/HZ),
496	       (bogosum / (5000/HZ)) % 100);
497
498	hyp_mode_check();
499}
500
501void __init smp_prepare_boot_cpu(void)
502{
503	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 
 
504}
505
506void __init smp_prepare_cpus(unsigned int max_cpus)
507{
508	unsigned int ncores = num_possible_cpus();
509
510	init_cpu_topology();
511
512	smp_store_cpu_info(smp_processor_id());
513
514	/*
515	 * are we trying to boot more cores than exist?
516	 */
517	if (max_cpus > ncores)
518		max_cpus = ncores;
519	if (ncores > 1 && max_cpus) {
520		/*
 
 
 
 
 
 
521		 * Initialise the present map, which describes the set of CPUs
522		 * actually populated at the present time. A platform should
523		 * re-initialize the map in the platforms smp_prepare_cpus()
524		 * if present != possible (e.g. physical hotplug).
525		 */
526		init_cpu_present(cpu_possible_mask);
527
528		/*
529		 * Initialise the SCU if there are more than one CPU
530		 * and let them know where to start.
531		 */
532		if (smp_ops.smp_prepare_cpus)
533			smp_ops.smp_prepare_cpus(max_cpus);
534	}
535}
536
537static const char *ipi_types[NR_IPI] __tracepoint_string = {
538	[IPI_WAKEUP]		= "CPU wakeup interrupts",
539	[IPI_TIMER]		= "Timer broadcast interrupts",
540	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
541	[IPI_CALL_FUNC]		= "Function call interrupts",
542	[IPI_CPU_STOP]		= "CPU stop interrupts",
543	[IPI_IRQ_WORK]		= "IRQ work interrupts",
544	[IPI_COMPLETION]	= "completion interrupts",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545};
546
547static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
548
549void show_ipi_list(struct seq_file *p, int prec)
550{
551	unsigned int cpu, i;
552
553	for (i = 0; i < NR_IPI; i++) {
554		if (!ipi_desc[i])
555			continue;
556
557		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
558
559		for_each_online_cpu(cpu)
560			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
 
561
562		seq_printf(p, " %s\n", ipi_types[i]);
563	}
564}
565
566void arch_send_call_function_ipi_mask(const struct cpumask *mask)
567{
568	smp_cross_call(mask, IPI_CALL_FUNC);
 
 
 
 
 
 
 
 
 
 
569}
570
571void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 
 
 
 
 
572{
573	smp_cross_call(mask, IPI_WAKEUP);
 
 
 
574}
575
576void arch_send_call_function_single_ipi(int cpu)
 
577{
578	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
 
 
 
 
 
 
 
 
579}
580
581#ifdef CONFIG_IRQ_WORK
582void arch_irq_work_raise(void)
583{
584	if (arch_irq_work_has_interrupt())
585		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 
 
 
 
 
 
586}
587#endif
588
589#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
590void tick_broadcast(const struct cpumask *mask)
591{
592	smp_cross_call(mask, IPI_TIMER);
593}
 
 
594#endif
595
596static DEFINE_RAW_SPINLOCK(stop_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597
598/*
599 * ipi_cpu_stop - handle IPI from smp_send_stop()
600 */
601static void ipi_cpu_stop(unsigned int cpu)
602{
603	local_fiq_disable();
604
605	if (system_state <= SYSTEM_RUNNING) {
606		raw_spin_lock(&stop_lock);
607		pr_crit("CPU%u: stopping\n", cpu);
608		dump_stack();
609		raw_spin_unlock(&stop_lock);
610	}
611
612	set_cpu_online(cpu, false);
613
614	while (1) {
 
 
 
615		cpu_relax();
616		wfe();
617	}
618}
619
620static DEFINE_PER_CPU(struct completion *, cpu_completion);
621
622int register_ipi_completion(struct completion *completion, int cpu)
623{
624	per_cpu(cpu_completion, cpu) = completion;
625	return IPI_COMPLETION;
626}
627
628static void ipi_complete(unsigned int cpu)
629{
630	complete(per_cpu(cpu_completion, cpu));
631}
632
633/*
634 * Main handler for inter-processor interrupts
635 */
636static void do_handle_IPI(int ipinr)
637{
638	unsigned int cpu = smp_processor_id();
 
639
640	if ((unsigned)ipinr < NR_IPI)
641		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
642
643	switch (ipinr) {
644	case IPI_WAKEUP:
645		break;
646
647#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
648	case IPI_TIMER:
649		tick_receive_broadcast();
650		break;
651#endif
652
653	case IPI_RESCHEDULE:
654		scheduler_ipi();
655		break;
656
657	case IPI_CALL_FUNC:
658		generic_smp_call_function_interrupt();
659		break;
660
 
 
 
 
661	case IPI_CPU_STOP:
662		ipi_cpu_stop(cpu);
663		break;
664
665#ifdef CONFIG_IRQ_WORK
666	case IPI_IRQ_WORK:
667		irq_work_run();
668		break;
669#endif
670
671	case IPI_COMPLETION:
672		ipi_complete(cpu);
673		break;
674
675	case IPI_CPU_BACKTRACE:
676		printk_deferred_enter();
677		nmi_cpu_backtrace(get_irq_regs());
678		printk_deferred_exit();
679		break;
680
681	default:
682		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
683		        cpu, ipinr);
684		break;
685	}
686
687	if ((unsigned)ipinr < NR_IPI)
688		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
689}
690
691/* Legacy version, should go away once all irqchips have been converted */
692void handle_IPI(int ipinr, struct pt_regs *regs)
693{
694	struct pt_regs *old_regs = set_irq_regs(regs);
695
696	irq_enter();
697	do_handle_IPI(ipinr);
698	irq_exit();
699
700	set_irq_regs(old_regs);
701}
702
703static irqreturn_t ipi_handler(int irq, void *data)
704{
705	do_handle_IPI(irq - ipi_irq_base);
706	return IRQ_HANDLED;
707}
708
709static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
710{
711	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
712	__ipi_send_mask(ipi_desc[ipinr], target);
713}
714
715static void ipi_setup(int cpu)
716{
717	int i;
718
719	if (WARN_ON_ONCE(!ipi_irq_base))
720		return;
721
722	for (i = 0; i < nr_ipi; i++)
723		enable_percpu_irq(ipi_irq_base + i, 0);
724}
725
726void __init set_smp_ipi_range(int ipi_base, int n)
727{
728	int i;
729
730	WARN_ON(n < MAX_IPI);
731	nr_ipi = min(n, MAX_IPI);
732
733	for (i = 0; i < nr_ipi; i++) {
734		int err;
735
736		err = request_percpu_irq(ipi_base + i, ipi_handler,
737					 "IPI", &irq_stat);
738		WARN_ON(err);
739
740		ipi_desc[i] = irq_to_desc(ipi_base + i);
741		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
742	}
743
744	ipi_irq_base = ipi_base;
745
746	/* Setup the boot CPU immediately */
747	ipi_setup(smp_processor_id());
748}
749
750void smp_send_reschedule(int cpu)
751{
752	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
753}
754
755void smp_send_stop(void)
756{
757	unsigned long timeout;
758	struct cpumask mask;
759
760	cpumask_copy(&mask, cpu_online_mask);
761	cpumask_clear_cpu(smp_processor_id(), &mask);
762	if (!cpumask_empty(&mask))
 
763		smp_cross_call(&mask, IPI_CPU_STOP);
 
764
765	/* Wait up to one second for other CPUs to stop */
766	timeout = USEC_PER_SEC;
767	while (num_online_cpus() > 1 && timeout--)
768		udelay(1);
769
770	if (num_online_cpus() > 1)
771		pr_warn("SMP: failed to stop secondary CPUs\n");
772}
773
774/* In case panic() and panic() called at the same time on CPU1 and CPU2,
775 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
776 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
777 * kdump fails. So split out the panic_smp_self_stop() and add
778 * set_cpu_online(smp_processor_id(), false).
779 */
780void panic_smp_self_stop(void)
781{
782	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
783	         smp_processor_id());
784	set_cpu_online(smp_processor_id(), false);
785	while (1)
786		cpu_relax();
787}
788
789#ifdef CONFIG_CPU_FREQ
790
791static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
792static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
793static unsigned long global_l_p_j_ref;
794static unsigned long global_l_p_j_ref_freq;
795
796static int cpufreq_callback(struct notifier_block *nb,
797					unsigned long val, void *data)
798{
799	struct cpufreq_freqs *freq = data;
800	struct cpumask *cpus = freq->policy->cpus;
801	int cpu, first = cpumask_first(cpus);
802	unsigned int lpj;
803
804	if (freq->flags & CPUFREQ_CONST_LOOPS)
805		return NOTIFY_OK;
806
807	if (!per_cpu(l_p_j_ref, first)) {
808		for_each_cpu(cpu, cpus) {
809			per_cpu(l_p_j_ref, cpu) =
810				per_cpu(cpu_data, cpu).loops_per_jiffy;
811			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
812		}
813
814		if (!global_l_p_j_ref) {
815			global_l_p_j_ref = loops_per_jiffy;
816			global_l_p_j_ref_freq = freq->old;
817		}
818	}
819
820	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
821	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
822		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
823						global_l_p_j_ref_freq,
824						freq->new);
825
826		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
827				    per_cpu(l_p_j_ref_freq, first), freq->new);
828		for_each_cpu(cpu, cpus)
829			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
830	}
831	return NOTIFY_OK;
832}
833
834static struct notifier_block cpufreq_notifier = {
835	.notifier_call  = cpufreq_callback,
836};
837
838static int __init register_cpufreq_notifier(void)
839{
840	return cpufreq_register_notifier(&cpufreq_notifier,
841						CPUFREQ_TRANSITION_NOTIFIER);
842}
843core_initcall(register_cpufreq_notifier);
844
845#endif
846
847static void raise_nmi(cpumask_t *mask)
848{
849	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
850}
851
852void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
853{
854	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
855}